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Objective: To develop a mammography (MG)-based post-fusion model 
combined with Clinical, Radiomics, and Deep Learning Models to evaluate the 
status of sentinel lymph node (SLN) in patients with breast cancer.
Methods: A total of 290 breast cancer patients who underwent MG were 
randomly divided into a training set (n = 203) and an internal validation set 
(n = 87), with an additional 82 patients included in the test set for independent 
validation. From the MG images of mediolateral oblique (MLO) and craniocaudal 
(CC) views, 1726 radiomic (Rad) features and 1,024 deep learning (DL) features 
were extracted for each patient. After the feature fusion and selection, the 
single-modal models and pre-fusion models were established by stochastic 
gradient descent (SGD). Using the probabilities of single-modal models, the 
post-fusion models were developed by support vector machine (SVM). The area 
under the receiver operating characteristic curve (AUC) was used for accessing 
the performance of models. The clinical net benefit and predictive accuracy 
were evaluated through decision curve analysis (DCA) and calibration curves.
Results: The post-fusion model Clinical+Rad+DL combined probabilities of 
single modal models, showed the best discrimination ability in the internal 
validation set (AUC [95%CI]: 0.845 [0.769–0.921]) and test set (AUC [95%CI]: 
0.825 [0.812–0.932]).
Conclusion: The proposed post-fusion model Clinical+Rad+DL demonstrated 
the method of probabilities fusion was effective and showed promise for 
predicting SLN metastasis in breast cancer.
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1 Introduction

Breast cancer is the most commonly diagnosed cancer and the 
leading cause of cancer-related death in women (1). Axillary lymph 
node (ALN) status is critical in staging breast cancer and guiding 
treatment decisions (2, 3). Sentinel lymph node biopsy (SLNB) has 
become the preferred method for assessing ALN metastasis in early-
stage breast cancer patients because SLN is recognized as the primary 
site for tumor spread to the axillary region (4). However, it’s important 
to note that SLNB is an invasive procedure that can lead to 
complications such as axillary wound infection, seroma formation, 
and paresthesias (5). That being said, ultrasound (6, 7), mammography 
(MG) (8, 9), and magnetic resonance imaging (MRI) (10) detect 
lymph node metastasis by identifying morphological and functional 
characteristics, but their sensitivity and specificity do not meet 
clinical needs.

Radiomics (Rad) is a non-invasive method that involves the high-
throughput extraction of large amounts of image features from 
radiographic images to predict tumor diagnosis and prognosis (11). 
Several studies have applied Rad features to predict SLN metastasis in 
breast cancer (12, 13). Moreover, it is worth noting that deep learning 
(DL) has been widely employed in breast MRI (14–17) and breast 
ultrasound (18–20) for various tasks, including segmentation, 
diagnosis, grading, and metastasis prediction. DL features have the 
potential to provided more comprehensive information than Rad 
features, as they can capture complex and subtle features within 
images. The combination of Rad and DL features may potentially 
enhance the model’s performance. Various methods for fusion have 
been proposed, including feature fusion (pre-fusion) and probability 
fusion (post-fusion). In a study by Xie et al. (21), an approach was 
proposed that integrates decision-level texture, shape, and DL features 
for classifying lung nodules. Furthermore, Li et  al. (22) utilized a 
probabilistic fusion technique to create a model based on MRI for 
forecasting ALN metastasis, which yielded an AUC of 0.91. This level 
of performance exceeded that of both the Rad and DL models. These 
studies indicate that the use of post-fusion techniques, such as 
probability fusion, to construct predictive models for breast cancer 
SLN metastasis exhibits potential.

Thus, our study aimed to develop and compare pre-fusion and 
post-fusion models encompassing clinical, Rad, and DL features of 
MG to predict SLN metastasis in breast cancer.

2 Materials and methods

2.1 Patient population

The research was conducted in accordance with the ethical 
guidelines established in the 2013 revision of the Declaration of 
Helsinki for studies involving human participants. Approval for the 
study was obtained from the institutional review committee of our 
hospital. Since the study had a retrospective design, the requirement 
for informed consent was exempt.

A total of 290 patients diagnosed with invasive breast 
carcinoma between March 2016 and June 2023 were enrolled, 
while 82 patients diagnosed between January 2014 and February 
2016 served as an independent test set. The inclusion criteria were 
as follows: (1) Underwent MG examination within the 2 weeks 

before surgery, and the images met the diagnostic requirements; 
(2) Underwent SLNB during surgery to assess the status of the 
SLN. The exclusion criteria were as follows: (1) Had chemotherapy, 
radiotherapy, or endocrine therapy before surgery; (2) Received 
treatment or biopsy before MG examination; (3) Diagnosed with 
bilateral, multicentric, multifocal breast cancer, or evidence of 
distant metastasis. The flowchart for enrolled patients is illustrated 
in Supplementary Figure 1.

The patient data included the following datasets: (a) A regions of 
interest (ROIs) training set used to train a DL segmentation model for 
identifying MG lesions; (b) An ROIs validation set used to assess the 
DL segmentation model’s performance in ROIs segmentation; (c) A 
radiomics dataset where patients were randomly divided into a 
training set and an internal validation set at a 7:3 ratio; (d) A test set 
from a separate cohort was included to further evaluate the model’s 
performance. Ultimately, 290 patients and 82 test patients were 
enrolled in the study. The cohort selection flowchart is shown in 
Figure 1.

2.2 MG examination and image acquisition

The Hologic Selenia full digital MG camera (Hologic Medical 
Systems, Boston, MA) was utilized to conduct bilateral digital MG 
examinations, acquiring digital MG images in mediolateral oblique 
(MLO) and craniocaudal (CC) views. The images were analyzed using 
a Hologic breast computer-aided diagnosis workstation 
(SecureViewDx; Hologic) equipped with two 5-megapixel monitors, 
each with a resolution of 1792 × 2048.

2.3 Assessment of conventional semantic 
features in MG and clinicopathologic 
characteristics

The evaluation of the conventional semantic features of MG was 
carried out by two experienced breast imaging radiologists, 
Radiologists 1 and Radiologists 2, who have 30 and 10 years of 
expertise in MG diagnosis, respectively. The assessment was 
conducted using the workstation without prior knowledge of the 
pathological outcomes. The study examined the conventional 
semantic features of MG based on the American College of Radiology 
Breast Imaging Reporting and Data System (ACR BI-RADS) 5th 
edition standard. This included analyzing diameter, shape (round or 
oval/irregular), glandular type (non-dense breast/dense breast), 
margin (spiculated/non-spiculated), mass density (high density/equal 
density), suspicious morphology of calcifications (absent/present). In 
addition, suspicious lymph node signs in MG included rounded or 
irregular shape, absence of fatty hilum, small diameter ≤1 cm, and 
increased density. If any of these signs were present, the MG-reported 
abnormal lymph node (MG_reported_LN) was recorded as 
positive8, 9.

The agreement of the conventional semantic features of MG was 
analyzed using the Kappa test.

Clinicopathologic features included the patient’s age, weight, 
height, body mass index (BMI), neutrophil-to-lymphocyte ratio 
(NLR), estrogen receptor (ER) status (positive/negative), progesterone 
receptor (PR) status (positive/negative), human epidermal growth 
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factor receptor-2 (HER-2) status (positive/negative), Ki-67 
(≥30%/<30%) status, and histological grading (I/II/III).

The conventional semantic features and clinicopathologic features 
were defined as the Clinical features.

2.4 CNN-based MG images segmentation

The workflow is shown in Figures 1, 2. Radiologists first randomly 
selected 90 patients, including their MLO and CC view images, and 
performed manual segmentation using 3D Slicer (version 5.2.2), a tool 
widely used for accurate medical image annotation, to generate 

labeled data for the segmentation task. This labeled dataset formed the 
basis for training a DL segmentation model using the Mask-R-
Convolutional Neural Network (Mask-R-CNN) architecture, chosen 
for its proven effectiveness in medical image segmentation. The 
convolutional layers of the Mask-R-CNN model were initially 
pre-trained on the Microsoft Common Objects in Context (COCO) 
dataset to acquire general feature representations, with a learning rate 
of 0.001, a batch size of 10, and a total of 100 epochs. Subsequently, 
the model was fine-tuned using the DL segmentation training set and 
validated on the DL segmentation validation set to evaluate and 
optimize its segmentation performance. Finally, images excluded due 
to DL segmentation model misidentification (e.g., failure to identify 

FIGURE 1

Flow chart of cohort selection.
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tumor boundaries or incorrect ROIs placement) were re-annotated 
with ROIs by Radiologists. The corrected data were then integrated 
back into datasets.

2.5 Radiomic feature extraction and DL 
feature extraction

Feature extraction was carried out using the open-source software 
PyRadiomics (version 3.1.0). A total of 1726 Rad features were 
extracted from two regions of interest (CC and MLO views) for each 
patient. These features included shape, intensity, textural, and 
wavelet features.

In recent years, ResNet has been shown to have excellent 
performance and good applications in medical imaging tasks (23, 
24). We adopted a pre-trained ResNet18 model by maintaining the 
original kernel size, stride, and padding settings, allowing for direct 
application of deep learning feature extraction from medical 
images. We used SimpleITK (version 2.2.0) to read images and ROIs 
and convert them into Numpy arrays. We  then normalized and 
standardized these arrays. To make the model output features rather 
than classification results, we removed the last full connection layer 
of the model to obtain the intermediate features from the 
penultimate layer. In total, 1,024 features were extracted from 2 
ROIs (CC and MLO views) for each patient. All features were 
normalized using the z-score method, converting them to a 
standardized range of values.

2.6 Feature fusion and selection

To construct the pre-fusion model, we combined three types of 
features (Clinical, Rad, DL features) separately to get 3 types of 

pre-fusion features (Clinical+Rad, Clinical+DL, Clinical+Rad+DL) 
(Figure 2).

To obtain the features most closely associated with SLN metastasis 
in the training set, a three-step selection process was performed. First, 
we used differential analysis (Mann–Whitney U-test or independent 
t-test was performed for quantitative features, while chi-squared test 
or Fisher’s exact test was applied for categorical features) with a 
p-value threshold of 0.05 to obtain the features associated with SLN 
status. Then, taking into account the correlations between features, 
we  calculated the correlation coefficients between features using 
Pearson or Spearman correlation. If the correlation coefficient 
between two features exceeded 0.75, one of the features was 
eliminated. Finally, the Least Absolute Shrinkage and Selection 
Operator (LASSO) with fivefold cross-validation to tune the 
parameters with the minimum lambda was used to select the 
optimal features.

2.7 Models’ development

In our study, we  developed three types of models using the 
selected features: 1. Single-modal models (Clinical model, Rad 
model, and DL model); 2. Pre-fusion models: These models used the 
fusion features to construct an integrated model (pre-fusion model 
Clinical+Rad, pre-fusion model Clinical+DL, and pre-fusion model 
Clinical+Rad+DL); 3. Post-fusion models: these models integrated 
probabilities from meta-classifiers constructed separately on single-
modal models to build an integrated model (post-fusion model 
Clinical+Rad, post-fusion model Clinical+DL, and post-fusion 
model Clinical+Rad+DL). The stochastic gradient descent (SGD) 
was utilized to construct single-modal models and pre-fusion 
models, and the support vector machine (SVM) was employed to 
develop the post-fusion models. These machine-learning algorithms 

FIGURE 2

The design of workflow for the study.
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have been proven to have good applications in the medical field 
(25, 26).

The AUC of the receiver operating characteristic (ROC) 
curves, accuracy, sensitivity, and specificity were used to evaluate 
the performance of the models. The AUCs were compared using 
the Delong test. Calibration curves were performed to evaluate the 
goodness of fit of the models. In addition, the clinical benefits of 
the models were assessed using the decision curve analysis 
(DCA) (27).

2.8 Statistical analysis

All statistical work, feature extraction of Rad and DL as well as 
model construction were conducted in Python (version 3.12.3),1 along 
with open source packages such as PyTorch, Scipy, and scikit-learn. 
Quantitative features were presented as means with standard deviations 
or as medians with the 25th and 75th percentiles. The independent 
sample t-test or the Mann–Whitney U-test was used for analyzing the 
quantitative features, while the chi-square test or the Fisher’s exact test 
was used for analyzing the categorical features. All tests were two-sided, 
with p-values <0.05 considered statistically significant.

3 Results

3.1 Clinical features

The clinical features of the patients are shown in Table 1. In both 
the training, internal validation and test sets, margin, MG_reported_
LN showed the most significant differences in distribution between 
the SLN+ and SLN− groups (p < 0.05), indicating that these three 
features have certain differences in their ability to predict 
SLNM. Although no differences were observed in the internal 
validation set, shape and diameter showed statistically significant 
differences in the training set. In addition, no statistical differences 
were found for NLR, ER status, PR status, HER-2 status, Ki-67 and 
other clinical features.

3.2 MG images segmentation and feature 
selection

185 CC views and 183 MLO views from 400 images of 200 
patients were accurately segmented, with an accuracy of 92.5% for the 
CC set and 91.5% for the MLO set, respectively.

The kappa values for conventional semantic features of MG by two 
radiologists were all >0.80.

We implemented an independent feature selection approach for 
each feature set within the training set. After feature selection, the 
features of the single-modal models and the pre-fusion models are 
shown in Supplementary Table  1. For the Clinical model in the 
single-modal models, the features diameter, shape, margin, and MG_
reported_LN and were selected.

1  https://www.python.org

3.3 Model construction and performance

Three single-modal models were built based on the selected 
features. The AUC of these models (Clinical model, Rad model, and 
DL model) were 0.797, 0.834, and 0.744 in the training set and 0.732, 
0.793 and 0.726  in the internal validation set (Table  2; 
Supplementary Table 2). Second, the selected pre-fusion features were 
used to build the pre-fusion models: Clinical+Rad, Clinical+DL, and 
Clinical+Rad+DL. Among these pre-fusion models, the 
Clinical+Rad+DL model achieved the best performance with an AUC, 
accuracy, sensitivity and specificity of 0.873, 0.847, 0.768 and 0.878, 
respectively, in the training set and 0.776, 0.701, 0.791 and 0.667, 
respectively, in the internal validation set (Table 2; Figure 3). Finally, 
the prediction probabilities of the three single-modal models were 
further fused using SVM to build post-fusion models. The prediction 
probabilities of the Clinical model and the Rad model were fused to 
construct the post-fusion model Clinical+Rad; the prediction 
probabilities of the Clinical model and the DL model were combined 
to construct the post-fusion model Clinical+DL; and the prediction 
probabilities of the Clinical model, the Rad model, and the DL model 
were integrated to develop the post-fusion model Clinical+Rad+DL.

The post-fusion model Clinical+Rad+DL showed the best 
performance among all models (Table 2; Figure 3). Table 3 shows the 
DeLong test results comparing the Clinical model, the pre-fusion 
model Clinical+Rad+DL, and the post-fusion model 
Clinical+Rad+DL. In the training set, this model achieved the highest 
AUC of 0.881, which was statistically significantly higher than both 
the Clinical model (p < 0.001) and the pre-fusion model 
Clinical+Rad+DL (p = 0.03). Similarly, in the internal validation set, 
the AUC (0.845) of the post-fusion Clinical+Rad+DL model was the 
highest and statistically significant when compared to the Clinical 
model (p = 0.04) and the pre-fusion Clinical+Rad+DL model 
(p = 0.04).

The calibration curves (Figure 4) indicated that the true statement 
of SLN was consistent with the result of the post-fusion model 
Clinical+Rad+DL in the training and internal validation sets. The 
DCA for the post-fusion models is shown in Figure  4. When an 
individual’s threshold probability is <0.77, the post-fusion model 
Clinical+Rad+DL would add net benefit compared to the treat-all or 
treat-none tactics. The calibration curves, and DCA curves of the 
other models are shown in Supplementary Figure 4.

Finally, we applied the most optimal model, the post-fusion model 
Clinical+Rad+DL, to the test set, which also demonstrated good 
discrimination (AUC = 0.825), calibration, and clinical applicability 
(Figure 5).

4 Discussion

In this study, the post-fusion model Clinical+Rad+DL, which 
integrated the probabilities of the Clinical, Rad, and DL models, 
achieved the best performance in distinguishing SLN metastasis 
status. Our results indicated that the post-fusion model 
Clinical+Rad+DL demonstrated promising predictive performance, 
with important implications for surgical planning in breast 
cancer patients.

After feature selection, clinical features such as diameter, shape, 
margin, and MG_reported_LN were incorporated into the Clinical 
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TABLE 1  Clinical features of the patients.

Clinical 
features

Training set (n = 203) Internal validation set (n = 87) Test set (n = 82)

SLN− 
(N = 147)

SLN+ 
(N = 56)

p-value SLN− 
(N = 63)

SLN+ 
(N = 24)

p-value SLN− 
(N = 59)

SLN+ 
(N = 23)

p-value

Age 56 (46, 64) 54 (46, 60) 0.47 53 (42, 60) 57 (46, 64) 0.24 57 (46, 65) 54 (45, 61) 0.34

Diameter 2.00 (1.70, 2.50)
2.35 (1.90, 

3.00)
0.009 2.10 (1.85, 2.50) 2.10 (1.80, 2.40) 0.94 2.10 (1.73, 2.50)

2.10 (1.78, 

2.63)
0.49

Weight 61 (57, 70) 60 (55, 70) 0.69 60 (55, 65) 62 (55, 70) 0.25 60 (57, 69) 62 (57, 69) 0.76

Height 1.60 (1.58, 1.65)
1.60 (1.58, 

1.62)
0.31 1.60 (1.58, 1.62) 1.60 (1.59, 1.64) 0.51 1.60 (1.60, 1.66)

1.60 (1.59, 

1.63)
0.16

BMI 23.8 (22.0, 26.6)
23.6 (21.7, 

26.6)
0.79

23.4 (22.03, 

24.99)

24.1 (22.48, 

26.03)
0.23

23.44 (21.49, 

25.24)

23.53 (22.53, 

26.73)
0.28

NLR 1.82 (1.42, 2.27)
1.83 (1.46, 

2.27)
0.74 1.74 (1.31, 2.36) 1.82 (1.52, 2.33) 0.73 1.87 (1.43 2.37)

1.82 (1.47, 

2.13)
0.76

Breast 

Composition
0.9 0.91 0.88

 � Non-dense 

breast
75 (51%) 28 (50%) 35 (56%) 13 (54%) 28 (48.3%) 12(50.0%)

 � Dense breast 72 (49%) 28 (50%) 28 (44%) 11 (46%) 30 (51.7%) 12(50.0%)

Density 0.3 0.91 0.18

 � Equal density 88 (60%) 29 (52%) 35 (56%) 13 (54%) 36 (62.1%) 11(45.8%)

 � High density 59 (40%) 27 (48%) 28 (44%) 11 (46%) 22(37.9%) 13 (54.2%)

Shape 0.02 0.54 0.14

 � Round or 

Oval
42 (29%) 7 (13%) 13 (21%) 3 (13%) 19 (32.8%) 4 (16.7%)

 � Irregular 105 (71%) 49 (88%) 50 (79%) 21 (88%) 39 (67.2%) 20 (83.3%)

Margin <0.001 0.03 0.03

 � Non-

spiculated
37 (25%) 36 (64%) 21 (33%) 14 (58%) 37 (63.8%) 9 (37.5%)

 � Spiculated 110 (75%) 20 (36%) 42 (67%) 10 (42%) 21 (36.2%) 15 (62.5%)

Calcifications 0.04 0.71 0.05

 � Absent 94 (64%) 27 (48%) 42 (67%) 15 (63%) 42 (72.4%) 12 (50.0%)

 � Present 53 (36%) 29 (52%) 21 (33%) 9 (38%) 16 (27.6%) 12 (50.0%)

MG_reported_

LN
<0.001 <0.001 0.02

 � Negative 118 (80%) 24 (43%) 55 (87%) 12 (50%) 52 (89.7%) 16 (66.7%)

 � Positive 29 (20%) 32 (57%) 8 (13%) 12 (50%) 6 (10.3%) 20 (83.3%)

ER 0.5 0.02 0.77

 � Negative 23 (16%) 11 (20%) 17 (27%) 1 (4%) 12 (20.7%) 4 (16.7%)

 � Positive 124 (84%) 45 (80%) 46 (73%) 23 (96%) 46 (79.3%) 170 (81%)

PR 0.55 0.009 0.89

 � Negative 36 (24%) 16 (29%) 23 (37%) 2 (8%) 16 (27.6%) 7 (29.2%)

 � Positive 111 (76%) 40 (71%) 40 (63%) 22 (92%) 42 (72.4%) 17 (70.8%)

HER-2 0.66 0.16 0.12

 � Negative 122 (83%) 45 (80%) 51 (81%) 16 (67%) 50 (86.2%) 17 (70.8%)

 � Positive 25 (17%) 11 (20%) 12 (19%) 8 (33%) 8 (13.8%) 7 (29.2%)

KI-67 0.98 0.68 0.95

 � <0.3 79 (54%) 30 (54%) 31 (49%) 13 (54%) 31 (53.4%) 13 (54.2%)

(Continued)
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model. Many previous studies have confirmed their association with 
lymph node metastasis. Lyu et al. (28) found that tumor size is an 
independent risk factor for SLN metastasis in breast cancer. In the 
study by Yuan et al. (29), patients with spiculated margins on MG 
images were more likely to have SLN metastasis. Breast cancer shape 
on MG showed no statistical difference in the validation set, likely due 
to the small sample size and the division between training and 
validation sets. Although there is no literature suggesting that 
irregularly shaped breast cancers are more prone to lymph node 
metastasis on MG, breast cancers with irregular shapes on ultrasound 
(30) are more likely to undergo lymph node metastasis.

This Clinical model incorporating the MG_reported_LN feature 
showed lower sensitivity (0.5), with some studies also confirming the 
drawback of MG for accessing lymph node status29. One possible 

reason is that some patients’ axillae may not be fully exposed in the 
standard positions (CC and MLO views). In our study, the use of a 
model with the post-fusion mode Clinical+Rad+DL can compensate 
for this drawback (sensitivity:0.875) and also avoid errors arising from 
radiologists’ subjectivity and reliance on experience. Previous research 
on the prediction of lymph node metastasis by radiomics has mainly 
focused on the characteristics of the primary tumor (30, 31). Lymph 
node metastasis in breast cancer is a complex process, typically 
associated with changes in the immune microenvironment of the 
primary tumor region (32). Rad features have been shown to reflect 
the heterogeneity of the primary tumor site and the degree of immune 
cell infiltration (33, 34). Consequently, models based on features 
extracted from the primary tumor may improve model performance 
and serve as one of the strategies to overcome the limitations of MG.

TABLE 1  (Continued)

Clinical 
features

Training set (n = 203) Internal validation set (n = 87) Test set (n = 82)

SLN− 
(N = 147)

SLN+ 
(N = 56)

p-value SLN− 
(N = 63)

SLN+ 
(N = 24)

p-value SLN− 
(N = 59)

SLN+ 
(N = 23)

p-value

 � ≥0.3 68 (46%) 26 (46%) 32 (51%) 11 (46%) 27 (46.6%) 11 (45.8%)

Histological 

Grading

0.43 0.69 0.98

 � I 19 (13%) 4 (7%) 4 (6%) 2 (8%) 6 (10.3%) 2 (8.3%)

 � II 73 (50%) 32 (57%) 37 (59%) 12 (50%) 33 (56.9%) 14 (58.3%)

 � III 55 (37%) 20 (36%) 22 (35%) 10 (42%) 19 (32.8%) 8 (33.3%)

ER, estrogen receptor; HER-2, human epidermal growth factor receptor-2; NLR, neutrophil-to-lymphocyte ratio; PR, progesterone receptor; SLN+, sentinel lymph node with metastasis; 
SLN−, sentinel lymph node without metastasis.

TABLE 2  Performance of the different models in training set and validation set.

Cohort Model AUC (95%CI) Accuracy Sensitivity Specificity

Training set

Clinical model 0.797 (0.741–0.852) 0.793 0.571 0.878

Pre-fusion model

 � Clinical+Rad 0.853 (0.805–0.902) 0.852 0.75 0.891

 � Clinical+DL 0.849 (0.800–0.898) 0.833 0.679 0.891

 � Clinical+Rad+DL 0.873 (0.827–0.919) 0.847 0.768 0.878

Post-fusion model

 � Clinical+Rad 0.854 (0.806–0.903) 0.828 0.696 0.878

 � Clinical+DL 0.827 (0.774–0.879) 0.852 0.554 0.966

 � Clinical+Rad+DL 0.881 (0.836–0.925) 0.833 0.804 0.844

Internal validation set

Clinical model 0.732 (0.639–0.825) 0.816 0.5 0.937

Pre-fusion model

 � Clinical+Rad 0.762 (0.672–0.851) 0.805 0.625 0.873

 � Clinical+DL 0.74 (0.648–0.832) 0.667 0.792 0.619

 � Clinical+Rad+DL 0.776 (0.688–0.863) 0.701 0.791 0.667

Post-fusion model

 � Clinical+Rad 0.78 (0.693–0.867) 0.759 0.833 0.73

 � Clinical+DL 0.776 (0.688–0.863) 0.851 0.542 0.968

 � Clinical+Rad+DL 0.845 (0.769–0.921) 0.782 0.875 0.746

Test set

Post-fusion model

 � Clinical+Rad+DL 0.825 (0.812–0.932) 0.862 0.779 0.883

AUC, Area under the curve; DL, deep learning; Rad, radiomics.
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Previous studies have shown that traditional Rad research based 
on MG shows promising results, with AUCs ranging from 0.767 to 
0.87635-37. Compared to these previous studies, we further integrated 
features from ResNet18, either through pre- or post-fusion models, 

both of which yielded satisfactory results and demonstrated certain 
advantages (Table 2) in predicting SLN metastasis. In contrast to the 
quantified features of Rad features, DL models can extract more 
abstract and higher-dimensional information from images. 
Combining DL features with Rad features allows the complementary 
integration of information from both sources, enabling a more 
comprehensive analysis of images and thus improving the 
predictive ability.

In the current study, the performance of single-modal models was 
unsatisfactory. However, the post-fusion models using probabilistic 
fusion outperformed the pre-fusion models using feature fusion. 
Specifically, the post-fusion model combining Clinical+Rad+DL had 
a higher AUCs with values of 0.881 on the training set and 0.845 on 
the validation set. Such models using the post-fusion strategy of 
probabilistic fusion will perform better than the pre-fusion model, 
and the same conclusion has been reached in other studies (22, 35). 
The post-fusion model offers several advantages. First, since different 
models may excel in different aspects, model fusion can leverage the 
strengths of different models to achieve more accurate prediction 
results. Second, combining multiple models can mitigate the risk of 
overfitting associated with individual models, thereby improving the 
robustness and stability of the model. In addition, multi-model fusion 

FIGURE 3

Receiver operating characteristic (ROC) curves of the Clinical model and pre-fusion models in the training (A) and validation set (B). ROC curves of the 
post-fusion models in the training (C) and validation set (D).

TABLE 3  Comparison of diagnostic performance between different 
models.

Model vs model p-value

Training set

 � Clinical vs. Pre-fusion Clinical+Rad+DL 0.032

 � Clinical vs. Post-fusion Clinical+Rad+DL 0.044

 � Pre-fusion Clinical+Rad+DL vs. Post-

fusion Clinical+Rad+DL

0.03

Internal validation set

 � Clinical vs. Pre-fusion Clinical+Rad+DL 0.78

 � Clinical vs. Post-fusion Clinical+Rad+DL 0.038

 � Pre-fusion Clinical+Rad+DL vs. Post-

fusion Clinical+Rad+DL

0.027

DL, deep learning; Rad, radiomics.
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FIGURE 4

The calibration curves of post-fusion models in the training (A) and validation set (B). Calibration curves demonstrate the goodness-of-fit of models. 
Decision curves analysis (DCA) for post-fusion models are showed in the training (C) and validation set(D); the y-axis indicates the net benefit, the 
x-axis indicates threshold probability.

FIGURE 5

The test set performance of the Post-Fusion Model Clinical+Rad+DL. (A) Receiver operating characteristic (ROC) curves. (B) Calibration curves. 
(C) Decision curves analysis (DCA).
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can improve the generalization ability of the model by reducing its 
variance, leading to better performance on test data.

Our study has several limitations. First, it was a retrospective 
analysis with data collected from a single center and a relatively 
small sample size, and it lacked an independent external dataset for 
validation, which may introduce selection bias and limit the 
generalizability of the findings. To address this issue, future work 
should involve larger patient cohorts and multicenter prospective 
studies, which would help validate our results and enhance the 
robustness and clinical utility of the proposed model. Moreover, our 
patient cohort was heterogeneous, including different pathological 
subtypes and clinical stages. A more precise selection of patient 
subgroups may yield better predictive performance and should 
be further explored in future studies. Finally, our study was based 
solely on Rad features derived from MG images. Beyond Rad, 
genomics can provide rich complementary information for the 
diagnosis, classification, and prognosis of breast cancer (36–39). 
Future research should focus on integrating genomics with Rad. 
Genomics can provide complementary biological information to 
improve the interpretability of Rad features, while combining the 
two to construct multi-omics models may further enhance 
diagnostic performance and facilitate more precise breast 
cancer management.

5 Conclusion

In this study, the proposed post-fusion model Clinical+Rad+DL 
gets the best performance, which may be potential and perspective for 
patients with breast cancer to avoid ALN dissection.
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