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Background: ATG16L1 (Autophagy Related 16 Like 1) is a key regulatory protein 
in the autophagy pathway. Although previous studies have established a 
significant association between the ATG16L1 genotype and Crohn’s disease (CD) 
susceptibility, the specific molecular mechanism of its high-frequency missense 
variant rs2241880 has yet to be systematically elucidated.
Methods: In this study, we first confirmed the important role of ATG16L1 in CD 
pathogenesis through genome-wide association study analysis and Western 
blot, as well as qRT-PCR. Subsequently, high-precision structural prediction, 
protein model-based dynamic simulation, and AI model thermodynamic 
stability analysis were innovatively integrated. The thermal shift assay (TSA) was 
employed to validate the structural stability of the mutant, while the pull-down 
assay was used to examine its binding capacity with WIPI2b.
Results: The results show that ATG16L1 plays a significant role in the pathogenesis 
of CD. The mutation causes the protein’s overall conformation to become more 
compact, significantly increasing the rigidity of key functional regions, and 
enhancing the structural and thermodynamic stability, which in turn affects the 
cleavage efficiency of caspase-3 and the function of the WD40 domain. The 
results of the TSA experiment provided evidence for the computational findings. 
The pull-down assay confirmed that the binding capacity of the mutant to 
WIPI2b was significantly impaired.
Conclusion: This finding not only provides the first molecular mechanism 
of the ATG16L1 T300A mutation, offering an important theoretical basis for 
understanding CD susceptibility differences, but also provides insights for 
precision medicine interventions and gene editing strategies.
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1 Introduction

The rapid development of Artificial Intelligence (AI) technology 
is profoundly reshaping the research paradigm in life sciences. Deep 
learning and machine learning models have become core tools in this 
field, particularly showing a profound impact in key areas such as 
protein structure prediction, genomics analysis, and drug development 
(1). In recent years, AI technology has brought about major 
transformations in biological research methodologies (2). In the field 
of protein research, AI models have made milestone advancements: 
the long-standing protein folding problem has been substantially 
resolved due to breakthroughs from models like AlphaFold; the 
accuracy of protein 3D structure prediction and mutation functional 
analysis has greatly improved (3).

ATG16L1 (Autophagy Related 16 Like 1) is one of the core 
regulatory proteins in the autophagy pathway, involved in the 
formation of autophagosomes, and plays a key role in clearing 
intracellular pathogens and maintaining intestinal epithelial barrier 
homeostasis (4). The function of ATG16L1 is closely related to Crohn’s 
disease (CD) susceptibility. Studies have shown that defects in its 
expression in Paneth cells and intestinal epithelial cells significantly 
exacerbate intestinal inflammation (5). The 300th site of ATG16L1 
(rs2241880), a key mutation site in CD research, causes a missense 
mutation. This mutation is thought to potentially affect the stability of 
the ATG16L1 protein, weaken its binding with partner proteins, 
thereby impairing autophagosome formation ability (6).

However, despite extensive research on the relationship between 
ATG16L1 and CD, the mechanistic analysis of how the ATG16L1 
300th site mutation specifically affects the protein’s structure and 
function remains insufficient. Currently, research on ATG16L1 mainly 
focuses on the relationship between genotype and phenotype, 
especially through phenotype analysis and genetic association studies 
to reveal the link between mutations and CD (7). However, there is 
still inadequate exploration of how mutations affect the stability of the 
ATG16L1 protein at the molecular level, particularly in terms of 
protein 3D structure, folding dynamics, and functional changes. 
Detailed mechanistic analyses are lacking in these aspects. Therefore, 
it is crucial to conduct in-depth studies on the mutation at the 
ATG16L1 300th site and reveal its molecular mechanism in protein 
stability and functional loss. With the introduction of AI technologies, 
particularly models like AlphaFold3 and ThermoMPNN, we now have 
new research tools at our disposal. By integrating these AI tools, 
we can delve into the molecular-level effects of the ATG16L1 300th 
site mutation on protein structure and further uncover its potential 
mechanisms in CD. The thermal shift assay (TSA) and pull-down 
assay can be employed to further validate the computational results.

2 Materials and methods

2.1 GWAS analysis

2.1.1 The GWAS data source for CD
The GWAS data for CD comes from summary data in the IEU 

database (ieu-a-30), which includes 5,956 CD patients. The control 
group consists of 14,927 healthy individuals of European ancestry, 
matched with the case group in terms of age, sex, and geographical 
location, covering both males and females. For detailed information 

on ethical approval and informed consent, please refer to the published 
paper (8).

2.1.2 Gene annotation
MAGMA evaluated the overall impact of a gene or genomic 

region by integrating the effects of multiple single nucleotide 
polymorphisms (SNPs) (±10 kb), rather than considering the effect of 
each SNP separately (9). The software uses 1,000 Genomes European 
phase 3 LD data (10). Building on this, gene set analysis based on 
MAGMA was used to analyze pathways associated with the pathogenic 
causes of CD. MAGMA aggregated the effects of multiple SNPs at the 
gene level, and after obtaining the effect estimates for each gene, it 
organized these genes into predefined gene sets, while also calculating 
the overall effect size of each gene set. Pathways from KEGG, BioCarta, 
and Reactome, necessary for the software, were obtained from the 
database at https://www.gsea-msigdb.org/gsea/msigdb (11).

2.1.3 TWAS analysis
Risk genes were identified via gene annotation and TWAS, using 

UTMOST and FUSION. The study integrated GTExV8 eQTL (49 
tissues) and CD GWAS data to explore tissue-specific genetic variants. 
UTMOST performed single-tissue TWAS followed by cross-tissue 
analysis with a multivariate model accounting for tissue-specific eQTL 
effects (11). FUSION, using GTExV8 whole blood eQTL and CD 
GWAS data, built penalized linear models with 500-kb cis windows to 
validate findings. Both analyses applied Benjamini-Hochberg 
correction, defining significance at false discovery rate (FDR) < 0.05.

2.1.4 Conditional and conjoint analysis
Conditional and joint analysis of TWAS signals (FDR-adjusted) 

identified chromosomal key SNPs. Using CD GWAS summary 
statistics and 1,000 Genomes European LD reference (12), the analysis 
removed TWAS signals via conditional modeling, reapplied FDR 
correction, selected SNPs at PFDR < 0.05, and evaluated combined 
effects post-optimization.

2.1.5 Precise localization of risk genes
FOCUS fine-mapped CD GWAS data to risk regions using 

summary statistics, eQTL weights, and linkage disequilibrium (13). It 
evaluates gene sets’ roles in TWAS signals and genomic risk. Using 
GTExV8 weights, significant genes were defined by posterior inclusion 
probability (PIP) ≥ 0.8 and p < 5e−8.

2.1.6 Intersection and colocalization analysis of 
gene analysis results

Key genes were identified by intersecting risk genes from gene 
annotation, cross-tissue TWAS, single-tissue TWAS, and fine-
mapping analysis, followed by colocalization analysis. The “coloc” R 
package (14, 15) was utilized for colocalization analysis to assess the 
overlap between GWAS and eQTL signals at causal variant sites.

2.2 Validation of animal experiments

2.2.1 Animal modeling
The experimental animals were housed at Hebei Provincial 

Hospital of Traditional Chinese Medicine, with approval from the 
Ethics Committee (IACUC-HPHCM-2024037). Colitis was induced 
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using TNBS (Sigma-Aldrich). A 5% TNBS solution was mixed with 
absolute ethanol at a 1:1 volume ratio to prepare a 50% ethanol 
solution containing 2.5 mg/mL TNBS. The rats were administered an 
enema at a dose of 100 mg/kg body weight at a depth of 8 cm proximal 
to the anus and maintained in a head-down position for approximately 
30 s to ensure the mixture reached the entire colon. Control group: 
received an enema with an equal volume of 50% ethanol. The 
modeling period lasted for 7 days.

2.2.2 qRT-PCR
Total RNA was extracted from rat colon tissue following the 

manufacturer’s instructions for the RNA extraction kit. The mRNA 
was then reverse transcribed into cDNA using reverse transcriptase. 
The reaction conditions were followed, and amplification was 
performed on a fluorescent quantitative PCR machine, completing a 
total of 40 cycles. β-actin was used as the internal reference, and 
mRNA expression was analyzed using the 2−ΔΔCt method.

2.2.3 Western blot
Rat colon tissue was minced, and protein content was measured 

according to the instructions of the protein extraction kit. The protein 
samples were boiled for 5 min to denature, transferred to a membrane, 
and then incubated in 5% skim milk on a shaker for 2 h to block. The 
membrane was incubated overnight at 4 °C with a primary antibody 
against ATG16L1 (1:800). After four washes with TBST, a secondary 
antibody (1:8,000) was added, and incubation was carried out at room 
temperature for 1.5 h, followed by four additional washes with 
TBST. The membrane was placed in an exposure box and exposed in 
a dark room. After developing, fixing, and scanning the images, the 
brightness values of the protein bands from each group were analyzed. 
The corrected protein band brightness value (the ratio of each sample’s 
protein band brightness value to the internal reference band β-actin 
brightness value) was calculated. The control group was used as the 
standard for normalization.

2.3 AI modeling and prediction analysis

2.3.1 Identification of protein amino acid 
mutation sites corresponding to missense 
mutation

In this study, we analyzed the rs2241880 mutation in ATG16L1. 
This gene has been confirmed by multiple studies to be  closely 
associated with CD (16). To clarify the specific impact of the mutation 
on the ATG16L1 protein sequence, we used the NCBI Gene1 and 
Ensembl2 databases to query detailed gene annotations. Using the 
previous strategy, we queried the rs2241880 missense mutation on 
ATG16L1 and conducted further site searches using the Ensembl 
database (17, 18). The primary focus was on the amino acid change 
caused by the missense mutation.

1  https://www.ncbi.nlm.nih.gov/

2  https://www.ensembl.org/

2.3.2 Acquisition of ATG16L1 wild type structure 
and download of amino acid sequence

To perform subsequent modeling and simulations, we needed to 
obtain the structure and amino acid sequence of the wild type 
ATG16L1 protein (Supplementary Table S1). To achieve this, 
we accessed the GeneCards and UniProt databases to gather detailed 
information and related data on ATG16L1.

2.3.2.1 Querying ATG16L1 gene information through 
GeneCards

We first queried the detailed information of the ATG16L1 gene 
through the GeneCards database.3 From the query, we obtained the 
UniProt ID for ATG16L1: Q676U5.

2.3.2.2 Downloading structure and sequence through 
UniProt

Next, based on the obtained UniProt ID and selecting the species 
as human, we searched and downloaded the complete amino acid 
sequence of ATG16L1 through the UniProt database.4 In UniProt, 
we found that the structure of this protein was publicly available and 
could be downloaded directly (19).

2.3.3 ATG16L1 mutant AI modeling based on 
AlphaFold3

We chose to use AlphaFold3 for protein structure modeling of the 
mutant. AlphaFold3 utilizes an enhanced deep learning model that 
combines amino acid sequences, evolutionary information, and 
physicochemical knowledge to predict the three-dimensional 
structure of proteins with high precision (20). Compared to traditional 
experimental methods (such as X-ray crystallography and nuclear 
magnetic resonance), AlphaFold3 provides faster predictions with 
higher accuracy, especially when handling complex protein mutations, 
allowing for better simulation of the impact of mutations on protein 
structure (21).

We submitted the amino acid sequence of the ATG16L1 mutant 
to the AlphaFold3 online platform.5 After submission, AlphaFold3 
automatically predicted the structure and generated a 3D model of the 
protein. We downloaded the CIF (crystallographic information file) 
and used PyMOL 3.2 educational edition to convert the file to PDB 
(protein data bank) format.

2.3.4 In vivo protein simulation of ATG16L1
After obtaining the 3D structures of the wild type and mutant 

ATG16L1 proteins, we used GROMACS 2024.5 to perform molecular 
dynamics simulations to simulate the dynamic behavior and stability 
of the ATG16L1 protein in solution. The specific steps of the molecular 
dynamics simulation in this study are as follows:

2.3.4.1 Hardware and software configuration for in vivo 
protein simulation

We used GROMACS 2024.5 for the molecular dynamics 
simulations. The parallel computing capabilities of GROMACS make 
it highly suitable for efficiently handling large-scale biomolecular 

3  https://www.genecards.org/

4  https://www.uniprot.org/

5  https://alphafoldserver.com/
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simulations (22). Our simulations ran on the Ubuntu 24.04 LTS 
operating system.

Simulation parameter settings: force field and water model: 
we selected the AMBER14SB force field for the parameterization of 
ATG16L1. The AMBER14SB force field is commonly used in protein 
simulations and accurately describes the interactions between amino 
acid residues in proteins (23). Solvent model: we chose the TIP3P 
water model, a classical water molecule model suitable for describing 
the behavior of water molecules in biomolecular solutions (24). 
System construction and solvation: The pdb2gmx tool was used to 
generate the protein topology file, and the editconf tool was used to 
place the protein in a cubic box, with the minimum distance between 
the box and the protein set to 1.0 nm. We  then used the solvate 
command for solvation, ensuring that water molecules were evenly 
distributed and filled the gaps. Ionization: the genion tool was used to 
add Na+ and Cl− ions to ensure the system’s electro-neutrality and 
simulate the ion concentration under physiological conditions (0.15 M 
NaCl). Energy minimization and equilibration: we performed 1,000 
steps of energy minimization using the steepest descent algorithm, 
with the maximum step size set to 0.01 nm, to eliminate unreasonable 
contacts and structures in the system. Equilibration process: the 
system was first equilibrated for 100 ps under constant temperature 
and volume conditions, followed by 100 ps equilibration under 
constant temperature and pressure conditions to ensure system 
stability. Mutant protein dynamics simulation: after equilibration, 
we performed a 100 ns production molecular dynamics simulation 
under constant temperature and pressure conditions with a 
temperature of 300 K and pressure of 1.0 atm. The time step was 2 fs, 
and the SHAKE algorithm was used to constrain the bond lengths of 
all hydrogen-containing bonds. The trajectory files generated by the 
simulation were used for subsequent analysis and visualization. The 
above simulation process was conducted three times, and the final 
result represented the average of the three repetitions.

2.3.5 Free energy change (ddG) prediction of wild 
type ATG16L1 based on AI model ThermoMPNN

To further investigate the thermal stability of wild type ATG16L1, 
especially the effects of amino acid mutations on protein function and 
stability, we used Thermodynamic Mutation Selection Neural Network 
(ThermoMPNN) for thermal stability prediction. ThermoMPNN is a 
deep learning model based on graph neural network (GNN) and 
transfer learning, which is specifically used to predict stability changes 
caused by protein point mutations (25, 26). Specifically, ThermoMPNN 
predicts the stability and structural changes of mutant proteins at high 
temperatures by inputting the amino acid sequence and mutation 
information of the protein, providing a reference for restoring or 
enhancing protein stability and function after subsequent 
in vivo simulation.

2.3.5.1 Training and prediction process of the 
ThermoMPNN model

To efficiently run the ThermoMPNN model, we conducted model 
training and prediction through the Google Colab environment. 
We set up the running environment for ThermoMPNN in the Google 
Colab environment. By selecting the appropriate libraries and 
dependencies and loading the necessary models and datasets, 
we  ensured smooth thermal stability prediction. Since the Colab 
environment provides GPU support, which is crucial for running deep 

learning models like ThermoMPNN that require substantial 
computation, it significantly accelerated the training and 
prediction process.

2.3.5.2 PDB file upload and model execution
After setting up the ThermoMPNN runtime environment in 

Colab, we uploaded the PDB file of wild type ATG16L1 to the Colab 
system. After uploading the file, we ran the model using the default 
parameters in ThermoMPNN within Colab to perform thermal 
stability analysis of the protein after mutations. During this process, 
the model used the default parameters in the PyTorch framework to 
model the amino acid mutations, calculating the protein’s stability and 
melting point changes at different temperatures after the mutations.

2.4 Protein purification

The wild type and mutant ATG16L1 plasmids were transformed 
into BL21(DE3) competent cells, plated, and incubated overnight at 
37 °C (Supplementary files 1, 2). Single colonies were selected and 
cultured in LB medium to an OD₆₀₀ of 0.6–0.8. IPTG was added to a 
final concentration of 0.5 mM for induction at 37 °C for 4 h, after 
which cells were harvested and analyzed by SDS-PAGE and Western 
blot. Further induction was performed with 0.2 mM and 1 mM IPTG 
at 37 °C and 15 °C for 4 h and 16 h, respectively. Cells were 
centrifuged, lysed (Tris-NaCl buffer), and sampled for expression and 
solubility evaluation. The optimal condition was scaled up to 2 L 
culture, induced at 15 °C for 16 h, followed by centrifugation, 
resuspension, and ultrasonication. The pellet was solubilized in 
denaturing buffer, centrifuged, and the supernatant was purified by 
Ni–NTA affinity chromatography using PBS-Urea (pH 7.4) with 
50 mM and 500 mM imidazole for washing and elution, respectively. 
The purified product was analyzed by SDS-PAGE. Finally, the protein 
was refolded and concentrated in refolding buffer (PBS, 300 mM 
NaCl, 10% glycerol, pH 7.4) (Supplementary Figures S1, S2).

2.5 TSA

TSA was performed using SYPRO Orange dye. The reaction 
mixture, composed of 5 μL DSF buffer and 15 μL protein sample, was 
incubated at 25 °C for 15 min. Subsequently, 5 μL of SYPRO Orange 
dye was added, and the melting curve program was executed under 
the following conditions: 25 °C for 1 min, followed by a continuous 
temperature ramp to 95 °C at a rate of 0.04 °C/s with real-time 
fluorescence acquisition, and a final hold at 95 °C for 15 s.

2.6 Pull-down assay

The purified His-ATG16L1 protein (wild type or mutant) was 
first incubated with Ni-NTA agarose beads at 4 °C for 1 h. After 
washing three times with binding buffer (20 mM Tris–HCl, 
100 mM NaCl, 10% glycerol, 0.1% NP-40, 10 mM imidazole, pH 
8.0), the beads were mixed with pre-prepared lysate of HEK293T 
cells overexpressing FLAG-WIPI2b (lysis buffer: 50 mM Tris–HCl, 
150 mM NaCl, 1% Triton X-100, 1 mM PMSF, protease inhibitor 
cocktail, pH 7.4) and incubated at 4 °C for 2 h. The beads were 
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then washed three times with wash buffer (20 mM imidazole, 
other components same as binding buffer). Finally, the bound 
proteins were separated by SDS-PAGE and detected by Western 
blot using anti-FLAG antibody (1:5,000) and anti-His antibody 
(1:4,000).

3 Results

3.1 GWAS analysis results

3.1.1 Gene annotation and pathway enrichment
Risk genes highly associated with the onset of CD were annotated 

using MAGMA. Following Benjamini-Hochberg correction (p < 0.05), 
465 genes were identified as significant (Supplementary Table S2). A 
Manhattan plot highlighted the most prominent risk genes for each 
chromosome, excluding the sex chromosomes (Figure 1A). Following 
Benjamini-Hochberg correction for tissue-specific enrichment 
(Figure 1B), four tissues—whole blood, lung, terminal ileocecal part 
of the small intestine, and spleen—met the significance threshold 
(p < 0.05). MAGMA also identified 350 enriched gene sets 
(PFDR < 0.05), with top 50 pathways linked to IBD, inflammation, and 
immunity (Figure  1C)—consistent with known CD mechanisms, 
validating MAGMA’s accuracy.

3.1.2 TWAS results for CD
Using UTMOST for cross-tissue analysis, 28 genes retained 

significant signals (p < 0.05) following Benjamini-Hochberg 
correction (Table 1). In single-tissue internal validation, 204 out of 
8,799 genes with significant genetic expression in whole blood, as 
modeled in genotype data from the GTExv8 dataset, exhibited 
significant TWAS association signals (p < 0.05) following Benjamini-
Hochberg correction (Supplementary Table S3). Manhattan plot 
showed the most prominent genes on each chromosome except the 
sex chromosomes (Figure 2A). In conclusion, cross-tissue and single-
tissue analyses identified four overlapping candidate genes 
(Supplementary Table S4).

3.1.3 Conditional and joint analysis
A conditional joint analysis was conducted to assess the 

conditional independence of the loci identified in this study. As shown 
in Table 2, there were four loci, namely the gene loci where the four 
genes RP11-973H7.1, PLCL1, ATG16L1, and RPL9 were located 
(p < 0.05), which represented independent signals of multiple 
important genes. We  noticed that certain GWAS signals were 
influenced by gene expression that was genetically regulated. 
ATG16L1 predominantly contributed to the signal at the 2q37.1 locus; 
however, conditioning on its predicted expression notably diminishes 
the TWAS signal in this area (Figure 2B).

3.1.4 The results of fine mapping
FOCUS software was employed to conduct a detailed analysis of 

TWAS associations using data from a European ancestry population. 
Under the criteria of PFDR < 0.05 and PIP > 0.8, 30 positive genes were 
identified from whole blood tissue (Supplementary Table S5). FOCUS 
successfully created a graph depicting predicted expression 
correlations for each region. Figure 2C presented the TWAS summary 
statistics and PIP for ATG16L1.

3.1.5 Results of intersection and colocalization
Subsequently, the intersection of significant genes identified 

through gene annotation, cross-tissue TWAS, single-tissue TWAS, 
and fine mapping analysis was conducted (Supplementary Figure S3). 
ATG16L1 was a risk gene shared by the four methods. Subsequently, 
colocalization analysis was conducted. Colocalization analysis 
windows were configured to 500 kb, yielding a PPH4 result of 0.889 
(Figure 3).

3.2 Results of animal experiments

3.2.1 qRT-PCR
As shown in Figure 4A, in the colon tissue of rats, the mRNA 

expression of ATG16L1 in CD group was lower than that in control 
group, and the difference was statistically significant (p < 0.001).

3.2.2 Western blot
As shown in Figures  4B,C, in the colon tissue of rats, the 

expression level of ATG16L1 protein in CD group was lower than that 
in control group, and the difference was statistically significant 
(p < 0.01).

3.3 Results predicted by AI modeling

3.3.1 Detailed variant information of ATG16L1 
mutant rs2241880

Through investigation, we confirmed that the mutation occurs at 
the 300th amino acid position of ATG16L1, resulting in an amino acid 
substitution where the base A is replaced by G, causing the 300th 
threonine (T) to be replaced by alanine (A) (T300A).

3.3.2 Protein structural changes after missense 
mutation

Figures 5A,B showed the specific morphologies of the ATG16L1 
wild type and mutant proteins. It could be seen that as the 300th 
amino acid changed from T to A, the overall morphology of ATG16L1 
underwent a certain degree of alteration. Since rs2241880 was located 
between the central coiled-coil domain (CCD) and WD40 domain of 
the protein, the morphological change in this region was 
more pronounced.

3.3.3 Protein simulation results analysis
By simulating and analyzing the wild type and mutant 

ATG16L1 proteins, four simulation metrics were obtained: Root 
Mean Square Deviation (RMSD), Root Mean Square Fluctuation 
(RMSF), Radius of Gyration (RG), and Solvent Accessible Surface 
Area (SASA). As shown in Figure 5C, compared to the wild type, 
the mutant’s RMSD remained stable over time (0–100 ns), 
stabilizing around 1 nm, while the wild type, although also stable, 
maintained a value around 1.5 nm. This suggested that the mutant 
maintained a more stable conformation than the wild type, with 
enhanced protein rigidity. RMSF analysis: By comparing the 
RMSF values of the wild type and mutant (Figure  5D), it was 
found that the mutation significantly enhanced the conformational 
stability around the 300th amino acid. Specifically, in key 
functional regions (such as active sites and binding interfaces), the 
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RMSF values of the mutant decreased, indicating increased 
structural stability. Mutation-induced stability changes: The 
RMSF fluctuation range for the mutant was reduced at several 

residue positions (with smaller peak-to-valley differences), 
suggesting that the mutation might have strengthened local 
hydrogen bond networks or hydrophobic interactions, thereby 

FIGURE 1

Gene annotation and pathway enrichment results. Panel (A) shows significant genes. Panel (B) shows the tissue enrichment results and panel 
(C) shows the pathway enrichment results.
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improving the overall structural stability. RG analysis (Figure 5E): 
The RG value of the mutant gradually stabilized over time 
(1.9 nm), while the wild type also stabilized but had a value of 
2.0 nm, indicating that the mutant’s overall structure was more 
compact. The compact structure of the mutant might have affected 
the spatial arrangement of functional domains, thereby 
influencing the protein’s recognition and binding ability. SASA 
analysis (Figure 5F): The mutant’s SASA value (150–160 nm2) was 
overall lower than that of the wild type (160–170 nm2), indicating 
a reduction in the exposure of its hydrophobic core on the surface.

3.3.4 Protein time-stage analysis results
From the mutation results, the mutant exhibited higher 

structural stability: the mutant’s RMSD decreased, RG reduced, 
and SASA exposure was lower, indicating that its conformational 
flexibility was controlled and it could better maintain the protein’s 
rigid structure. Further analysis of the dynamic results of the 

protein simulation was performed by extracting representative 
structures from six time periods (0 to 100 ns) (Figures 6A,B) and 
comparing the changes between the wild type and mutant. It was 
found that after the mutation at the 300th amino acid, the local 
flexibility of the protein structure decreased, and the overall 
structure became more compact. As a result, the stability of the 
protein structure was enhanced after the mutation, which had a 
certain impact on the protein’s binding ability.

3.3.5 Prediction of protein ddG
From the hotspot map in Figure 6C, it could be seen that after 

the mutation of the 300th position to A, the color changed to blue, 
and ddG decreased, suggesting that after the mutation, the free 
energy of the ATG16L1 protein was reduced, and its structural 
stability increased, making the ATG16L1 mutant more stable than 
the wild type conformation. Compared to the wild type, this 
might have affected its recognition and binding ability with 
other proteins.

3.4 TSA results

Figure 7 presented the stability results of ATG16L1 wild type 
and mutant proteins as measured by TSA. The figure demonstrated 
a clear distinction in the TM values between the wild type and 
mutant proteins, with the mutant exhibiting a higher TM value 
than the wild type. A higher TM value indicated that a higher 
temperature was required for protein denaturation, reflecting 
greater protein stability. This suggested that the mutant protein 
possessed enhanced stability compared to the wild type.

3.5 Pull-down results

Figure 8 illustrated the difference in binding capacity between 
wild type ATG16L1 and its mutant with WIPI2b. The results from 
the Input group indicated that the experiment was performed 
successfully, as proteins with corresponding tags in each group 
were specifically immunoprecipitated by their respective 
antibodies. The results from the Output group demonstrated a 
significant difference in the binding affinity of the wild type and 
mutant proteins to WIPI2b. The amount of WIPI2b bound by the 
mutant was significantly lower than that bound by the wild type, 
providing strong supporting evidence for our 
computational findings.

4 Discussion

Based on the GWAS dataset of CD, this study systematically 
evaluated the genetic predictive association between gene 
expression and CD risk. ATG16L1 emerged as a shared gene 
identified by the convergence of four genetic analysis techniques: 
MAGMA, UTMOST, FUSION, and FOCUS. Colocalization 
analysis of ATG16L1 was conducted, confirming the significant 
impact of this signal locus on CD. Subsequently, in animal 
experiments, we validated the expression of ATG16L1. Compared 

TABLE 1  The results of cross-tissue TWAS analysis of UTMOST.

Gene Chr Test 
score

P PFDR

RP11-973H7.1 18 26.67 2.17E−12 8.10E-09

ATG16L1 2 331.34 2.63E−11 4.91E-08

ING5 2 15.91 3.98E−08 4.96E-05

SF3B1 2 15.15 6.44E−08 6.02E-05

PLCL1 2 13.80 1.45E−06 8.42E-04

ZFP36L2 2 12.56 1.87E−06 8.42E-04

RFTN2 2 13.62 1.14E−06 8.42E-04

PTPN2 18 12.61 2.03E−06 8.42E-04

SREBF2 22 13.01 1.73E−06 8.42E-04

USP40 2 11.92 2.45E−06 9.18E-04

SLC25A17 22 10.34 1.46E−05 4.97E-03

ROCK1 18 11.73 1.90E−05 5.56E-03

INPP5J 22 10.79 1.93E−05 5.56E-03

KREMEN1 22 10.08 2.42E−05 6.46E-03

SEH1L 18 9.84 4.00E−05 9.98E-03

FLJ31356 2 9.29 4.29E−05 1.00E-02

GTF3C3 2 8.93 7.14E−05 1.48E-02

RPL12P19 2 9.78 6.97E−05 1.48E-02

ASCC2 22 8.30 1.04E−04 2.05E-02

CCDC150 2 8.38 1.49E−04 2.53E-02

RP5-821D11.7 22 8.53 1.42E−04 2.53E-02

XRCC6 22 8.10 1.38E−04 2.53E-02

C1GALT1C1L 2 8.10 1.57E−04 2.55E-02

MKL1 22 8.52 1.94E−04 3.02E-02

RNF185 22 7.32 2.88E−04 4.30E-02

RPL9 4 6.34 3.36E−04 4.77E-02

VPREB1 22 8.68 3.45E−04 4.77E-02

ANKRD44 2 7.27 3.72E−04 4.96E-02
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FIGURE 2

Results of single-tissue TWAS, conditional joint analysis and fine mapping. Panel (A) shows the positive genes screened by FUSION. The blue line 
indicates 5 × e−8, and the red line represents the threshold after FDR correction. Panel (B) shows the result of conditional joint analysis of ATG16L1. The 
top of (B) marks the names of genes within the region, and the gene marked in green is co-significant gene. Gray dots represent baseline TWAS 
signals; blue dots show post-regulation signals following green gene modulation. Panel (C) shows the result of ATG16L1 fine mapping, indicating that 
this gene plays a dominant role in this region.

https://doi.org/10.3389/fmed.2025.1656575
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ren et al.� 10.3389/fmed.2025.1656575

Frontiers in Medicine 09 frontiersin.org

with the control group, both mRNA and protein expression levels 
of ATG16L1 were decreased in the CD group. These findings can 
improve our understanding of the role of ATG16L1 in the genetics 
and pathogenesis of CD.

To further clarify the impact of protein structural changes on 
function, this study combined AlphaFold3 structure prediction, 
protein dynamics simulation, and a neural network-based 
thermodynamic stability prediction model to explore the impact 
of missense mutation at site 300 of ATG16L1 on protein structure 

TABLE 2  Conditional and joint analyses of genes associated with CD risk.

Gene Chr Twas.Z Twas.P PFDR Joint

RP11-973H7.1 18 3.32 9.13E−04 4.23E-02 TRUE

PLCL1 2 4.89 1.01E−06 1.62E-04 TRUE

ATG16L1 2 12.14 6.56E−34 2.89E-30 TRUE

RPL9 4 3.59 3.26E−04 2.02E-02 TRUE

Joint refers to whether it is a key gene for conditional joint analysis.

FIGURE 3

Association diagram of ATG16L1. Panels (A,B) show the colocalization result of ATG16L1 in the GWAS data of eQTL and CD.
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and function. The computational predictions were validated 
through TSA and pull-down assays. As a protein closely related to 
the autophagy process, ATG16L1 has been shown by many studies 
to be closely related to cellular autophagy function and immune 
response (27–29). However, the specific mechanism of mutations 
on protein stability and function is still not fully understood, 
especially the structural changes and thermodynamic stability 
caused by mutations at the molecular level. This study 
comprehensively explained the mechanism of ATG16L1 300 site 
mutation from the aspects of protein stability, dynamic structural 
changes, and free energy changes for the first time.

ATG16L1 can be divided into three domains: the N-terminal 
ATG5 binding domain (ATG5BD), CCD, and WD40. Its 
N-terminus participates in binding to the ATG5-ATG12 complex, 
while its C-terminal WD40 domain mediates membrane 
localization and substrate recognition. ATG16L1 interacts with 
the WIPI2b protein through its coiled-coil domain, and WIPI2b 
is responsible for recruiting the ATG16L1 complex to autophagic 
precursor membranes, further facilitating autophagosome 
formation (30). The T300A mutation is located between the CCD 
and WD40 domains (31), adjacent to a highly conserved caspase-3 
cleavage site. Several studies have shown that the T300A mutation 
significantly enhances caspase-3 cleavage of ATG16L1 (32). After 
cleavage, two fragments are produced: the N-terminal fragment 
contains the ATG5 binding domain but cannot localize to the 
autophagy initiation site due to the loss of the C-terminal region; 
the C-terminal fragment contains the WD40 domain but lacks 
ATG5 coupling ability, resulting in the loss of autophagic function 
(33–35).

The fact that caspase-3 significantly enhances its ability to 
cleave ATG16L1 after mutation should be considered from the 
perspective of local protein structure changes. According to the 
protein model predicted by modeling, the region where T300A is 

located does not have any secondary structure, which creates a 
favorable condition for caspase cleavage (36). After mutation, 
both the RG and SASA values were reduced, indicating increased 
hydrophobicity of the protein. The elevated hydrophobicity could 
prompt the flexible loop to collapse toward the hydrophobic core, 
thereby stabilizing the structure through the hydrophobic effect 
(37). This observation is consistent with the RMSF result, which 
showed enhanced structural stability near the 300th amino acid 
residue after mutation. Since caspase-3-mediated cleavage occurs 
near this position, an appropriately stable conformation may 
provide a more suitable binding environment for caspase-3. 
Additionally, the amino acid sequence from position 296 to 299 
(DNVD) in ATG16L1 is adjacent to the 300th amino acid, and this 
sequence is similar to the DxxD sequence of caspase-3. Through 
the mutation, the amino acids from positions 296 to 300 change 
to DNVDA, which further matches the caspase-3 motif. 
Furthermore, the mutation leads to a significant change in the 
local structure at position 300, making the DNVD sequence more 
exposed within the cleavage range of caspase-3 compared to the 
wild type, thereby enhancing caspase-3’s cleavage ability (38).

Since T300A is between the CCD and WD40 domains, 
traditional views suggest that the mutation at this position might 
have a limited impact on the WD40 domain. However, evidence 
shows that even in the absence of caspase-3, caspase-7, and other 
cysteine proteases that cleave ATG16L1, T300A can still affect the 
functionality of the protein, which retains its full long-chain 
structure (39). Specifically, this mutation influences the binding 
ability of WD40 with common chaperone proteins, thereby 
affecting subsequent protein functionality. WD40 has been shown 
to bind to autophagy-related proteins such as WIPI2b and can also 
influence processes like ubiquitination and DNA damage (40). 
The functioning of these processes relies on the top, bottom, and 
circumferential surface of WD40. The formation of these three 

FIGURE 4

Results of qRT-PCR and Western blot. (A) shows mRNA expression, while B,C show protein expression. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 5

Protein structure changes and simulation results. Panels (A,B) show the protein structures of the wild type and mutant. Panels (C–F) show the 
molecular dynamics results. The horizontal axes represent time and amino acid position, respectively, and the vertical axis represents four molecular 
dynamics simulation metrics.
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FIGURE 6

Protein time-stage analysis and ddG prediction. Panels (A,B) show the structural changes of the wild type and mutant during the 100 ns simulation. 
Panel (C) shows the result of the ddG prediction. In the heatmap, positive values indicate an increase in ddG, while negative values indicate a decrease 
in ddG. A negative value at amino acid position 300 signifies a decrease in ddG.
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parts requires the variable region of WD40 (41). In other words, 
while WD40 is highly conserved in its folding, its functionality 
still requires some degree of variability (42). Additionally, a study 
analyzing the charge distribution of WD40 found that its top is 
predominantly hydrophobic, while the bottom is negatively 
charged and hydrophilic (39). Our research results indicate that 
after the T300A mutation, the overall structure of ATG16L1 
became more compact, its flexibility decreased, and the SASA 
analysis showed enhanced hydrophobicity, all of which may affect 
the normal functioning of WD40. Furthermore, from the protein 
time-stage analysis results, after 100 ns simulation, the structure 
of the mutant showed significant differences compared to the wild 
type. The wild type retained the complete top, bottom and 
circumference of the ring structure of WD40 during the 
simulation. However, after 100 ns of simulation, the structure of 
the mutant underwent irregular changes, which may affect the 
functional performance of the protein. The results from the TSA 
and pull-down assay further support this conclusion. The TSA 
demonstrated increased structural stability of the mutant, while 

the pull-down assay revealed a significantly impaired binding 
affinity between the mutant and its downstream effector WIPI2b.

Interestingly, while the T300A mutation enhances structural 
stability, it impairs ATG16L1 function by disrupting its 
dimerization interface. This paradox suggests that therapeutic 
strategies should not aim to further stabilize the mutant protein. 
Instead, targeted proteolysis regulators (e.g., PROTACs) could 
be designed to selectively degrade the dysfunctional mutant, while 
allele-specific mRNA silencing or gene editing approaches could 
suppress its expression (43, 44). Alternatively, small molecules 
promoting functional dimerization without affecting stability 
might rescue autophagic flux in T300A carriers, offering a 
precision medicine avenue for CD patients with this variant.

While this study integrates computational predictions with 
experimental validations including TSA and pull-down assays, 
several limitations remain. Firstly, although TSA confirmed the 
altered structural stability of the ATG16L1 T300A mutant and 
pull-down assay revealed its impaired binding to WIPI2B, all 
validations were performed in vitro. Future studies should employ 
gene-editing approaches and physiological cellular models to 
verify these functional impacts in a more biologically relevant 
context. Secondly, while the ThermoMPNN model demonstrates 
high accuracy in thermodynamic stability prediction, there may 
still be  limitations in predicting multi-point mutations or 
synergistic effects. Future research could integrate more 
experimental data and computational models to improve the 
accuracy of predictions.

5 Conclusion

This study elucidated the role of ATG16L1  in CD and 
systematically characterized the structural and functional 
consequences of the T300A mutation. By integrating evidence 
from GWAS, animal models, AlphaFold3-based structure 
predictions, molecular dynamics simulations, and ThermoMPNN-
derived ddG calculations, we  demonstrated that the T300A 
mutation enhanced the structural stability and hydrophobicity of 
ATG16L1. Experimentally, TSA confirmed the increased 

FIGURE 7

TSA results. The x-axis represents temperature, while the y-axis 
shows the rate of change of the fluorescence signal with 
temperature. The red curve corresponds to the wild type protein, 
and the brown curve represents the mutant protein.

FIGURE 8

The results of the pull-down assay. The symbols “+” and “−” in the figure indicate the presence or absence of the corresponding tagged proteins, 
respectively. The Input group serves as the quality control, while the Output group represents the final experimental results. Focus should be placed on 
the anti-FLAG results in the Output group.
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thermodynamic stability of the mutant, while pull-down assay 
revealed a significantly impaired binding capacity to 
WIPI2B. However, this aberrant stabilization disrupted functional 
dimerization and effector interactions, ultimately compromising 
protein function. These findings provide mechanistic insights into 
ATG16L1 dysfunction in CD and offer a theoretical basis for 
future therapeutic strategies targeting this mutation.
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