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Background: Venous thromboembolism (VTE), a life-threatening cardiovascular
disorder, involves complex interactions between thrombosis and immune
dysregulation. Lymphangiogenesis-related genes (LRGs) may directly induce
thrombosis by regulating endothelial function, the coagulation cascade, or
inflammatory signaling pathways. This research was intended to uncover LRG-
associated key genes and elucidate their molecular mechanisms in VTE.
Methods: Transcriptomic datasets from public databases were analyzed to
identify differentially expressed genes (DEGs) between VTE and control samples.
Subsequently, candidate genes were screened by overlapping the DEGs with
LRGs obtained from the literature. Functional analysis was then performed on
candidate genes. Machine learning algorithms and expression validation were
employed to refine key genes. Moreover, gene set enrichment analysis (GSEA),
immune infiltration, and regulatory and disease-gene-drug network analyses
were performed. Finally, key genes’ expression levels were validated via real-
time quantitative polymerase chain reaction (RT-qPCR).

Results: To sum up, 810 DEGs were identified, of which 30 DEGs were selected
as candidate genes. Machine learning and expression validation prioritized
MYC and NTANL1 as key genes. Functional analysis revealed their enrichment in
spliceosome, oxidative phosphorylation, and immune-related pathways. MYC
and NTAN1 correlated with regulatory T cells and M2 macrophages. Furthermore,
the microRNA (miRNA)-mRNA-transcription factor (TF) network identified MYC
as a hub regulated by hsa-miR-449c-5p and JUN. Disease-gene-drug network
highlighted cisplatin and olaparib as potential MYC-targeted therapy. RT-gPCR
confirmed MYC downregulation and NTAN1 upregulation in VTE (p < 0.05),
consistent with the bioinformatics results.

Conclusion: This study identified MYC and NTANL1 as pivotal regulators of
VTE, bridging thrombotic progression with immune-metabolic dysregulation.
The findings provided novel insights into key genes and immunomodulatory
therapies for VTE.
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1 Introduction

Venous thromboembolism (VTE) is the most prevalent type of
thrombotic condition, affecting approximately 1 in 12 individuals over
45 (1). With an annual incidence of 300,000 to 600,000 cases in the
United States alone, it ranks as the third leading cause of
cardiovascular-related mortality (2). VTE usually presents as either
deep vein thrombosis (DVT) or pulmonary embolism (PE). Among
patients with newly diagnosed VTE, one-third present with
concurrent PE, and 25% of PE cases may result in sudden death,
underscoring the life-threatening nature of this condition (3, 4).

DVT commonly presents with lower extremity pain, increased
skin temperature, swelling, edema, erythema, and tenderness, while
PE may cause dyspnea, chest pain, syncope, hemoptysis, hypotension,
and tachycardia (5, 6). The clinical manifestations of VTE often lack
specificity. Differential diagnoses for DVT include hematoma,
cellulitis, congestive heart failure, and superficial thrombophlebitis,
whereas PE symptoms may overlap with those of heart failure or
myocardial infarction (7). After the initial occurrence of VTE,
patients are at risk of recurrence. The core pathological features of
VTE, including venous stasis, hypercoagulability, and vascular
endothelial Although
anticoagulant therapy can reduce thrombotic recurrence, these

injury, jointly promote thrombosis.
features persist, causing the risk of bleeding to persist. The incidence
and recurrence trends in high-risk groups are still worrisome (7). In
high-risk groups such as cancer patients, anticoagulants often
demonstrate limited efficacy and high recurrence rates, highlighting
the urgent need to explore novel mechanisms and therapeutic
targets (8, 9).

The pathophysiology of VTE involves complex interactions
among endothelial injury, inflammatory responses, and immune
dysregulation, though its molecular regulatory networks remain
incompletely understood (10, 11). Identifying key driver genes and
immune microenvironment characteristics in VTE is critical for
achieving early diagnosis and precision treatment.

The lymphatic system is vital for regulating immune cells and
plays a significant part in the process of thrombogenesis (12). On one
hand, lymphangiogenesis (LYM) promotes tumor metastasis and
fosters immunosuppressive microenvironments, correlating with
elevated VTE risk in cancer patients (13, 14). On the other hand,
lymphangiogenesis-related genes (LRGs) may directly drive
thrombosis by modulating endothelial functions (e.g., VE-cadherin
expression), coagulation cascades (e.g., fibrinogen activation), or
inflammatory signaling (e.g., IL-6/TNF-a pathways) (15). However,
systematic investigations remain lacking into whether LRGs influence
thrombus stability through lymphovascular crosstalk or immune cell
infiltration mechanisms (such as neutrophil extracellular traps, NETs)
(16). Recent advances in multi-omics technologies (such as
transcriptomics and protein-protein interaction networks) offer new
insights into LRGs” molecular functions, though integrated analyses
in VTE contexts are absent.

This study integrates transcriptomic data from the GEO database
to identify LRG-associated key genes through differential expression
analysis and machine learning algorithms. Functional enrichment,
immune infiltration profiling, and regulatory network construction
are employed to delineate their biological roles. This work establishes
for the first time the molecular link between LRGs and immune-
metabolic dysregulation in VTE, establishing a theoretical basis for
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the development of early diagnostic biomarkers and

immunomodulatory therapies.

2 Materials and methods
2.1 The collection of gene data

Gene expression profiles for the training set were obtained from
the Gene Expression Omnibus (GEO) database’ by downloading the
GSE19151 dataset (GPL571). This dataset contained whole blood
transcriptomic data from 70 venous thromboembolism (VTE) and 63
control samples. The clinical information of each sample was shown
in Supplementary Table 1. The validation set GSE48000 (GPL10558),
which was also retrieved from GEO and contained whole blood
transcriptomic data, comprised 107 VTE samples and 25 control
samples. Additionally, the same analysis was performed in the
GSE48000 dataset, and the obtained genes were named DEGs2.

660 lymphangiogenesis-related genes (LRGs) were acquired from
the GeneCards database’ by
“lymphangiogenesis,”

searching the keyword

based on reference literature

(Supplementary Table 2) (17).

2.2 Differential expression analysis and
candidate gene screening

First, the GSE19151 data was normalized through log,
transformation, and a PCA plot was generated. To identify
differentially expressed genes (DEGs) between VTE patients and
control samples in the training set, the R package “limma” (v 3.56.2)
(18) was utilized with criteria of p <0.05 and |log, Fold Change
(log,FC)| > 0.5. A volcano plot was generated using DEGs in VTE
with the use of the R package “ggplot2” (v 3.5.1) (19). The plot labeled
the top 10 genes that were up-regulated and the 10 that were down-
regulated, ranked by log2FC. Additionally, a heatmap was created
using the top 50 up-regulated and top 50 down-regulated genes, with
the use of the R package “ComplexHeatmap” (v 2.16.0) (20).

Furthermore, the R package “ggvenn” (v 0.1.9) (21) was utilized
to visualize and extract intersection genes between DEGs in VTE and
LRGs. The overlapping genes were defined as candidate genes for
further functional analyses.

2.3 Functional enrichment and protein—
protein interaction (PPI) analysis

To explicate the biological functions and signaling pathways
linked to the candidate genes, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
were carried out with the R package “clusterProfiler”(v 4.8.3) (22),
with a significance criterion of p.adjust less than 0.05. The results were
subsequently visualized using the R package “enrichplot” (v 1.20.3)

1 https://www.ncbi.nlm.nih.gov/geo/
2 https://www.genecards.org/
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(23). Specifically, GO enrichment analysis categorized genes into three
functional domains: biological processes (BPs), cellular components
(CCs), and molecular functions (MFs), while KEGG analysis
identified significant biological pathways. Pathways were ranked based
on the count of involved genes, from highest to lowest.

A PPI network was established to investigate interactions at the
protein level further. Candidate genes were entered into the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING)
database® to predict protein interactions, with a confidence score
threshold of > 0.4. The resulting network was visualized using
Cytoscape (v 3.10.3) (24), and genes without predicted interactions
were excluded.

2.4 ldentification of key candidate genes
with machine learning

Subsequently, to screen candidate genes, three machine learning
algorithms were applied.

The Boruta algorithm was an “all-relevant” feature selection
method based on random forest. It created a set of “shadow features”
(randomly shuffled copies) for the original gene data, then compared
whether the importance of each real gene was significantly and stably
higher than that of these random shadows. Finally, genes were classified

» <«
>

into three categories: “confirmed important,” “rejected,” or “tentative.”
Boruta was adopted because it could efficiently screen out all features
related to the outcome, not just those genes with the strongest linear
relationships. This helped us capture more potential biological signals
and avoid missing key genes. Boruta analysis was carried out on the
training dataset by utilizing the R package “Boruta” (v 8.0.0) (25). Genes
classified as “Confirmed” were designated as Boruta features.

Support vector machine-recursive feature elimination (SVM-
RFE) was a “wrapper method” based on the support vector machine
(SVM) model. It started by training a model using all genes, then
eliminated the least important genes based on weights defined by the
model (e.g., coefficient magnitude), retrained the model with the
remaining genes, and repeated this recursive loop until only one gene
was left. Finally, the importance of genes was ranked based on the
order in which they were eliminated. SVM-RFE was chosen because
it excelled at handling high-dimensional data (a large number of genes
with a small number of samples) and possessed strong nonlinear
modeling capabilities. This helped us identify the genes that
contributed the most to the model’s classification performance (e.g.,
distinguishing between VTE and control groups) from complex gene
interactions. SVM-RFE was executed on the R package “€1071” (v
1.7.16) (26). The genes corresponding to the model with the highest
classification accuracy were selected as SVM-RFE feature genes.

Least absolute shrinkage and selection operator (LASSO) was an
“embedded method” for linear regression. During the model training
process, it introduced a penalty term (L1 regularization), which
automatically shrunk the coefficients of unimportant or redundant
features to zero, thereby achieving feature selection. Genes with
non-zero coefficients were the ones selected. Lasso was applied
because it could not only perform feature selection but also featured

3 http://www.string-db.org/
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regularization to prevent overfitting. This resulted in a simpler and
more interpretable linear model, which was well-suited for screening
out the core set of genes with the highest predictive value from a large
number of candidate genes. The R package “glmnet” (v 4.1.8) (27) was
used to perform LASSO regression. The optimal lambda value was
determined by minimizing the error through 10-fold cross-validation.
Genes selected under the optimal lambda were considered LASSO
feature genes.

Finally, the candidate genes intersecting between Boruta,
SVM-RFE, and LASSO features were singled out as candidate key

»

genes using the R package “ggvenn” (v 0.1.9). The expression profiles
of the candidate key genes were demonstrated in the validation set.
The top 3 upregulated and downregulated genes were presented in the

validation set.

2.5 Expression validation

The Wilcoxon rank-sum test assessed the differential expression
levels of candidate key genes between VTE and control samples in the
training and validation sets (p < 0.05). Box plots were generated to
visualize the differential expression levels between VTE and control
samples in training and validation sets. Furthermore, genes showing
statistically significant and consistent expression trends across both
datasets were ultimately identified as key genes.

2.6 Gene set enrichment analysis (GSEA) of
key genes

Next, GSEA was carried out on the training dataset to investigate
the biological functions and pathways associated with the key genes.
Spearman correlation analysis was performed between each key gene
and all other genes to obtain correlation coefficients. Genes were then
ranked in descending order based on these coefficients. Subsequently,
GSEA was performed using the R package “clusterProfiler” (v 4.8.3)
with the “c2.cp.kegg.symbols.gmt” gene set, which was retrieved from
the Molecular Signatures Database (MSigDB)*. Enrichment was
assessed with thresholds of [Normalized Enrichment Score (NES)| > 1,
q value < 0.25, and p < 0.05. The top 5 pathways ranked by [NES| of
each key gene were selected for visualization.

2.7 Immune infiltration analysis

To comprehensively evaluate immune infiltration, proportions of
22 immune cell types (28) were calculated for all specimens in the
training dataset by using the R package “IOBR” (v 0.99.0) (29) between
VTE and control samples. The relative proportions of immune cells
were exhibited utilizing the R package “ComplexHeatmap” (v 2.16.0).

Spearman correlation analysis was also conducted via the R
package “psych” (v 2.2.9) (30). To explore correlations among immune
cell types. Statistically significant correlations were defined as
|correlation coefficient (cor)| > 0.3 and p < 0.05.

4 https://www.gsea-msigdb.org/gsea/msigdb
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Furthermore, to assess differences in immune cell infiltration
between VTE and control groups, the Wilcoxon rank-sum test
(p < 0.05) was applied. The results were depicted using the R package
“ggplot2” (v 3.5.1). Moreover, to further investigate the correlation
between key genes and differentially infiltrating immune cells,
Spearman correlation analysis was conducted in the training set by
utilizing the R package “psych” (v 2.2.9).

2.8 Construction of regulatory network

Furthermore, a microRNA (miRNA)-mRNA-transcription factor
(TF) network was constructed to investigate the upstream controlling
factors of key genes. The miRNAs predicted to target key genes were
identified using the miRNA target prediction and functional
annotations database (miRDB)® and TargetScan-v9.0° databases.
Subsequently, the intersection of miRNAs predicted by both databases
was considered the set of key miRNAs for each key gene. TFs regulating
the key genes were retrieved from the Comprehensive Database for
Regulations of Human Transcription Factors and Their Targets
(hTFtarget)” and KnockTF® databases. Afterwards, the resulting
TF-mRNA-miRNA network was visualized using Cytoscape (v 3.10.3).

2.9 Construction of disease-gene-drug
interaction network

Disease and drug interaction analyses were performed to elucidate
key genes’ potential pathogenic mechanisms and therapeutic targets.
First, the Comparative Toxicogenomics Database (CTD)’ was
employed to forecast diseases associated with the identified key genes.
Disease-gene pairs with an inference score >10 and documented
relevance to venous thrombosis were retained for further analysis.
Subsequently, the Drug-Gene Interaction database (DGIdb)™ was
employed to identify potential therapeutic agents targeting the key
genes. Finally, a comprehensive disease-gene-drug interaction
network was established and visualized using Cytoscape (v 3.10.3).

2.10 Real-time quantitative polymerase
chain reaction (RT-qPCR) experimental
verification

This study collected 5 pairs of whole blood samples from
Shenzhen Second People’s Hospital, including 5 control samples
(samples 1-5) and 5 VTE samples (samples 6-10). Recruitment for
the study took place from June 20, 2025, to June 25, 2025. This study
was approved by the Ethics Committee of Shenzhen Second People’s
Hospital with the ethics approval number 2025-488-02P] and
conducted in accordance with the ethical principles of the Declaration

5 https://mirdb.org/

6 https://dianalab.e-ce.uth.gr/tarbasev9

7 https://bioinfo.life.hust.edu.cn/hTFtarget#!/
8 http://www.licpathway.net/KnockTFv1/

9 https://ctdbase.org/

10 https://dgidb.org/
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of Helsinki and the CIOMS International Ethical Guidelines for
Health-Related Research Involving Humans. All participants
provided written informed consent before sample collection.
Additionally, it should be noted that this study did not involve
minors. Reverse transcription was performed with the Hifair® ITI 1st
Strand ¢DNA Synthesis SuperMix. Moreover, RT-qPCR was
conducted with the 2 x Universal Blue SYBR Green qPCR Master
Mix, with primer sequences detailed in Supplementary Table 3.
Meanwhile, GAPDH served as the endogenous control for
normalization. Gene expression quantification utilized the 244
method (31). Graphpad Prism 10 (32) was used for data visualization,
with between-group comparisons assessed by two-tailed Student’s
t-test. Statistical significance was defined as p < 0.05.

2.11 Statistical analysis

The R (v 4.2.2) was utilized to conduct statistical analysis.
Difference analysis between groups was executed via the Wilcoxon test.
We considered a p-value lower than 0.05 to be statistically significant.
Meanwhile, we provided the purposes and significances of the selection
of various computational methods (Supplementary Table 4).

3 Results

3.1 Identification of 30 candidate genes in
VTE

The PCA results showed that the VTE samples and control
samples could be separated (Supplementary Figure 1A). Differential
expression analysis was conducted between VTE and control in the
training set to further investigate the transcriptional alterations in
VTE. As a result, 810 DEGs were identified, with 611 genes
up-regulated and 199 genes down-regulated in VTE samples (p < 0.05,
[log,EC| > 0.5) (Figure 1A; Supplementary Table 5). Additionally, the
heatmap showed the expression patterns of these DEGs between VTE
samples and control samples (Figure 1B). In the GSE48000 dataset,
1,992 DEGs were obtained, and 100 genes in DEGs2 overlapped with
those in DEGs (Supplementary Figure 1B). Moreover, the intersection
analysis of DEGs and LRGs identified 30 candidate genes (Figure 1C).
These candidate genes could provide insight into potential therapeutic
approaches for VTE.

3.2 Functional annotation of candidate
genesin VTE

Functional enrichment analyses were performed on 30 candidate
genes to decipher the molecular pathways underlying VTE. GO and
KEGG analyses exposed their involvement in critical biological
processes and disease-related pathways.

GO analysis identified 660 significantly enriched terms (p.adjust
< 0.05), including 617 BPs, 34 MFs, and 9 CCs (Figure 2A;
Supplementary Table 6). Key BP terms were associated with “negative
regulation of cell development,” “homeostasis of cell number,” and
“cytokine-mediated signaling,” implicating candidate genes in cellular
proliferation control and immune regulation. Enriched CC terms
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highlighted localization to extracellular matrix structures, such as
“collagen-containing extracellular matrix” and “secretory granule
lumen,” suggesting roles in tissue remodeling and secretory processes.
MF terms were dominated by transcriptional and cytokine-related
activities, including “DNA-binding transcription factor binding” and
“cytokine receptor binding,” indicating regulatory roles in gene
expression and immune signaling.

KEGG pathway analysis revealed 94 enriched pathways
(p.adjust < 0.05), with prominent associations to oncogenic and
metabolic processes (Figure 2B; Supplementary Table 7). Candidate
genes were significantly linked to “prostate cancer,” “hepatitis B,”
and “cellular senescence,” suggesting shared molecular mechanisms
between thrombotic and neoplastic pathologies. Pathways such as
“endocrine resistance” and “bladder cancer” further underscore
potential roles in therapy resistance and proliferative dysregulation.
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A PPI network was also established to explore the functional
associations among the 30 candidate genes (Figure 2C). Notably, MYC
was found to interact with multiple proteins, including TGFBI, KRAS,
and TP53, highlighting its potential central role in the network.

3.3 MYC and NTAN1 were identified as key
genes through machine learning
algorithms and expression validation in VTE

Machine learning algorithms were applied to refine the candidate
genes further to recognize the most relevant genes related to
VTE. Specifically, the Boruta algorithm was applied to the training
dataset, selecting 26 “Confirmed” genes as Boruta features from the
30 candidate genes (Figure 3A).
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(A) Biological function annotation. (B) Signal pathway annotation figure. (C) Candidate gene protein interaction network diagram.

Simultaneously, the SVM-RFE algorithm was employed to further
identify candidate genes that achieved the best classification
performance, identifying eight SVM-REFE features (Figure 3B).

Meanwhile, LASSO regression was applied using the log(lambda.
min) value of —5.1227, as determined by 10-fold cross-validation,
leading to the selection of 16 LASSO features (Figures 3C,D).

Integrating Boruta, SVM, and LASSO features identified four
candidate key genes: TGFB1, MYC, KRAS, and NTAN1 (Figure 3E).
In the validation set, TGFB1 and NTANI1 were significantly upregulated
in VTE samples, MYC was significantly downregulated, and KRAS
showed no significant difference (Supplementary Table 8). Meanwhile,
the top 3 upregulated genes in the validation set were IF127, TMCC2,
and GYPB respectively, and the top 3 downregulated genes were
ZFP36L2, FOS, and DICERI, respectively, (Supplementary Table 9).
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Subsequently, expression validation was implemented on both the
training and validation data groups. Among the four genes, MYC and
NTAN1 exhibited significantly dysregulated expression in VTE
samples compared to controls (p <0.001) and demonstrated
consistent trends across datasets (Figure 3F). These findings suggest
that MYC and NTANI may have important functions in the
development of VTE.

3.4 Biological pathways associated with
MYC and NTAN1 in VTE

GSEA was conducted using the KEGG pathway gene sets to
investigate the biological roles of key genes in VTE. MYC and
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NTAN1 were prioritized for their potential mechanistic  “nucleocytoplasmic transport” pathways suggested enhanced RNA

contributions to thrombotic processes [NES| > 1, (g value < 0.25, and
p <0.05).

For MYC, GSEA identified 85 significantly enriched pathways.
The top five pathways ranked by |NES| included “spliceosome;
“neuroactive ligand-receptor interaction,” “ribosome,” “oxidative
phosphorylation,” and “nucleocytoplasmic transport” (Figure 4A;

Supplementary Table 10). The upregulation of “spliceosome” and
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splicing efficiency and intracellular transport activity in
VTE. Conversely, the downregulation of “neuroactive ligand-receptor
interactions,” “ribosome biogenesis,” and “oxidative phosphorylation”
implied impaired synaptic signaling, protein synthesis, and
mitochondrial energy metabolism.

NTANI1-associated GSEA revealed enrichment in 122 pathways,

with the top five pathways comprising ribosome, “oxidative
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phosphorylation,” “Parkinson’s disease,” “Fc gamma R-mediated
4B;

Supplementary Table 11). The coordinated upregulation of “ribosome,”

phagocytosis,” and “thermogenesis” (Figure
‘oxidative phosphorylation,” and “thermogenesis” pathways indicated
heightened cellular energy production and metabolic activity in
VTE. In contrast, suppressing “Fc gamma R-mediated phagocytosis”
pointed to compromised immune clearance mechanisms. Notably, the
enrichment of Parkinson’s disease-related genes suggested potential
overlaps in molecular pathways between neurodegenerative and

thrombotic disorders.
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3.5 Immune infiltration analysis in VTE

The immune infiltration analysis showed notable differences
between VTE samples and control samples. Specifically, the relative
of 22 types
Figure 5A. Spearman correlation analysis of immune cell interactions

proportions immune cell were shown in

identified significant associations (|cor| > 0.3, p < 0.05) among the 22
immune subsets (Figure 5B). Notably, CD8" T cells displayed a
strong negative correlation with neutrophils (cor =—0.62,
p=3.6x10").
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Machine learning. (A) Boruta feature importance boxplot. (B) SVM-RFE accurate feature relationship diagram. (C) Genetic coefficient path diagram.
(D) Cross-validation error plot. (E) Intersection of feature genes predicted by three machine learning algorithms. (F) Differential expression levels of

candidate key genes.

Comparative analysis revealed 10 differentially infiltrated immune
cell types between VTE and control samples (p < 0.05), including
naive B cells, naive CD4 + T cells, and memory resting CD4" T cells
(Figure 5C). Specifically, naive CD4" T cells were elevated in VTE
samples, while naive B cells were reduced, suggesting immune
dysregulation in VTE.

Moreover, Spearman analysis further uncovered significant
associations between key genes (MYC and NTAN1) and differentially

Frontiers in Medicine

infiltrated immune cells (|cor| > 0.3, p < 0.05) (Figure 5D). MYC
expression positively correlated with regulatory T cells (Tregs)
(cor=0.57, p=1.0x10") and naive B cells (cor=0.36,
p=19x107), but negative associations with M2 macrophages
(cor =—0.36, p = 2.6 x 107°). Meanwhile, NTAN1 showed positive
correlations with memory activated CD4* T cells (cor =0.43,
p=3.1x107), M2 macrophages (cor =0.42, p=4.5x107), and
activated dendritic cells (cor = 0.31, p = 3.0 x 107).
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Gene set enrichment analysis. (A) Gene set enrichment analysis targeting MYC. (B) Gene set enrichment analysis targeting NTANL1.

These results highlighted the critical interplay between immune
dysregulation and thrombotic progression, providing mechanistic
insights into VTE pathogenesis and potential immunomodulatory
therapeutic targets.

3.6 Construction of miRNA-mRNA-TF and
disease-gene-drug networks of key genes

A miRNA-mRNA-TF network was established to investigate
upstream regulatory mechanisms (Figure 6A). Specifically, miRNA
predictions for MYC and NTAN1 were obtained from miRDB and
TarBase-v9.0 databases, identifying seven and one key miRNAs,
respectively. Additionally, TFs for MYC and NTANI1 were retrieved
from hTFtarget and KnockTF databases, revealing 23 TFs for MYC
and 12 TFs for NTANI. For example, MYC was targeted by hsa-miR-
449c¢-5p and JUN. Specifically, MYC also exhibited a self-regulatory
loop, indicating autoregulation.

A disease-gene-drug network was also constructed and
visualized using Cytoscape, with MYC positioned as a central hub
connecting thrombotic diseases to candidate therapeutic agents.
(Figure 6B).

The CTD identified MYC and NTANI as central players in
thrombotic disorders, with MYC linked to 62 diseases and NTAN1
associated with 19 diseases. MYC exhibited strong associations with
blood coagulation disorders, thrombotic microangiopathies, and
thrombophilia, while NTAN1 was enriched in hematologic
pathologies such as thrombocytopenia and hemolytic anemia. These
findings underscored the dual roles of MYC and NTANI in thrombus
formation and hematologic dysregulation. Drug-gene interaction
analysis revealed MYC as a hub for pharmacologic modulation, with
70 candidate drugs identified (29 approved, 41 not approved).
Approved drugs targeting MYC included cisplatin and olaparib,
suggesting their therapeutic relevance in thrombotic conditions. In
contrast, no drugs were currently predicted to interact with NTAN1,
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indicating a potential research gap and the need to further explore
its druggability.

3.7 Expression validation of MYC and
NTAN1 expression levels by RT-qPCR

To experimentally validate the bioinformatics findings, RT-qPCR
was performed to evaluate the expression levels of MYC and
NTANI in VTE and control samples. Notably, all key genes exhibited
significant differential expression (Figures 7A,B) (p < 0.05). NTAN1
showed higher expression in VTE samples. In contrast, MYC was
down-regulated in VTE samples. These findings confirmed the
reliability of the bioinformatics results and reinforced the potential
role of MYC and NTANI as key genes in VTE.

4 Discussion

VTE is a multifactorial disease involving coagulation disorders,
endothelial dysfunction, and immune-inflammatory crosstalk.
Despite advances in anticoagulant therapy, recurrence rates remain
high, necessitating novel biomarkers and therapeutic targets (8, 33).
This study, which is among the first of its kind, integrates
lymphangiogenesis-related genes (LRGs) with transcriptomic data
and employs machine learning algorithms, which may help identify
MYC and NTANI1 as potentially key regulatory genes in
VTE. Additionally, it suggests possible molecular mechanisms in
thrombus formation through immune microenvironment remodeling
and dysregulation of metabolic pathways.

MYC (MYC proto-oncogene, bHLH transcription factor) is a
critical transcriptional regulator involved in cell proliferation and
immune regulation, whose dysregulation may play multifaceted roles
in the pathogenesis of VTE (34). Studies have shown that in African
clawed frog embryos, MYC maintains the differentiation and
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FIGURE 5
Immune infiltration analysis in VTE. (A) Stacked bar chart of CIBERSORT analysis results. (B) Heatmap of correlations among 22 immune cell types.
(C) Differential immune cell boxplot. (D) Heatmap of the correlation between differential immune cells and key genes, **#*p < 0.001, 0 < 0.0001.
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migratory capacity of lymphatic endothelial cells (LECs) by regulating
the transcription factors Slug/Snail2 and Twist. MYC knockdown
leads to hypoplastic embryonic lymphatic networks and generalized
edema, whereas exogenous expression of Slug or Twist partially
rescues this phenotype. Similarly, in mouse embryos, lymphatic
endothelium-specific deletion of MYC reduces lymphatic vessel
density by 40% and is accompanied by impaired venous return (35).
In pNET cells, MYC overexpression increases VEGFR3
phosphorylation by 1.8-fold and enhances LEC tube formation by
40%, whereas treatment with the MYC inhibitor 10,058-F4 or a
VEGE-C neutralizing antibody reduces the lymph node metastasis
rate by more than 50% (36). The research, through the integration of
gene expression data from individuals with VTE, revealed that MYC
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could be critical in the development of VTE by modulating cellular
growth and metabolic processes. It also indicated that altered MYC
expression is closely associated with inflammatory responses and
endothelial dysfunction, which may represent one of the key
mechanisms underlying VTE development (37). Our study revealed
significant downregulation of MYC in peripheral blood samples from
VTE patients, which correlated with altered immune cell infiltration
patterns and activation of metabolic pathways. This finding contrasts
with the well-documented oncogenic role of MYC in malignancies,
suggesting the existence of tissue-specific regulatory mechanisms in
thrombotic disorders (38, 39).

The observed negative correlation between MYC expression and
M2 macrophages, alongside its positive correlation with regulatory T
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Relative expression levels of MYC and NTANL1 in different groups,
*p < 0.05, **p < 0.01. (A) MYC (B) NTAN1

cells (Tregs), suggests that MYC may mediate immune homeostasis
disruption in VTE. This aligns with the established role of MYC in
tumor immune evasion through Treg activation (40), though its
function in thrombosis appears distinct. In this study, MYC expression
was negatively correlated with M2 macrophages and positively
correlated with regulatory T cells (Tregs). MYC is known to facilitate
tumor immune escape by activating Tregs (40). Also, MYC can
regulate T - cell proliferation and metabolic reprogramming, which is
crucial for T - cell activation and function (41). Additionally, research
has found that inhibiting MYC expression in myeloid cells (including
macrophages) affects the maturation and pro - tumor activity of
tumor - associated macrophages (42). Thus, considering its expression
correlations in VTE, it’s speculated that MYC may mediate the
disruption of immune homeostasis in VTE. However, as VTE is a
thrombosis - related disorder with different pathological processes
from tumors, the specific function of MYC in thrombosis may differ
from its role in tumor immune escape. GSEA revealed suppressed
MYC-associated oxidative phosphorylation pathways, suggesting a
potential link between metabolic reprogramming and thrombus
formation, a mechanism analogous to cancer-associated thrombosis
(43). The inhibition of the oxidative phosphorylation pathway triggers
metabolic reprogramming, driving cells such as platelets and
macrophages to switch to alternative metabolic pathways like
glycolysis (44, 45). This metabolic shift enhances cellular activity and
inflammatory responses, thereby promoting thrombus formation.

This study reveals for the first time the aberrant expression pattern
of NTANI (N-terminal asparagine amidase) in VTE and its
underlying molecular mechanisms. Unlike the downregulation trend
of MYC in VTE, NTAN1 shows significant upregulation in peripheral
blood samples from VTE patients, which may be closely linked to its
biological function in post-translational protein modification (46).
The N-terminal asparagine amidase encoded by NTANI, as a key
component of the Arg/N-end rule pathway, may influence thrombus
formation by regulating the stability of coagulation-related proteins
(47). This discovery provides novel insights into understanding the
molecular regulatory network of VTE.

From an evolutionary conservation perspective, the highly
conserved nature of NTANT1 across 237 species ranging from fruit flies
to humans suggests its fundamental role in maintaining coagulation-
anticoagulation balance (48). GSEA analysis reveals significant
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associations between NTANI and pathways such as oxidative
phosphorylation and Fcy receptor-mediated phagocytosis, indicating
its potential involvement in thrombus clearance through regulating
immune cell energy metabolism and phagocytic functions. Notably,
the positive correlation between NTAN1 and M2 macrophages may
reflect its specific role in modulating anti-inflammatory immune
responses, aligning with the characteristic pro-inflammatory/anti-
inflammatory imbalance observed in VTE pathological processes
(49). M2 macrophages reduce inflammatory responses through the
secretion of anti-inflammatory cytokines, including IL-10 and TGF-$
(50). The findings from this study demonstrated a positive association
between NTAN1 and M2 macrophages, leading to the hypothesis that
abnormal expression of the NTANI gene may alter the anti-
inflammatory functions of M2 macrophages by influencing protein
degradation and metabolism. This mechanism aligns with the
characteristic ~ pro-inflammatory/anti-inflammatory  imbalance
observed during the pathological progression of VTE (49).

At the clinical translation level, abnormal expression of NTAN1
may serve as a novel biomarker. Its positive correlation with memory-
activated CD4 + T cells indicates that this gene may regulate adaptive
immunity, thereby affecting the progression of VTE. Although current
drug databases have not identified therapeutic agents directly targeting
NTANTI, its central role in protein degradation pathways offers a
potential therapeutic target for developing novel anticoagulants.
Aligned with the individualized treatment principles emphasized in
the latest VTE prevention and treatment guidelines (51), NTAN1
expression profiling may provide new molecular evidence for
thrombosis risk assessment and precision anticoagulation strategies.

This research identified critical genes associated with the
pathological mechanisms of VTE by regulating pathways related to
oxidative phosphorylation and ribosome biogenesis. Aberrant activation
of the ribosome biogenesis pathway might accelerate thrombus
formation by promoting translation efficiency of coagulation factor
mRNAs, a process involving precise regulation of ribosomal subunits
through nucleocytoplasmic transport mechanisms (52). Dysfunction in
the spliceosome pathway could disrupt coagulation homeostasis by
generating abnormal transcripts of coagulation-anticoagulation-related
genes (e.g., SERPINCI1, PROC) through defective RNA splicing.
Concurrently, suppressing Fc gamma R-mediated phagocytosis may
impair monocyte/macrophage clearance of activated platelets, fostering
thrombus progression. Notably, the enrichment of cellular senescence-
associated genes (53) reveals a novel mechanistic link between vascular
endothelial aging and thrombosis, where the p53-p21 pathway might
drive endothelial cells into senescence by regulating ribosome biogenesis
checkpoints (54). The significant associations observed in prostate
cancer pathways suggest that androgen receptor signaling may influence
VTE risk by modulating coagulation factor expression, potentially
linked to the gender disparities observed clinically. These pathways
exhibit close interactions, such as oxidative stress, which induces cellular
through
nucleocytoplasmic transport disturbances (55), forming a complex

senescence and impacts  spliceosome  function
regulatory network for thrombogenesis.

This study elucidates the critical role of immune cell infiltration in
the pathogenesis of VTE. Analyses revealed a significant increase in
naive CD4 + T cell proportions in the peripheral blood of VTE
patients (p < 0.05), accompanied by reduced naive B cell infiltration
(56). This immune imbalance may influence thrombus formation by

modulating inflammatory responses (57). Neutrophil extracellular
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trap (NET) formation showed strong association with elevated VTE
risk, with released histones and myeloperoxidase directly activating
coagulation cascades (58). Studies suggest that CD8 + T cells may
participate in thrombus formation and resolution by interacting with
cells of the endogenous immune system. In mouse models, selective
antibody-mediated depletion of effector memory T cells (TEM),
including CD8 + T cells, significantly reduces neutrophil and
monocyte recruitment to vascular walls and accelerates thrombus
resolution (59). In patients with idiopathic deep vein thrombosis
(DVT), CX3CRI1-expressing platelet-bound CD8 + lymphocytes are
markedly increased and have been proposed as prognostic markers
for adverse cardiovascular events (60). While current research
indicates that CD8 + T cells may contribute to VTE pathogenesis
through multiple mechanisms, their precise role in VTE requires
further investigation. This study demonstrates a strong negative
correlation between CD8 + T cells and neutrophils, suggesting that
CD8 + T cells may suppress neutrophil activation and recruitment,
thereby influencing thrombus formation and resolution. However, this
hypothesis needs further experimental and clinical validation to
establish new theoretical foundations and identify potential
therapeutic targets for the prevention and treatment of VTE. Human
miRNAs, such as miR-126 and miR-146a, regulate the expression of
genes involved in pathways leading to immunothrombosis. Sahu et al.
have demonstrated that reduced expression of miR-145 in PBMCs,
platelets, vascular endothelial cells, and smooth muscle cells is
associated with thrombus development (52). The restoration of
normal miR-145 levels in thrombotic animals further reduced
thrombosis by decreasing tissue factor levels (52). Therefore, it is
crucial to examine shared miRNAs involved in the interplay between
inflammation and thrombosis (61). Studies have also shown that
serum VEGEF levels are downregulated in patients with transient and
acute ischemic stroke compared to controls, which correlates with
miR-195-5p expression levels. Both miR-195-5p and miR-451a have
been shown to target VEGF-A in some experimental settings. This
research also indicated that VTE is significantly negatively correlated
with miR-195-5p. It is predicted that VEGF-A may be a target gene for
miR-195-5p or miR-205-5p.

In breast cancer cells, hsa-miR-195 induces apoptosis by targeting
genes such as Bcl-2 and FASN. However, the aberrant activation of
MYC can counteract the pro-apoptotic effects of miR-195 by
upregulating anti-apoptotic proteins like Bcl-xL. This interaction leads
to a decreased sensitivity of tumor cells to chemotherapeutic agents
such as doxorubicin, while the overexpression of miR-195 can partially
reverse this phenomenon (62). In our study, miR-195 is associated
with MYC, and we can infer that miR-195 regulates MYC expression,
related to the
thromboembolism (63).

which may be treatment of venous

In breast cancer cells, hsa-miR-195 induces apoptosis by targeting
genes such as Bcl-2 and FASN; however, aberrant activation of MYC
can antagonize the pro-apoptotic effect of miR-195 by upregulating
anti-apoptotic proteins like Bcl-xL. This interaction reduces tumor cell
sensitivity to chemotherapeutic agents such as doxorubicin, while
overexpression of miR-195 can partially reverse this phenomenon (62).

In our study, miR-195 was associated with MYC, and
we hypothesize that miR-195 regulates MYC expression, which may
be relevant to the treatment of venous thromboembolism (63).

In this study, MYC and NTANT1 are identified as key regulatory

genes in VTE. Abnormal expression of MYC is closely related to
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inflammatory responses and endothelial dysfunction, which may
be an important link in the pathogenesis of VTE. Our research shows
that MYC is significantly downregulated in peripheral blood samples
from VTE patients, which is associated with changes in immune cell
infiltration patterns and activation of metabolic pathways.
Furthermore, MYC expression is negatively correlated with M2
macrophages and positively correlated with regulatory T cells (Tregs),
suggesting that MYC may mediate the disruption of immune
homeostasis in VTE. NTANT1 is significantly associated with pathways
such as oxidative phosphorylation and Fcy receptor-mediated
phagocytosis, indicating that it may participate in thrombus clearance
by regulating the energy metabolism and phagocytic function of
immune cells. At the clinical translational level, NTAN1 may influence
the progression of VTE by regulating adaptive immunity. In our study,
miR-195 is associated with MYC, suggesting that miR-195 regulates
MYC expression and may be related to the treatment of
venous thromboembolism.

This study presents the first evidence connecting LRGs to the
immunometabolism of VTE. However, limitations include the small
sample size of the retrospective cohort requiring validation of model
efficacy through multi-center prospective studies, the lack of animal
models and functional experiments to clarify MYC/NTANT’s causal
regulatory relationship via gene knockout, and immune infiltration
analysis based on transcriptome deconvolution algorithms that need
verification of cell subset specificity through single-cell sequencing.
Future research could integrate spatial metabolomics to analyze gene-

metabolite  interaction networks within the thrombus
microenvironment, and explore nanomedicine therapeutic strategies
targeting MYC/NTANI.

The statistical power is severely inadequate, making it difficult to
detect true differential expression and biological individual differences
(such as age, sex, disease duration, comorbidities, and lifestyle) that
cannot be “diluted” in small samples. For instance, if the case group
happens to include two “special individuals” (such as those with a very
short disease duration or those with other diseases that affect gene
expression), their gene expression patterns may deviate from the
overall level, directly leading to an exaggeration or masking of the
differences between the case and control groups. Furthermore, in the
future, consideration should be given to increasing the sample size to
enhance the statistical power of the study and the reliability of the
conclusions. This can also assist in validating the current findings in
larger sample sizes. Due to the use of different R packages, there may
be some discrepancies in the results. The choice of threshold can also
have a significant impact on the outcomes. The threshold we used is a
common one found in most literature, but this does not imply that it
is the gold standard.

5 Conclusion

This research comprehensively clarified the fundamental
molecular mechanisms underlying VTE by integrating bioinformatics
and machine learning techniques. Using datasets from the GEO
database, we identified 30 candidate genes and further validated MYC
and NTANTI as pivotal genes through Boruta, SVM-RFE, LASSO
algorithms, and expression verification. Functional enrichment
analysis revealed these genes were significantly associated with cell
proliferation regulation, extracellular matrix remodeling, and
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cancer-related pathways (e.g., prostate cancer, bladder cancer). Gene
Set Enrichment Analysis (GSEA) demonstrated that MYC promotes
thrombosis via spliceosome and nuclear-cytoplasmic transport
pathways, while NTAN1 was linked to dysregulated energy
metabolism and impaired immune phagocytosis. Immune infiltration
analysis showed significant elevation of regulatory T cells and M2
macrophages in VTE patients, with MYC exhibiting strong
correlations to an immunosuppressive microenvironment. Disease-
gene-drug interaction network analysis predicted MYC as a potential
therapeutic target for antithrombotic drugs. RT-qPCR experiments
confirmed the downregulation of MYC and upregulation of NTANT1 in
VTE. This study offers new insights into the molecular mechanisms
and potential targeted therapies for VTE.
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