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There are currently no measures to accurately predict the onset of labor at term.
Currently, the onset of labor is anticipated based on the estimated due date
(EDD), which is derived from the day of the last menstrual period or ultrasound-
based anatomical information. However, the EDD is not intended to identify
physiological factors which may result in the early onset of labor. Therefore,
there is a need to identify potential biomarkers that are associated with the
onset of labor to accurately predict the timing of delivery. In this exploratory
study, we investigated the associations between maternal RR interval (mRRI),
maternal heart rate variability (mHRV) features, and the onset of labor. A total
of 37 participants were analyzed, including 25 with Electrohysterogram (EHG)-
derived signals (age: 28 + 5.9 years; gestational age (GA): 34 + 2.7 weeks) and
12 with non-invasive electrocardiogram (NIFECG)-derived signals (age: 32 + 4.5
years; GA: 38 + 1.5 weeks). The association of mHRV with the onset of labor
was quantified by calculating correlations with time to delivery, defined as the
difference between GA at recording and GA at delivery. Correlation analysis
revealed that several standard mHRYV indices showed strong associations (r >
0.5) with time to delivery.
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Introduction

A birth’s due date is usually surrounded by uncertainty. Ideally, delivery is expected
to occur at 40 weeks of gestation; however, only about 5% of pregnant women give
birth precisely at 40 weeks (1, 2). A pregnancy lasting 37-42 weeks is considered full-
term, whereas delivery before 37 weeks or after 42 weeks is typically associated with fetal
complications and preeclampsia (2). Because the onset of labor is difficult to predict in the
absence of well-defined clinical symptoms, clinicians may opt for induction or cesarean
section if waiting for spontaneous labor could pose risks. Nevertheless, such decisions
are challenging, and inappropriate timing of induction or cesarean delivery may adversely
affect fetal development (3, 4).

Currently, the onset of labor is primarily estimated using the estimated due date (EDD),
which is calculated with Naegele’s rule, 40 weeks after the first day of the last menstrual
period. However, EDD based on Naegele’s rule is prone to errors due to menstrual
cycle irregularities and inaccurate recall of the last menstrual period (2). Anatomical
ultrasound is also used to estimate the onset of labor by measuring fetal biparietal diameter,
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abdominal circumference, and head circumference (3). While
ultrasound-based estimation is generally more accurate than
Naegele’s rule (3, 4), its reliability depends on the timing of the scan.

Identifying potential markers for the onset of labor could
enhance pregnancy management and improve delivery outcomes
(4, 5). The transition from pregnancy to labor is thought
to be measurable through autonomic activity, which reflects
neuroendocrine changes (2). Erickson et al. (2) collected
physiological data from pregnant women using a multimodal
smart ring worn from 30 weeks of gestation until delivery. The
recorded data, including sleep, respiration, heart rate (HR), and
heart rate variability (HRV), were incorporated into a model to
estimate the likelihood of labor onset occurring before or after
the clinically estimated due date. Erickson et al. (2) reported
significant correlations between these physiological metrics
and time to delivery. Changes in HRV during pregnancy have
also been documented in previous studies and are thought to
reflect alterations in autonomic nervous system (ANS) activity
(6-9). Based on the previously mentioned associations between
pregnancy and HRV, we aimed here to investigate the association
between HRV and time to delivery. We believe that exploring such
associations will facilitate pregnancy management by means of
HRV measurement.

To our knowledge, few studies (2, 10) have directly examined
the correlation between maternal HRV and the timing of
labor onset. Prior work has used wearable-derived physiological
metrics that typically provide only time-domain estimates of
HRYV, limiting their ability to capture frequency-domain indices
such as high frequency (HF) and low frequency (LF) to HF
ratio (LF/HF) that reflect distinct autonomic processes. In
contrast, our study uses beat-to-beat R-R intervals derived
from maternal electrocardiogram (ECG) and electrohysterography
(EHG) recordings, enabling a detailed analysis of both time- and
frequency-domain HRV indices.

Fetal HRV has been extensively investigated as a marker of fetal
wellbeing, development, and intrapartum complications (7, 11, 12).
However, its role in predicting the timing of labor onset has
not been established. A major reason is the challenge of reliably
acquiring longitudinal fetal HRV data. Continuous or repeated fetal
ECG recordings are technically demanding, often affected by low
signal quality, and not routinely feasible across gestation (11, 13,
14). In contrast, maternal HRV can be measured more consistently
and non-invasively, making it a more practical potential biomarker
for exploring associations with labor onset.

Methods

Data description

Two datasets were used in this study. The first dataset
was obtained online from the Icelandic 16-electrode
Electrohysterogram (EHG) Database (Nordic database). The
data from this dataset was collected at Akureyri Primary Health
Care Centre and Landspitali University Hospital after obtaining
Informed consent from every participant. The study protocol
was approved by the National Bioethics Committee in Iceland
(VSN 02-006-V4). More details about this study are mentioned
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in (15). Briefly, a total of 122 16-electrode EHG recordings were
collected from 45 pregnant women by using a sixteen-channel
multi-purpose physiological signal recorder (Embla A10) with a
200 Hz sampling rate. In the Nordic database, multiple recordings
were collected from 32 participants, resulting in repeated records
for some subjects. Repetitive recordings were excluded, and only
those with visible R peaks or minimal visual noise were considered
for analysis. Ultimately, one recording per subject was selected,
resulting in a total of 45 recordings out of 122. The duration of the
recordings ranged from at least 8 min to a maximum of 85 min.

From the Nordic database, we excluded participants who
delivered for non-physiological reasons (induction: n = 4; cesarean
section: n = 6) and those with poorly detectable R peaks for a
continuous 5min segment in the EHG signals (n = 10). After
exclusion, the total number of participants analyzed from the
Nordic database was 25. Maternal electrocardiogram (ECG) noise
in EHG recordings is common (16); therefore, we inspected the
EHG records for the presence of R peaks to calculate HRYV,
as illustrated in Figure 1. The final dataset included 25 EHG
recordings (maternal age: 27 &+ 5.7 years; gestational age (GA): 35
+ 2.9 weeks).

The second dataset was obtained from a study that was
conducted at the Mercy Hospital for Women in Heidelberg,
VIC, Australia. Fifty-two women between 18 and 45 years of age
with pregnancies between 36 to 41 weeks GA were recruited.
The study was approved by the Mercy Health Human Research
Ethics Committee (Approval No. 2018-046), and written informed
consent was obtained from each participant. The purpose of the
study was to record non-invasive fetal and maternal ECG for
another project. Here, we are using maternal (mECG) only. For
each participant, 30 min of ECG data were recorded at a 1,000 Hz
sampling rate and a 24-bit depth using the ADS1299 biopotential
amplifier (Texas Instruments, OpenBCI). We excluded pregnancies
that were delivered for non-physiological reasons. There were
40 pregnancies delivered for non-physiological reasons, 13 with
elective/planned cesarean labor, and 24 with induction. Due to the
latter exclusions, 12 records of mECG were considered for analysis,
(age: (32 = 4.2) years old, GA: (38 & 1.7) weeks). Figure 2 presents
a summary of data analysis for each dataset.

R peak detection and HRV analysis

Despite differences in recording modality (EHG-derived
maternal ECG at 200 Hz vs. direct maternal ECG at 1,000 Hz),
identical preprocessing steps were applied across both datasets,
including filtering, R-peak detection, artifact correction, and HRV
extraction from 5min segments. All RR interval (RRI) values
were expressed in milliseconds, ensuring that HRV indices were
standardized and directly comparable between datasets.

Figure 1A shows an example of a raw EHG recording, where
maternal R peaks are visible due to ECG interference in the
abdominal signal. To extract R peaks, we first applied a high-pass
filter to reduce baseline drift and low-frequency uterine activity.
The filtered signal was then amplitude-normalized (scaled to a
maximum of 1) to standardize peak detection (Figure 1B). R
peaks were identified using MATLAB’s “findpeaks” function, with
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FIGURE 1

An example of an electrohysterogram (EHG). (A) An unfiltered EHG signal. (B) A filtered EHG signal. The record belongs to a participant with

gestational age (GA) = 36 weeks and 5 days, age: 30 years old.

Nordic Database:
122 of 16-electrode EHG recordings
were collected from 45 pregnant
women (GA: 36 — 41 weeks).

One recording per participant was
considered for analysis (n = 45).

4

Exclusion: Participants who delivered for
non-physiological reasons [n = 10].

Exclusion: Participants who had noisy
records [n =10].

4

After exclusion: number of analyzed
records from this database: 25
\

Melbourne Dataset:
52 of maternal ECG were collected
from 52 pregnant women
(GA: 28 - 42 weeks).

Exclusion: Participants who
delivered for non-physiological
reasons [n = 37]. Participants
with noisy ECG [n = 3].

.

After exclusion: number of analyzed
records from this database: 12

R peak detection to perform HRV analysis
for a total of 37 participants.

FIGURE 2

Summary of data analysis of the Icelandic 16-electrode Electrohysterogram (EHG) Database (Nordic database) and the Melbourne dataset.

Y

thresholds set relative to the normalized amplitude to minimize
false detections. Detected peaks were visually inspected, and
segments with excessive noise or unclear peaks were excluded from
analysis. The same methods were applied to detect R peaks from
ECG signals.

All analysis described in this study was conducted in MATLAB.
To calculate HRV, we selected 5 min from ECG and EHG records.
The beginning of the record was the favored choice to select the
5min; however, the next 5min segments were selected in case
detection of R peaks proved to be difficult in the first 5 min segment
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due to noise. A 5min length was used because it is the minimum
recommended length for frequency-based HRV analysis (17).

RRI series were corrected manually for ectopic beats, and then
time-based and frequency-based HRV were calculated. Manual
correction of the RRI series was performed by calculating the
mean of consecutive ectopic beats and then dividing by the total
number of the same beats. For time-based HRV, the standard
deviation of normal RRI (SDNN) and the root mean square
of successive differences between normal beats (RMSSD) were
calculated. Frequency-based HRV was calculated by using the by
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TABLE 1 Demographics summary.

Feature Nordic database Melbourne
dataset

Count 25 12

Mean + SD Mean + SD
Age (Years old) 27 +5.7 32+4.1
BMI (Kg/m?) 29 4+4.1 31411
GA recording (weeks) 35+29 38+1.7
GA delivery (weeks) 40+1.2 39+1.3
Analyzed signal Electrohysterogram Electrocardiogram

(EHG) (ECG)

BMI, body mass index; GA, gestational age.

the following bands (17): very low frequency (VLF): [0.0033-0.04]
Hz, LF: [0.04-0.15] Hz, high frequency (HF): [0.15-0.4] Hz.

Correlation analysis

To estimate the association of the onset of labor with maternal
RRI and HRYV, time to delivery was calculated. The time to
delivery was calculated by subtracting GA at recording time from
GA at delivery. Because the variables did not follow normal
distribution based on the Lilliefors test (MATLAB), we used
Spearman correlation analysis.

Results

Table 1 presents a summary of participant demographics for
each database or dataset. Melbourne participants had higher age,
BMI, and GA (recording) compared to the Nordic database. In
Table 2, time-domain measures showed that RMSSD (25 + 13)
ms was significantly negatively correlated with time to delivery
[r = —0.50, p = 0.0016, (CI: —0.75 to - 0.18)], while SDNN
(44 £+ 14) ms and RR interval (677 £+ 79) ms did not show
significant associations (p > 0.05). For the frequency-based HRV
metrics, HF power (5.2 = 1.0) has a significant negative correlation
with time to delivery [r = —0.42, p < 0.009, (CI: —0.70 to
- 0.10)], indicating reduced parasympathetic activity as delivery
approached. In contrast, LF/HF ratio (0.69 % 0.71) was positively
correlated with time to delivery [r = 0.55, p = 0.0004, (CIL:
0.23-0.78)], suggesting increased sympathetic dominance. Other
frequency components, such as LF (5.9 £ 0.60) and VLF (6.7 &+
0.64), were not significantly associated with labor onset (p > 0.05).

Discussion

The purpose of this study was to study the possibility of finding
an association between HRV with time to delivery. Our main
finding was that there is a significant association between time to
delivery and HRV. Specifically, we found significant correlations
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(p < 0.05) between RMSSD, HF, and LF/HF with time to delivery
(Table 2).

Changes in HRV during pregnancy are well-documented (2, 6,
7, 18, 19). Most studies focused on investigating the changes in
maternal HRV per trimester and they found that the sympathetic
nervous system activity measured by using HRV increased in the
third trimester from the second trimester (18-20). The increase
in the sympathetic activity was assessed by the increase in LF and
LF/HF (20). Contrary to the previous literature, our study focused
only on HRV changes during the third trimester. The closest study
to ours was done by Musa et al. (21), who compared HRV in labor
with that in the third trimester (21). Musa et al. (21) found that
LE HF, and LF/HF increased during labor compared to the third
trimester. The result related to HF is consistent with our finding,
an increase in HF when the time of labor draws closer. However,
our result related to LF/HF differs from Musa et al. (21), in which
we found a decreasing LF/HF with closer labor.

Several methodological differences may explain this
discrepancy. Musa et al. analyzed HRV in women already in
active labor, whereas our study examined non-laboring women
in the third trimester and correlated HRV with time to delivery.
This difference in physiological state at the time of measurement
may account for the contrasting autonomic patterns observed.
In addition, Musa et al. relied solely on conventional ECG, while
our analysis combined ECG and EHG-derived signals, which
may introduce methodological variability. It is also worth noting
that discrepancies in LF/HF findings were reported in previous
studies (20) and such discrepancies are attributed to the complex
time-sensitive processes that occur during pregnancy. Therefore,
assessing HRV using a 5 min segment may yield results that differ
from those obtained through longer-duration HRV recordings.

We speculate that the observed negative correlations between
RMSSD and HF (Table 2) and time to delivery may reflect an
increase in parasympathetic activity as labor approaches. This
finding appears to contradict the widely reported norm of increased
sympathetic activity near labor onset. However, we believe this
result may reflect the inherent physiological complexity of labor.
Rather than a linear progression of autonomic dominance, labor
may be governed by a dynamic interplay between sympathetic
and parasympathetic states, potentially involving a “sympathetic-
parasympathetic alternation,” as the body prepares for the
demands of delivery. Our findings may represent a transitional
phase characterized by transient parasympathetic predominance
prior to the sympathetic surge typically observed during active
labor. We further speculate that the observed parasympathetic
predominance could be modulated by neurohormonal factors.
Oxytocin, which rises in late pregnancy and peaks during
labor, has well-documented effects on the autonomic nervous
system, including enhancing parasympathetic tone (22, 23). This
neurophysiological link provides a plausible mechanism through
which increasing oxytocin levels may shape maternal HRV patterns
as labor approaches.

This study has several limitations. A substantial number
of participants required induction or cesarean delivery, which
necessitated their exclusion and reduced the final sample size by
approximately half (from 84 to 37). The small sample size (n
= 37) limited the statistical power. Furthermore, multiple HRV
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TABLE 2 Correlations between HRV metrics and gestational measures.

10.3389/fmed.2025.1659620

Feature Mean + SD  GA at the time of recording GA at the time of delivery Difference between GA
(29-41) weeks (37-41) weeks delivery and recording (0-9.3)
WEELS
Linear time-based HRV metrics
RR (ms) 677 £ 79 r=0.17 r=—0.13 r=-—0.22
[CL: - 0.21 t0 0.51] [CL: —0.46 to 0.18] [CL: —0.54 t0 0.11]
p=031 p=0.44 p=0.19
SDNN (ms) 44414 r=0.18 r=0.086 r=-0.11
[CL: - 0.12 to0 0.30] [CL: —0.28 to 0.43] [CL: - 0.48 to 0.26]
p=029 p=061 p=051
RMSSD (ms) 25413 0.46 r=—0.08 r=-0.50
[CL: 0.12 to 0.74] [CL: —0.43 to 0.26] [CL: —0.75 t0 0.18]
p=0.004 p=064 p=0.0016
Linear frequency-based HRV metrics
VLF (Ln) 6.6+ 0.64 r=-0.03 r=0.03 r=0.1
[CL: —0.37 t0 0.33] [CL: —0.35 to 0.41] [CL: —0.75 t0 0.18]
p=085 p=085 p=0.0016
LF (Ln) 5.9 & 0.60 r=10.05 0.18 r=0.02
[CL: —0.27 to 0.35] [CL: —0.17 to 0.50] [CL: —0.30 to 0.35]
p=076 p=028 p=0.90
HF (Ln) 52410 r=036 r=—0.06 r=—042
[CL: 0.02 - 0.66] [CL: —0.41 to 0.29] [CL: —0.70 to —0.10]
p=0.028 p=075 p=10.009
LE/HF 0.69 £ 0.71 r=—0.42 r=0.19 r=10.55
[CL: - 0.68 to —0.08] [CL: —0.17 to 0.53] [CL: 0.23 to 0.78]
p=001 p=027 p=0.0004

The primary analysis concerns HRV with time to delivery (last column); correlations with GA at recording and GA at delivery are shown for completeness, n = 37.
GA, gestational age; HRV, heart rate variability; RRI, RR interval; SDNN, standard deviation of normal RRI; RMSSD, root mean square of successive differences between normal beats; HE, high

frequency; LE, low frequency; VLE, very low frequency.

indices were tested without correction for multiple comparisons,
increasing the risk of false correlations. The lack of data from
the first and second trimesters limited our ability to explore
whether early pregnancy HRV markers could serve as predictors
of labor onset. Hence, these findings should be considered
exploratory and validated in larger cohorts using appropriate
statistical adjustments. The heterogeneity of the datasets is another
limitation of this study, as maternal HRV was derived from both
direct ECG and EHG signals. Although identical preprocessing
and HRV extraction procedures were applied, the use of different
modalities may have introduced bias and reduced comparability
between groups.

The study can be extended by including fetal HRV which
was found to be correlated with HRV (7, 24). Analysis of fetal
HRV may provide further insights into the onset of labor and
pregnancy outcomes. In addition, maternal HRV can be integrated
with complementary physiological signals. For example, combining
maternal and fetal HRV into a joint model may provide a more
complete picture of maternal-fetal autonomic interactions and
their role in the initiation of labor. For example, estimating
maternal-fetal HR coupling patterns (25, 26) may provide further
insights into the onset of labor. Similarly, multimodal monitoring
approaches that incorporate maternal physiology (e.g., HRV, sleep,
exercise) together with fetal HRV and wearable-derived signals
could enhance predictive value beyond HRV alone. In addition,
predictive modeling techniques such as regression analysis and
machine learning could be applied to these multimodal datasets
to identify complex, non-linear patterns that are not detectable
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with standard correlation analysis. Such approaches may ultimately
enable the development of clinically useful prediction tools for the
timing of labor onset.

Conclusion

In this exploratory study, we found significant correlations
between time to delivery and short-term HRV metrics. Specifically,
HF and RMSSD were negatively correlated with the onset of
labor, while LF/HF was significantly positively correlated. These
associations may represent a transitional phase characterized by
transient parasympathetic predominance prior to the sympathetic
surge typically observed during active labor.
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