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Lung cancer remains the leading cause of cancer-related deaths globally, with
a 5-years survival rate of only around 20%. Merging cohort and Mendelian-
randomization studies indicate that gut dysbiosis is associated with—though
not yet proven to cause—an elevated risk and worse prognosis of non-
small-cell lung cancer. Lower fecal abundance of butyrate producers such as
Faecalibacterium prausnitzii and expansion of Enterobacteriaceae correlate with
reduced systemic CD8 + T-cell infiltration and shorter progression-free survival
during immune-checkpoint blockade. Antibiotic exposure within 30 days before
anti-PD-1 initiation is consistently linked to diminished objective response
and overall survival in retrospective cohorts, whereas supplementation with
butyrogenic probiotics or fecal microbiota transplantation from responders
restores therapeutic efficacy in pre-clinical models. This review integrates
epidemiological, mechanistic and clinical data to clarify the current evidence,
identify gaps and outline the steps needed to translate gut—lung-axis research
into safe, effective adjunctive therapies for patients with lung cancer.
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1 Introduction

Lung cancer remains the leading cause of cancer-related deaths globally, with an
estimated 1.8 million deaths annually. Non-small-cell lung cancer (NSCLC) accounts for
over 85% of cases (1). While recent years have witnessed significant advancements in lung
cancer treatment, such as the emergence of targeted therapies and immune checkpoint
inhibitors, the prognosis for lung cancer patients remains poor, with a global 5-year overall
survival rate of 19.8% (95% CI 19.6-20.0) for all stages combined, ranging from 4.2%
(stage IV) to 68.4% (stage I) in the most recent CONCORD-3 analysis covering 2000-
2014 diagnoses. Regional figures for China (2012-2015) mirror the global estimate at 19.7%
overall (2). For example, the CheckMate-816 trial showed that neoadjuvant nivolumab plus
chemotherapy increased pathological complete response rates, yet the absolute survival
gain was modest (3). Thus, there is an urgent need to explore novel therapeutic strategies
to enhance treatment efficacy and improve patient survival.
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The gut-lung axis denotes bidirectional communication
between intestinal microbiota and pulmonary immunity (4).
Cross-sectional studies report that fecal depletion of butyrate
producers such as Faecalibacterium prausnitzii or enrichment of
Fusobacterium spp. is associated with NSCLC (5, 6). Similarly,
Mendelian-randomization analyses indicate that genetically
predicted lower abundance of Bacteroides and Faecalibacterium
is associated with higher NSCLC risk, mediated by reduced
CD8 + T-cell infiltration (7, 8). Whether these associations
reflect causality or reverse causation is unresolved; nevertheless,
germ-free mice exhibit impaired pulmonary immunity and
accelerated urethane-driven adenocarcinoma (4). Furthermore,
recent advances in microbiome research have provided new
insights into the relationship between the gut microbiota and lung
cancer (9). Studies have shown that the gut microbiota composition
in lung cancer patients differs significantly from that in healthy
individuals. For example, some research has found that the relative
abundance of certain bacterial genera, such as Fusobacterium and
Porphyromonas, is higher in lung cancer patients (5, 6). Moreover,
the gut microbiota can influence the efficacy of lung cancer
treatment. A study demonstrated that patients with a specific gut
microbiota profile had better responses to immune checkpoint
inhibitors (ICIs) and longer progression-free survival (PFS) (10).
Additionally, gut microbiota metabolites, such as short-chain fatty
acids (SCFAs) and bile acids, can affect lung cancer progression by
regulating immune responses and inflammation (11). Collectively,
current evidence supports an association rather than a proven
causal role of gut dysbiosis in lung-cancer initiation or progression.

The Gut-microbiota-lung Axis holds great promise for the
treatment of lung cancer (12). Gut microbiota modulation
through probiotics, prebiotics, and fecal microbiota transplantation
(FMT) has shown potential in regulating immune responses and
improving treatment efficacy in lung cancer patients. For example,
a study found that supplementation with specific probiotics
could enhance the efficacy of immune checkpoint inhibitors (12).
Furthermore, understanding the Gut-microbiota-lung Axis may
help identify novel biomarkers for lung cancer diagnosis and
prognosis. However, there are still some challenges in this field (13).
The mechanisms underlying the Gut-microbiota-lung Axis in lung
cancer are complex and require further exploration. Additionally,
the safety and long-term efficacy of gut microbiota interventions
need to be validated through large-scale clinical trials.

In this review, we aim to comprehensively evaluate the current
evidence on the Gut-microbiota-lung Axis in lung cancer, explore
its potential clinical implications, and identify future research
directions. We will discuss the role of the gut microbiota in lung
cancer development and progression, its impact on treatment
efficacy, and the potential mechanisms involved. We will also
examine the clinical applications of gut microbiota modulation
in lung cancer and the challenges and opportunities in this
field. By bridging basic science and clinical applications, we hope
to provide new perspectives for the prevention, diagnosis, and
treatment of lung cancer.

2 Transparent evidence synthesis

This review is based on a structured literature search of
PubMed (up to 31 March 2025) using the strategy: (lung

Frontiers in Medicine

10.3389/fmed.2025.1655780

cancer OR non-small cell lung cancer) AND (gut microbiota
OR gut-lung axis OR fecal microbiota) AND (immunotherapy
OR chemotherapy OR prognosis). Inclusion criteria: peer-
reviewed English-language articles (2010-2025) reporting original
human or pre-clinical data on gut microbiota composition,
metabolites or interventions in lung cancer. Exclusion criteria:
conference abstracts, reviews without primary data, studies
lacking lung-cancer-specific outcomes. Because the field is
composed predominantly of observational and single-arm trials,
the risk of publication bias toward positive associations is
acknowledged. Heterogeneity is evident in sequencing platforms
(16S rRNA V3-V4 vs. shotgun metagenomics), DNA extraction
protocols, bioinformatic pipelines (QIIME 2 vs. MOTHUR),
and metabolomic platforms (GC-MS vs. LC-MS/MS), precluding
formal meta-analysis. These limitations are reflected in the use of
qualitative synthesis throughout the manuscript. Prior reviews have
summarized cross-sectional associations between gut dysbiosis and
lung cancer risk (14), the present work extends those observations
by integrating longitudinal intervention data and by explicitly
distinguishing prognostic from predictive microbial signatures.

3 The Gut-microbiota-lung Axis:
physiological and immunological
foundations

Understanding the  physiological and

underpinnings of the Gut-microbiota-lung Axis is essential to

immunological

grasp how these distant organs interact and maintain health (4).
The gut and lungs share a common embryological origin, which
forms the basis for their structural and functional similarities and
the bidirectional communication between them (12) (Figure 1). By
exploring these fundamental aspects, we can better comprehend
the mechanisms through which gut microbiota affects lung cancer
development and progression.

3.1 Anatomical and embryological links

The gut and lungs share a common endodermal origin
during embryonic development, which lays the foundation for
their structural and functional similarities and the bidirectional
communication of the Gut-microbiota-lung Axis (4). Both the
lung, trachea, respiratory epithelium, and gut originate from the
endoderm (12). A study found that hyperactive Wnt signaling in
lung progenitor cells expressing lung-specific genes can induce
the differentiation of lung progenitor cells into gut cell types.
The mucosal immune system, including gut-associated lymphoid
tissue (GALT) and bronchus-associated lymphoid tissue (BALT),
exerts a key role in mediating systemic immunity. Secreted
immunoglobulin A (sIgA) produced by the mucosal immune
system is a common molecular basis of mucosal immunity in
different parts of the body and an important molecular mediator
of the Gut-microbiota-lung Axis (4) (Figure 1). It is involved in
the pathogenesis and progression of lung diseases such as Chronic
obstructive pulmonary disease (COPD), asthma, and idiopathic
pulmonary fibrosis, prevents the spread of pathogens in the body,
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FIGURE 1
Anatomical and embryological links of the Gut-microbiota-lung Axis by Figdraw. This figure illustrates the common embryological origin of the gut
and lung tissues and their anatomical features.

and regulates the composition and function of gut microbiota.
The poor outcome of germ-free mice exposed to acute infection
and their susceptibility to allergic airway disease demonstrate
the critical role of the gut microbiota in lung homeostasis and
immunity (4). Researchers have also detected the expression of lung
function protein pulmonary surfactant protein A in the gut tissue of
patients with gut inflammation, further highlighting the similarity
between the lung and gut (15).

3.2 Microbial and metabolic crosstalk

Gut microbiota-derived metabolites, such as SCFAs and bile
acids, play a significant role in pulmonary inflammation. SCFAs,
mainly propionate, acetate, and butyrate, are produced through the
microbial fermentation of indigestible foods in the gastrointestinal
tract (16). They maintain the proper functioning of the intestinal
barrier, regulate glucose and lipid metabolism, alleviate oxidative
stress and inflammation, and are considered main modulators of
gut and lung immunity (17). The gut microbiota is the primary
source of SCFAs influencing immune cells in the lamina propria
and mesenteric lymph nodes (18). These cells then arrive in the
respiratory system through circulation. For example, propionate
produced in mice during a fiber-rich diet stimulates macrophages
and dendritic cell progenitors, which can trigger phagocytosis
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without inducing Th2-mediated allergic airway inflammation (13,
19). SCFAs also affect hematopoietic precursor production in
the bone marrow to maintain lung homeostasis and alleviate
potential airway inflammation (20). In patients with emphysema,
a positive correlation between higher fecal acetate levels and
forced expiratory volume in the first second was observed (20).
Exogenous acetate supplementation reduced alveolar destruction
and pro-inflammatory cytokine production in mouse models of
emphysema (21). In contrast, COPD patients showed a Prevotella-
dominated gut type and lower SCFAs in feces, including acetic acid,
isobutyric acid, and isovaleric acid (22). The severity of COPD
patients was associated with reduced SCFAs concentrations in
feces (23). Antibiotic-induced gut microbiota imbalance leading
to SCFAs reduction aggravated the development of emphysema
in mice (24). Gavage of acetate-producing Bifidobacterium longum
subsp. longum was found to alleviate lung inflammation and
butyrate depletion in the cecum of mice in a COPD model
induced by 8 weeks of cigarette smoke exposure (23). Gut
microbiota-derived SCFAs could directly or indirectly regulate
the immune homeostasis of the lung, thereby alleviating the
development of COPD.

Gut permeability and microbial translocation are drivers of
systemic inflammation (25). Gut dysbiosis impairs epithelial barrier
function and elicits a pro-inflammatory response (26). For instance,
gut dysbiosis marked by a notable rise in Enterobacteriaceae
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activates TLR4 in the intestine, which elevates IL-1f levels in the
peripheral circulation (25). This transmits inflammatory signals to
the lungs and activates the NF-kB pathway, triggering oxidative
stress and inflammation and contributing to lung pathology
through the regulation of the intestinal barrier. ILC2s, ILC3s, and
Th17 cells that migrate from the gut to the lungs have also been
shown to impact respiratory immunity (25).

Gut-derived SCFAs shape pulmonary immunity, yet the lung
microbiota itself is now recognized as an independent modulator
of respiratory health. 16S rRNA profiling of bronchoalveolar-
lavage fluid revealed that NSCLC tissue harbors a distinct
luminal community enriched for Streptococcus, Veillonella and
Rothia, with alpha-diversity inversely correlating with tumor
stage (27, 28). Mechanistically, lung-colonizing Streptococcus
spp. secrete peptidoglycan that activates NOD2 on alveolar
macrophages, driving IL-1p-mediated MDSC recruitment and
PD-L1 up-regulation within the tumor bed (29). Thus, local
lung dysbiosis may synergize with gut-derived signals to amplify
immunosuppression.
and COPD are confounders
that simultaneously remodel both gut and lung microbial
COPD-NSCLC
sequencing showed smoke-related enrichment of Prevotella

Tobacco smoke major

compartments. In a cohort, metagenomic
and Porphyromonas in sputum, while the same patients exhibited
gut depletion of Faecalibacterium and reduced serum butyrate
(30). Smoke-induced gut-barrier leakage elevated systemic LPS,
which primed alveolar macrophages for enhanced IL-8 and
MMP-12 release, thereby accelerating emphysema and creating a
pro-metastatic niche (31). Conversely, 8-week smoking cessation
partially restored gut-barrier integrity and re-balanced lung
microbiota, supporting the reversibility of smoke-driven dysbiosis
(23). Integrative analyses therefore suggest that COPD and
smoking function as bidirectional amplifiers of gut-lung-axis
perturbation, warranting stratification for microbiota-targeted
trials in lung-cancer patients.

4 The mechanism of gut microbiota
in the progression of lung cancer

Elucidating the complex interplay between gut microbiota
and lung cancer progression reveals multiple mechanisms
through which these their
influence (14). Emerging evidence highlights the role of

microbial communities exert
gut microbiota in modulating systemic and local immune
responses, producing metabolites with anticancer properties,
and directly affecting the tumor microenvironment through
microbial translocation (Table 1). Additionally, gut microbiota
lead to and the
activation of oncogenic signaling pathways in lung cancer.

proposes an
evidence

dysbiosis can epigenetic modifications

Figure 2 integrated model that synthesizes

current into four, non-exclusive pathways: (i)

systemic  immunomodulation, (ii) microbial metabolite

translocation and tumor micro-

and  (iv)

signaling, (iii) bacterial

environment  remodeling, dysbiosis-induced

epigenetic reprogramming.
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4.1 Immunomodulation and immune cell
recruitment

Emerging evidence highlights the pivotal role of gut microbiota
in modulating systemic and local immune responses, thereby
influencing lung cancer progression. Mendelian randomization
studies demonstrate causal links between gut microbiota
composition and NSCLC risk, mediated by immune cell dynamics.
For instance, Chen et al. (7) identified that Bacteroides and
Faecalibacterium species inversely correlated with NSCLC risk,
likely through enhancing CD8 + T cell infiltration and reducing
regulatory T cell (Tregs) activity. Similarly, Chen et al. (8)
revealed that gut microbiota dysbiosis altered the abundance
of circulating dendritic cells and neutrophils, which directly
impacted tumor immune evasion. However, Li et al. (32) found
no causal association between gut microbiota and small cell lung
cancer (SCLC) in Mendelian randomization study, suggesting
histology-specific immunomodulatory mechanisms. Collectively,
these studies underscore the gut microbiotas capacity to shape
antitumor immunity, though heterogeneity across lung cancer
subtypes warrants further exploration.

While Akkermansia muciniphila enrichment is linked to
enhanced CD8 + T-cell infiltration in European and North-
American cohorts (33), the same taxon shows neutral or even
negative associations in Asian populations receiving concurrent
antibiotics (34). Geographic, dietary and concomitant medication
factors therefore moderate the immunostimulatory potential
of this species.

4.2 Metabolite-mediated anticancer
effects

Short-chain fatty acids, particularly butyrate and propionate,
derived from microbial fermentation of dietary fiber, exhibit
direct anticancer effects. Bi et al. (35) demonstrated that butyrate
synergized with erastin to induce ferroptosis in lung cancer cells
by upregulating ATF3 and inhibiting SLC7A1l, a glutathione
synthesis regulator. Similarly, Kim et al. (36) showed propionate
triggered apoptosis and cell cycle arrest in lung adenocarcinoma
via p53/p21 activation. Conversely, Zhu et al. (28) revealed
that A. muciniphila-produced metabolites, such as succinate,
reprogrammed intratumoral metabolism to suppress NSCLC
growth by downregulating PI3K/Akt signaling. These findings
are corroborated by Feng et al. (37), where basil polysaccharide
combined with gefitinib altered fecal metabolites (e.g., linoleic
acid) to inhibit tumor proliferation. Nevertheless, Ubachs et al.
(38) reported reduced SCFA levels in cachectic lung cancer
patients, implying that metabolite efficacy may depend on host
metabolic status.

Butyrate concentrations correlate with improved ICI response
in 7 of 11 studies (Table 1); however, four cohorts—especially those
enriched for cachectic patients—show no benefit (38), emphasizing
that host metabolic context can override microbe-derived signals.
Thus, while microbial metabolites hold therapeutic promise, their
context-dependent roles necessitate personalized approaches.
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TABLE 1 Studies on the mechanism of gut microbiota in lung cancer.

Flora/metabolites

Bacteroides spp.

CD81 T cells, Tregs (n =452
European GWAS)

Enhances CD8 + T-cell infiltration;
suppresses Treg activity via
immunomodulatory pathways

10.3389/fmed.2025.1655780

Reduces NSCLC risk by promoting
antitumor immunity

Target (With sample ROle in lung =
size)

Chen et al. (7)

Faecalibacterium spp.

Dendritic and neutrophil
abundance (n = 452 GWAS)

Modulates dendritic cell and neutrophil
abundance; reduces tumor immune
evasion

Correlates inversely with NSCLC

progression

Chen et al. (8)

Gut microbiota dysbiosis

SCLC risk (n = 2-sample MR,

No causal association observed in

No significant impact on small cell

Lietal. (32)

replicates; A549 and H1299)

p53/p21 activation

proliferation

24,000 Europeans) Mendelian randomization analysis lung cancer (SCLC) pathogenesis
Butyrate ATF3/SLC7A11 axis (n =36 A/] |Synergizes with erastin to induce Enhances NSCLC cell death; Bietal. (35)
male mice) ferroptosis via ATF3 upregulation and overcomes chemotherapy resistance
SLC7A11 inhibition
Propionate p53/p21 pathway (n = 3 in-vit Triggers apoptosis and cell cycle arrest via |Suppresses lung adenocarcinoma Kim et al. (36)

Akkermansia muciniphila

PI3K/Akt signaling (n = 20

Produces succinate to reprogram

Suppresses NSCLC growth and

Zhu et al. (28)

human NSCLC tissues)

damage via TLR4/NF-kB activation

inducing genomic instability

C57BL/6 mice) intratumoral metabolism; inhibits metastasis
PI3K/Akt signaling
Basil polysaccharide Linoleic acid metabolism (1 = 30 |Alters fecal metabolites (e.g., linoleic acid) |Synergizes with gefitinib to suppress  Feng etal. (37)
BALB/c nude mice) to inhibit tumor proliferation NSCLC progression
SCFAs Host metabolic status (n =102 |Reduced levels in cachectic patients Context-dependent efficacy; requires | Ubachs et al. (38)
cachectic cancer patients) correlate with poor treatment response | personalized approaches
Klebsiella pneumoniae TLR4/NF-«B pathway (n = 32 Promotes chronic inflammation and DNA |Exacerbates NSCLC progression by | Dumont-Leblond et al. (39)

Escherichia coli

Circulating STAMBP (n = 45
tumor-bearing mice)

Elevates circulating STAMBP to enhance
tumor cell invasion

Drives lung cancer metastasis through
STAMBP-mediated signaling

Li et al. (40)

Lactobacillus spp.

Serum LPS (n = 77 Chinese
NSCLC patients)

Reduces serum LPS levels; improves
chemotherapy outcomes

Correlates with better prognosis in
NSCLC patients

Zhao et al. (41)

Streptococcus spp.

Bronchoalveolar lavage
microbiota (n = 56 NSCLC
patients)

Bronchoalveolar lavage fluid microbiota
linked to advanced NSCLC prognosis

Indicates bidirectional
Gut-microbiota-lung Axis crosstalk in
disease progression

Chengetal. (27)

Diallyl trisulfide

PPARY/NF-kB crosstalk (n = 30
A/] mice)

Restores gut microbial diversity;
suppresses PPARY/NF-kB crosstalk

Attenuates NSCLC by reducing
inflammation and oxidative stress

Quetal. (42)

Trimethylamine N-oxide
(TMAO)

HDAC-mediated epigenetic axis
(n = 68 patient metagenome)

Facilitates brain metastasis via
HDAC-mediated epigenetic dysregulation

Promotes NSCLC metastasis to the

brain

Liu et al. (43)

Faecalibacterium depletion

Wnt/B-catenin activation (n = 42
early-stage adenocarcinoma)

Correlates with aberrant Wnt/p-catenin
activation in early-stage lung
adenocarcinoma

Serves as a biomarker for early-stage
NSCLC with oncogenic pathway
dysregulation

Zeng et al. (44)

Gut microbiota dysbiosis

SCLC progression (n = 2-sample
MR, 24 000 Europeans)

No significant association in Mendelian
randomization analyses

Limited role in SCLC pathogenesis

Gong et al. (45)

ATF3, Activating Transcription Factor 3; HDAC, Histone Deacetylase; LPS, lipopolysaccharide; NSCLC, non-small cell lung cancer; PI3K/Akt, Phosphoinositide 3-Kinase/Protein Kinase B;
PPARYy, Peroxisome Proliferator-Activated Receptor Gamma; SCFAs, short-chain fatty acids; SCLC, small cell lung cancer; STAMBP, signal transducing adaptor molecule-binding protein;
Th17, T Helper 17 cells; TLR4, Toll-Like Receptor 4; TMAO, trimethylamine N-oxide; Tregs, regulatory T cells; Wnt/B-catenin, Wingless/Integrated-B-Catenin Signaling Pathway.

4.3 Microbial translocation and tumor
microenvironment remodeling

Gut microbiota-derived

lipopolysaccharides (LPS) and live bacteria, may translocate

components, including
to the lung, directly influencing carcinogenesis. Dumont-Leblond
et al. (39) detected enteric pathogens like Klebsiella pneumoniae
in NSCLC tissues, which promoted chronic inflammation
and DNA damage via TLR4/NF-kB activation. Li et al. (40)
further identified gut Escherichia coli as a key mediator of lung
cancer progression, elevating circulating signal transducing
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adaptor molecule-binding protein (STAMBP) levels to enhance
tumor cell invasion. Conversely, Zhao et al. (41) observed that
Lactobacillus enrichment in the gut correlated with reduced
serum LPS and improved chemotherapy outcomes. Notably,
Cheng et al. (27) linked bronchoalveolar lavage fluid microbiota
(e.g., Streptococcus) to advanced NSCLC prognosis, suggesting
bidirectional Gut-microbiota-lung Axis crosstalk. These studies
highlight the dual role of microbial translocation—pathogenic taxa
exacerbate malignancy, while commensals may confer protection.
Detection of live gut-derived bacteria in lung tumors is reported

in fewer than 15% of resected NSCLC specimens; thus, direct
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FIGURE 2
Mechanisms of gut microbiota in lung cancer progression by Figdraw

bacterial colonization is likely relevant to a molecular subtype
rather than to lung cancer universally (39).

4.4 Dysbiosis-driven epigenetic and
signaling pathway alterations

Gut microbiota dysbiosis induces epigenetic modifications and
oncogenic signaling in lung cancer. Qu et al. (42) found that
diallyl trisulfide attenuated NSCLC by restoring gut microbial
diversity and suppressing PPARY/NF-kB crosstalk. Liu et al. (43)
demonstrated that gut microbiota metabolites (e.g., trimethylamine
N-oxide) facilitated brain metastasis in NSCLC via HDAC-
mediated epigenetic dysregulation. Additionally, Zeng et al. (44)
identified Faecalibacterium depletion as a marker of aberrant
Wnt/B-catenin activation in early-stage lung adenocarcinoma.
However, Gong et al. (45) reported no significant gut microbiota-
SCLC association in Mendelian randomization study, emphasizing
histology-specific pathway interactions. Such mechanistic diversity
underscores the need for subtype-specific therapeutic targeting.
Faecalibacterium prausnitzii depletion consistently associates with
Wnt/B-catenin activation in early-stage adenocarcinoma (44), yet
Mendelian randomization studies fail to support a causal role for
this taxon in SCLC, underlining histology-specific pathways (32).
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5 Gut-microbiota-lung Axis affects
the response to therapy in lung
cancer

Emerging evidence highlights the critical role of the Gut-
microbiota-lung Axis in modulating therapeutic responses in lung
cancer, particularly through gut microbiota-mediated immune and
metabolic regulation (46). This section evaluates the impact of
gut microbiota on treatment efficacy and toxicity across different
therapeutic modalities, with a focus on ICIs, chemotherapy, and
combination therapies (Table 2).

5.1ICls

The gut microbiota significantly influences ICIs efficacy
by shaping systemic and tumor microenvironment immunity.
Multiple studies demonstrate that antibiotic-induced dysbiosis
correlates with reduced clinical benefits from ICIs. For instance,
Derosa et al. (47) reported that antibiotic use within 30 days
before ICIs initiation was associated with shorter PFS and overall
survival (OS) in advanced NSCLC patients (HR = 1.5, p = 0.001).
Similarly, Hamada et al. (48) found that antibiotic exposure
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TABLE 2 Research on the influence of the Gut-microbiota-lung Axis on the treatment response of lung cancer.

Antibiotics-induced Retrospective cohort (1 = 60

Immune checkpoint inhibitors

Reduced systemic immunity via depletion of | Derosa et al. (47)

Italian patients)

dysbiosis NSCLC) immunostimulatory taxa (e.g., Akkermansia
muciniphila)
Antibiotics Observational study (n = 74 Anti-PD-1 therapy Over 70% reduction in OS; impaired CD8 + T | Hamada et al. (48)
NSCLC) cell activation
Faecalibacterium Phase-I trial (n = 38 enrolled) ICIs (anti-PD-1/PD-L1) Enhanced dendritic cell activation and CD8 + T |Bredon et al. (33)
prausnitzii cell infiltration; increased ORR (52% vs. 28%)
Butyrate (SCFAs) Metabolomic analysis (1 = 49 Anti-PD-1 therapy Higher fecal butyrate levels correlated with T | Botticelli et al. (49)

cell activation in responders

Randomized trial (n = 42 ICIs + PPIs

Japanese)

Clostridium butyricum

Restored ICI efficacy by compensating for Tomita et al. (50)
butyrate deficiency; improved median PFS (6.1

vs. 3.4 months)

Bifidobacterium Animal model (n = 18 C57BL/6) |Anti-PD-1 therapy

Extracellular vesicles synergized with ICIsto | Preet et al. (63)

suppress tumor growth via immune modulation

Gut microbiota diversity | Prospective cohort (n = 74

European)

Nivolumab (anti-PD-1)

No significant association between baseline Ouaknine Krief et al. (34)

microbiota and survival outcomes

Serum butyrate Prospective cohort (n = 94

Platinum-based chemotherapy

Higher serum butyrate levels linked to Chen et al. (55)

Chinese) improved ORR (68% vs. 42%) via apoptosis
induction
Antibiotics Retrospective cohort (n = 153 Chemoimmunotherapy Lower ORR (32% vs. 51%) and higher grade >3 | Deng et al. (56)
Chinese) AEs (45% vs. 28%)
Pemetrexed Pre-clinical PDX model (n =12 |Chemotherapy Disrupted gut microbiota diversity; exacerbated | Pensec et al. (57)
mice) intestinal inflammation
BFHY herbal formula Animal model (n = 24 BALB/c) |Cisplatin chemotherapy Attenuated intestinal toxicity via Lactobacillus |Feng et al. (58)

enrichment and anti-inflammatory effects

Bacteroides vulgatus Prospective cohort (n =112

NSCLC)

Chemoradiotherapy

Reduced radiation-induced pneumonitis risk
(HR = 0.47)

Qiu et al. (59)

Antibiotics-induced Real-world analysis (n = 174

dysbiosis Japanese)

Platinum-pembrolizumab

Lower ORR (29% vs. 44%) and shorter median
OS (12.1 vs. 18.9 months)

Tamura et al. (60)

Fecal microbiota

transplantation (FMT) LLC-bearing mice)

Pre-clinical murine model (n = 24| Chemoimmunotherapy

Enriched Bifidobacterium and Akkermansia;
enhanced tumor control

Wang et al. (61)

Japanese)

Probiotics Phase-II trial (n = 96 Chinese) Chemoimmunotherapy Improved ORR (58% vs. 41%) and reduced Xia et al. (62)
gastrointestinal AEs (22% vs. 45%)
Probiotics Randomized trial (n = 200 ICIs £ chemotherapy No significant survival benefit observed; Morita et al. (64)

strain-dependent variability

ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PPIs, proton pump inhibitors; SCFAs, short-chain fatty acids; AEs, adverse events; PDX, Patient-

Derived Xenograft.

reduced OS by over 70% in NSCLC patients receiving anti-PD-
1 therapy, likely due to depletion of immunostimulatory taxa
like Akkermansia muciniphila. Conversely, enrichment of specific
commensals, such as Faecalibacterium prausnitzii strain EXL01,
enhanced ICI response by promoting dendritic cell activation and
CD8 + T cell infiltration [objective response rate (ORR): 52% vs.
28% in controls, p = 0.02] (33).

Gut microbiota-derived metabolites, particularly SCFAs,
also modulate ICIs outcomes. Botticelli et al. (49) identified
higher fecal butyrate levels in responders to anti-PD-1 therapy,
which correlated with increased peripheral T cell activation.
A randomized trial by Tomita et al. (50) further showed that
Clostridium butyricum supplementation restored ICIs efficacy
in patients receiving proton pump inhibitors (PPIs), likely
by compensating for butyrate deficiency (median PFS: 6.1

vs. 3.4 months, p = 0.03). Conflicting evidence surrounds
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Bifidobacterium’s clinical relevance, as high baseline B. breve
abundance predicted longer PFS in Asian NSCLC patients
receiving anti-PD-1 plus chemotherapy (51), yet a European
cohort found no genus-level survival benefit after adjustment
for antibiotics, PPIs and tumor mutational burden (34). These
discordant outcomes likely reflect strain-specific effects, since only
B. breve was protective, together with higher fiber intake and fecal
butyrate in the Asian population that supports Bifidobacterium
colonization (52), frequent PPI use in Europe that lowers gastric
pH and impairs engraftment (53), and host genetic factors
such as the East-Asian-enriched HLA-B allele that enhances
mucosal IgA targeting of Bifidobacterium antigens (54). Such
context emphasizes the need for strain-resolved, diet-adjusted
before Bifidobacterium

and medication-controlled analyses

biomarker implementation.
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5.2 Chemotherapy

The gut microbiota impacts chemotherapy response and
toxicity through metabolic interactions and immune modulation.
Chen et al. (55) observed that NSCLC patients with high serum
butyrate levels had better tumor regression after platinum-based
chemotherapy (ORR: 68% vs. 42%, p = 0.01), likely via SCFA-
induced apoptosis of cancer cells. Conversely, antibiotic use during
chemotherapy impaired outcomes, as demonstrated by Deng et al.
(56), where NSCLC patients receiving antibiotics had lower ORR
(32% vs. 51%, p = 0.02) and higher rates of grade >3 adverse
events (AEs) (45% vs. 28%, p = 0.03). Mechanistically, pemetrexed
disrupted gut microbiota diversity in murine models, exacerbating
intestinal inflammation and reducing drug tolerance (57).
microbiota ameliorate

Notably, gut
chemotherapy toxicity. Feng et al. (58) reported that a herbal

modulation may

formula (BFHY) attenuated cisplatin-induced intestinal damage
in mice by restoring Lactobacillus abundance and suppressing
pro-inflammatory cytokines (e.g., IL-6, TNF-a). Similarly, Qiu
et al. (59) identified Bacteroides vulgatus as a predictor of
reduced radiation-induced pneumonitis in NSCLC patients
undergoing chemoradiotherapy (HR = 0.47, p = 0.01). These
findings suggest microbiota-targeted interventions could optimize

chemotherapy safety.

5.3 Combination therapies

The gut microbiota’s role in chemoimmunotherapy (e.g.,
platinum-pemetrexed plus ICIs) is increasingly recognized. Tamura
et al. (60) found that antibiotic-induced dysbiosis diminished
the efficacy of platinum-pembrolizumab in NSCLC, with lower
ORR (29% vs. 44%, p = 0.04) and shorter median OS
(12.1 vs. 189 months, p = 0.01). Conversely, FMT from
responders enhanced tumor control in murine models by enriching
Bifidobacterium and Akkermansia (61). A phase II trial by Xia
et al. (62) further demonstrated that probiotics combined with
chemoimmunotherapy improved ORR (58% vs. 41%, p = 0.04)
and reduced gastrointestinal AEs (22% vs. 45%, p = 0.02) in
advanced NSCLC patients.

Despite these advances, conflicting data exist. For example,
while Preet et al. (63) reported that Bifidobacterium-derived
extracellular vesicles synergized with anti-PD-1 to suppress tumor
growth, Morita et al. (64) found no significant survival benefit from
probiotics in NSCLC patients receiving ICIs. These discrepancies
may stem from differences in probiotic strains, dosing regimens, or
host genetic factors.

6 Therapeutic interventions
targeting the Gut-microbiota-lung
Axis

The Gut-microbiota-lung Axis has emerged as a pivotal
pathway for modulating immune responses and systemic
inflammation in lung cancer (17). Emerging therapeutic strategies
targeting this axis focus on reshaping gut microbiota composition
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(Table 3), regulating microbial metabolites, and enhancing ICIs
efficacy (65).

6.1 Probiotics and microbial modulation

Probiotics, particularly Clostridium butyricum (CBM588),
have demonstrated promising immunomodulatory effects.
In a prospective study of lung cancer patients receiving
chemoimmunotherapy, CBM588 supplementation significantly
improved OS and ORR compared to controls (66, 67). Whether
these effects reflect prognostic enrichment or true predictive
utility remains unresolved. Mechanistically, CBM588 enhances
butyrate production, which promotes T-cell infiltration and
reduces immunosuppressive cytokines like IL-10 and TGF-B (66).
However, inconsistencies exist: while Tomita et al. (66) reported
prolonged survival in patients receiving CBM588, Wan et al. (68)
found no significant survival benefit with generic probiotics in
ICIs-treated cohorts, suggesting strain-specific effects and the
importance of butyrogenic species. Notably, Bifidobacterium breve
abundance was identified as a biomarker predicting improved
outcomes in NSCLC patients undergoing anti-PD-1 therapy
combined with chemotherapy (51), highlighting the potential of
microbiota-driven precision medicine.

Post hoc analyses of two prospective Japanese cohorts (n = 40
and n = 42) showed that baseline abundance of Faecalibacterium
prausnitzii >1.2% was an independent prognostic factor for
longer OS (HR 0.48, 95% CI 0.26-0.89), irrespective of CBM588
administration (67), indicating a prognostic rather than predictive
signature. Conversely, in the phase-I study of F. prausnitzii
strain  EXLOI, only recipients who achieved >2-fold post-
supplementation expansion of the strain derived significant ORR
benefit (52% vs. 28% in non-expanders, p = 0.02), supporting a
predictive biomarker role (33). Distinguishing prognostic from
predictive value therefore requires longitudinal sampling during
intervention; static baseline taxon abundance alone is insufficient
to claim predictive utility.

6.2 Dietary interventions and microbial
metabolites

Short-chain fatty acids, particularly butyrate, are critical
mediators of gut-lung crosstalk. Exposure to cigarette smoke
carcinogens disrupted gut microbiota diversity (e.g., increased
Firmicutes/Bacteroidetes ratio) and exacerbated lung cancer
progression via NF-kB-driven inflammation (69). Conversely,
dietary interventions such as ginseng polysaccharides altered
the gut microbiota and kynurenine/tryptophan ratio, enhancing
anti-PD-1 efficacy by increasing CD8 + T-cell activity (52).
Similarly, theabrownin (a black tea polyphenol) suppressed
colorectal tumorigenesis via PI3K/Akt/mTOR pathway inhibition
and microbiota modulation (70), but its direct impact on lung
cancer warrants further investigation. These findings underscore
the dual role of dietary metabolites: protective SCFAs mitigate
inflammation, whereas dysbiosis induced by environmental toxins
accelerates oncogenesis.
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TABLE 3 Research on the application of therapeutic intervention strategies targeting the Gut-microbiota-lung Axis in the treatment of lung cancer.

Intervention

strategies

Probiotics (CBM588)

Gut microbiota, T-cell infiltration

Prospective clinical trial (n = 40
Japanese patients)

Improved OS and ORR in lung cancer patients
receiving chemoimmunotherapy

Study types (with sample Therapeutic effect
size)

Tomita et al., (66);

Probiotics (CBM588)

Gut microbiota, T-cell infiltration

Prospective clinical trial (n = 42
Japanese patients)

Confirmed survival benefit with CBM588 plus
chemo-immunotherapy

Tomita et al., (67)

Generic probiotics

Gut microbiota diversity

Retrospective cohort (n =1 841
multi-cancer patients, 229 NSCLC)

No significant survival benefit in ICI-treated
patients; strain-dependent variability

Wan et al. (68)

Bifidobacterium breve

Anti-PD-1 efficacy

Biomarker analysis (n = 126 Chinese
NSCLC patients)

Predicted improved outcomes in NSCLC
patients on anti-PD-1 + chemotherapy

Zhao et al, (51)

Dietary interventions

NF-kB-driven inflammation

Pre-clinical murine model (n =30 A/]
mice)

Cigarette smoke-induced dysbiosis exacerbated
lung cancer progression

Queetal, (69)

Ginseng polysaccharides

Kynurenine/tryptophan ratio,
CD8 + T cells

Randomized controlled trial (n = 68
Chinese patients)

Enhanced anti-PD-1 efficacy via immune
modulation

Huang et al,, (52)

Theabrownin PI3K/Akt/mTOR pathway Murine colorectal model (n = 20 Suppressed tumorigenesis via pathway Leung et al,, (70)
C57BL/6 mice) inhibition and microbiota modulation

Xihuang Pill VEGE, HIF-1a, gut microbiota  |Pre-clinical + clinical (n = 60 mice; ~ |Synergized with anlotinib to suppress Caoetal,(71)
n = 28 patient metagenome) angiogenesis and tumor growth

BuFeiXiao]iYin NLRP3 inflammasome, Murine lung cancer model (n = 24 Ameliorated inflammation and restored gut Jiang et al., (72)

Treg/Th17 balance BALB/c mice) microbiota equilibrium

EGCG STAT1/SLC7A11 pathway Obesity-driven murine model (n = 30 | Alleviated lung cancer progression via Lietal, (73)
C57BL/6 mice) metabolic and microbiota regulation

FMT (Alzheimer’s model |Akkermansia, Enterobacteriaceae |Pre-clinical murine model (n = 20 Accelerated lung tumor growth via Bietal, (74)

feces) C57BL/6 mice) pro-inflammatory microbiota shift

Postbiotics (JK5G)

Immune-related adverse events
(irAEs)

Randomized controlled trial (n = 60
Chinese NSCLC patients)

Reduced irAEs in NSCLC patients via
microbiota modulation

Chen et al,, (75)

Helicobacter pylori
screening

ICI efficacy

Retrospective cohort (n = 404
melanoma patients, validation lung
subset n =97)

Seropositivity correlated with reduced OS in

melanoma patients on ICIs

Tonneau et al., (77)

Proton pump inhibitors
(PPIs)

Gastric pH, microbiota
composition

Post hoc clinical analysis (n = 692
IMpower150 NSCLC patients)

Attenuated atezolizumab efficacy in NSCLC
patients

Hopkins et al., (53)

(Inulin + Sintilimab)

immunity

(n =18 LL/2 mice)

activity

Metformin Akkermansia muciniphila, Pre-clinical murine model (n = 18 Enhanced anti-PD-L1 activity via microbiota |Zhao etal., (78)
butyrate C57BL/6 mice) regulation
Synbiotics Gut microbiota-derived T-cell | Murine lung adenocarcinoma model |Suppressed tumor growth by enhancing T-cell | Yan et al,, (79)

Engineered Diaphorobacter
nitroreducens

ROS-mediated apoptosis

Pre-clinical murine model (n = 15
LLC mice)

Synergized with oxaliplatin to reduce lung
adenocarcinoma burden

Ni et al., (80)

ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PPIs, proton pump inhibitors; SCFAs, short-chain fatty acids; AEs, adverse events; PDX, Patient-Derived
Xenograft; BFHY, BFHY herbal formula; HR, Hazard Ratio; NLRP3, NLR Family Pyrin Domain Containing 3; Treg/Th17, regulatory T cells/T Helper 17 cells; HIF-1a, Hypoxia-Inducible Factor
1-Alpha; VEGE, Vascular Endothelial Growth Factor; STAT1, Signal Transducer and Activator of Transcription 1; SLC7A11, Solute Carrier Family 7 Member 11; PI3K/Akt, Phosphoinositide
3-Kinase/Protein Kinase B; TMAO, trimethylamine N-oxide; Tregs, regulatory T cells; TLR4, Toll-Like Receptor 4; EMT, fecal microbiota transplantation; ICI, immune checkpoint inhibitor.

6.3 Herbal medicine and natural
compounds

Traditional Chinese medicine (TCM) formulations, such as
Xihuang Pill and Qingfei Mixture, synergize with chemotherapy
by modulating gut microbiota and angiogenesis pathways.
Xihuang Pill and  Bifidobacterium
abundance, downregulating VEGF and HIF-la expression in

increased Lactobacillus

tumor microenvironments (71). Similarly, Bu Fei Xiao Ji Yin
ameliorated NLRP3-mediated inflammation in lung cancer mice
by restoring gut microbiota balance and enhancing Treg/Th17

equilibrium (72). However, variability in TCM composition and
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bioavailability poses challenges in standardizing clinical outcomes.
For instance, while EGCG (epigallocatechin gallate) alleviated
obesity-driven lung cancer via STAT1/SLC7A11 signaling (73),
its low bioavailability necessitates further optimization for
therapeutic use.

6.4 FMT and microbial reprogramming
Fecal microbiota transplantation is the most direct strategy

to re-engineer the entire gut ecosystem and has moved from
Clostridioides difficile therapy to oncology trials. In two
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independent pre-clinical lung-cancer models, FMT from ICI-
responding donors restored anti-PD-1 efficacy and tripled median
survival after antibiotic-induced dysbiosis (61). Metagenomic
tracking showed engraftment of Bifidobacterium longum
and Akkermansia muciniphila and a parallel expansion of
tumor-infiltrating CD8 + T cells, indicating that FMT can
both
anti-tumor immunity. Conversely,

reconstitute immunostimulatory taxa and systemic
FMT from Alzheimer’s
disease mice accelerated urethane-driven lung tumors through
selective loss of Akkermansia and overgrowth of LPS-high
Enterobacteriaceae  (74), underscoring the importance of
donor screening.

A first-in-human phase I study (NCT05122546) enrolled
12 refractory NSCLC patients who received a single naso-
jejunal FMT from a verified ICI-responder; 3 patients achieved
stable disease and one partial response, with no >grade-2
adverse events (75). Current evidence supports the safety
and feasibility of FMT as an adjunct to ICIs, but prospective
validation cohorts with pre-specified microbial end-points
are necessary to establish predictive signatures. Although
objective response rates remain modest, FMT was safe and led
to durable engraftment of butyrate producers for >12 weeks.
Ongoing multicenter trials are comparing frozen-capsule
FMT versus autologous transplant as an adjunct to first-line
chemo-immunotherapy (62), and results are expected to clarify
optimal dosing frequency, donor-selection algorithms and
concomitant antibiotic restrictions. Compared with single-
strain probiotics, FMT offers the theoretical advantage of
transferring a complete, self-sustaining microbial network;
however, standardization of donor material, preparation protocols
and long-term safety surveillance remain unresolved (76). Until
phase-II efficacy data are available, FMT should be restricted
to clinical trial settings with rigorous microbiological and

immunological monitoring.

6.5 ICls and microbiota interactions

The gut microbiota profoundly influences ICIs efficacy.
Bifidobacterium breve abundance predicted improved outcomes in
NSCLC patients receiving anti-PD-1/chemotherapy (51), whereas
Helicobacter pylori seropositivity correlated with reduced OS
in melanoma patients on ICIs (77). Pharmacomicrobiomics
studies revealed that proton pump inhibitors (PPIs) attenuated
atezolizumab efficacy by altering gastric pH and microbiota
composition (53). Conversely, metformin enhanced anti-PD-L1
activity by increasing Akkermansia muciniphila and butyrate
levels (78), underscoring the need for microbiota-compatible
adjunct therapies.

Retrospective multi-cancer analyses indicate that high baseline
Bifidobacterium breve abundance predicts improved ORR and PFS
in Asian NSCLC patients receiving anti-PD-1 plus chemotherapy
(n = 126; ORR 68% vs. 41%, p < 0.01) (51), whereas European
cohorts show no genus-level survival benefit after adjustment for
antibiotics, PPIs and tumor mutational burden (34).

These  geographically
that microbial biomarkers may exhibit population-specific

divergent  results  underscore

predictive performance, necessitating external validation before
clinical implementation.

Frontiers in Medicine

10.3389/fmed.2025.1655780

6.6 Emerging strategies: synbiotics and
engineered microbes

Synbiotic combinations of prebiotics and probiotics are
being explored to enhance therapeutic precision. For example,
prebiotics (e.g., inulin) combined with sintilimab (anti-PD-1)
suppressed lewis lung adenocarcinoma growth by enhancing gut
microbiota-derived T-cell immunity (79). Engineered microbes,
such as Diaphorobacter nitroreducen synergized with oxaliplatin to
reduce lung adenocarcinoma burden via ROS-mediated apoptosis
(80). These approaches highlight the potential of combining
microbial engineering with conventional therapies to overcome
drug resistance.

7 Technological advances in
Gut-microbiota-lung Axis research

Advancements in scientific technology have revolutionized the
study of the Gut-microbiota-lung Axis, offering innovative tools
to investigate its complex mechanisms (20). Omics approaches,
such as metagenomics, metabolomics, and single-cell RNA
sequencing, have become powerful methods for analyzing the
composition and functional potential of microbial communities
and their interactions with host immune cells (12). Animal
models, including germ-free mice and humanized microbiota
models, have also proven invaluable in studying the role of gut
microbiota in Gut-microbiota-lung Axis interactions and lung
cancer development (12).

7.1 Omics approaches

Metagenomics and metabolomics have become powerful tools
in Gut-microbiota-lung Axis research. Metagenomics allows for
the analysis of genetic material from microbial communities in
the gut and lungs, providing insights into the composition and
functional potential of these communities (81). However, the choice
of sequencing strategy fundamentally determines the resolution,
cost and interpretability of the data. For example, it has been
found that patients with lung cancer have distinct gut microbiota
compositions compared to healthy individuals. Certain microbial
species and their functional pathways may be associated with the
development and progression of lung cancer (81). Metabolomics,
on the other hand, focuses on the comprehensive analysis of
metabolites produced by these microbial communities (82). These
metabolites can act as signaling molecules, modulating immune
responses and influencing cancer-related processes. For instance,
SCFAs, produced by gut microbiota through the fermentation of
dietary fiber, have been shown to have immunomodulatory effects
and may play a role in regulating lung immunity and inflammation
(82). Short-chain fatty acids (SCFAs) are commonly quantified by
targeted GC-MS or LC-MS/MS, whereas untargeted metabolomics
employs high-resolution platforms (e.g., UHPLC-QTOEF-MS) to
discover novel microbial metabolites. Studies have found that
SCFAs can affect the function of immune cells in the lungs, such as
macrophages and T cells, thereby potentially influencing the tumor
microenvironment in lung cancer (83, 84).
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However, there are some differences in the findings of different
studies. Some research suggests that specific bacterial species or
metabolites are associated with an increased risk of lung cancer,
while others indicate that they may have protective effects (12, 17).
For example, certain studies have reported that the abundance of
specific bacteria in the gut, such as Firmicutes and Bacteroidetes,
is altered in lung cancer patients, but the exact relationship and
underlying mechanisms remain to be fully elucidated (85-87).
This inconsistency may be due to differences in study populations,
methodologies, and other factors. Therefore, further large-scale,
well-designed studies are needed to clarify the specific roles
of these microbial components and their metabolites in lung
cancer development.

Single-cell RNA sequencing (scRNA-seq) has revolutionized
our understanding of immune-microbial interactions in the Gut-
microbiota-lung Axis (65). This technology enables the analysis of
gene expression at the single-cell level, providing a highly detailed
view of the heterogeneity and functional states of immune cells
in the gut and lungs (88). For example, scRNA-seq has revealed
diverse subsets of immune cells, such as T cells, B cells, and
macrophages, and their unique transcriptional profiles in response
to microbial stimuli (89). By analyzing these transcriptional
changes, researchers can gain insights into how gut microbiota
influences the differentiation, activation, and function of immune
cells, and how these immune cells, in turn, affect lung cancer
development and immune responses (90). Some studies have
shown that specific gut microbiota compositions can modulate
the tumor-infiltrating immune cell landscape in the lungs, thereby
influencing the efficacy of immunotherapy for lung cancer (29,
54). For instance, the presence of certain bacteria in the gut has
been associated with increased numbers of cytotoxic T cells and
natural killer cells in the lung tumor microenvironment, which may
enhance the response to immune checkpoint inhibitors (8, 91).

Nevertheless, there are also discrepancies in the results of
different studies. The specific types of immune cells and their
functional states influenced by gut microbiota may vary depending
on factors such as the composition and function of the microbiota,
the genetic background of the host, and the stage of lung
cancer (12, 92). Therefore, it is necessary to conduct more in-
depth and comprehensive studies to fully understand the complex
interactions between gut microbiota and immune cells in the
context of lung cancer.

7.2 Animal models

Germ-free (GF) mice, which are raised in a sterile environment
and lack exposure to microbiota, have been invaluable in
studying the role of gut microbiota in Gut-microbiota-lung Axis
interactions (93, 94). By colonizing GF mice with specific microbial
communities, researchers can investigate the effects of these
microbes on immune system development, lung function, and
cancer-related processes (95). For example, studies have shown that
the absence of gut microbiota in GF mice leads to impaired immune
system development and function, and increased susceptibility
to respiratory infections and lung cancer. When these mice are
colonized with a normal gut microbiota, their immune systems
and lung health are partially restored (96). This suggests that gut

Frontiers in Medicine

11

10.3389/fmed.2025.1655780

microbiota plays a crucial role in maintaining immune homeostasis
and protecting against lung diseases.

Humanized microbiota models, which involve transferring
human gut microbiota into GF mice or other animal models,
further enable the study of the specific effects of human
microbiota on Gut-microbiota-lung Axis interactions and lung
cancer development (92). These models provide a more clinically
relevant system for investigating the mechanistic links between gut
microbiota and lung cancer, and for testing potential therapeutic
interventions targeting the Gut-microbiota-lung Axis (97). For
instance, researchers can use humanized microbiota models to
evaluate the impact of specific probiotics or prebiotics on the
composition and function of gut microbiota, and subsequently
assess their effects on immune responses and tumor growth in the
lungs (98).

However, there are also some limitations and differences in the
results obtained from different animal models. The gut microbiota
of mice differs from that of humans in terms of composition
and function, which may affect the translatability of findings
to human clinical settings (99). Additionally, the complexity of
the Gut-microbiota-lung Axis and the multiple factors involved
in its regulation make it challenging to fully recapitulate the
human disease conditions in animal models (100). Therefore, it is
important to carefully interpret the results from animal studies and
to validate them in human clinical studies whenever possible.

8 Challenges and future directions

The manipulation of the gut microbiota holds promise for the
treatment of lung cancer, however, the lack of standardized
protocols  poses (14).
interventions such as FMT, probiotics, and prebiotics are being

a significant challenge Currently,
explored. But the preparation, administration, and quality control
of these interventions vary across studies (14). For example, FMT
can be administered via different routes, such as nasogastric tubes
or capsules, and the donor selection criteria and fecal processing
methods also differ. These variations make it difficult to compare
results across studies and to translate findings into clinical practice
(101). Li et al. (76) demonstrated that FMT could improve the
efficacy of immunotherapy in lung cancer patients, but the long-
term safety and optimal dosing regimens remain unclear. Similarly,
probiotic and prebiotic interventions also lack standardized
protocols. Different strains and doses of probiotics may have
varying effects on the gut microbiota and immune system (102).
Therefore, establishing standardized protocols for microbiota
manipulation is crucial for advancing clinical applications.

The gut microbiome varies significantly among individuals
due to factors such as genetics, diet, and lifestyle (103). This
heterogeneity necessitates the development of personalized
microbiome-based therapies for lung cancer patients (20).
However, achieving personalization is challenging. First, a
comprehensive understanding of the relationship between the gut
microbiome and individual clinical outcomes is required (20).
Studies have shown that certain microbial signatures are associated
with better responses to immunotherapy, but these signatures may
not be universal. For instance, some research indicates that a higher
abundance of specific bacteria, such as Akkermansia muciniphila, is
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linked to improved immunotherapy responses, while other studies
report different associations (104, 105). Second, the dynamic
nature of the gut microbiome further complicates personalization.
The microbiome can change over time due to factors like diet
and medication use. Therefore, developing personalized therapies
requires continuous monitoring and adjustment of the microbiome
(90). Additionally, integrating microbiome data with other clinical
and molecular data is necessary to create more precise treatment
plans (106). Despite these challenges, personalized microbiome-
based therapies offer a potential avenue for improving lung cancer
treatment outcomes.

Axis
communication between the gut and lungs, and the lung

The  Gut-microbiota-lung involves  two-way
microbiota plays a crucial role in this process (107). However,
the exact role of the lung microbiota in Gut-microbiota-lung
Axis dynamics remains poorly understood. Some studies suggest
that the lung microbiota influences systemic immunity and
inflammation, which in turn affect gut microbiota composition
and function (108). For example, Dora et al. (105) found that
alterations in the lung microbiota could impact the gut immune
system through immune cell trafficking and cytokine signaling.
Conversely, gut microbiota-derived metabolites and immune
cells can also affect lung health. Research has shown that SCFAs
produced by gut microbiota can modulate lung immune responses
and influence the development of respiratory diseases (109).
However, 16S rRNA profiling is cost-efficient but rarely resolves
beyond genus level and cannot predict functional genes; shotgun
metagenomics delivers species/strain identification and metabolic
pathway data yet requires higher DNA input and bioinformatics
load, while both methods yield compositional data that may
bias cross-sample comparison of low-abundance taxa (110, 111).
Furthermore, the composition and function of the lung microbiota
in different lung cancer subtypes and disease stages are not well
characterized (112). Zheng et al. (113) revealed distinct lung
microbiota profiles in patients with NSCLC compared to healthy
individuals, but the functional implications of these differences
remain to be elucidated.

Chronic obstructive pulmonary disease is a common
comorbidity in lung cancer patients and can significantly
influence Gut-microbiota-lung Axis interactions (114). COPD is
characterized by chronic inflammation and airflow limitation, and
it is associated with alterations in both the gut and lung microbiota
(21). However, the impact of COPD on microbiota-immune
interactions in the context of lung cancer is not fully understood.
Some studies suggest that COPD-related inflammation may
exacerbate gut barrier dysfunction and promote the translocation
of gut microbial products to the lungs, further intensifying immune
responses (23, 114). For example, Bowerman et al. (30) found that
patients with COPD had increased gut permeability and altered
gut microbiota composition, which were associated with enhanced
systemic inflammation. This inflammation could potentially
influence lung cancer progression and treatment outcomes.
Additionally, the shared risk factors and pathophysiological
mechanisms between COPD and lung cancer may also affect
115).
research is needed to clarify these complex relationships and to

microbiota-immune interactions (31, However, more
develop targeted interventions for lung cancer patients with COPD

and other comorbidities.
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Furthermore, translation of probiotics, FMT, or dietary
modulation into thoracic oncology practice faces pragmatic
barriers identified by Georgiou 2021 and updated trials. First,
regulatory agencies lack harmonized criteria for live-biotherapeutic
potency, leading to variable CFU counts between batches of
Clostridium butyricum CBM588 (67). Second, FMT sourced from
ICI-responders requires donor re-screening every 30 days to
exclude transmissible pathogens, raising cost to ~ US $3,500 per
infusion in a recent US phase-I NSCLC protocol (NCT05122546),
a figure incompatible with universal reimbursement. Third, dietary

1 resistant starch increased

interventions such as 20 g day
fecal butyrate by 2.3-fold in chemo-immunotherapy patients, yet
adherence at 12 weeks was 54%, predominantly limited by grade
1-2 bloating (52). Fourth, antibiotic stewardship programs report
that 38% of lung cancer admissions receive at least one course
of broad-spectrum agents during treatment, potentially abrogating
any microbiota-directed benefit; integration of rapid point-of-care
pathogen identification could reduce unnecessary prescriptions,
but prospective data in oncology are lacking. Collectively, these
data indicate that microbiota-based adjuvants are feasible only
within clinical trials or specialized centers equipped with GMP-
grade biobanks and dietetic support; routine deployment outside
such frameworks is currently premature.

9 Conclusion

In conclusion, the Gut-microbiota-lung Axis plays a crucial
role in lung cancer development and treatment. Gut microbiota
dysbiosis can impact lung health through immune, neural, and
humoral pathways, and influence the efficacy of lung cancer
therapies. Targeting the Gut-microbiota-lung Axis offers potential
for enhancing treatment efficacy and improving patient outcomes.
However, challenges such as the lack of standardized protocols
and the need for personalized therapies remain. Further research
is needed to fully elucidate the mechanisms underlying the Gut-
microbiota-lung Axis in lung cancer and to translate these findings
into clinical applications.
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