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mammography-based model
fusing clinical, radiomics, and
deep learning models for sentinel
lymph node metastasis prediction
In breast cancer
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!Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,
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Objective: To develop a mammography (MG)-based post-fusion model
combined with Clinical, Radiomics, and Deep Learning Models to evaluate the
status of sentinel lymph node (SLN) in patients with breast cancer.

Methods: A total of 290 breast cancer patients who underwent MG were
randomly divided into a training set (n = 203) and an internal validation set
(n = 87), with an additional 82 patients included in the test set for independent
validation. From the MG images of mediolateral oblique (MLO) and craniocaudal
(CC) views, 1726 radiomic (Rad) features and 1,024 deep learning (DL) features
were extracted for each patient. After the feature fusion and selection, the
single-modal models and pre-fusion models were established by stochastic
gradient descent (SGD). Using the probabilities of single-modal models, the
post-fusion models were developed by support vector machine (SVM). The area
under the receiver operating characteristic curve (AUC) was used for accessing
the performance of models. The clinical net benefit and predictive accuracy
were evaluated through decision curve analysis (DCA) and calibration curves.
Results: The post-fusion model Clinical+Rad+DL combined probabilities of
single modal models, showed the best discrimination ability in the internal
validation set (AUC [95%ClI]: 0.845 [0.769-0.921]) and test set (AUC [95%Cl]:
0.825[0.812-0.932]).

Conclusion: The proposed post-fusion model Clinical+Rad+DL demonstrated
the method of probabilities fusion was effective and showed promise for
predicting SLN metastasis in breast cancer.
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breast cancer, radiomics, sentinel lymph node, machine learning, full-field digital
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1 Introduction

Breast cancer is the most commonly diagnosed cancer and the
leading cause of cancer-related death in women (1). Axillary lymph
node (ALN) status is critical in staging breast cancer and guiding
treatment decisions (2, 3). Sentinel lymph node biopsy (SLNB) has
become the preferred method for assessing ALN metastasis in early-
stage breast cancer patients because SLN is recognized as the primary
site for tumor spread to the axillary region (4). However, it’s important
to note that SLNB is an invasive procedure that can lead to
complications such as axillary wound infection, seroma formation,
and paresthesias (5). That being said, ultrasound (6, 7), mammography
(MG) (8, 9), and magnetic resonance imaging (MRI) (10) detect
lymph node metastasis by identifying morphological and functional
characteristics, but their sensitivity and specificity do not meet
clinical needs.

Radiomics (Rad) is a non-invasive method that involves the high-
throughput extraction of large amounts of image features from
radiographic images to predict tumor diagnosis and prognosis (11).
Several studies have applied Rad features to predict SLN metastasis in
breast cancer (12, 13). Moreover, it is worth noting that deep learning
(DL) has been widely employed in breast MRI (14-17) and breast
ultrasound (18-20) for various tasks, including segmentation,
diagnosis, grading, and metastasis prediction. DL features have the
potential to provided more comprehensive information than Rad
features, as they can capture complex and subtle features within
images. The combination of Rad and DL features may potentially
enhance the model’s performance. Various methods for fusion have
been proposed, including feature fusion (pre-fusion) and probability
fusion (post-fusion). In a study by Xie et al. (21), an approach was
proposed that integrates decision-level texture, shape, and DL features
for classifying lung nodules. Furthermore, Li et al. (22) utilized a
probabilistic fusion technique to create a model based on MRI for
forecasting ALN metastasis, which yielded an AUC of 0.91. This level
of performance exceeded that of both the Rad and DL models. These
studies indicate that the use of post-fusion techniques, such as
probability fusion, to construct predictive models for breast cancer
SLN metastasis exhibits potential.

Thus, our study aimed to develop and compare pre-fusion and
post-fusion models encompassing clinical, Rad, and DL features of
MG to predict SLN metastasis in breast cancer.

2 Materials and methods
2.1 Patient population

The research was conducted in accordance with the ethical
guidelines established in the 2013 revision of the Declaration of
Helsinki for studies involving human participants. Approval for the
study was obtained from the institutional review committee of our
hospital. Since the study had a retrospective design, the requirement
for informed consent was exempt.

A total of 290 patients diagnosed with invasive breast
carcinoma between March 2016 and June 2023 were enrolled,
while 82 patients diagnosed between January 2014 and February
2016 served as an independent test set. The inclusion criteria were
as follows: (1) Underwent MG examination within the 2 weeks
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before surgery, and the images met the diagnostic requirements;
(2) Underwent SLNB during surgery to assess the status of the
SLN. The exclusion criteria were as follows: (1) Had chemotherapy,
radiotherapy, or endocrine therapy before surgery; (2) Received
treatment or biopsy before MG examination; (3) Diagnosed with
bilateral, multicentric, multifocal breast cancer, or evidence of
distant metastasis. The flowchart for enrolled patients is illustrated
in Supplementary Figure 1.

The patient data included the following datasets: (a) A regions of
interest (ROIs) training set used to train a DL segmentation model for
identifying MG lesions; (b) An ROIs validation set used to assess the
DL segmentation model’s performance in ROIs segmentation; (c) A
radiomics dataset where patients were randomly divided into a
training set and an internal validation set at a 7:3 ratio; (d) A test set
from a separate cohort was included to further evaluate the model’s
performance. Ultimately, 290 patients and 82 test patients were
enrolled in the study. The cohort selection flowchart is shown in
Figure 1.

2.2 MG examination and image acquisition

The Hologic Selenia full digital MG camera (Hologic Medical
Systems, Boston, MA) was utilized to conduct bilateral digital MG
examinations, acquiring digital MG images in mediolateral oblique
(MLO) and craniocaudal (CC) views. The images were analyzed using
a Hologic breast computer-aided diagnosis workstation
(SecureViewDx; Hologic) equipped with two 5-megapixel monitors,

each with a resolution of 1792 x 2048.

2.3 Assessment of conventional semantic
features in MG and clinicopathologic
characteristics

The evaluation of the conventional semantic features of MG was
carried out by two experienced breast imaging radiologists,
Radiologists 1 and Radiologists 2, who have 30 and 10 years of
expertise in MG diagnosis, respectively. The assessment was
conducted using the workstation without prior knowledge of the
pathological outcomes. The study examined the conventional
semantic features of MG based on the American College of Radiology
Breast Imaging Reporting and Data System (ACR BI-RADS) 5th
edition standard. This included analyzing diameter, shape (round or
oval/irregular), glandular type (non-dense breast/dense breast),
margin (spiculated/non-spiculated), mass density (high density/equal
density), suspicious morphology of calcifications (absent/present). In
addition, suspicious lymph node signs in MG included rounded or
irregular shape, absence of fatty hilum, small diameter <1 cm, and
increased density. If any of these signs were present, the MG-reported
abnormal lymph node (MG_reported LN) was recorded as
positives, 9.

The agreement of the conventional semantic features of MG was
analyzed using the Kappa test.

Clinicopathologic features included the patients age, weight,
height, body mass index (BMI), neutrophil-to-lymphocyte ratio
(NLR), estrogen receptor (ER) status (positive/negative), progesterone
receptor (PR) status (positive/negative), human epidermal growth
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FIGURE 1
Flow chart of cohort selection.
factor receptor-2 (HER-2) status (positive/negative), Ki-67  labeled data for the segmentation task. This labeled dataset formed the

(>30%/<30%) status, and histological grading (I/II/III).
The conventional semantic features and clinicopathologic features
were defined as the Clinical features.

2.4 CNN-based MG images segmentation

The workflow is shown in Figures 1, 2. Radiologists first randomly
selected 90 patients, including their MLO and CC view images, and
performed manual segmentation using 3D Slicer (version 5.2.2), a tool
widely used for accurate medical image annotation, to generate
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basis for training a DL segmentation model using the Mask-R-
Convolutional Neural Network (Mask-R-CNN) architecture, chosen
for its proven effectiveness in medical image segmentation. The
convolutional layers of the Mask-R-CNN model were initially
pre-trained on the Microsoft Common Objects in Context (COCO)
dataset to acquire general feature representations, with a learning rate
0f 0.001, a batch size of 10, and a total of 100 epochs. Subsequently,
the model was fine-tuned using the DL segmentation training set and
validated on the DL segmentation validation set to evaluate and
optimize its segmentation performance. Finally, images excluded due
to DL segmentation model misidentification (e.g., failure to identify
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The design of workflow for the study.

tumor boundaries or incorrect ROIs placement) were re-annotated
with ROIs by Radiologists. The corrected data were then integrated
back into datasets.

2.5 Radiomic feature extraction and DL
feature extraction

Feature extraction was carried out using the open-source software
PyRadiomics (version 3.1.0). A total of 1726 Rad features were
extracted from two regions of interest (CC and MLO views) for each
patient. These features included shape, intensity, textural, and
wavelet features.

In recent years, ResNet has been shown to have excellent
performance and good applications in medical imaging tasks (23,
24). We adopted a pre-trained ResNet18 model by maintaining the
original kernel size, stride, and padding settings, allowing for direct
application of deep learning feature extraction from medical
images. We used SimpleITK (version 2.2.0) to read images and ROIs
and convert them into Numpy arrays. We then normalized and
standardized these arrays. To make the model output features rather
than classification results, we removed the last full connection layer
of the model to obtain the intermediate features from the
penultimate layer. In total, 1,024 features were extracted from 2
ROIs (CC and MLO views) for each patient. All features were
normalized using the z-score method, converting them to a
standardized range of values.

2.6 Feature fusion and selection

To construct the pre-fusion model, we combined three types of
features (Clinical, Rad, DL features) separately to get 3 types of
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pre-fusion features (Clinical+Rad, Clinical+DL, Clinical+Rad+DL)
(Figure 2).

To obtain the features most closely associated with SLN metastasis
in the training set, a three-step selection process was performed. First,
we used differential analysis (Mann-Whitney U-test or independent
t-test was performed for quantitative features, while chi-squared test
or Fisher’s exact test was applied for categorical features) with a
p-value threshold of 0.05 to obtain the features associated with SLN
status. Then, taking into account the correlations between features,
we calculated the correlation coefficients between features using
Pearson or Spearman correlation. If the correlation coefficient
between two features exceeded 0.75, one of the features was
eliminated. Finally, the Least Absolute Shrinkage and Selection
Operator (LASSO) with fivefold cross-validation to tune the
parameters with the minimum lambda was used to select the
optimal features.

2.7 Models’ development

In our study, we developed three types of models using the
selected features: 1. Single-modal models (Clinical model, Rad
model, and DL model); 2. Pre-fusion models: These models used the
fusion features to construct an integrated model (pre-fusion model
Clinical+Rad, pre-fusion model Clinical+DL, and pre-fusion model
Clinical+Rad+DL); 3. Post-fusion models: these models integrated
probabilities from meta-classifiers constructed separately on single-
modal models to build an integrated model (post-fusion model
Clinical+Rad, post-fusion model Clinical+DL, and post-fusion
model Clinical+Rad+DL). The stochastic gradient descent (SGD)
was utilized to construct single-modal models and pre-fusion
models, and the support vector machine (SVM) was employed to
develop the post-fusion models. These machine-learning algorithms
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have been proven to have good applications in the medical field
(25, 26).

The AUC of the receiver operating characteristic (ROC)
curves, accuracy, sensitivity, and specificity were used to evaluate
the performance of the models. The AUCs were compared using
the Delong test. Calibration curves were performed to evaluate the
goodness of fit of the models. In addition, the clinical benefits of
the models were assessed using the decision curve analysis
(DCA) (27).

2.8 Statistical analysis

All statistical work, feature extraction of Rad and DL as well as
model construction were conducted in Python (version 3.12.3)," along
with open source packages such as PyTorch, Scipy, and scikit-learn.
Quantitative features were presented as means with standard deviations
or as medians with the 25th and 75th percentiles. The independent
sample t-test or the Mann-Whitney U-test was used for analyzing the
quantitative features, while the chi-square test or the Fisher’s exact test
was used for analyzing the categorical features. All tests were two-sided,
with p-values <0.05 considered statistically significant.

3 Results
3.1 Clinical features

The clinical features of the patients are shown in Table 1. In both
the training, internal validation and test sets, margin, MG_reported_
LN showed the most significant differences in distribution between
the SLN+ and SLN— groups (p < 0.05), indicating that these three
features have certain differences in their ability to predict
SLNM. Although no differences were observed in the internal
validation set, shape and diameter showed statistically significant
differences in the training set. In addition, no statistical differences
were found for NLR, ER status, PR status, HER-2 status, Ki-67 and
other clinical features.

3.2 MG images segmentation and feature
selection

185 CC views and 183 MLO views from 400 images of 200
patients were accurately segmented, with an accuracy of 92.5% for the
CC set and 91.5% for the MLO set, respectively.

The kappa values for conventional semantic features of MG by two
radiologists were all >0.80.

We implemented an independent feature selection approach for
each feature set within the training set. After feature selection, the
features of the single-modal models and the pre-fusion models are
shown in Supplementary Table 1. For the Clinical model in the
single-modal models, the features diameter, shape, margin, and MG_
reported_LN and were selected.

1 https://www.python.org
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3.3 Model construction and performance

Three single-modal models were built based on the selected
features. The AUC of these models (Clinical model, Rad model, and
DL model) were 0.797, 0.834, and 0.744 in the training set and 0.732,
0.793 and 0.726 in the (Table 2;
Supplementary Table 2). Second, the selected pre-fusion features were
used to build the pre-fusion models: Clinical+Rad, Clinical+DL, and
Clinical+Rad+DL. Among these pre-fusion models, the
Clinical+Rad+DL model achieved the best performance with an AUC,
accuracy, sensitivity and specificity of 0.873, 0.847, 0.768 and 0.878,
respectively, in the training set and 0.776, 0.701, 0.791 and 0.667,
respectively, in the internal validation set (Table 2; Figure 3). Finally,

internal validation set

the prediction probabilities of the three single-modal models were
further fused using SVM to build post-fusion models. The prediction
probabilities of the Clinical model and the Rad model were fused to
construct the post-fusion model Clinical+Rad; the prediction
probabilities of the Clinical model and the DL model were combined
to construct the post-fusion model Clinical+DL; and the prediction
probabilities of the Clinical model, the Rad model, and the DL model
were integrated to develop the post-fusion model Clinical+Rad+DL.

The post-fusion model Clinical+Rad+DL showed the best
performance among all models (Table 2; Figure 3). Table 3 shows the
DeLong test results comparing the Clinical model, the pre-fusion
Clinical+Rad+DL, and the post-fusion model
Clinical+Rad+DL. In the training set, this model achieved the highest
AUC of 0.881, which was statistically significantly higher than both
the Clinical model (p<0.001) and the pre-fusion model
Clinical+Rad+DL (p = 0.03). Similarly, in the internal validation set,
the AUC (0.845) of the post-fusion Clinical+Rad+DL model was the
highest and statistically significant when compared to the Clinical
model (p=0.04) and the pre-fusion Clinical+Rad+DL model
(p =0.04).

The calibration curves (Figure 4) indicated that the true statement

model

of SLN was consistent with the result of the post-fusion model
Clinical+Rad+DL in the training and internal validation sets. The
DCA for the post-fusion models is shown in Figure 4. When an
individual’s threshold probability is <0.77, the post-fusion model
Clinical+Rad+DL would add net benefit compared to the treat-all or
treat-none tactics. The calibration curves, and DCA curves of the
other models are shown in Supplementary Figure 4.

Finally, we applied the most optimal model, the post-fusion model
Clinical+Rad+DL, to the test set, which also demonstrated good
discrimination (AUC = 0.825), calibration, and clinical applicability
(Figure 5).

4 Discussion

In this study, the post-fusion model Clinical+Rad+DL, which
integrated the probabilities of the Clinical, Rad, and DL models,
achieved the best performance in distinguishing SLN metastasis
status. Our results indicated that the post-fusion model
Clinical+Rad+DL demonstrated promising predictive performance,
with important implications for surgical planning in breast
cancer patients.

After feature selection, clinical features such as diameter, shape,

margin, and MG_reported_LN were incorporated into the Clinical
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TABLE 1 Clinical features of the patients.

10.3389/fmed.2025.1659422

Clinical Training set (n = 203) Internal validation set (n = 87) Test set (n = 82)
features
SLN— SLN+ p-value SLN— SLN+ p-value SLN— SLN+ p-value
(N =56) (N = 63) (N = 24) (N =59) (N = 23)
Age 56 (46, 64) 54 (46, 60) 0.47 53 (42, 60) 57 (46, 64) 0.24 57 (46, 65) 54 (45, 61) 0.34
2.35 (1.90, 2.10 (1.78,
Diameter 2.00 (1.70, 2.50) 0.009 2.10 (1.85,2.50) | 2.10 (1.80, 2.40) 0.94 2.10 (1.73, 2.50) 0.49
3.00) 2.63)
Weight 61 (57,70) 60 (55, 70) 0.69 60 (55, 65) 62 (55, 70) 0.25 60 (57, 69) 62 (57, 69) 0.76
1.60 (1.58, 1.60 (1.59,
Height 1.60 (1.58, 1.65) 0.31 1.60 (1.58, 1.62) | 1.60 (1.59, 1.64) 0.51 1.60 (1.60, 1.66) 0.16
1.62) 1.63)
23.6 (21.7, 23.4(22.03, 24.1 (22.48, 23.44 (21.49, 23.53 (22.53,
BMI 23.8 (22.0, 26.6) 0.79 0.23 0.28
26.6) 24.99) 26.03) 25.24) 26.73)
1.83 (1.46, 1.82 (1.47,
NLR 1.82 (1.42,2.27) 0.74 1.74 (1.31,2.36) ' 1.82 (1.52,2.33) 0.73 1.87(1.432.37) 0.76
2.27) 2.13)
Breast
0.9 0.91 0.88
Composition
Non-dense
75 (51%) 28 (50%) 35 (56%) 13 (54%) 28 (48.3%) 12(50.0%)
breast
Dense breast 72 (49%) 28 (50%) 28 (44%) 11 (46%) 30 (51.7%) 12(50.0%)
Density 0.3 0.91 0.18
Equal density 88 (60%) 29 (52%) 35 (56%) 13 (54%) 36 (62.1%) 11(45.8%)
High density 59 (40%) 27 (48%) 28 (44%) 11 (46%) 22(37.9%) 13 (54.2%)
Shape 0.02 0.54 0.14
Round or
42 (29%) 7 (13%) 13 (21%) 3(13%) 19 (32.8%) 4 (16.7%)
Oval
Irregular 105 (71%) 49 (88%) 50 (79%) 21 (88%) 39 (67.2%) 20 (83.3%)
Margin <0.001 0.03 0.03
Non-
37 (25%) 36 (64%) 21(33%) 14 (58%) 37 (63.8%) 9 (37.5%)
spiculated
Spiculated 110 (75%) 20 (36%) 42 (67%) 10 (42%) 21 (36.2%) 15 (62.5%)
Calcifications 0.04 0.71 0.05
Absent 94 (64%) 27 (48%) 42 (67%) 15 (63%) 42 (72.4%) 12 (50.0%)
Present 53 (36%) 29 (52%) 21 (33%) 9 (38%) 16 (27.6%) 12 (50.0%)
MG_reported_
<0.001 <0.001 0.02
LN
Negative 118 (80%) 24 (43%) 55 (87%) 12 (50%) 52 (89.7%) 16 (66.7%)
Positive 29 (20%) 32 (57%) 8 (13%) 12 (50%) 6 (10.3%) 20 (83.3%)
ER 0.5 0.02 0.77
Negative 23 (16%) 11 (20%) 17 (27%) 1 (4%) 12 (20.7%) 4(16.7%)
Positive 124 (84%) 45 (80%) 46 (73%) 23 (96%) 46 (79.3%) 170 (81%)
PR 0.55 0.009 0.89
Negative 36 (24%) 16 (29%) 23 (37%) 2 (8%) 16 (27.6%) 7 (29.2%)
Positive 111 (76%) 40 (71%) 40 (63%) 22 (92%) 42 (72.4%) 17 (70.8%)
HER-2 0.66 0.16 0.12
Negative 122 (83%) 45 (80%) 51 (81%) 16 (67%) 50 (86.2%) 17 (70.8%)
Positive 25 (17%) 11 (20%) 12 (19%) 8(33%) 8 (13.8%) 7(29.2%)
KI-67 0.98 0.68 0.95
<0.3 79 (54%) 30 (54%) 31 (49%) 13 (54%) 31 (53.4%) 13 (54.2%)
(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2025.1659422

Clinical Training set (n = 203) Internal validation set (n = 87) Test set (n = 82)
features SLN— SLN+  p-value  SLN— SLN+  p-value  SLN— SLN+  p-value
(N = 147) (N = 56) (N =63) (N = 24) (N = 59) (N =23)

>0.3 68 (46%) 26 (46%) 32 (51%) 11 (46%) 27 (46.6%) 11 (45.8%)
Histological 0.43 0.69 0.98
Grading

1 19 (13%) 4(7%) 4(6%) 2(8%) 6 (10.3%) 2(8.3%)

i 73 (50%) 32 (57%) 37 (59%) 12 (50%) 33 (56.9%) 14 (58.3%)

11 55 (37%) 20 (36%) 22 (35%) 10 (42%) 19 (32.8%) 8 (33.3%)

ER, estrogen receptor; HER-2, human epidermal growth factor receptor-2; NLR, neutrophil-to-lymphocyte ratio; PR, progesterone receptor; SLN+, sentinel lymph node with metastasis;

SLN—, sentinel lymph node without metastasis.

TABLE 2 Performance of the different models in training set and validation set.

Cohort AUC (95%Cl)

Accuracy

Sensitivity

Specificity

Clinical model 0.797 (0.741-0.852) 0.793 0.571 0.878
Pre-fusion model
Clinical+Rad 0.853 (0.805-0.902) 0.852 0.75 0.891
Clinical+DL 0.849 (0.800-0.898) 0.833 0.679 0.891
Clinical+Rad+DL 0.873 (0.827-0.919) 0.847 0.768 0.878
Post-fusion model
Clinical+Rad 0.854 (0.806-0.903) 0.828 0.696 0.878
Clinical+DL 0.827 (0.774-0.879) 0.852 0.554 0.966
Training set Clinical+Rad+DL 0.881 (0.836-0.925) 0.833 0.804 0.844
Clinical model 0.732 (0.639-0.825) 0.816 0.5 0.937
Pre-fusion model
Clinical+Rad 0.762 (0.672-0.851) 0.805 0.625 0.873
Clinical+DL 0.74 (0.648-0.832) 0.667 0.792 0.619
Clinical+Rad+DL 0.776 (0.688-0.863) 0.701 0.791 0.667
Post-fusion model
Clinical+Rad 0.78 (0.693-0.867) 0.759 0.833 0.73
Clinical+DL 0.776 (0.688-0.863) 0.851 0.542 0.968
Internal validation set Clinical+Rad+DL 0.845 (0.769-0.921) 0.782 0.875 0.746
Post-fusion model
Test set Clinical+Rad+DL 0.825 (0.812-0.932) 0.862 0.779 0.883

AUC, Area under the curve; DL, deep learning; Rad, radiomics.

model. Many previous studies have confirmed their association with
lymph node metastasis. Lyu et al. (28) found that tumor size is an
independent risk factor for SLN metastasis in breast cancer. In the
study by Yuan et al. (29), patients with spiculated margins on MG
images were more likely to have SLN metastasis. Breast cancer shape
on MG showed no statistical difference in the validation set, likely due
to the small sample size and the division between training and
validation sets. Although there is no literature suggesting that
irregularly shaped breast cancers are more prone to lymph node
metastasis on MG, breast cancers with irregular shapes on ultrasound
(30) are more likely to undergo lymph node metastasis.

This Clinical model incorporating the MG_reported_LN feature
showed lower sensitivity (0.5), with some studies also confirming the
drawback of MG for accessing lymph node status29. One possible
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reason is that some patients’ axillae may not be fully exposed in the
standard positions (CC and MLO views). In our study, the use of a
model with the post-fusion mode Clinical+Rad+DL can compensate
for this drawback (sensitivity:0.875) and also avoid errors arising from
radiologists’ subjectivity and reliance on experience. Previous research
on the prediction of lymph node metastasis by radiomics has mainly
focused on the characteristics of the primary tumor (30, 31). Lymph
node metastasis in breast cancer is a complex process, typically
associated with changes in the immune microenvironment of the
primary tumor region (32). Rad features have been shown to reflect
the heterogeneity of the primary tumor site and the degree of immune
cell infiltration (33, 34). Consequently, models based on features
extracted from the primary tumor may improve model performance
and serve as one of the strategies to overcome the limitations of MG.
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FIGURE 3
Receiver operating characteristic (ROC) curves of the Clinical model and pre-fusion models in the training (A) and validation set (B). ROC curves of the
post-fusion models in the training (C) and validation set (D).

TABLE 3 Comparison of diagnostic performance between different
models.

Model vs model p-value

Training set
Clinical vs. Pre-fusion Clinical+Rad+DL 0.032
Clinical vs. Post-fusion Clinical+Rad+DL 0.044
Pre-fusion Clinical+Rad+DL vs. Post- 0.03
fusion Clinical+Rad+DL

Internal validation set
Clinical vs. Pre-fusion Clinical+Rad+DL 0.78
Clinical vs. Post-fusion Clinical+Rad+DL 0.038
Pre-fusion Clinical+Rad+DL vs. Post- 0.027
fusion Clinical+Rad+DL

DL, deep learning; Rad, radiomics.

Previous studies have shown that traditional Rad research based
on MG shows promising results, with AUCs ranging from 0.767 to
0.87635-37. Compared to these previous studies, we further integrated
features from ResNet138, either through pre- or post-fusion models,
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both of which yielded satisfactory results and demonstrated certain
advantages (Table 2) in predicting SLN metastasis. In contrast to the
quantified features of Rad features, DL models can extract more
abstract and higher-dimensional information from images.
Combining DL features with Rad features allows the complementary
integration of information from both sources, enabling a more
comprehensive analysis of images and thus improving the
predictive ability.

In the current study, the performance of single-modal models was
unsatisfactory. However, the post-fusion models using probabilistic
fusion outperformed the pre-fusion models using feature fusion.
Specifically, the post-fusion model combining Clinical+Rad+DL had
a higher AUCs with values of 0.881 on the training set and 0.845 on
the validation set. Such models using the post-fusion strategy of
probabilistic fusion will perform better than the pre-fusion model,
and the same conclusion has been reached in other studies (22, 35).
The post-fusion model offers several advantages. First, since different
models may excel in different aspects, model fusion can leverage the
strengths of different models to achieve more accurate prediction
results. Second, combining multiple models can mitigate the risk of
overfitting associated with individual models, thereby improving the
robustness and stability of the model. In addition, multi-model fusion
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can improve the generalization ability of the model by reducing its
variance, leading to better performance on test data.

Our study has several limitations. First, it was a retrospective
analysis with data collected from a single center and a relatively
small sample size, and it lacked an independent external dataset for
validation, which may introduce selection bias and limit the
generalizability of the findings. To address this issue, future work
should involve larger patient cohorts and multicenter prospective
studies, which would help validate our results and enhance the
robustness and clinical utility of the proposed model. Moreover, our
patient cohort was heterogeneous, including different pathological
subtypes and clinical stages. A more precise selection of patient
subgroups may yield better predictive performance and should
be further explored in future studies. Finally, our study was based
solely on Rad features derived from MG images. Beyond Rad,
genomics can provide rich complementary information for the
diagnosis, classification, and prognosis of breast cancer (36-39).
Future research should focus on integrating genomics with Rad.
Genomics can provide complementary biological information to
improve the interpretability of Rad features, while combining the
two to construct multi-omics models may further enhance
diagnostic performance and facilitate more precise breast
cancer management.

5 Conclusion

In this study, the proposed post-fusion model Clinical+Rad+DL
gets the best performance, which may be potential and perspective for
patients with breast cancer to avoid ALN dissection.
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