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disease and the structural
alteration mechanisms and

functional consequences of the
rs2241880 variant
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!Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China, 2Department of
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Background: ATG16L1 (Autophagy Related 16 Like 1) is a key regulatory protein
in the autophagy pathway. Although previous studies have established a
significant association between the ATG16L1 genotype and Crohn's disease (CD)
susceptibility, the specific molecular mechanism of its high-frequency missense
variant rs2241880 has yet to be systematically elucidated.

Methods: In this study, we first confirmed the important role of ATG16L1 in CD
pathogenesis through genome-wide association study analysis and Western
blot, as well as gRT-PCR. Subsequently, high-precision structural prediction,
protein model-based dynamic simulation, and Al model thermodynamic
stability analysis were innovatively integrated. The thermal shift assay (TSA) was
employed to validate the structural stability of the mutant, while the pull-down
assay was used to examine its binding capacity with WIPI2b.

Results: The results show that ATG16L1 plays a significant role in the pathogenesis
of CD. The mutation causes the protein’s overall conformation to become more
compact, significantly increasing the rigidity of key functional regions, and
enhancing the structural and thermodynamic stability, which in turn affects the
cleavage efficiency of caspase-3 and the function of the WD40 domain. The
results of the TSA experiment provided evidence for the computational findings.
The pull-down assay confirmed that the binding capacity of the mutant to
WIPI2b was significantly impaired.

Conclusion: This finding not only provides the first molecular mechanism
of the ATG16L1 T300A mutation, offering an important theoretical basis for
understanding CD susceptibility differences, but also provides insights for
precision medicine interventions and gene editing strategies.
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1 Introduction

The rapid development of Artificial Intelligence (AI) technology
is profoundly reshaping the research paradigm in life sciences. Deep
learning and machine learning models have become core tools in this
field, particularly showing a profound impact in key areas such as
protein structure prediction, genomics analysis, and drug development
(1). In recent years, Al technology has brought about major
transformations in biological research methodologies (2). In the field
of protein research, AI models have made milestone advancements:
the long-standing protein folding problem has been substantially
resolved due to breakthroughs from models like AlphaFold; the
accuracy of protein 3D structure prediction and mutation functional
analysis has greatly improved (3).

ATGI16L1 (Autophagy Related 16 Like 1) is one of the core
regulatory proteins in the autophagy pathway, involved in the
formation of autophagosomes, and plays a key role in clearing
intracellular pathogens and maintaining intestinal epithelial barrier
homeostasis (4). The function of ATG16L1 is closely related to Crohn’s
disease (CD) susceptibility. Studies have shown that defects in its
expression in Paneth cells and intestinal epithelial cells significantly
exacerbate intestinal inflammation (5). The 300th site of ATG16L1
(rs2241880), a key mutation site in CD research, causes a missense
mutation. This mutation is thought to potentially affect the stability of
the ATG16L1 protein, weaken its binding with partner proteins,
thereby impairing autophagosome formation ability (6).

However, despite extensive research on the relationship between
ATGI16L1 and CD, the mechanistic analysis of how the ATG16L1
300th site mutation specifically affects the proteins structure and
function remains insufficient. Currently, research on ATG16L1 mainly
focuses on the relationship between genotype and phenotype,
especially through phenotype analysis and genetic association studies
to reveal the link between mutations and CD (7). However, there is
still inadequate exploration of how mutations affect the stability of the
ATGI6L1 protein at the molecular level, particularly in terms of
protein 3D structure, folding dynamics, and functional changes.
Detailed mechanistic analyses are lacking in these aspects. Therefore,
it is crucial to conduct in-depth studies on the mutation at the
ATGI6L1 300th site and reveal its molecular mechanism in protein
stability and functional loss. With the introduction of AI technologies,
particularly models like AlphaFold3 and ThermoMPNN, we now have
new research tools at our disposal. By integrating these Al tools,
we can delve into the molecular-level effects of the ATG16L1 300th
site mutation on protein structure and further uncover its potential
mechanisms in CD. The thermal shift assay (TSA) and pull-down
assay can be employed to further validate the computational results.

2 Materials and methods
2.1 GWAS analysis

2.1.1 The GWAS data source for CD

The GWAS data for CD comes from summary data in the IEU
database (ieu-a-30), which includes 5,956 CD patients. The control
group consists of 14,927 healthy individuals of European ancestry,
matched with the case group in terms of age, sex, and geographical
location, covering both males and females. For detailed information
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on ethical approval and informed consent, please refer to the published
paper (8).

2.1.2 Gene annotation

MAGMA evaluated the overall impact of a gene or genomic
region by integrating the effects of multiple single nucleotide
polymorphisms (SNPs) (+10 kb), rather than considering the effect of
each SNP separately (9). The software uses 1,000 Genomes European
phase 3 LD data (10). Building on this, gene set analysis based on
MAGMA was used to analyze pathways associated with the pathogenic
causes of CD. MAGMA aggregated the effects of multiple SNPs at the
gene level, and after obtaining the effect estimates for each gene, it
organized these genes into predefined gene sets, while also calculating
the overall effect size of each gene set. Pathways from KEGG, BioCarta,
and Reactome, necessary for the software, were obtained from the
database at https://www.gsea-msigdb.org/gsea/msigdb (11).

2.1.3 TWAS analysis

Risk genes were identified via gene annotation and TWAS, using
UTMOST and FUSION. The study integrated GTExV8 eQTL (49
tissues) and CD GWAS data to explore tissue-specific genetic variants.
UTMOST performed single-tissue TWAS followed by cross-tissue
analysis with a multivariate model accounting for tissue-specific eQTL
effects (11). FUSION, using GTExV8 whole blood eQTL and CD
GWAS data, built penalized linear models with 500-kb cis windows to
validate findings. Both analyses applied Benjamini-Hochberg
correction, defining significance at false discovery rate (FDR) < 0.05.

2.1.4 Conditional and conjoint analysis

Conditional and joint analysis of TWAS signals (FDR-adjusted)
identified chromosomal key SNPs. Using CD GWAS summary
statistics and 1,000 Genomes European LD reference (12), the analysis
removed TWAS signals via conditional modeling, reapplied FDR
correction, selected SNPs at Pypg < 0.05, and evaluated combined
effects post-optimization.

2.1.5 Precise localization of risk genes

FOCUS fine-mapped CD GWAS data to risk regions using
summary statistics, eQTL weights, and linkage disequilibrium (13). It
evaluates gene sets roles in TWAS signals and genomic risk. Using
GTExV8 weights, significant genes were defined by posterior inclusion
probability (PIP) > 0.8 and p < 5e7*.

2.1.6 Intersection and colocalization analysis of
gene analysis results

Key genes were identified by intersecting risk genes from gene
annotation, cross-tissue TWAS, single-tissue TWAS, and fine-
mapping analysis, followed by colocalization analysis. The “coloc” R
package (14, 15) was utilized for colocalization analysis to assess the
overlap between GWAS and eQTL signals at causal variant sites.

2.2 Validation of animal experiments

2.2.1 Animal modeling

The experimental animals were housed at Hebei Provincial
Hospital of Traditional Chinese Medicine, with approval from the
Ethics Committee (IACUC-HPHCM-2024037). Colitis was induced
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using TNBS (Sigma-Aldrich). A 5% TNBS solution was mixed with
absolute ethanol at a 1:1 volume ratio to prepare a 50% ethanol
solution containing 2.5 mg/mL TNBS. The rats were administered an
enema at a dose of 100 mg/kg body weight at a depth of 8 cm proximal
to the anus and maintained in a head-down position for approximately
30 s to ensure the mixture reached the entire colon. Control group:
received an enema with an equal volume of 50% ethanol. The
modeling period lasted for 7 days.

2.2.2 qRT-PCR

Total RNA was extracted from rat colon tissue following the
manufacturer’s instructions for the RNA extraction kit. The mRNA
was then reverse transcribed into cDNA using reverse transcriptase.
The reaction conditions were followed, and amplification was
performed on a fluorescent quantitative PCR machine, completing a
total of 40 cycles. f-actin was used as the internal reference, and
mRNA expression was analyzed using the 2744 method.

2.2.3 Western blot

Rat colon tissue was minced, and protein content was measured
according to the instructions of the protein extraction kit. The protein
samples were boiled for 5 min to denature, transferred to a membrane,
and then incubated in 5% skim milk on a shaker for 2 h to block. The
membrane was incubated overnight at 4 °C with a primary antibody
against ATG16L1 (1:800). After four washes with TBST, a secondary
antibody (1:8,000) was added, and incubation was carried out at room
temperature for 1.5h, followed by four additional washes with
TBST. The membrane was placed in an exposure box and exposed in
a dark room. After developing, fixing, and scanning the images, the
brightness values of the protein bands from each group were analyzed.
The corrected protein band brightness value (the ratio of each sample’s
protein band brightness value to the internal reference band f-actin
brightness value) was calculated. The control group was used as the
standard for normalization.

2.3 Al modeling and prediction analysis

2.3.1 Identification of protein amino acid
mutation sites corresponding to missense
mutation

In this study, we analyzed the rs2241880 mutation in ATGI6L1.
This gene has been confirmed by multiple studies to be closely
associated with CD (16). To clarify the specific impact of the mutation
on the ATG16L1 protein sequence, we used the NCBI Gene' and
Ensembl® databases to query detailed gene annotations. Using the
previous strategy, we queried the rs2241880 missense mutation on
ATGI16L1 and conducted further site searches using the Ensembl
database (17, 18). The primary focus was on the amino acid change
caused by the missense mutation.

1 https://www.ncbi.nlm.nih.gov/
2 https://www.ensembl.org/
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2.3.2 Acquisition of ATG16L1 wild type structure
and download of amino acid sequence

To perform subsequent modeling and simulations, we needed to
obtain the structure and amino acid sequence of the wild type
ATGI16L1 protein (Supplementary Table S1). To achieve this,
we accessed the GeneCards and UniProt databases to gather detailed
information and related data on ATG16L1.

2.3.2.1 Querying ATG16L1 gene information through
GeneCards

We first queried the detailed information of the ATG16L1 gene
through the GeneCards database.’ From the query, we obtained the
UniProt ID for ATG16L1: Q676U5.

2.3.2.2 Downloading structure and sequence through
UniProt

Next, based on the obtained UniProt ID and selecting the species
as human, we searched and downloaded the complete amino acid
sequence of ATG16L1 through the UniProt database. In UniProt,
we found that the structure of this protein was publicly available and
could be downloaded directly (19).

2.3.3 ATG16L1 mutant Al modeling based on
AlphaFold3

We chose to use AlphaFold3 for protein structure modeling of the
mutant. AlphaFold3 utilizes an enhanced deep learning model that
combines amino acid sequences, evolutionary information, and
physicochemical knowledge to predict the three-dimensional
structure of proteins with high precision (20). Compared to traditional
experimental methods (such as X-ray crystallography and nuclear
magnetic resonance), AlphaFold3 provides faster predictions with
higher accuracy, especially when handling complex protein mutations,
allowing for better simulation of the impact of mutations on protein
structure (21).

We submitted the amino acid sequence of the ATG16L1 mutant
to the AlphaFold3 online platform.> After submission, AlphaFold3
automatically predicted the structure and generated a 3D model of the
protein. We downloaded the CIF (crystallographic information file)
and used PyMOL 3.2 educational edition to convert the file to PDB
(protein data bank) format.

2.3.4 In vivo protein simulation of ATG16L1

After obtaining the 3D structures of the wild type and mutant
ATGI16LI proteins, we used GROMACS 2024.5 to perform molecular
dynamics simulations to simulate the dynamic behavior and stability
of the ATG16L1 protein in solution. The specific steps of the molecular
dynamics simulation in this study are as follows:

2.3.4.1 Hardware and software configuration for in vivo
protein simulation

We used GROMACS 2024.5 for the molecular dynamics
simulations. The parallel computing capabilities of GROMACS make
it highly suitable for efficiently handling large-scale biomolecular

3 https://www.genecards.org/
4 https://www.uniprot.org/
5 https://alphafoldserver.com/
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simulations (22). Our simulations ran on the Ubuntu 24.04 LTS
operating system.

Simulation parameter settings: force field and water model:
we selected the AMBERI14SB force field for the parameterization of
ATG16L1. The AMBER14SB force field is commonly used in protein
simulations and accurately describes the interactions between amino
acid residues in proteins (23). Solvent model: we chose the TIP3P
water model, a classical water molecule model suitable for describing
the behavior of water molecules in biomolecular solutions (24).
System construction and solvation: The pdb2gmx tool was used to
generate the protein topology file, and the editconf tool was used to
place the protein in a cubic box, with the minimum distance between
the box and the protein set to 1.0 nm. We then used the solvate
command for solvation, ensuring that water molecules were evenly
distributed and filled the gaps. Ionization: the genion tool was used to
add Na+ and Cl— ions to ensure the system’s electro-neutrality and
simulate the ion concentration under physiological conditions (0.15 M
NaCl). Energy minimization and equilibration: we performed 1,000
steps of energy minimization using the steepest descent algorithm,
with the maximum step size set to 0.01 nm, to eliminate unreasonable
contacts and structures in the system. Equilibration process: the
system was first equilibrated for 100 ps under constant temperature
and volume conditions, followed by 100 ps equilibration under
constant temperature and pressure conditions to ensure system
stability. Mutant protein dynamics simulation: after equilibration,
we performed a 100 ns production molecular dynamics simulation
under constant temperature and pressure conditions with a
temperature of 300 K and pressure of 1.0 atm. The time step was 2 fs,
and the SHAKE algorithm was used to constrain the bond lengths of
all hydrogen-containing bonds. The trajectory files generated by the
simulation were used for subsequent analysis and visualization. The
above simulation process was conducted three times, and the final
result represented the average of the three repetitions.

2.3.5 Free energy change (ddG) prediction of wild
type ATG16L1 based on Al model ThermoMPNN

To further investigate the thermal stability of wild type ATG16L1,
especially the effects of amino acid mutations on protein function and
stability, we used Thermodynamic Mutation Selection Neural Network
(ThermoMPNN) for thermal stability prediction. ThermoMPNN is a
deep learning model based on graph neural network (GNN) and
transfer learning, which is specifically used to predict stability changes
caused by protein point mutations (25, 26). Specifically, ThermoMPNN
predicts the stability and structural changes of mutant proteins at high
temperatures by inputting the amino acid sequence and mutation
information of the protein, providing a reference for restoring or
enhancing protein stability and function after subsequent
in vivo simulation.

2.3.5.1 Training and prediction process of the
ThermoMPNN model

To efficiently run the ThermoMPNN model, we conducted model
training and prediction through the Google Colab environment.
We set up the running environment for ThermoMPNN in the Google
Colab environment. By selecting the appropriate libraries and
dependencies and loading the necessary models and datasets,
we ensured smooth thermal stability prediction. Since the Colab
environment provides GPU support, which is crucial for running deep
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learning models like ThermoMPNN that require substantial

computation, it significantly accelerated the training and

prediction process.

2.3.5.2 PDB file upload and model execution

After setting up the ThermoMPNN runtime environment in
Colab, we uploaded the PDB file of wild type ATG16L1 to the Colab
system. After uploading the file, we ran the model using the default
parameters in ThermoMPNN within Colab to perform thermal
stability analysis of the protein after mutations. During this process,
the model used the default parameters in the PyTorch framework to
model the amino acid mutations, calculating the protein’s stability and
melting point changes at different temperatures after the mutations.

2.4 Protein purification

The wild type and mutant ATG16L1 plasmids were transformed
into BL21(DE3) competent cells, plated, and incubated overnight at
37 °C (Supplementary files 1, 2). Single colonies were selected and
cultured in LB medium to an ODsg of 0.6-0.8. IPTG was added to a
final concentration of 0.5 mM for induction at 37 °C for 4 h, after
which cells were harvested and analyzed by SDS-PAGE and Western
blot. Further induction was performed with 0.2 mM and 1 mM IPTG
at 37°C and 15°C for 4h and 16h, respectively. Cells were
centrifuged, lysed (Tris-NaCl buffer), and sampled for expression and
solubility evaluation. The optimal condition was scaled up to 2L
culture, induced at 15°C for 16h, followed by centrifugation,
resuspension, and ultrasonication. The pellet was solubilized in
denaturing buffer, centrifuged, and the supernatant was purified by
Ni-NTA affinity chromatography using PBS-Urea (pH 7.4) with
50 mM and 500 mM imidazole for washing and elution, respectively.
The purified product was analyzed by SDS-PAGE. Finally, the protein
was refolded and concentrated in refolding buffer (PBS, 300 mM
NaCl, 10% glycerol, pH 7.4) (Supplementary Figures S1, S2).

2.5TSA

TSA was performed using SYPRO Orange dye. The reaction
mixture, composed of 5 pL DSF buffer and 15 pL protein sample, was
incubated at 25 °C for 15 min. Subsequently, 5 uL of SYPRO Orange
dye was added, and the melting curve program was executed under
the following conditions: 25 °C for 1 min, followed by a continuous
temperature ramp to 95 °C at a rate of 0.04 °C/s with real-time
fluorescence acquisition, and a final hold at 95 °C for 15 s.

2.6 Pull-down assay

The purified His-ATG16L1 protein (wild type or mutant) was
first incubated with Ni-NTA agarose beads at 4 °C for 1 h. After
washing three times with binding buffer (20 mM Tris-HCI,
100 mM NacCl, 10% glycerol, 0.1% NP-40, 10 mM imidazole, pH
8.0), the beads were mixed with pre-prepared lysate of HEK293T
cells overexpressing FLAG-WIPI2b (lysis buffer: 50 mM Tris-HClI,
150 mM NacCl, 1% Triton X-100, 1 mM PMSE, protease inhibitor
cocktail, pH 7.4) and incubated at 4 °C for 2 h. The beads were
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then washed three times with wash buffer (20 mM imidazole,
other components same as binding buffer). Finally, the bound
proteins were separated by SDS-PAGE and detected by Western
blot using anti-FLAG antibody (1:5,000) and anti-His antibody
(1:4,000).

3 Results
3.1 GWAS analysis results

3.1.1 Gene annotation and pathway enrichment

Risk genes highly associated with the onset of CD were annotated
using MAGMA. Following Benjamini-Hochberg correction (p < 0.05),
465 genes were identified as significant (Supplementary Table S2). A
Manhattan plot highlighted the most prominent risk genes for each
chromosome, excluding the sex chromosomes (Figure 1A). Following
Benjamini-Hochberg correction for tissue-specific enrichment
(Figure 1B), four tissues—whole blood, lung, terminal ileocecal part
of the small intestine, and spleen—met the significance threshold
(p<0.05). MAGMA also identified 350 enriched gene sets
(Prpr < 0.05), with top 50 pathways linked to IBD, inflammation, and
immunity (Figure 1C)—consistent with known CD mechanisms,
validating MAGMA's accuracy.

3.1.2 TWAS results for CD

Using UTMOST for cross-tissue analysis, 28 genes retained
(p < 0.05)
correction (Table 1). In single-tissue internal validation, 204 out of

significant  signals following Benjamini-Hochberg
8,799 genes with significant genetic expression in whole blood, as
modeled in genotype data from the GTExv8 dataset, exhibited
significant TWAS association signals (p < 0.05) following Benjamini-
Hochberg correction (Supplementary Table S3). Manhattan plot
showed the most prominent genes on each chromosome except the
sex chromosomes (Figure 2A). In conclusion, cross-tissue and single-
tissue analyses identified four overlapping candidate genes
(Supplementary Table S4).

3.1.3 Conditional and joint analysis

A conditional joint analysis was conducted to assess the
conditional independence of the loci identified in this study. As shown
in Table 2, there were four loci, namely the gene loci where the four
genes RP11-973H7.1, PLCL1, ATGI16L1, and RPL9 were located
(p <0.05), which represented independent signals of multiple
important genes. We noticed that certain GWAS signals were
influenced by gene expression that was genetically regulated.
ATGI16L1 predominantly contributed to the signal at the 2q37.1 locus;
however, conditioning on its predicted expression notably diminishes
the TWAS signal in this area (Figure 2B).

3.1.4 The results of fine mapping

FOCUS software was employed to conduct a detailed analysis of
TWAS associations using data from a European ancestry population.
Under the criteria of Prpg < 0.05 and PIP > 0.8, 30 positive genes were
identified from whole blood tissue (Supplementary Table S5). FOCUS
successfully created a graph depicting predicted expression
correlations for each region. Figure 2C presented the TWAS summary
statistics and PIP for ATG16LI.
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3.1.5 Results of intersection and colocalization

Subsequently, the intersection of significant genes identified
through gene annotation, cross-tissue TWAS, single-tissue TWAS,
and fine mapping analysis was conducted (Supplementary Figure S3).
ATG16L1 was a risk gene shared by the four methods. Subsequently,
colocalization analysis was conducted. Colocalization analysis
windows were configured to 500 kb, yielding a PPH4 result of 0.889
(Figure 3).

3.2 Results of animal experiments

3.2.1 qRT-PCR

As shown in Figure 4A, in the colon tissue of rats, the mRNA
expression of ATG16L1 in CD group was lower than that in control
group, and the difference was statistically significant (p < 0.001).

3.2.2 Western blot

As shown in Figures 4B,C, in the colon tissue of rats, the
expression level of ATGI6LI protein in CD group was lower than that
in control group, and the difference was statistically significant
(p < 0.01).

3.3 Results predicted by Al modeling

3.3.1 Detailed variant information of ATG16L1
mutant rs2241880

Through investigation, we confirmed that the mutation occurs at
the 300th amino acid position of ATG16L1, resulting in an amino acid
substitution where the base A is replaced by G, causing the 300th
threonine (T) to be replaced by alanine (A) (T300A).

3.3.2 Protein structural changes after missense
mutation

Figures 5A,B showed the specific morphologies of the ATGI6L1
wild type and mutant proteins. It could be seen that as the 300th
amino acid changed from T to A, the overall morphology of ATGI6L1
underwent a certain degree of alteration. Since rs2241880 was located
between the central coiled-coil domain (CCD) and WD40 domain of
the protein, the morphological change in this region was
more pronounced.

3.3.3 Protein simulation results analysis

By simulating and analyzing the wild type and mutant
ATGI16L1 proteins, four simulation metrics were obtained: Root
Mean Square Deviation (RMSD), Root Mean Square Fluctuation
(RMSEF), Radius of Gyration (RG), and Solvent Accessible Surface
Area (SASA). As shown in Figure 5C, compared to the wild type,
the mutant’s RMSD remained stable over time (0-100 ns),
stabilizing around 1 nm, while the wild type, although also stable,
maintained a value around 1.5 nm. This suggested that the mutant
maintained a more stable conformation than the wild type, with
enhanced protein rigidity. RMSF analysis: By comparing the
RMSF values of the wild type and mutant (Figure 5D), it was
found that the mutation significantly enhanced the conformational
stability around the 300th amino acid. Specifically, in key
functional regions (such as active sites and binding interfaces), the
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RMSF values of the mutant decreased, indicating increased

residue positions (with smaller peak-to-valley differences),

structural stability. Mutation-induced stability changes: The  suggesting that the mutation might have strengthened local

RMSF fluctuation range for the mutant was reduced at several  hydrogen bond networks or hydrophobic interactions, thereby
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TABLE 1 The results of cross-tissue TWAS analysis of UTMOST.

Gene Chr Test P Pror
score

RP11-973H7.1 18 26.67 2.17E-12 8.10E-09
ATGI6L1 2 331.34 2.63E-11 4.91E-08
ING5 2 15.91 3.98E-08 4.96E-05
SF3B1 2 15.15 6.44E—08 6.02E-05
PLCLI 2 13.80 1.45E—06 8.42E-04
ZFP36L2 2 12.56 1.87E—06 8.42E-04
RFTN2 2 13.62 1.14E—06 8.42E-04
PTPN2 18 12.61 2.03E-06 8.42E-04
SREBF2 22 13.01 1.73E-06 8.42E-04
USP40 2 11.92 2.45E-06 9.18E-04
SLC25A17 22 10.34 1.46E—05 4.97E-03
ROCK1 18 11.73 1.90E—-05 5.56E-03
INPP5] 22 10.79 1.93E-05 5.56E-03
KREMEN1 22 10.08 2.42E-05 6.46E-03
SEHIL 18 9.84 4.00E—05 9.98E-03
FLJ31356 2 9.29 4.29E—05 1.00E-02
GTF3C3 2 8.93 7.14E—05 1.48E-02
RPL12P19 2 9.78 6.97E—05 1.48E-02
ASCC2 22 8.30 1.04E—04 2.05B-02
CCDC150 2 8.38 1.49E—04 2.53B-02
RP5-821D11.7 22 8.53 1.42E-04 2.53B-02
XRCC6 22 8.10 1.38E—04 2.53B-02
CIGALTICIL 2 8.10 1.57E—04 2.55B-02
MKL1 22 8.52 1.94E—04 3.02E-02
RNF185 22 7.32 2.88E—04 4.30E-02
RPL9 4 6.34 3.36E—04 4.77B-02
VPREBI 22 8.68 3.45E—04 4.77B-02
ANKRD44 2 7.27 3.72E—04 4.96E-02

improving the overall structural stability. RG analysis (Figure 5E):
The RG value of the mutant gradually stabilized over time
(1.9 nm), while the wild type also stabilized but had a value of
2.0 nm, indicating that the mutant’s overall structure was more
compact. The compact structure of the mutant might have affected
the spatial arrangement of functional domains, thereby
influencing the protein’s recognition and binding ability. SASA
analysis (Figure 5F): The mutant’s SASA value (150-160 nm?) was
overall lower than that of the wild type (160-170 nm?), indicating
a reduction in the exposure of its hydrophobic core on the surface.

3.3.4 Protein time-stage analysis results

From the mutation results, the mutant exhibited higher
structural stability: the mutant’s RMSD decreased, RG reduced,
and SASA exposure was lower, indicating that its conformational
flexibility was controlled and it could better maintain the protein’s
rigid structure. Further analysis of the dynamic results of the
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protein simulation was performed by extracting representative
structures from six time periods (0 to 100 ns) (Figures 6A,B) and
comparing the changes between the wild type and mutant. It was
found that after the mutation at the 300th amino acid, the local
flexibility of the protein structure decreased, and the overall
structure became more compact. As a result, the stability of the
protein structure was enhanced after the mutation, which had a
certain impact on the protein’s binding ability.

3.3.5 Prediction of protein ddG

From the hotspot map in Figure 6C, it could be seen that after
the mutation of the 300th position to A, the color changed to blue,
and ddG decreased, suggesting that after the mutation, the free
energy of the ATGI6L1 protein was reduced, and its structural
stability increased, making the ATG16L1 mutant more stable than
the wild type conformation. Compared to the wild type, this
might have affected its recognition and binding ability with
other proteins.

3.4 TSA results

Figure 7 presented the stability results of ATG16L1 wild type
and mutant proteins as measured by TSA. The figure demonstrated
a clear distinction in the TM values between the wild type and
mutant proteins, with the mutant exhibiting a higher TM value
than the wild type. A higher TM value indicated that a higher
temperature was required for protein denaturation, reflecting
greater protein stability. This suggested that the mutant protein
possessed enhanced stability compared to the wild type.

3.5 Pull-down results

Figure 8 illustrated the difference in binding capacity between
wild type ATG16L1 and its mutant with WIPI2b. The results from
the Input group indicated that the experiment was performed
successfully, as proteins with corresponding tags in each group
were specifically immunoprecipitated by their respective
antibodies. The results from the Output group demonstrated a
significant difference in the binding affinity of the wild type and
mutant proteins to WIPI2b. The amount of WIPI2b bound by the
mutant was significantly lower than that bound by the wild type,
providing evidence  for  our

strong supporting

computational findings.

4 Discussion

Based on the GWAS dataset of CD, this study systematically
evaluated the genetic predictive association between gene
expression and CD risk. ATG16L1 emerged as a shared gene
identified by the convergence of four genetic analysis techniques:
MAGMA, UTMOST, FUSION, and FOCUS. Colocalization
analysis of ATG16L1 was conducted, confirming the significant
impact of this signal locus on CD. Subsequently, in animal
experiments, we validated the expression of ATG16L1. Compared
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indicates 5 X 7%, and the red line represents the threshold after FDR correction. Panel (B) shows the result of conditional joint analysis of ATG16L1. The
top of (B) marks the names of genes within the region, and the gene marked in green is co-significant gene. Gray dots represent baseline TWAS
signals; blue dots show post-regulation signals following green gene modulation. Panel (C) shows the result of ATG16L1 fine mapping, indicating that
this gene plays a dominant role in this region.
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TABLE 2 Conditional and joint analyses of genes associated with CD risk.

10.3389/fmed.2025.1656575

with the control group, both mRNA and protein expression levels

Gene Chr Twas.Z Twas.P Pror Joint of ATG16L1 were decreased in the CD group. These findings can
improve our understanding of the role of ATG16L1 in the genetics
RP11-973H7.1 18 332 9.13E-04 | 423E-02 | TRUE .
and pathogenesis of CD.
PLCLI 2 4.89 1.01E-06 | 162E-04 = TRUE To further clarify the impact of protein structural changes on
ATGI6L1 5 1214 656E—34 | 2.895.30 | TRUE function, this study combined AlphaFold3 structure prediction,
protein dynamics simulation, and a neural network-based
RPL9 4 359 3.26E-04 | 202E-02 | TRUE thermodynamic stability prediction model to explore the impact
Joint refers to whether it is a key gene for conditional joint analysis. of missense mutation at site 300 of ATG16L1 on protein structure
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and function. The computational predictions were validated
through TSA and pull-down assays. As a protein closely related to
the autophagy process, ATG16L1 has been shown by many studies
to be closely related to cellular autophagy function and immune
response (27-29). However, the specific mechanism of mutations
on protein stability and function is still not fully understood,
especially the structural changes and thermodynamic stability
caused by mutations at the molecular level. This study
comprehensively explained the mechanism of ATG16L1 300 site
mutation from the aspects of protein stability, dynamic structural
changes, and free energy changes for the first time.

ATGI16L1 can be divided into three domains: the N-terminal
ATG5 binding domain (ATG5BD), CCD, and WD40. Its
N-terminus participates in binding to the ATG5-ATG12 complex,
while its C-terminal WD40 domain mediates membrane
localization and substrate recognition. ATG16L1 interacts with
the WIPI2b protein through its coiled-coil domain, and WIPI2b
is responsible for recruiting the ATG16L1 complex to autophagic
precursor membranes, further facilitating autophagosome
formation (30). The T300A mutation is located between the CCD
and WD40 domains (31), adjacent to a highly conserved caspase-3
cleavage site. Several studies have shown that the T300A mutation
significantly enhances caspase-3 cleavage of ATG16L1 (32). After
cleavage, two fragments are produced: the N-terminal fragment
contains the ATG5 binding domain but cannot localize to the
autophagy initiation site due to the loss of the C-terminal region;
the C-terminal fragment contains the WD40 domain but lacks
ATGS5 coupling ability, resulting in the loss of autophagic function
(33-35).

The fact that caspase-3 significantly enhances its ability to
cleave ATG16L1 after mutation should be considered from the
perspective of local protein structure changes. According to the
protein model predicted by modeling, the region where T300A is

Frontiers in Medicine

located does not have any secondary structure, which creates a
favorable condition for caspase cleavage (36). After mutation,
both the RG and SASA values were reduced, indicating increased
hydrophobicity of the protein. The elevated hydrophobicity could
prompt the flexible loop to collapse toward the hydrophobic core,
thereby stabilizing the structure through the hydrophobic effect
(37). This observation is consistent with the RMSF result, which
showed enhanced structural stability near the 300th amino acid
residue after mutation. Since caspase-3-mediated cleavage occurs
near this position, an appropriately stable conformation may
provide a more suitable binding environment for caspase-3.
Additionally, the amino acid sequence from position 296 to 299
(DNVD) in ATG16L1 is adjacent to the 300th amino acid, and this
sequence is similar to the DxxD sequence of caspase-3. Through
the mutation, the amino acids from positions 296 to 300 change
to DNVDA, which further matches the caspase-3 motif.
Furthermore, the mutation leads to a significant change in the
local structure at position 300, making the DNVD sequence more
exposed within the cleavage range of caspase-3 compared to the
wild type, thereby enhancing caspase-3’s cleavage ability (38).
Since T300A is between the CCD and WD40 domains,
traditional views suggest that the mutation at this position might
have a limited impact on the WD40 domain. However, evidence
shows that even in the absence of caspase-3, caspase-7, and other
cysteine proteases that cleave ATG16L1, T300A can still affect the
functionality of the protein, which retains its full long-chain
structure (39). Specifically, this mutation influences the binding
ability of WD40 with common chaperone proteins, thereby
affecting subsequent protein functionality. WD40 has been shown
to bind to autophagy-related proteins such as WIPI2b and can also
influence processes like ubiquitination and DNA damage (40).
The functioning of these processes relies on the top, bottom, and
circumferential surface of WD40. The formation of these three
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parts requires the variable region of WD40 (41). In other words,
while WD40 is highly conserved in its folding, its functionality
still requires some degree of variability (42). Additionally, a study
analyzing the charge distribution of WD40 found that its top is
predominantly hydrophobic, while the bottom is negatively
charged and hydrophilic (39). Our research results indicate that
after the T300A mutation, the overall structure of ATG16L1
became more compact, its flexibility decreased, and the SASA
analysis showed enhanced hydrophobicity, all of which may affect
the normal functioning of WD40. Furthermore, from the protein
time-stage analysis results, after 100 ns simulation, the structure
of the mutant showed significant differences compared to the wild
type. The wild type retained the complete top, bottom and
circumference of the ring structure of WD40 during the
simulation. However, after 100 ns of simulation, the structure of
the mutant underwent irregular changes, which may affect the
functional performance of the protein. The results from the TSA
and pull-down assay further support this conclusion. The TSA
demonstrated increased structural stability of the mutant, while

or—T—TTT T T T T T T T I
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Temperature (°C)

FIGURE 7

TSA results. The x-axis represents temperature, while the y-axis
shows the rate of change of the fluorescence signal with
temperature. The red curve corresponds to the wild type protein,
and the brown curve represents the mutant protein.
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the pull-down assay revealed a significantly impaired binding
affinity between the mutant and its downstream effector WIPI2b.

Interestingly, while the T300A mutation enhances structural
stability, it impairs ATGI6L1 function by disrupting its
dimerization interface. This paradox suggests that therapeutic
strategies should not aim to further stabilize the mutant protein.
Instead, targeted proteolysis regulators (e.g., PROTACs) could
be designed to selectively degrade the dysfunctional mutant, while
allele-specific mRNA silencing or gene editing approaches could
suppress its expression (43, 44). Alternatively, small molecules
promoting functional dimerization without affecting stability
might rescue autophagic flux in T300A carriers, offering a
precision medicine avenue for CD patients with this variant.

While this study integrates computational predictions with
experimental validations including TSA and pull-down assays,
several limitations remain. Firstly, although TSA confirmed the
altered structural stability of the ATG16L1 T300A mutant and
pull-down assay revealed its impaired binding to WIPI2B, all
validations were performed in vitro. Future studies should employ
gene-editing approaches and physiological cellular models to
verify these functional impacts in a more biologically relevant
context. Secondly, while the ThermoMPNN model demonstrates
high accuracy in thermodynamic stability prediction, there may
still be limitations in predicting multi-point mutations or
synergistic effects. Future research could integrate more
experimental data and computational models to improve the
accuracy of predictions.

5 Conclusion

This study elucidated the role of ATGI6L1 in CD and
systematically characterized the structural and functional
consequences of the T300A mutation. By integrating evidence
from GWAS, animal models, AlphaFold3-based structure
predictions, molecular dynamics simulations, and ThermoMPNN-
derived ddG calculations, we demonstrated that the T300A
mutation enhanced the structural stability and hydrophobicity of
ATGI16L1. Experimentally, TSA confirmed the increased

— -+ -+ His-ATG16L1(WT) — -+ +  His-ATG16L1(MT)
+ - +  FLAG-WIPI2b + . +  FLAG-WIPI2b
S s IB: anti-His - s IB: anti-His
Tutput Tutput
- e 1B: anti-FLAG - s IB: anti-FLAG
e SRS 1B: anti-His S S [B: anti-His
Output Output
s 1B: anti-FLAG S IB: anti-FLAG
FIGURE 8
The results of the pull-down assay. The symbols “+" and “—" in the figure indicate the presence or absence of the corresponding tagged proteins,
respectively. The Input group serves as the quality control, while the Output group represents the final experimental results. Focus should be placed on
the anti-FLAG results in the Output group.
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thermodynamic stability of the mutant, while pull-down assay

revealed a significantly impaired binding capacity to
WIPI2B. However, this aberrant stabilization disrupted functional
dimerization and effector interactions, ultimately compromising
protein function. These findings provide mechanistic insights into
ATGI16L1 dysfunction in CD and offer a theoretical basis for

future therapeutic strategies targeting this mutation.
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