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Identification of key genes related 
to lymphangiogenesis in venous 
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Background: Venous thromboembolism (VTE), a life-threatening cardiovascular 
disorder, involves complex interactions between thrombosis and immune 
dysregulation. Lymphangiogenesis-related genes (LRGs) may directly induce 
thrombosis by regulating endothelial function, the coagulation cascade, or 
inflammatory signaling pathways. This research was intended to uncover LRG-
associated key genes and elucidate their molecular mechanisms in VTE.
Methods: Transcriptomic datasets from public databases were analyzed to 
identify differentially expressed genes (DEGs) between VTE and control samples. 
Subsequently, candidate genes were screened by overlapping the DEGs with 
LRGs obtained from the literature. Functional analysis was then performed on 
candidate genes. Machine learning algorithms and expression validation were 
employed to refine key genes. Moreover, gene set enrichment analysis (GSEA), 
immune infiltration, and regulatory and disease-gene-drug network analyses 
were performed. Finally, key genes’ expression levels were validated via real-
time quantitative polymerase chain reaction (RT-qPCR).
Results: To sum up, 810 DEGs were identified, of which 30 DEGs were selected 
as candidate genes. Machine learning and expression validation prioritized 
MYC and NTAN1 as key genes. Functional analysis revealed their enrichment in 
spliceosome, oxidative phosphorylation, and immune-related pathways. MYC 
and NTAN1 correlated with regulatory T cells and M2 macrophages. Furthermore, 
the microRNA (miRNA)-mRNA-transcription factor (TF) network identified MYC 
as a hub regulated by hsa-miR-449c-5p and JUN. Disease-gene-drug network 
highlighted cisplatin and olaparib as potential MYC-targeted therapy. RT-qPCR 
confirmed MYC downregulation and NTAN1 upregulation in VTE (p < 0.05), 
consistent with the bioinformatics results.
Conclusion: This study identified MYC and NTAN1 as pivotal regulators of 
VTE, bridging thrombotic progression with immune-metabolic dysregulation. 
The findings provided novel insights into key genes and immunomodulatory 
therapies for VTE.
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1 Introduction

Venous thromboembolism (VTE) is the most prevalent type of 
thrombotic condition, affecting approximately 1 in 12 individuals over 
45 (1). With an annual incidence of 300,000 to 600,000 cases in the 
United  States alone, it ranks as the third leading cause of 
cardiovascular-related mortality (2). VTE usually presents as either 
deep vein thrombosis (DVT) or pulmonary embolism (PE). Among 
patients with newly diagnosed VTE, one-third present with 
concurrent PE, and 25% of PE cases may result in sudden death, 
underscoring the life-threatening nature of this condition (3, 4).

DVT commonly presents with lower extremity pain, increased 
skin temperature, swelling, edema, erythema, and tenderness, while 
PE may cause dyspnea, chest pain, syncope, hemoptysis, hypotension, 
and tachycardia (5, 6). The clinical manifestations of VTE often lack 
specificity. Differential diagnoses for DVT include hematoma, 
cellulitis, congestive heart failure, and superficial thrombophlebitis, 
whereas PE symptoms may overlap with those of heart failure or 
myocardial infarction (7). After the initial occurrence of VTE, 
patients are at risk of recurrence. The core pathological features of 
VTE, including venous stasis, hypercoagulability, and vascular 
endothelial injury, jointly promote thrombosis. Although 
anticoagulant therapy can reduce thrombotic recurrence, these 
features persist, causing the risk of bleeding to persist. The incidence 
and recurrence trends in high-risk groups are still worrisome (7). In 
high-risk groups such as cancer patients, anticoagulants often 
demonstrate limited efficacy and high recurrence rates, highlighting 
the urgent need to explore novel mechanisms and therapeutic 
targets (8, 9).

The pathophysiology of VTE involves complex interactions 
among endothelial injury, inflammatory responses, and immune 
dysregulation, though its molecular regulatory networks remain 
incompletely understood (10, 11). Identifying key driver genes and 
immune microenvironment characteristics in VTE is critical for 
achieving early diagnosis and precision treatment.

The lymphatic system is vital for regulating immune cells and 
plays a significant part in the process of thrombogenesis (12). On one 
hand, lymphangiogenesis (LYM) promotes tumor metastasis and 
fosters immunosuppressive microenvironments, correlating with 
elevated VTE risk in cancer patients (13, 14). On the other hand, 
lymphangiogenesis-related genes (LRGs) may directly drive 
thrombosis by modulating endothelial functions (e.g., VE-cadherin 
expression), coagulation cascades (e.g., fibrinogen activation), or 
inflammatory signaling (e.g., IL-6/TNF-α pathways) (15). However, 
systematic investigations remain lacking into whether LRGs influence 
thrombus stability through lymphovascular crosstalk or immune cell 
infiltration mechanisms (such as neutrophil extracellular traps, NETs) 
(16). Recent advances in multi-omics technologies (such as 
transcriptomics and protein–protein interaction networks) offer new 
insights into LRGs’ molecular functions, though integrated analyses 
in VTE contexts are absent.

This study integrates transcriptomic data from the GEO database 
to identify LRG-associated key genes through differential expression 
analysis and machine learning algorithms. Functional enrichment, 
immune infiltration profiling, and regulatory network construction 
are employed to delineate their biological roles. This work establishes 
for the first time the molecular link between LRGs and immune-
metabolic dysregulation in VTE, establishing a theoretical basis for 

the development of early diagnostic biomarkers and 
immunomodulatory therapies.

2 Materials and methods

2.1 The collection of gene data

Gene expression profiles for the training set were obtained from 
the Gene Expression Omnibus (GEO) database1 by downloading the 
GSE19151 dataset (GPL571). This dataset contained whole blood 
transcriptomic data from 70 venous thromboembolism (VTE) and 63 
control samples. The clinical information of each sample was shown 
in Supplementary Table 1. The validation set GSE48000 (GPL10558), 
which was also retrieved from GEO and contained whole blood 
transcriptomic data, comprised 107 VTE samples and 25 control 
samples. Additionally, the same analysis was performed in the 
GSE48000 dataset, and the obtained genes were named DEGs2.

660 lymphangiogenesis-related genes (LRGs) were acquired from 
the GeneCards database2 by searching the keyword 
“lymphangiogenesis,” based on reference literature 
(Supplementary Table 2) (17).

2.2 Differential expression analysis and 
candidate gene screening

First, the GSE19151 data was normalized through log2 
transformation, and a PCA plot was generated. To identify 
differentially expressed genes (DEGs) between VTE patients and 
control samples in the training set, the R package “limma” (v 3.56.2) 
(18) was utilized with criteria of p < 0.05 and |log2 Fold Change 
(log2FC)| > 0.5. A volcano plot was generated using DEGs in VTE 
with the use of the R package “ggplot2” (v 3.5.1) (19). The plot labeled 
the top 10 genes that were up-regulated and the 10 that were down-
regulated, ranked by log2FC. Additionally, a heatmap was created 
using the top 50 up-regulated and top 50 down-regulated genes, with 
the use of the R package “ComplexHeatmap” (v 2.16.0) (20).

Furthermore, the R package “ggvenn” (v 0.1.9) (21) was utilized 
to visualize and extract intersection genes between DEGs in VTE and 
LRGs. The overlapping genes were defined as candidate genes for 
further functional analyses.

2.3 Functional enrichment and protein–
protein interaction (PPI) analysis

To explicate the biological functions and signaling pathways 
linked to the candidate genes, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses 
were carried out with the R package “clusterProfiler”(v 4.8.3) (22), 
with a significance criterion of p.adjust less than 0.05. The results were 
subsequently visualized using the R package “enrichplot” (v 1.20.3) 

1  https://www.ncbi.nlm.nih.gov/geo/

2  https://www.genecards.org/
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(23). Specifically, GO enrichment analysis categorized genes into three 
functional domains: biological processes (BPs), cellular components 
(CCs), and molecular functions (MFs), while KEGG analysis 
identified significant biological pathways. Pathways were ranked based 
on the count of involved genes, from highest to lowest.

A PPI network was established to investigate interactions at the 
protein level further. Candidate genes were entered into the Search 
Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
database3 to predict protein interactions, with a confidence score 
threshold of > 0.4. The resulting network was visualized using 
Cytoscape (v 3.10.3) (24), and genes without predicted interactions 
were excluded.

2.4 Identification of key candidate genes 
with machine learning

Subsequently, to screen candidate genes, three machine learning 
algorithms were applied.

The Boruta algorithm was an “all-relevant” feature selection 
method based on random forest. It created a set of “shadow features” 
(randomly shuffled copies) for the original gene data, then compared 
whether the importance of each real gene was significantly and stably 
higher than that of these random shadows. Finally, genes were classified 
into three categories: “confirmed important,” “rejected,” or “tentative.” 
Boruta was adopted because it could efficiently screen out all features 
related to the outcome, not just those genes with the strongest linear 
relationships. This helped us capture more potential biological signals 
and avoid missing key genes. Boruta analysis was carried out on the 
training dataset by utilizing the R package “Boruta” (v 8.0.0) (25). Genes 
classified as “Confirmed” were designated as Boruta features.

Support vector machine-recursive feature elimination (SVM-
RFE) was a “wrapper method” based on the support vector machine 
(SVM) model. It started by training a model using all genes, then 
eliminated the least important genes based on weights defined by the 
model (e.g., coefficient magnitude), retrained the model with the 
remaining genes, and repeated this recursive loop until only one gene 
was left. Finally, the importance of genes was ranked based on the 
order in which they were eliminated. SVM-RFE was chosen because 
it excelled at handling high-dimensional data (a large number of genes 
with a small number of samples) and possessed strong nonlinear 
modeling capabilities. This helped us identify the genes that 
contributed the most to the model’s classification performance (e.g., 
distinguishing between VTE and control groups) from complex gene 
interactions. SVM-RFE was executed on the R package “e1071” (v 
1.7.16) (26). The genes corresponding to the model with the highest 
classification accuracy were selected as SVM-RFE feature genes.

Least absolute shrinkage and selection operator (LASSO) was an 
“embedded method” for linear regression. During the model training 
process, it introduced a penalty term (L1 regularization), which 
automatically shrunk the coefficients of unimportant or redundant 
features to zero, thereby achieving feature selection. Genes with 
non-zero coefficients were the ones selected. Lasso was applied 
because it could not only perform feature selection but also featured 

3  http://www.string-db.org/

regularization to prevent overfitting. This resulted in a simpler and 
more interpretable linear model, which was well-suited for screening 
out the core set of genes with the highest predictive value from a large 
number of candidate genes. The R package “glmnet” (v 4.1.8) (27) was 
used to perform LASSO regression. The optimal lambda value was 
determined by minimizing the error through 10-fold cross-validation. 
Genes selected under the optimal lambda were considered LASSO 
feature genes.

Finally, the candidate genes intersecting between Boruta, 
SVM-RFE, and LASSO features were singled out as candidate key 
genes using the R package “ggvenn” (v 0.1.9). The expression profiles 
of the candidate key genes were demonstrated in the validation set. 
The top 3 upregulated and downregulated genes were presented in the 
validation set.

2.5 Expression validation

The Wilcoxon rank-sum test assessed the differential expression 
levels of candidate key genes between VTE and control samples in the 
training and validation sets (p < 0.05). Box plots were generated to 
visualize the differential expression levels between VTE and control 
samples in training and validation sets. Furthermore, genes showing 
statistically significant and consistent expression trends across both 
datasets were ultimately identified as key genes.

2.6 Gene set enrichment analysis (GSEA) of 
key genes

Next, GSEA was carried out on the training dataset to investigate 
the biological functions and pathways associated with the key genes. 
Spearman correlation analysis was performed between each key gene 
and all other genes to obtain correlation coefficients. Genes were then 
ranked in descending order based on these coefficients. Subsequently, 
GSEA was performed using the R package “clusterProfiler” (v 4.8.3) 
with the “c2.cp.kegg.symbols.gmt” gene set, which was retrieved from 
the Molecular Signatures Database (MSigDB)4. Enrichment was 
assessed with thresholds of |Normalized Enrichment Score (NES)| > 1, 
q value < 0.25, and p < 0.05. The top 5 pathways ranked by |NES| of 
each key gene were selected for visualization.

2.7 Immune infiltration analysis

To comprehensively evaluate immune infiltration, proportions of 
22 immune cell types (28) were calculated for all specimens in the 
training dataset by using the R package “IOBR” (v 0.99.0) (29) between 
VTE and control samples. The relative proportions of immune cells 
were exhibited utilizing the R package “ComplexHeatmap” (v 2.16.0).

Spearman correlation analysis was also conducted via the R 
package “psych” (v 2.2.9) (30). To explore correlations among immune 
cell types. Statistically significant correlations were defined as 
|correlation coefficient (cor)| > 0.3 and p < 0.05.

4  https://www.gsea-msigdb.org/gsea/msigdb

https://doi.org/10.3389/fmed.2025.1659881
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://www.string-db.org/
https://www.gsea-msigdb.org/gsea/msigdb


Lin et al.� 10.3389/fmed.2025.1659881

Frontiers in Medicine 04 frontiersin.org

Furthermore, to assess differences in immune cell infiltration 
between VTE and control groups, the Wilcoxon rank-sum test 
(p < 0.05) was applied. The results were depicted using the R package 
“ggplot2” (v 3.5.1). Moreover, to further investigate the correlation 
between key genes and differentially infiltrating immune cells, 
Spearman correlation analysis was conducted in the training set by 
utilizing the R package “psych” (v 2.2.9).

2.8 Construction of regulatory network

Furthermore, a microRNA (miRNA)-mRNA-transcription factor 
(TF) network was constructed to investigate the upstream controlling 
factors of key genes. The miRNAs predicted to target key genes were 
identified using the miRNA target prediction and functional 
annotations database (miRDB)5 and TargetScan-v9.06 databases. 
Subsequently, the intersection of miRNAs predicted by both databases 
was considered the set of key miRNAs for each key gene. TFs regulating 
the key genes were retrieved from the Comprehensive Database for 
Regulations of Human Transcription Factors and Their Targets 
(hTFtarget)7 and KnockTF8 databases. Afterwards, the resulting 
TF-mRNA-miRNA network was visualized using Cytoscape (v 3.10.3).

2.9 Construction of disease-gene-drug 
interaction network

Disease and drug interaction analyses were performed to elucidate 
key genes’ potential pathogenic mechanisms and therapeutic targets. 
First, the Comparative Toxicogenomics Database (CTD)9 was 
employed to forecast diseases associated with the identified key genes. 
Disease-gene pairs with an inference score >10 and documented 
relevance to venous thrombosis were retained for further analysis. 
Subsequently, the Drug-Gene Interaction database (DGIdb)10 was 
employed to identify potential therapeutic agents targeting the key 
genes. Finally, a comprehensive disease-gene-drug interaction 
network was established and visualized using Cytoscape (v 3.10.3).

2.10 Real-time quantitative polymerase 
chain reaction (RT-qPCR) experimental 
verification

This study collected 5 pairs of whole blood samples from 
Shenzhen Second People’s Hospital, including 5 control samples 
(samples 1–5) and 5 VTE samples (samples 6–10). Recruitment for 
the study took place from June 20, 2025, to June 25, 2025. This study 
was approved by the Ethics Committee of Shenzhen Second People’s 
Hospital with the ethics approval number 2025–488-02PJ and 
conducted in accordance with the ethical principles of the Declaration 

5  https://mirdb.org/

6  https://dianalab.e-ce.uth.gr/tarbasev9

7  https://bioinfo.life.hust.edu.cn/hTFtarget#!/

8  http://www.licpathway.net/KnockTFv1/

9  https://ctdbase.org/

10  https://dgidb.org/

of Helsinki and the CIOMS International Ethical Guidelines for 
Health-Related Research Involving Humans. All participants 
provided written informed consent before sample collection. 
Additionally, it should be  noted that this study did not involve 
minors. Reverse transcription was performed with the Hifair® III 1st 
Strand cDNA Synthesis SuperMix. Moreover, RT-qPCR was 
conducted with the 2 × Universal Blue SYBR Green qPCR Master 
Mix, with primer sequences detailed in Supplementary Table  3. 
Meanwhile, GAPDH served as the endogenous control for 
normalization. Gene expression quantification utilized the 2-ΔΔCt 
method (31). Graphpad Prism 10 (32) was used for data visualization, 
with between-group comparisons assessed by two-tailed Student’s 
t-test. Statistical significance was defined as p < 0.05.

2.11 Statistical analysis

The R (v 4.2.2) was utilized to conduct statistical analysis. 
Difference analysis between groups was executed via the Wilcoxon test. 
We considered a p-value lower than 0.05 to be statistically significant. 
Meanwhile, we provided the purposes and significances of the selection 
of various computational methods (Supplementary Table 4).

3 Results

3.1 Identification of 30 candidate genes in 
VTE

The PCA results showed that the VTE samples and control 
samples could be separated (Supplementary Figure 1A). Differential 
expression analysis was conducted between VTE and control in the 
training set to further investigate the transcriptional alterations in 
VTE. As a result, 810 DEGs were identified, with 611 genes 
up-regulated and 199 genes down-regulated in VTE samples (p < 0.05, 
|log2FC| > 0.5) (Figure 1A; Supplementary Table 5). Additionally, the 
heatmap showed the expression patterns of these DEGs between VTE 
samples and control samples (Figure 1B). In the GSE48000 dataset, 
1,992 DEGs were obtained, and 100 genes in DEGs2 overlapped with 
those in DEGs (Supplementary Figure 1B). Moreover, the intersection 
analysis of DEGs and LRGs identified 30 candidate genes (Figure 1C). 
These candidate genes could provide insight into potential therapeutic 
approaches for VTE.

3.2 Functional annotation of candidate 
genes in VTE

Functional enrichment analyses were performed on 30 candidate 
genes to decipher the molecular pathways underlying VTE. GO and 
KEGG analyses exposed their involvement in critical biological 
processes and disease-related pathways.

GO analysis identified 660 significantly enriched terms (p.adjust 
< 0.05), including 617 BPs, 34 MFs, and 9 CCs (Figure  2A; 
Supplementary Table 6). Key BP terms were associated with “negative 
regulation of cell development,” “homeostasis of cell number,” and 
“cytokine-mediated signaling,” implicating candidate genes in cellular 
proliferation control and immune regulation. Enriched CC terms 
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highlighted localization to extracellular matrix structures, such as 
“collagen-containing extracellular matrix” and “secretory granule 
lumen,” suggesting roles in tissue remodeling and secretory processes. 
MF terms were dominated by transcriptional and cytokine-related 
activities, including “DNA-binding transcription factor binding” and 
“cytokine receptor binding,” indicating regulatory roles in gene 
expression and immune signaling.

KEGG pathway analysis revealed 94 enriched pathways 
(p.adjust < 0.05), with prominent associations to oncogenic and 
metabolic processes (Figure 2B; Supplementary Table 7). Candidate 
genes were significantly linked to “prostate cancer,” “hepatitis B,” 
and “cellular senescence,” suggesting shared molecular mechanisms 
between thrombotic and neoplastic pathologies. Pathways such as 
“endocrine resistance” and “bladder cancer” further underscore 
potential roles in therapy resistance and proliferative dysregulation.

A PPI network was also established to explore the functional 
associations among the 30 candidate genes (Figure 2C). Notably, MYC 
was found to interact with multiple proteins, including TGFB1, KRAS, 
and TP53, highlighting its potential central role in the network.

3.3 MYC and NTAN1 were identified as key 
genes through machine learning 
algorithms and expression validation in VTE

Machine learning algorithms were applied to refine the candidate 
genes further to recognize the most relevant genes related to 
VTE. Specifically, the Boruta algorithm was applied to the training 
dataset, selecting 26 “Confirmed” genes as Boruta features from the 
30 candidate genes (Figure 3A).
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Simultaneously, the SVM-RFE algorithm was employed to further 
identify candidate genes that achieved the best classification 
performance, identifying eight SVM-RFE features (Figure 3B).

Meanwhile, LASSO regression was applied using the log(lambda.
min) value of −5.1227, as determined by 10-fold cross-validation, 
leading to the selection of 16 LASSO features (Figures 3C,D).

Integrating Boruta, SVM, and LASSO features identified four 
candidate key genes: TGFB1, MYC, KRAS, and NTAN1 (Figure 3E). 
In the validation set, TGFB1 and NTAN1 were significantly upregulated 
in VTE samples, MYC was significantly downregulated, and KRAS 
showed no significant difference (Supplementary Table 8). Meanwhile, 
the top 3 upregulated genes in the validation set were IFI27, TMCC2, 
and GYPB respectively, and the top  3 downregulated genes were 
ZFP36L2, FOS, and DICER1, respectively, (Supplementary Table 9).

Subsequently, expression validation was implemented on both the 
training and validation data groups. Among the four genes, MYC and 
NTAN1 exhibited significantly dysregulated expression in VTE 
samples compared to controls (p < 0.001) and demonstrated 
consistent trends across datasets (Figure 3F). These findings suggest 
that MYC and NTAN1 may have important functions in the 
development of VTE.

3.4 Biological pathways associated with 
MYC and NTAN1 in VTE

GSEA was conducted using the KEGG pathway gene sets to 
investigate the biological roles of key genes in VTE. MYC and 
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NTAN1 were prioritized for their potential mechanistic 
contributions to thrombotic processes |NES| > 1, (q value < 0.25, and 
p < 0.05).

For MYC, GSEA identified 85 significantly enriched pathways. 
The top five pathways ranked by |NES| included “spliceosome,” 
“neuroactive ligand-receptor interaction,” “ribosome,” “oxidative 
phosphorylation,” and “nucleocytoplasmic transport” (Figure  4A; 
Supplementary Table  10). The upregulation of “spliceosome” and 

“nucleocytoplasmic transport” pathways suggested enhanced RNA 
splicing efficiency and intracellular transport activity in 
VTE. Conversely, the downregulation of “neuroactive ligand-receptor 
interactions,” “ribosome biogenesis,” and “oxidative phosphorylation” 
implied impaired synaptic signaling, protein synthesis, and 
mitochondrial energy metabolism.

NTAN1-associated GSEA revealed enrichment in 122 pathways, 
with the top five pathways comprising ribosome, “oxidative 
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phosphorylation,” “Parkinson’s disease,” “Fc gamma R-mediated 
phagocytosis,” and “thermogenesis” (Figure  4B; 
Supplementary Table 11). The coordinated upregulation of “ribosome,” 
“oxidative phosphorylation,” and “thermogenesis” pathways indicated 
heightened cellular energy production and metabolic activity in 
VTE. In contrast, suppressing “Fc gamma R-mediated phagocytosis” 
pointed to compromised immune clearance mechanisms. Notably, the 
enrichment of Parkinson’s disease-related genes suggested potential 
overlaps in molecular pathways between neurodegenerative and 
thrombotic disorders.

3.5 Immune infiltration analysis in VTE

The immune infiltration analysis showed notable differences 
between VTE samples and control samples. Specifically, the relative 
proportions of 22 immune cell types were shown in 
Figure 5A. Spearman correlation analysis of immune cell interactions 
identified significant associations (|cor| > 0.3, p < 0.05) among the 22 
immune subsets (Figure  5B). Notably, CD8+ T cells displayed a 
strong negative correlation with neutrophils (cor = −0.62, 
p = 3.6 × 10−13).
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Comparative analysis revealed 10 differentially infiltrated immune 
cell types between VTE and control samples (p < 0.05), including 
naive B cells, naive CD4 + T cells, and memory resting CD4+ T cells 
(Figure 5C). Specifically, naive CD4+ T cells were elevated in VTE 
samples, while naive B cells were reduced, suggesting immune 
dysregulation in VTE.

Moreover, Spearman analysis further uncovered significant 
associations between key genes (MYC and NTAN1) and differentially 

infiltrated immune cells (|cor| > 0.3, p < 0.05) (Figure  5D). MYC 
expression positively correlated with regulatory T cells (Tregs) 
(cor = 0.57, p = 1.0 × 10−12) and naive B cells (cor = 0.36, 
p = 1.9 × 10−5), but negative associations with M2 macrophages 
(cor = −0.36, p = 2.6 × 10−5). Meanwhile, NTAN1 showed positive 
correlations with memory activated CD4+ T cells (cor = 0.43, 
p = 3.1 × 10−7), M2 macrophages (cor = 0.42, p = 4.5 × 10−7), and 
activated dendritic cells (cor = 0.31, p = 3.0 × 10−4).
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Machine learning. (A) Boruta feature importance boxplot. (B) SVM-RFE accurate feature relationship diagram. (C) Genetic coefficient path diagram. 
(D) Cross-validation error plot. (E) Intersection of feature genes predicted by three machine learning algorithms. (F) Differential expression levels of 
candidate key genes.
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These results highlighted the critical interplay between immune 
dysregulation and thrombotic progression, providing mechanistic 
insights into VTE pathogenesis and potential immunomodulatory 
therapeutic targets.

3.6 Construction of miRNA-mRNA-TF and 
disease-gene-drug networks of key genes

A miRNA-mRNA-TF network was established to investigate 
upstream regulatory mechanisms (Figure 6A). Specifically, miRNA 
predictions for MYC and NTAN1 were obtained from miRDB and 
TarBase-v9.0 databases, identifying seven and one key miRNAs, 
respectively. Additionally, TFs for MYC and NTAN1 were retrieved 
from hTFtarget and KnockTF databases, revealing 23 TFs for MYC 
and 12 TFs for NTAN1. For example, MYC was targeted by hsa-miR-
449c-5p and JUN. Specifically, MYC also exhibited a self-regulatory 
loop, indicating autoregulation.

A disease–gene–drug network was also constructed and 
visualized using Cytoscape, with MYC positioned as a central hub 
connecting thrombotic diseases to candidate therapeutic agents. 
(Figure 6B).

The CTD identified MYC and NTAN1 as central players in 
thrombotic disorders, with MYC linked to 62 diseases and NTAN1 
associated with 19 diseases. MYC exhibited strong associations with 
blood coagulation disorders, thrombotic microangiopathies, and 
thrombophilia, while NTAN1 was enriched in hematologic 
pathologies such as thrombocytopenia and hemolytic anemia. These 
findings underscored the dual roles of MYC and NTAN1 in thrombus 
formation and hematologic dysregulation. Drug-gene interaction 
analysis revealed MYC as a hub for pharmacologic modulation, with 
70 candidate drugs identified (29 approved, 41 not approved). 
Approved drugs targeting MYC included cisplatin and olaparib, 
suggesting their therapeutic relevance in thrombotic conditions. In 
contrast, no drugs were currently predicted to interact with NTAN1, 

indicating a potential research gap and the need to further explore 
its druggability.

3.7 Expression validation of MYC and 
NTAN1 expression levels by RT-qPCR

To experimentally validate the bioinformatics findings, RT-qPCR 
was performed to evaluate the expression levels of MYC and 
NTAN1 in VTE and control samples. Notably, all key genes exhibited 
significant differential expression (Figures 7A,B) (p < 0.05). NTAN1 
showed higher expression in VTE samples. In contrast, MYC was 
down-regulated in VTE samples. These findings confirmed the 
reliability of the bioinformatics results and reinforced the potential 
role of MYC and NTAN1 as key genes in VTE.

4 Discussion

VTE is a multifactorial disease involving coagulation disorders, 
endothelial dysfunction, and immune-inflammatory crosstalk. 
Despite advances in anticoagulant therapy, recurrence rates remain 
high, necessitating novel biomarkers and therapeutic targets (8, 33). 
This study, which is among the first of its kind, integrates 
lymphangiogenesis-related genes (LRGs) with transcriptomic data 
and employs machine learning algorithms, which may help identify 
MYC and NTAN1 as potentially key regulatory genes in 
VTE. Additionally, it suggests possible molecular mechanisms in 
thrombus formation through immune microenvironment remodeling 
and dysregulation of metabolic pathways.

MYC (MYC proto-oncogene, bHLH transcription factor) is a 
critical transcriptional regulator involved in cell proliferation and 
immune regulation, whose dysregulation may play multifaceted roles 
in the pathogenesis of VTE (34). Studies have shown that in African 
clawed frog embryos, MYC maintains the differentiation and 
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FIGURE 5

Immune infiltration analysis in VTE. (A) Stacked bar chart of CIBERSORT analysis results. (B) Heatmap of correlations among 22 immune cell types. 
(C) Differential immune cell boxplot. (D) Heatmap of the correlation between differential immune cells and key genes, ***p < 0.001, ****p < 0.0001.
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migratory capacity of lymphatic endothelial cells (LECs) by regulating 
the transcription factors Slug/Snail2 and Twist. MYC knockdown 
leads to hypoplastic embryonic lymphatic networks and generalized 
edema, whereas exogenous expression of Slug or Twist partially 
rescues this phenotype. Similarly, in mouse embryos, lymphatic 
endothelium–specific deletion of MYC reduces lymphatic vessel 
density by 40% and is accompanied by impaired venous return (35). 
In pNET cells, MYC overexpression increases VEGFR3 
phosphorylation by 1.8-fold and enhances LEC tube formation by 
40%, whereas treatment with the MYC inhibitor 10,058-F4 or a 
VEGF-C neutralizing antibody reduces the lymph node metastasis 
rate by more than 50% (36). The research, through the integration of 
gene expression data from individuals with VTE, revealed that MYC 

could be critical in the development of VTE by modulating cellular 
growth and metabolic processes. It also indicated that altered MYC 
expression is closely associated with inflammatory responses and 
endothelial dysfunction, which may represent one of the key 
mechanisms underlying VTE development (37). Our study revealed 
significant downregulation of MYC in peripheral blood samples from 
VTE patients, which correlated with altered immune cell infiltration 
patterns and activation of metabolic pathways. This finding contrasts 
with the well-documented oncogenic role of MYC in malignancies, 
suggesting the existence of tissue-specific regulatory mechanisms in 
thrombotic disorders (38, 39).

The observed negative correlation between MYC expression and 
M2 macrophages, alongside its positive correlation with regulatory T 
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cells (Tregs), suggests that MYC may mediate immune homeostasis 
disruption in VTE. This aligns with the established role of MYC in 
tumor immune evasion through Treg activation (40), though its 
function in thrombosis appears distinct. In this study, MYC expression 
was negatively correlated with M2 macrophages and positively 
correlated with regulatory T cells (Tregs). MYC is known to facilitate 
tumor immune escape by activating Tregs (40). Also, MYC can 
regulate T - cell proliferation and metabolic reprogramming, which is 
crucial for T - cell activation and function (41). Additionally, research 
has found that inhibiting MYC expression in myeloid cells (including 
macrophages) affects the maturation and pro  - tumor activity of 
tumor - associated macrophages (42). Thus, considering its expression 
correlations in VTE, it’s speculated that MYC may mediate the 
disruption of immune homeostasis in VTE. However, as VTE is a 
thrombosis - related disorder with different pathological processes 
from tumors, the specific function of MYC in thrombosis may differ 
from its role in tumor immune escape. GSEA revealed suppressed 
MYC-associated oxidative phosphorylation pathways, suggesting a 
potential link between metabolic reprogramming and thrombus 
formation, a mechanism analogous to cancer-associated thrombosis 
(43). The inhibition of the oxidative phosphorylation pathway triggers 
metabolic reprogramming, driving cells such as platelets and 
macrophages to switch to alternative metabolic pathways like 
glycolysis (44, 45). This metabolic shift enhances cellular activity and 
inflammatory responses, thereby promoting thrombus formation.

This study reveals for the first time the aberrant expression pattern 
of NTAN1 (N-terminal asparagine amidase) in VTE and its 
underlying molecular mechanisms. Unlike the downregulation trend 
of MYC in VTE, NTAN1 shows significant upregulation in peripheral 
blood samples from VTE patients, which may be closely linked to its 
biological function in post-translational protein modification (46). 
The N-terminal asparagine amidase encoded by NTAN1, as a key 
component of the Arg/N-end rule pathway, may influence thrombus 
formation by regulating the stability of coagulation-related proteins 
(47). This discovery provides novel insights into understanding the 
molecular regulatory network of VTE.

From an evolutionary conservation perspective, the highly 
conserved nature of NTAN1 across 237 species ranging from fruit flies 
to humans suggests its fundamental role in maintaining coagulation-
anticoagulation balance (48). GSEA analysis reveals significant 

associations between NTAN1 and pathways such as oxidative 
phosphorylation and Fcγ receptor-mediated phagocytosis, indicating 
its potential involvement in thrombus clearance through regulating 
immune cell energy metabolism and phagocytic functions. Notably, 
the positive correlation between NTAN1 and M2 macrophages may 
reflect its specific role in modulating anti-inflammatory immune 
responses, aligning with the characteristic pro-inflammatory/anti-
inflammatory imbalance observed in VTE pathological processes 
(49). M2 macrophages reduce inflammatory responses through the 
secretion of anti-inflammatory cytokines, including IL-10 and TGF-β 
(50). The findings from this study demonstrated a positive association 
between NTAN1 and M2 macrophages, leading to the hypothesis that 
abnormal expression of the NTAN1 gene may alter the anti-
inflammatory functions of M2 macrophages by influencing protein 
degradation and metabolism. This mechanism aligns with the 
characteristic pro-inflammatory/anti-inflammatory imbalance 
observed during the pathological progression of VTE (49).

At the clinical translation level, abnormal expression of NTAN1 
may serve as a novel biomarker. Its positive correlation with memory-
activated CD4 + T cells indicates that this gene may regulate adaptive 
immunity, thereby affecting the progression of VTE. Although current 
drug databases have not identified therapeutic agents directly targeting 
NTAN1, its central role in protein degradation pathways offers a 
potential therapeutic target for developing novel anticoagulants. 
Aligned with the individualized treatment principles emphasized in 
the latest VTE prevention and treatment guidelines (51), NTAN1 
expression profiling may provide new molecular evidence for 
thrombosis risk assessment and precision anticoagulation strategies.

This research identified critical genes associated with the 
pathological mechanisms of VTE by regulating pathways related to 
oxidative phosphorylation and ribosome biogenesis. Aberrant activation 
of the ribosome biogenesis pathway might accelerate thrombus 
formation by promoting translation efficiency of coagulation factor 
mRNAs, a process involving precise regulation of ribosomal subunits 
through nucleocytoplasmic transport mechanisms (52). Dysfunction in 
the spliceosome pathway could disrupt coagulation homeostasis by 
generating abnormal transcripts of coagulation-anticoagulation-related 
genes (e.g., SERPINC1, PROC) through defective RNA splicing. 
Concurrently, suppressing Fc gamma R-mediated phagocytosis may 
impair monocyte/macrophage clearance of activated platelets, fostering 
thrombus progression. Notably, the enrichment of cellular senescence-
associated genes (53) reveals a novel mechanistic link between vascular 
endothelial aging and thrombosis, where the p53-p21 pathway might 
drive endothelial cells into senescence by regulating ribosome biogenesis 
checkpoints (54). The significant associations observed in prostate 
cancer pathways suggest that androgen receptor signaling may influence 
VTE risk by modulating coagulation factor expression, potentially 
linked to the gender disparities observed clinically. These pathways 
exhibit close interactions, such as oxidative stress, which induces cellular 
senescence and impacts spliceosome function through 
nucleocytoplasmic transport disturbances (55), forming a complex 
regulatory network for thrombogenesis.

This study elucidates the critical role of immune cell infiltration in 
the pathogenesis of VTE. Analyses revealed a significant increase in 
naive CD4 + T cell proportions in the peripheral blood of VTE 
patients (p < 0.05), accompanied by reduced naive B cell infiltration 
(56). This immune imbalance may influence thrombus formation by 
modulating inflammatory responses (57). Neutrophil extracellular 
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Relative expression levels of MYC and NTAN1 in different groups, 
*p < 0.05, **p < 0.01. (A) MYC (B) NTAN1.
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trap (NET) formation showed strong association with elevated VTE 
risk, with released histones and myeloperoxidase directly activating 
coagulation cascades (58). Studies suggest that CD8 + T cells may 
participate in thrombus formation and resolution by interacting with 
cells of the endogenous immune system. In mouse models, selective 
antibody-mediated depletion of effector memory T cells (TEM), 
including CD8 + T cells, significantly reduces neutrophil and 
monocyte recruitment to vascular walls and accelerates thrombus 
resolution (59). In patients with idiopathic deep vein thrombosis 
(DVT), CX3CR1-expressing platelet-bound CD8 + lymphocytes are 
markedly increased and have been proposed as prognostic markers 
for adverse cardiovascular events (60). While current research 
indicates that CD8 + T cells may contribute to VTE pathogenesis 
through multiple mechanisms, their precise role in VTE requires 
further investigation. This study demonstrates a strong negative 
correlation between CD8 + T cells and neutrophils, suggesting that 
CD8 + T cells may suppress neutrophil activation and recruitment, 
thereby influencing thrombus formation and resolution. However, this 
hypothesis needs further experimental and clinical validation to 
establish new theoretical foundations and identify potential 
therapeutic targets for the prevention and treatment of VTE. Human 
miRNAs, such as miR-126 and miR-146a, regulate the expression of 
genes involved in pathways leading to immunothrombosis. Sahu et al. 
have demonstrated that reduced expression of miR-145 in PBMCs, 
platelets, vascular endothelial cells, and smooth muscle cells is 
associated with thrombus development (52). The restoration of 
normal miR-145 levels in thrombotic animals further reduced 
thrombosis by decreasing tissue factor levels (52). Therefore, it is 
crucial to examine shared miRNAs involved in the interplay between 
inflammation and thrombosis (61). Studies have also shown that 
serum VEGF levels are downregulated in patients with transient and 
acute ischemic stroke compared to controls, which correlates with 
miR-195-5p expression levels. Both miR-195-5p and miR-451a have 
been shown to target VEGF-A in some experimental settings. This 
research also indicated that VTE is significantly negatively correlated 
with miR-195-5p. It is predicted that VEGF-A may be a target gene for 
miR-195-5p or miR-205-5p.

In breast cancer cells, hsa-miR-195 induces apoptosis by targeting 
genes such as Bcl-2 and FASN. However, the aberrant activation of 
MYC can counteract the pro-apoptotic effects of miR-195 by 
upregulating anti-apoptotic proteins like Bcl-xL. This interaction leads 
to a decreased sensitivity of tumor cells to chemotherapeutic agents 
such as doxorubicin, while the overexpression of miR-195 can partially 
reverse this phenomenon (62). In our study, miR-195 is associated 
with MYC, and we can infer that miR-195 regulates MYC expression, 
which may be  related to the treatment of venous 
thromboembolism (63).

In breast cancer cells, hsa-miR-195 induces apoptosis by targeting 
genes such as Bcl-2 and FASN; however, aberrant activation of MYC 
can antagonize the pro-apoptotic effect of miR-195 by upregulating 
anti-apoptotic proteins like Bcl-xL. This interaction reduces tumor cell 
sensitivity to chemotherapeutic agents such as doxorubicin, while 
overexpression of miR-195 can partially reverse this phenomenon (62).

In our study, miR-195 was associated with MYC, and 
we hypothesize that miR-195 regulates MYC expression, which may 
be relevant to the treatment of venous thromboembolism (63).

In this study, MYC and NTAN1 are identified as key regulatory 
genes in VTE. Abnormal expression of MYC is closely related to 

inflammatory responses and endothelial dysfunction, which may 
be an important link in the pathogenesis of VTE. Our research shows 
that MYC is significantly downregulated in peripheral blood samples 
from VTE patients, which is associated with changes in immune cell 
infiltration patterns and activation of metabolic pathways. 
Furthermore, MYC expression is negatively correlated with M2 
macrophages and positively correlated with regulatory T cells (Tregs), 
suggesting that MYC may mediate the disruption of immune 
homeostasis in VTE. NTAN1 is significantly associated with pathways 
such as oxidative phosphorylation and Fcγ receptor-mediated 
phagocytosis, indicating that it may participate in thrombus clearance 
by regulating the energy metabolism and phagocytic function of 
immune cells. At the clinical translational level, NTAN1 may influence 
the progression of VTE by regulating adaptive immunity. In our study, 
miR-195 is associated with MYC, suggesting that miR-195 regulates 
MYC expression and may be  related to the treatment of 
venous thromboembolism.

This study presents the first evidence connecting LRGs to the 
immunometabolism of VTE. However, limitations include the small 
sample size of the retrospective cohort requiring validation of model 
efficacy through multi-center prospective studies, the lack of animal 
models and functional experiments to clarify MYC/NTAN1’s causal 
regulatory relationship via gene knockout, and immune infiltration 
analysis based on transcriptome deconvolution algorithms that need 
verification of cell subset specificity through single-cell sequencing. 
Future research could integrate spatial metabolomics to analyze gene-
metabolite interaction networks within the thrombus 
microenvironment, and explore nanomedicine therapeutic strategies 
targeting MYC/NTAN1.

The statistical power is severely inadequate, making it difficult to 
detect true differential expression and biological individual differences 
(such as age, sex, disease duration, comorbidities, and lifestyle) that 
cannot be “diluted” in small samples. For instance, if the case group 
happens to include two “special individuals” (such as those with a very 
short disease duration or those with other diseases that affect gene 
expression), their gene expression patterns may deviate from the 
overall level, directly leading to an exaggeration or masking of the 
differences between the case and control groups. Furthermore, in the 
future, consideration should be given to increasing the sample size to 
enhance the statistical power of the study and the reliability of the 
conclusions. This can also assist in validating the current findings in 
larger sample sizes. Due to the use of different R packages, there may 
be some discrepancies in the results. The choice of threshold can also 
have a significant impact on the outcomes. The threshold we used is a 
common one found in most literature, but this does not imply that it 
is the gold standard.

5 Conclusion

This research comprehensively clarified the fundamental 
molecular mechanisms underlying VTE by integrating bioinformatics 
and machine learning techniques. Using datasets from the GEO 
database, we identified 30 candidate genes and further validated MYC 
and NTAN1 as pivotal genes through Boruta, SVM-RFE, LASSO 
algorithms, and expression verification. Functional enrichment 
analysis revealed these genes were significantly associated with cell 
proliferation regulation, extracellular matrix remodeling, and 
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cancer-related pathways (e.g., prostate cancer, bladder cancer). Gene 
Set Enrichment Analysis (GSEA) demonstrated that MYC promotes 
thrombosis via spliceosome and nuclear-cytoplasmic transport 
pathways, while NTAN1 was linked to dysregulated energy 
metabolism and impaired immune phagocytosis. Immune infiltration 
analysis showed significant elevation of regulatory T cells and M2 
macrophages in VTE patients, with MYC exhibiting strong 
correlations to an immunosuppressive microenvironment. Disease-
gene-drug interaction network analysis predicted MYC as a potential 
therapeutic target for antithrombotic drugs. RT-qPCR experiments 
confirmed the downregulation of MYC and upregulation of NTAN1 in 
VTE. This study offers new insights into the molecular mechanisms 
and potential targeted therapies for VTE.
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