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Introduction: Classifying gastrointestinal (GI) polyps detected in colonoscopy
images is a critical task in colorectal cancer prevention. Given the diagnostic
ambiguity of serrated polyps, which share morphological features with both
hyperplastic and adenomatous lesions, this study focuses on multiclass
classification using machine learning (ML) techniques. Multiclass Logistic
Regression (LR), a model favored by clinicians for its interpretability, was initially
optimized and evaluated.
Methods: A structured dataset comprising 152 instances and 698 extracted
features was used. We conducted a statistical analysis of 88 LR configurations,
varying solvers, penalties, and regularization strengths. To improve classification
performance, four additional ML algorithms were implemented: k-Nearest
Neighbors (kNN), Support Vector Machine (SVM), Random Forest (RF), and
XGBoost. For each classifier, parameter tuning was applied using grid search and
stratified cross-validation.
Results: The best-performing LR model (liblinear solver, L1 penalty, C = 0.01)
achieved an accuracy of 70.39%, outperforming physician benchmarks (experts:
65.00%, beginners: 58.42%). In the multiclass setting, XGBoost achieved the
highest macro-average F1-score (0.88) and overall accuracy (89.34%), followed
by Random Forest (F1 = 0.85, accuracy = 86.05%), SVM (F1 = 0.83, accuracy =
84.21%), and kNN (F1 = 0.56, accuracy = 66.38%).
Discussion: While LR remains valuable for its interpretability, ensemble methods
such as XGBoost and Random Forest demonstrated superior performance and
robustness. These findings support the integration of advanced ML models into
clinical decision support systems, particularly in low-data scenarios where deep
learning may be impractical.
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GRAPHICAL ABSTRACT

Overview of the machine learning pipeline for colorectal polyp classification.

1 Introduction

A colonoscopy involves a series of steps, starting with bowel
preparation, wherein patients consume a specific solution to
cleanse the bowel, ensuring optimal conditions for the procedure.
Subsequently, a colonoscope equipped with light and a camera is
inserted into the rectum for examination (1–4).

Regardless of colonoscopy’s efficacy as the main screening
technique for colon cancer, its limitations are apparent due to a high
percentage of atypical malignancies and undiagnosed precancerous
lesions, which suggests that more research is necessary (5, 6).
Adenocarcinoma is the most common subtype of colorectal cancer,
making up over 90% of all cases. Colorectal cancer can spread to
both colon and rectal cancer (7).

Colorectal polyp detection models typically aim for one of
three objectives: polyp segmentation (8, 9), detection (10, 11),
or classification (12). Some models are trained to fulfill multiple
objectives concurrently, such as detecting or segmenting polyps
followed by classification (13). Detection models learn to localize
polyps in images by processing training images alongside their
labels, which typically include bounding box coordinates and polyp
presence indicators. Segmentation models, conversely, are trained
to outline polyps in colonoscopy images using the corresponding

image masks as labels (14). Lastly, classification methods identify
polyps without determining their location.

Feature extraction is a fundamental step of image analysis,
especially in the field of medical imaging (15), where accurate
diagnosis and treatment depend to a large extent on the
interpretation of visual data. Gastroenterological studies, in
particular, necessitate complex feature extraction techniques due to
the complex nature of gastrointestinal pathologies (16). This study
examines feature extraction techniques designed specifically for the
analysis of gastroenterological images, including the examination
of 2D texture, 2D color, and 3D shape features.

Classification of complex lesions in real time (6, 17) presents
a challenge due to the slight distinctions between benign and
malignant lesions. Colonoscopies currently utilize two main
imaging techniques: Narrow Band Imaging (NBI) and conventional
White-Light (WL) high-resolution endoscopy (18, 19). NBI,
employing green and blue wavelengths, enhances visualization by
highlighting blood vessels, aiding in lesion characterization. WL
endoscopy evaluates polyps on the basis of their appearance under
white light, sequentially predicting histology.

During colonoscopies, physicians capture images of tumor
masses known as polyps, which necessitate accurate classification
as either benign or malignant to guide appropriate treatment
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decisions. Various classification systems with some limitations
such as Kudo (20), Sano (21), and Paris (22) are employed
for this purpose. However, the reproducibility of data among
endoscopies remains a challenge, particularly with the Paris
classification system.

Tian et al. (11) explore the use of a Deep Neural Network
for detecting, localizing, and classifying polyps in videos obtained
during colonoscopies. The proposed model utilizes a flexible
endoscope to capture video images of the colon, which are then
automatically analyzed to identify potential anomalies, such as
polyps, which are precursors to colorectal cancer. It is based on
Convolutional Neural Network (CNN) architecture and includes
a two-stage method for detecting and classifying polyps, using
the Softmax function to determine whether a region in the image
belongs to a polyp or non-polyp category. The model’s performance
is evaluated using metrics like ROC AUC, which helps assess its
ability to distinguish between classes.

Qinwen et al. (23) focus on the creation and assessment of
various ML models to predict colorectal polyps based on electronic
health records. It concludes that ML models, particularly AdaBoost,
offer a non-invasive and cost-effective strategy for predicting
colorectal polyps, guiding screening and treatment decisions.

Kim et al. (1) uses a range of annotated colonoscopy datasets
to train AI models, focusing on the clinical relevance of data from
actual colon and rectal surgical procedures. Image features include
color, texture, and edge-based characteristics for distinguishing
polyps from other GI structures.

Tasdemir et al. (24) use both a custom dataset and the
UniToPatho dataset, which include histopathological images
labeled by expert pathologists. Key features extracted include
contrastive representations that enhance the model’s ability to
distinguish between adenomatous, tubular, and tubulovillous
polyps. The authors employ Supervised Contrastive Learning
combined with the Big Transfer (BiT) model, which leverages
pretrained CNNs to improve classification, especially in cases with
limited labeled data. Achieving classification accuracies of 87.1
and 70.3% on the custom and UniToPatho datasets, respectively,
the model outperforms traditional CNNs by leveraging in-class
and out-of-class image distinctions, providing more reliable polyp
subtype classification.

Hmoud et al. (25) utilizing the Kvasir dataset, which includes
5,000 images across five GI disease categories, including polyps;
provides a robust dataset for lower GI disease classification.
The study focuses on deep color, texture, and shape features
that are essential for accurate classification within the CNN
architecture. The research applies pretrained CNN models,
including GoogleNet, ResNet-50, and AlexNet, with transfer
learning to adapt the models to polyp detection. Image
augmentation is used to enhance the training process. The
pretrained CNNs achieve high accuracy, with AlexNet reaching
97%, demonstrating the effectiveness of CNNs in GI disease
classification and underscoring their potential to match or exceed
physician diagnostic performance.

In Cincar and Sima (26), four ML algorithms were applied:
Support Vector Machine (SVM), Random Forest (RF), Random
Subspaces (RS) and Extra Trees (ET), of which RF performed best.

Model fit is an important subject that must be studied in
rigorous research based on ML, which is the case of mLR

hyperparameter tuning, a difficult task. In this research, we studied
the state-of-the-art LR algorithm most frequently applyed by
medical researchers to determine the best-fitted hyperparameter
tuning for the problem of GI polyp image classification in
adenomas, serrated and hyperplastic which is difficult even for
physicians. It must be noticed that serrated are difficult to define,
since they reveal features of both hyperplastic and adenoma; based
on this fact, they are difficult to identify accurately even by expert
physicians (27). Serrated lesions can cause 8%–15% of all colorectal
malignancies. We chose to experiment on a well-known dataset,
with easy access through a web interface, taken from Mesejo et al.
(12).

This research used a benchmark dataset of colorectal
polyps comprising 152 instances, corresponding to 76 polyps
annotated with three lesion types: hyperplastic, serrated, and
adenoma. A total of 698 individually made features were extracted
from image-level data, including morphological, textural, and
intensity-based descriptors. These features served as input
for a series of ML classifiers, rather than applying models
directly to raw images. Both multiclass and binary methods
were used to address the classification task. In addition to
Multiclass Logistic Regression (mLR), four state-of-the-art
algorithms were implemented and evaluated: Random Forest,
k-Nearest Neighbors (kNN), Support Vector Machine (SVM),
and eXtreme Gradient Boosting (XGBoost). The comparative
analysis focused on macro-average F1-score, lesion-specific metrics
as benchmarks.

The contributions are the follows:

1. Conducted an extensive evaluation of mLR, including the
optimisation of 88 parameter configurations varying solvers,
penalties, regularization and a comparative analysis against
physician expert and beginner performance on colorectal
polyp classification.

2. Proposed a decision rule to guide model selection based on
lesion-specific performance, enabling transparent comparison
between mLR and other state-of-the-art classifiers.

3. Implemented and benchmarked five ML algorithms, mLR, kNN,
SVM, Random Forest, and XGBoost, for the classification of
colorectal polyps into three lesion types: hyperplastic, serrated,
and adenoma, using a reference dataset of 152 instances and 698
extracted features.

4. Our comparative analysis demonstrated that ensemble methods,
particularly XGBoost (macro-average F1-score = 0.88, accuracy
= 89%), outperform both traditional classifiers and previously
published models such as the Random Forest approach of
Mesejo et al. (12, 26).

5. We provide a reproducible evaluation framework that integrates
multiclass and binary classification metrics, enabling fair
comparison across models and lesion types, and supporting
future benchmarking efforts in medical image-based polyp
classification.

The subsequent sections of the paper are structured as follows.
Section 2 presents the dataset, multiclass logistic regression and
performance metrics used in this work, conducted in the GI
polyps classification from colonoscopy images and the proposed
methodology employed in this study. In Section 3, the results of
experimental investigations are presented, comparing the methods
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of physicians with levels of experience. Sections 4 and 5 presents the
discussions, conclusions and future work.

2 Materials and methods

2.1 Colonoscopy dataset

The trustful, accurate colonoscopy dataset is a complex video
and picture dataset of 76 polyps, that was introduced in Mesejo
et al. (12). The dataset consists of 152 brief colonoscopy videos
and 152 photos (768 × 576 pixels) and 698 features extracted from
every photo.

The polyps in this dataset are divided into three categories: 21
hyperplastic, 40 adenoma, and 15 serrated lesions. As part of their
everyday protocol, the physicians captured two pictures during
colonoscopies using WL and NBI, respectively, for every polyp,
they obtained one WL image and one NBI image, resulting in 42
images for hyperplastic, 80 images for adenoma, and 30 for serrated
ones. Mesejo et al. (12) extracted 698 features from each image
as follows: Amplitude Histogram of Texture (AHT)—166 features;
Local Binary Patterns (LBP)—256 features; Color Naming—
16 features; Discriminative Color—13 features; Hue—7 features;
Opponent—7 features; Color Gray-Level Co-occurrence Matrix
(GLCM)—33 features; Surface Signatures with Shape-DNA—100
features; 3D Cloud Signatures with Kernel-Principal Component
Analysis (PCA)—100 features. The beginner and expert opinions
are only based on endoscopic image data without knowing any
other clinical information, meaning that the medical physicians
were tested similarly with the same data as the ML algorithms.
Figure 1 illustrate example images for each polyp type, providing
a visual understanding of their unique structural characteristics.

In Figure 1, the three columns illustrate example images for
each polyp type, providing a visual understanding of their unique
structural characteristics.

• Adenoma polyps type, shown in the leftmost image, represents
polyps with a higher likelihood of developing into cancer,
making them crucial targets in colonoscopy screenings.
This study included 40 adenoma instances, highlighting the
prominence of this polyp type in the dataset.

• Hyperplastic polyps. The image shows hyperplastic polyps,
which are generally considered benign and have a lower risk of
malignancy. There are 21 instances of this type in the dataset,
providing sufficient samples for evaluating the model’s ability
to distinguish it from the other types.

• Serrated polyps shown in the rightmost image, serrated polyps
are unique because they have a mix of features seen in both
adenoma and hyperplastic polyps, making them particularly
challenging to classify. With 15 instances in the dataset,
serrated polyps are known to be more difficult for both ML
models and physicians to identify accurately due to their
ambiguous characteristics.

Each type is labeled with its corresponding sample size, totaling
76 polyps across the three categories. This figure was included
to clarify the diversity and complexity of the polyp types being
analyzed in the study.

2.2 Feature extraction

For every image, a rich dataset of 698 features, including 2D
texture, 2D color, and 3D shape descriptors, are obtained, providing
a gastroenterological image characterization.

2.2.1 2D texture features
Gastroenterological images frequently have complicated

textural differences that provide key diagnostic information.
Invariant Gabor Texture Descriptors (AHT) (28) and Invariant
Local Binary Patterns (ILBP) (13) can capture accurate
texture differences. AHT, based on Gabor filters, improves in
storing texture information, uncompromised by illumination,
rotation, or scaling changes. In contrast, ILBP gives binary
representations of texture patterns, allowing texture analysis in a
shorter time.

2.2.2 2D color features
Color information in gastroenterological images can provide a

helpful understanding of tissue features and anomalies. Hue and
Opponent histograms (29), coupled with Color Gray-Level Co-
occurrence Matrix (Color GLCM), Discriminative Color (30) and
Color Naming (31), create a full collection of color characteristics.
These descriptors accurately capture color variations, semantic
color distributions, and discriminative color features, allowing for
an exact definition of GI lesions and tissues.

2.2.3 3D shape features
The three-dimensional shape of GI polyps has important

diagnostic implications. 3D reconstruction utilizing Structure from
Motion (SfM) (32) approaches enables faster retrieval from data.
Shape DNA (33) and Kernel PCA (34) are effective techniques
for representing polyp surface signatures and spatial architecture.
These descriptors allow the characterization of non-rigid structures
while also making use of the confusing spatial connections found
in gastroenterological images. The first row contains the video
name and the second row is the ground truth, the real diagnosis
of hyperplastic, Serrated and Adenoma, does not depend on the
physicians assumptions based on images. The features extracted are
the following (12):

• Amplitude Histogram of Texture (AHT)—166 features. This
texture descriptor captures information about the distribution
of amplitudes in images.

• Local binary patterns (LBP)—256 features. This texture
descriptor measures the local distribution of binary patterns
in an image.

• Color naming—16 features. These represent descriptions of
colors in images, classified into a predefined set of color names.

• Discriminative color—13 features. This descriptor captures
information about dominant and discriminative colors
in images.

• Hue—7 features. These are characteristics describing the
predominant color hues in the image.
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FIGURE 1

Example of gastrointestinal (GI) polyps types.

• Opponent—7 features. This descriptor refers to the
representation of colors in an opponent color space.

• Color gray-level co-occurrence matrix (GLCM)—33 features.
This is a descriptor that analyzes the distribution of textures
and contrasts in images.

• Surface signatures with shape-DNA—100 features. This
descriptor refers to the representation of object shapes in
images using a DNA-based model.

• 3D Cloud Signatures with Kernel-Principal Component
Analysis (PCA)—100 features. This is a descriptor that
performs a principal component analysis on a dataset in an
implicitly defined feature space generated by a kernel.

• Within the output file, the first row contains the movie
name associated with the image, and the second row contains
the ground truth value associated with the image. This
information can be useful in evaluating the performance of the
models or algorithms used in the work.

• By using this output file, we have access to a detailed and
multidimensional representation of the images, which can be
used in various image analysis and recognition applications.

2.3 Methods related to LR all the aspects

LR is a supervised ML algorithm, used for binary or multiclass
classification. mLR is a generalization of binary logistic regression
that models the probability of each class using a softmax function.
It is widely used in clinical research due to its interpretability and
simplicity (35). The probability of a particular outcome is modeled
using the logistic function, which takes the following form (36, 37):

p(X) = eβ0+β1X

1+eβ0+β1X (1)

where p(X) denotes the probability that the dependent variable
is equal to 1, given the value of the independent variable X.
β0 is the intercept, representing the predicted log-odds of the
outcome when X = 0. β1 quantifies the effect of the independent
variable X on the log-odds of the outcome. e refers to the base
of the natural logarithm, ensuring that the function’s output is
constrained between 0 and 1. Through some manipulation of
Equation 1, we find:

p(X)
1−p(X) = eβ0+β1X (2)

where p(X)
1−p(X) , known as the odds, represents the ratio of the

probability of an event occurring to the probability of it not
occurring. While probability p(X) ranges between 0 and 1, odds
range between 0 and ∞. Odds close to 0 indicate a low probability,
whereas odds approaching ∞ indicate a high probability. Odds
and probability values are nearly the same for rare (unusual)
occurrences when P(X) is very small, because 1 − P(X) ≈ 1.

The left side of Equation 2, or the log odds, is obtained by taking
the logarithm of both sides. A linear logit is created through the LR
model in X.

log
(

p(X)
1−p(X)

)
= β0 + β1X (3)

Specifically, the output, ranging from 0 to 1, can be interpreted
as the probability of belonging to class 1. This hypothesis delineates
a soft boundary in the input space, assigning a probability of 0.5
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to inputs at the boundary’s center and tending toward 0 or 1 as we
move away from it.

For LR, due to its non-linearity, there is no direct analytical
solution for optimizing the loss function (log-likelihood). For
its maximization, are used the methods: Limited-memory
BroydenFletcher GoldfarbShanno (lbfgs), Library for Large Linear
Classification (liblinear), Newton Conjugate Gradient (newton-cg),
Newton’s Method with Cholesky Decomposition (newton-
cholesky), Stochastic Average Gradient (sag) and Stochastic
Average Gradient with Acceleration (saga).

The (lbfgs) (38) solver is an analog of Newton’s Method, and
the liblinear (39) optimizes the loss function by iterating over each
coefficient of the model and adjusting it while the other coefficients
are held constant. The newton-cg is a solver that uses the conjugate
gradient Newton-Raphson method for optimization, while newton-
cholesky solver is a variant of the Newton-Raphson method that
uses the Cholesky decomposition to solve the system of equations
derived from the Newton-Raphson method. The Sag (40) and saga
(a variant of sag) (41) are solvers that use stochastic variants of
gradient optimization and they are efficient for large and sparse
datasets. Unlike the other solvers, saga supports both L1 and L2
regularization as well as their mixture (ElasticNet).

2.4 Other methods compared with LR

kNN is a non-parametric algorithm that classifies instances
based on the majority label among the k closest training samples.
KNN is preferred for classification tasks requiring labeled data
but can be sensitive to feature scaling and class imbalance.
It has been applied in medical imaging tasks for its ease of
implementation (42).

SVM constructs hyperplanes in a high-dimensional space to
separate classes with maximum margin. The RBF kernel was used
in this study to capture non-linear relationships. SVMs are known
for their robustness in high-dimensional biomedical datasets (43).

Random Forest algorithm, proposed by Breiman (44), is
an ensemble method that builds multiple decision trees and
aggregates their predictions. It reduces overfitting and improves
generalization, making it suitable for noisy medical data.
In this study, RF was tuned using n_estimators=100
and max_depth=5.

XGBoost is a scalable and regularized boosting algorithm that
builds additive models. It has shown superior performance in
structured biomedical datasets and was the best-performing model
in this study (45).

2.5 Performance metrics

To evaluate the quality of the multinomial classification model
prediction, we used (1) Confusion Matrix and the metrics: (2)
Accuracy, (3) Precision, (4) Recall (Sensitivity), (5) F1-Score, and
(6) Macro-Average (26).

Confusion matrix is a tool used in the ML field to evaluate the
performance of a classification algorithm. This is a square matrix of
n×n size, where n represents distinct class numbers. Every element

TABLE 1 Confusion matrix for three-class classification.

True/Predicted Class A Class B Class C

Class A T11 F12 F13

Class B F21 T22 F23

Class C F31 F32 T33

(i, j) of the array indicates the number of instances in the class i that
were classified as belonging to the class j.

In the case of multinomial classification problems, the
confusion matrix expands to include all classes of the problem.
Table 1 exemplifies a confusion matrix for a problem with
three classes.

where: (1) Tii are True for class i (A, B, and C, respectively);
(2) Fij are False, that is class i is wrongly predicted as belonging to
class j.

F1_Score—Harmonic mean of Precision and Recall. It is useful
when there is an imbalance between the number of items of classes
of the given problem, providing a unique measure of a model’s
performance by combining precision and recall.

Macro_average—arithmetic mean of Precisions, Recalls and
F1-Scores, respectively. It is helpful in imbalanced datasets where
some classes are under-represented because it gives equal weight to
each class. This avoids situations where the model’s performance on
large classes dominates the overall evaluation and provides better
clarity on the model’s performance for all classes.

ROC AUC is a metric used in statistics and ML to evaluate
the performance of a classification model. The Receiver Operating
Characteristic (ROC) is a curve plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR) at various classification
thresholds. TPR is just Recall (ratio of true positive (TP) over all
positive (P)), presented above, and FPR is ratio false positive (FP)
over all negative (N).

Area Under the Curve (AUC) measures the area under the
curve, providing a scalar value that summarizes the model’s
performance. An ideal model has an AUC of 1, indicating a perfect
separation between positive and negative classes in the binary case.
An AUC of 0.5 implies performance equivalent to random guessing.

Unlike binary classification, where ROC AUC measures the
model’s ability to distinguish between two classes, specific methods
are used for multiple classes: (a). One-vs-Rest (OvR)—the multi-
class problem is broken into multiple binary problems, and for
each class, the model evaluates how well it can separate that class
from all others. Then, an average of the AUC scores for each
class is computed; (b). One-vs-One (OvO) approach—classifiers
are built between each pair of classes, and the AUC values are
combined to obtain an overall metric. ROC AUC for multi-class
classification is valuable for comparing models, especially when the
class distribution is imbalanced.

2.6 Addressing the imbalanced dataset
problem

Imbalanced datasets are common in ML fields. There are 76
polyps (see Figure 1) and, for every polyp, there are two photos,
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in NBI and White-Light. Thus, in the dataset exist 80 adenoma
(Ade), 42 hyperplastic (Hyp) and 30 serrated (Ser) medical images.
The issue is that using an imbalanced dataset for model building
can lead to the wrong prediction (especially Accuracy) by favoring
classes with more instances.

To appreciate the degree of imbalance in dataset, in multiclass
classification problems, we define the general imbalance ratio (IR)
and the class imbalance ratio (IR(i)):

IR = max{n(1), .., n(k)}
min{n(1), .., n(k)} (4)

IR(i) = n(i)
min{n(1), .., n(k)} (5)

where: n(i) represents the number of instances of class i and
k—no of classes.

Thus, we obtained a general IR (IR = 2.66), an hyperplastic IR
[IR(1) = 1.4] and an adenoma IR [IR(3) = 2.66]. Note that in this
case the IR = IR(3).

Although there is no theoretical threshold concerning the exact
degree of class imbalance, in practice, we consider that IR values
lower than 2 are only marginally imbalanced and that dataset with
an imbalance ratio of about 10:1 would be modestly imbalanced.
The IR indicators show us a relatively small imbalance, which can
be translated, anticipatively, by a small change in accuracy.

This problem of imbalanced data can be addressed in more
ways: (1) Undersampling, (2) Oversampling, and (3) using the
Class Weights. Since the dataset is small, we avoided using the
undersampling method because it would have reduced it even more
(from 152 to 90 images). As one of the initial design goals of this
article was not to use synthetic data, the oversampling method is
not suitable for addressing the imbalanced dataset problem. Thus,
to approach this problem, the most appropriate method remained
the method of using class weights. This variant is relatively easy to
implement using the Scikit-learn library (46), because class weights
is a hyperparameter of the LR algorithm (47).

Class weights are reversely proportional to the frequency of
the respective classes. Each category would seem to have the same
amount of weight if class weights were used. The class weights are
generally calculated using the formula shown below:

w(i) = n
k · n(i)

(6)

where: i —no of class; w(i)—class weight of class i; k—no of
classes; n—total number of observation from dataset; n(i)—no of
instances of class i.

Thus, we obtained: for Hyp: w(1) = 1.206, for Ser: w(2) = 1.688,
and for Ade: w(3) = 0.633.

With the above calculated values of class weight, the
experiments were performed for the balanced case.

2.7 Experimental design

2.7.1 Proposed dataset preparation
Due to the smallness of the dataset, we chose not to use a

separate test set, but only randomly extracted test sets at each run
in the cross-validation stage. To avoid overfitting, we employed
four-fold cross-validation. We chose the fold-fold cross-validation
because the dataset is relatively small. This method involves
dividing the dataset, consisting of 152 rows, into four equal folds,
each containing 38 rows. Each model runs four times, with a
different fold designated as the test set in each iteration, while the
remaining three folds are used for training.

Because the original dataset was ordered according to the label,
we first shuffled the rows randomly and for reproducibility, we
used random_state=42. Random_state is a parameter used in Scikit-
learn (46, 47), to control randomness in various procedures. It is a
way to set a seed for the random number generator, thus ensuring
reproducibility of the results. In the KFold context, random_state
controls the shuffling of the data before it is split into folds
for training and test, respectively. When re-running experiments,
using a fixed random_state ensures that data splits and results will
be consistent.

2.7.2 Hyperparameters tuning
During each run, several performance metrics were calculated,

including accuracy, precision, recall, F1_score, and macro_average.
After completing all four runs, the average accuracy was computed
to provide a robust estimate of the model’s performance. Our
experiments utilized both non-normalized and normalized data.

The parameters of the model are the coefficients of the
following equation: b0 + biXi, where i = 1, n and n = 698, with
n being the number of features.

We chose to tune all hyperparameters Logistic Regression
algorithm that the Scikit-learn library (46) provides, and which are
relevant for this problem:

• multi_class type: Determines the strategy for handling multi-
class classification.

• solver: Specifies the algorithm to use for optimization.
• penalty: Indicates the type of regularization applied to

prevent overfitting.
• C: Controls the trade-off between achieving a low training

error and a low testing error.
• fit_intercept: Decides whether to include an intercept term in

the model.
• max_iter: Sets the maximum number of iterations for the

optimization algorithm to converge.
• class_weight: Sets the LR algorithm used for balanced or

imbalanced dataset.

To address the multiclass classification problem, we utilized
both Multinomial (Softmax Regression) and OvR LR to extend
the binary LR method (48) for handling multiclass scenarios with
more than two discrete outcomes, employing five out of the six
solvers available in Scikit-learn (46) LR: lbfgs, liblinear, newton-cg,
sag and saga.
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TABLE 2 Hyperparameter tuning for all classifiers.

Classifier Hyperparameters considered

Logistic regression Data type {non-normalized, normalized}

Multi_class type {multinomial, ovr}

Solver {lbfgs, liblinear, newton-cg, sag, saga}

Penalty {none, L1, L2, elasticnet}

C {0.01, 0.1, 1, 10, 100}

Fit_intercept {False, True}

Max_iter {100, 150, 200, 250, 300, 1,000, 5,000, 10,000}

l1_ratio {0.5}

Class_weight {None, balanced}

Random Forest {n_estimators: 100; max_depth: 5}

kNN {n_neighbors: 5}

SVM (RBF kernel) {gamma: ’scale’}

XGBoost {n_estimators: 100; max_depth: 5; learning_rate: 0.1}

Regularizers were used to prevent model overfitting. The LR
class from the Scikit-learn library allows two types of penalty:
L1 and L2. Therefore, we have four values for the penalty
hyperparameter: “L1," “L2," “none," and “elasticnet" (a combination
of both L1 and L2). For models with the penalty value set to
“elasticnet," the hyperparameter l1_ratio balances the L1 and L2
penalties. It must be a value between 0 and 1, where 0 corresponds
to using only L2 regularization, and 1 corresponds to using only
L1 regularization. We used a l1_ratio value of 0.5, which combines
both L1 and L2.

The hyperparameter C is a positive value that represents the
inverse of regularization strength, i.e., smaller values mean stronger
regularization, fit_intercept specifies whether a bias (a constant
value) is added to the logistic function, and max_iter represents the
maximum number of iterations for the solver’s convergence.

We used both the GridSearchCV library of Scikit-learn (46)
for hyperparameter tuning and manual experiments. The adjusted
hyperparameters are shown in Table 2. Theoretically, this results in
2×2×5×4×5×2×8×1×2 = 12, 800 experiments (the cardinal
number of the Cartesian product of the nine sets). However, since
not all combinations are compatible with each other, only 4,992
experiments remain.

Figure 2 shows the decision rule for the hyperparameters
tuning. The suspension points indicate that the sibling branch
is symmetrical, based on this fact they are not included in the
figure. The leaf nodes are represented by a circle, whereas the
others are represented by rectangles with rounded corners. Since
the hyperparameter C has 5 values to visualize them appropriately,
they were included in a circle.

Sibling branches are symmetrical except for Multi-class type
multinomial node, where the liblinear solver is not supported.

Since higher values of the hyperparameter C result in decreased
accuracy, we have chosen to present only the models with C = 0.01
or the models that do not use regularization. As the algorithm
required a large number of iterations to converge for most of the
models, we have only included variants with max_iter set to 10,000.

It is known that when n_samples < n_features, Dual
formulation is preferred to be set to True. During testing in
dual formulation, the algorithm does not converge. Therefore,
regarding this hyperparameter, we concluded that it cannot be
used. The tolerance for stopping criteria (tol hyperparameter) was
increased only if the algorithm did not converge. The following
hyperparameters: intercept_scaling, verbose and warm_start did not
influence the confusion matrices and therefore, none of the metrics.
n_jobs is used only in parallel programming to set the number
of CPU cores. In the case of our dataset, it was necessary to use.
However, we recommend its use for larger datasets. Therefore, 176
models remain.

3 Results and discussion

3.1 Algorithm testing results

We conducted our experiments using Python 3.11.9, Scikit-
learn library (46, 47), version 1.4.2, Matplotlib (49), version 3.7.5,
NumPy (50) 1.26 version, Pandas (51), version 2.0.3.

In Table 3, the results of the 88 models tested on the imbalanced
dataset are presented. The columns are defined as follows: (1)
Solver—lists the solvers used for optimisation in the mLR models;
(2) Penalty—specifies the types of regularization penalties applied
to the models. There are four penalty types included, which affect
how the model handles regularization; (3) C—we specified the value
of the C hyperparameter (0.01), and in the case of models without
regularization, this is meaningless, so it was not used, which is
indicated by the symbol “–"; (4) fit_intercept—denotes whether the
model includes an intercept term. There are two options: including
an intercept (“T"—True) or not including an intercept (“F"—
False); (5) Accuracy (Std Dev)—provides the accuracy and standard
deviation of the models, expressed as a percentage. It reflects
the performance and variability of the model’s accuracy across
four-fold cross-validation. This column is split into two other
columns: “OvR" (Over-vs-Rest) and “Multinomial”. Each column,
in turn, is divided into two columns, corresponding to normalized
(“Norm”) and non-normalized (“non-Norm") data, respectively.
“Norm" indicates whether the features were normalized before
applying the mLR model, and “non-Norm" indicates that no
normalization was applied. The corresponding cells in the table
have not been filled since the liblinear solver is unable to handle
the Multinomial scheme.

The cells indicate the model’s accuracy, accompanied by
the standard deviation in parentheses, for each configuration
under both OvR and multinomial strategies, with or without
normalization. In some cases, results indicate “Not conv," meaning
the model did not converge for that specific configuration. The use
of different solvers and penalties affects convergence and accuracy,
suggesting that specific parameter choices can enhance the model’s
classification performance.

Experiments with normalized data yielded weaker results.
However, with non-normalized data, the modal value of accuracy
of 63.82% is comparable to that of physician experts, slightly lower
than that of advanced experts (Accuracy = 65%), and predominant
over that of beginner physicians, who achieved an average accuracy
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FIGURE 2

Decision rule for the hyperparameters tuning.

of 58.42%. These values were calculated based on the study by
Mesejo et al. (12).

In the “saga" solver case, the results obtained using the “L2"
penalty are slightly ahead of those obtained using the “L1" penalty,
but they remain equivalent to the scenario where no regularization
was applied. We can conclude that for this solver, regularization
is not necessary. Similarly, the “sag" solver does not justify the
computing cost needed for regularization. The application of “L2"
regularization in the case of the “newton-cg" solver leads to a slight
increase in accuracy, which justifies its use. In contrast, the “lbfgs"
solver in the “OvR" scheme fails to converge without regularization.
In the “Multinomial" scheme with the “lbfgs" solver, the absence of
regularization, combined with demanding a bias term, resulted in
the second-best model in terms of accuracy.

The best results were obtained using the “liblinear" solver with
the ‘L1" regulariser, achieving an accuracy of 70.39%; this solver
remained unaffected by the presence of a bias term with the existing
data. For non-normalized data, the lowest accuracy, of 55.92%, was
observed for the “newton-cg" solver, without regularization and
bias term.

The relatively small standard deviation values reflect the fact
that the data in the dataset were well-shuffled.

In the Table 4, the results of the 88 models tested on the
balanced dataset are presented. The meaning of the table heading
is the same as the Table 3.

As can be seen in Table 4, the accuracy values decreased
for all models, as expected. The accuracy value (70.39%) for
the imbalanced dataset decreased to 64.47% for the balanced
dataset. In the following, the accuracy is comparable to those of
physician experts. Also, for the normalized values of the dataset,
the accuracy obtained is lower than for the non-normalized
values.

The previous conclusions (imbalanced dataset) regarding
the use of regularizers remain valid also in the case of the
balanced dataset.

3.2 Comparison with other methods and
physician experts

In the subsequent discussion, we aimed to compare our two
optimized models with the best performing model of Mesejo et al.
(12), called Random Subspace and physicians.
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TABLE 3 Performance of logistic regression models—imbalanced dataset.

Solver Penalty C fit_intercept Accuracy (SD) [%]

OvR Multinomial

Non-Norm Norm Non-Norm Norm

lbfgs None – F Not conv Not conv 61.18 (3.42) Not conv

T Not conv Not conv 66.45 (3.42) Not conv

L2 0.01 F 63.82 (2.87) 52.63 (4.16) 62.5 (3.89) 52.63 (4.16)

T 63.82 (2.87) 52.63 (4.16) 61.84 (4.36) 52.63 (4.16)

liblinear L1 0.01 F 70.39 (3.89) 27.63 (5.42)

T 70.39 (3.89) 27.63 (5.42)

L2 0.01 F 63.82 (2.87) 52.63 (4.16)

T 63.82 (2.87) 52.63 (4.16)

Newton-cg None – F 55.92 (10.59) 45.39 (1.14) 60.53 (4.92) 36.84 (2.63)

T 55.92 (10.59) 40.79 (2.28) 59.87 (5.05) 42.76 (6.8)

L2 0.01 F 63.82 (2.87) 52.63 (4.16) 62.5 (3.89) 52.63 (4.16)

T 63.16 (1.86) 52.63 (4.16) 63.82 (3.89) 52.63 (4.16)

sag None – F 63.82 (2.18) 40.13 (5.9) 63.82 (1.14) 38.16 (6.03)

T 63.82 (2.18) 42.11 (5.58) 63.82 (1.14) 40.79 (5.43)

L2 0.01 F 63.82 (2.18) 52.63 (4.16) 63.82 (1.14) 52.63 (4.16)

T 63.82 (2.18) 52.63 (4.16) 63.82 (1.14) 52.63 (4.16)

saga None – F 63.16 (4.16) 44.08 (6.8) 62.5 (2.18) 41.45 (7.06)

T 63.16 (4.16) 43.42 (9.39) 62.5 (2.18) 44.08 (7.76)

L1 0.01 F 62.5 (3.89) 27,63 (5.42) 61.18 (1.14) 27.63 (5.42)

T 62.5 (3.89) 52.63 (4.16) 61.18 (1.14) 52.63 (4.16)

L2 0.01 F 63.16 (4.16) 52.63 (4.16) 62.5 (2.18) 52.63 (4.16)

T 63.16 (4.16) 52.63 (4.16) 62.5 (2.18) 52.63 (4.16)

elasticnet 0.01 F 63.16 (4.92) 27.63 (5.42) 61.18 (1.14) 27.63 (5.42)

T 63.16 (4.92) 52.63 (4.16) 61.18 (1.14) 52.63 (4.16)

The paper presents gastroenterologists opinion, with two
knowledge levels: three beginner and four expert physicians, as well
as the ground truth (i.e., histological classification).

When physicians perform a colonoscopy, they possess
additional information, such as the location (whether it’s in the
ascending or descending colon), the orientation (whether they are
facing forward or backward), along with the device, besides the
photos, they can also maneuver to observe from different angles.

The distinction between expert and beginner
gastroenterologists was based on the number of correct annotations
provided during the evaluation phase. Specifically, we used the
accuracy of polyp classification against the ground truth to
classified instances. The ground truth was established by
physicians, who likely had access to the data collected over
approximately three years. This allowed them to observe the
disease’s progression over time, thereby establishing the truth with
nearly 100% accuracy. Yet, when only presented with photographs,
in the same manner as ML algorithms, these are the accuracies
they achieved, based solely on the pictures without any additional

information. Those whose performance exceeded 65% accuracy
were designated as experts, while those below this threshold were
considered beginners. This criterion was chosen post hoc to reflect
observed diagnostic consistency and was applied uniformly across
all physicians evaluators.

The confusion matrices, presented in Figure 3, reflect the
performance of the best classification model applied to the dataset,
imbalanced and balanced, respectively. The matrices include
predictions for the three classes: Hyperplastic (Hyp), Serrated (Ser),
and Adenoma (Ade).

Matrix interpretation. The confusion matrix for the imbalanced
dataset is structured with the following values:

• (Hyp, Hyp): 34 — The model correctly predicted 34 instances
as belonging to the Hyp class.

• (Hyp, Ser): 0 — The model incorrectly predicted 0 instances of
the Hyp class as Ser.

• (Hyp, Ade): 8 — The model incorrectly predicted 8 instances
of the Hyp class as Ade.
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TABLE 4 Performance of logistic regression models—imbalanced dataset.

Solver Penalty C fit_intercept Accuracy (SD) [%]

OvR Multinomial

Non-Norm Norm Non-Norm Norm

lbfgs None – F Not conv 41.45 (4.31) 61.84 (3.95) 36.84 (6.17)

T Not conv 41.45 (4.31) 59.87 (5.05) 38.16 (3.95)

L2 0.01 F Not conv 48.03 (7.76) Not conv 46.71 (9.74)

T Not conv 44.08 (10.09) Not conv 44.74 (10.69)

liblinear L1 0.01 F 64.47 (7.78) 27.63 (5.43)

T 64.47 (7.78) 27.63 (5.43)

L2 0.01 F 61.18 (2.87) 52.63 (4.16)

T 61.84 (2.28) 52.63 (4.16)

Newton-cg None – F 55.92 (10.59) 38.82 (5.99) 59.87 (5.05) 41.45 (7.30)

T 55.92 (10.59) 39.47 (4.16) 59.87 (5.05) 41.45 (6.55)

L2 0.01 F 60.53 (0.00) 48.68 (8.43) 62.5 (4.70) 46.71 (9.74)

T 57.89 (3.22) 44.08 (8.60) Not conv 43.42 (9.40)

sag None – F 52.63 (3.72) 34.21 (4.92) 52.63 (3.22) 39.47 (6.17)

T 52.63 (3.72) 34.87 (6.55) 52.63 (3.22) 37.50 (4.70)

L2 0.01 F 52.63 (3.72) 48.03 (7.76) 52.63 (3.22) 46.71 (9.74)

T 52.63 (3.72) 44.74 (9.30) 52.63 (3.22) 43.42 (9.40)

saga None – F 52.63 (3.72) 33.55 (7.06) 51.32 (4.74) 34.22 (3.72)

T 52.63 (3.72) 35.53 (4.74) 51.32 (4.74) 33.55 (2.18)

L1 0.01 F 51.32 (4.74) 27,63 (5.43) 50.00 (5.58) 27.63 (5.43)

T 51.32 (4.74) 36.84 (1.50) 50.00 (5.58) 44.74 (1.70)

L2 0.01 F 52.63 (3.22) 48.03 (7.76) 51.32 (4.74) 46.71 (9.74)

T 52.63 (3.22) 44.74 (9.30) 51.32 (4.74) 43.42 (9.40)

elasticnet 0.01 F 51.32 (4.74) 27.63 (5.43) 51.32 (4.74) 27.63 (5.43)

T 51.32 (4.74) 46.12 (1.35) 51.32 (4.74) 44.08 (1.21)

• (Ser, Hyp): 2 — The model incorrectly predicted 2 instances of
the Ser class as Hyp.

• (Ser, Ser): 9 — The model correctly predicted 9 instances as
belonging to the Ser class.

• (Ser, Ade): 19 — The model incorrectly predicted 19 instances
of the Ser class as Ade.

• (Ade, Hyp): 9 — The model incorrectly predicted 9 instances
of the Ade class as Hyp.

• (Ade, Ser): 7 — The model incorrectly predicted 7 instances of
the Ade class as Ser.

• (Ade, Ade): 64 — The model correctly predicted 64 instances
as belonging to the Ade class.

The interpretations confusion matrix for the balanced dataset is
similar to that explained above for the imbalanced dataset.

For imbalanced case the model achieved a performance score
of 70.39, indicating a reasonable level of accuracy, with a standard
deviation of 3.89. However, there are notable misclassifications,
particularly between the Ser and Ade classes. The highest values
appear on the main diagonal, reflecting a higher number of correct

predictions. Nonetheless, the presence of significant values of
the diagonal suggests that the model has difficulty distinguishing
between certain classes, especially between Ser and Ade.

Can be observed in the confusion matrix of the balanced dataset
that, although the accuracy, as a global metric, has decreased (from
70.39 to 64.47%), in fact, the separation power of the serrated
and hyperplastic classes has increased. The optimized algorithm
managed to correctly predict 8.6% serrated images in relation to
5.9% images as predicted by the same model for the imbalanced
dataset. In addition, correctly predicted 4% more hyperplastic
images than in the imbalanced case. Indeed, on the other hand, the
predictive power of the adenoma class decreased from 42 to 30%.

As it is known that hyperplastic polyps are non-dangerous, they
do not require resection (12). Thus, neither the patient is subjected
to an unpleasant medical maneuver, nor does the physician waste
time with a useless intervention. Instead, both adenoma and
serrated polyps should be resected. The adenoma because is already
carcinogenic, and the serrated because it has a high probability
of becoming cancerous. As seen in the confusion matrix of the
imbalanced dataset, the best model guesses 34 hyperplastic polyps
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FIGURE 3

Confusion matrices for the best model (liblinear, L1 penalty, C = 0.01)—(a) imbalanced dataset—left side; (b) balanced dataset—right side.

TABLE 5 Comparative performance.

Metric mLRi mLRb Mesejo2016 Experts Beginners

Acc Mean — — 65.00% 58.42%

Acc Max 70.39% 64.47 76.69% — —

Prec Hyp 75.55% 72.22% 66.67% 62.00% 66.26%

Prec Ser 56.25% 38.24% 69.23% 52.20% 34.54%

Prec Ade 70.33% 71.88% 80.56% 73.50% 66.75%

Recall Hyp 80.95% 92.86% 85.71% 67.94% 52.38%

Recall Ser 30.00% 43.33% 60.00% 63.76% 44.67%

Recall Ade 80.00% 57.50% 72.50% 63.75% 66.75%

F1 Hyp 78.16% 81.25% 75.00% 64.84% 58.51%

F1 Ser 39.13% 40.63% 64.29% 57.40% 38.95%

F1 Ade 74.85% 63.89% 76.32% 68.27% 66.75%

macro_av Pre 67.38% 60.78% 72.15% 62.56% 55.85%

macro_av Recall 63.65% 64.56% 72.74% 65.15% 54.60%

macro_av F1 64.05% 61.92% 71.86% 63.51% 54.74%

mLRi—our model applied to the imbalanced dataset; mLRb—our model applied to the balanced dataset. Bold indicates the best and italic the worst results.

out of 42 (i.e. 80.95%). This translates into the fact that the
other eight hyperplastic polyps, wrongly classified as adenoma,
based on this algorithm, the physician will receive the suggestion
to resect them, although there is no need. On the other hand,
we see that nine adenoma and two serrated polyps, are wrongly
classified as hyperplastic. This means that the physician will leave
11 dangerous polyps not resected. For the balanced dataset, the
algorithm guesses 39 out of 42 hyperplastic polyps, suggesting that
only three polyps are resected from mistake. Instead, it classifies 15
dangerous polyps as hyperplastic (four more than in the previous
case), leaving them not resected. As it is better to resect healthy
polyps than to leave carcinogenic or potentially carcinogenic
polyps not resected, the conclusion is that mLR cannot be
used as a support software in making resection/non-resection
decisions, neither in the imbalanced dataset nor in the balanced
dataset version.

This performance, alongside the confusion matrix, implies
that while the model performs fairly well, further refinement or
alternative approaches might be necessary to increase its accuracy,
despite the use of hyperparameters such as liblinear, L1, True,
and False.

Table 5 offers a comparative analysis of the performance
metrics for the mLR model applied to the imbalanced dataset
(mLRi) and to the balanced dataset (mLRb), such as accuracy,
precision, recall, and F1 scores across other models and physician
expertise levels. Comparing the confusion matrices of experts
and beginners, given in Mesejo et al. (12), it is observed that
the standard deviation of the experts is smaller than that of the
beginners, which means a lower risk of misclassification. In the
case of the adenoma class, the average True Positive of beginners
[26.7 (8.6)] is higher than the average True Positive of experts [25.5
(2.4)]. The corresponding standard deviation is noted between the
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FIGURE 4

Classification report and ROC AUC curves.

right brackets. For verification, if there is a statistically significant
difference between the means, we have applied the two-tailed T-
test with Welch correction (52, 53). Obtaining p-value = 0.836
(Welch’s approximate t = 0.235) indicates that there is no statistical
difference. When two datasets have the same mean but different
standard deviations, the dataset with the lower standard deviation
indicates lower risk. Compared to the best algorithms (Random
Subspace and SVM) of Mesejo et al. (12), mLR shows a lower
recall for the Ser class, but is competitive in other areas. Instead,
compared to physician experts, mLR performs better overall,
particularly in accuracy and recall for the Ade class. The mLR model
provides a reasonable and competitive performance, especially
in terms of accuracy and precision, though it struggles with
recall for the Ser class. Its balanced performance across different
metrics makes it a robust choice, particularly when compared to
physician performance at the beginner level. However, there may

still be room for improvement, particularly in recalling the Ser
class.

Comparing the results obtained by applying LR on the
imbalanced (mLRi) and balanced (mLRb) datasets, respectively,
we notice that the accuracy increases very slightly only in the
case of Ade polyps (from 70.33 to 71.88%), and Recall increases
for Hyp and Ser ones (from 80.95 to 92.86% and from 30 to
43.33%, respectively). F1-score, as a harmonic mean of Precision
and Recall, shows us a global increase of the two metrics. Even if
the accuracy decreases in the case of balanced data compared to
imbalanced data, overall, F1-score increases both for hyperplastic
and for serrated. For the Hyp polyps, F1-score increases from 78.16
to 81.25%, and for the Ser ones, from 39.13 to 40.63%. Macro-
Average shows that the only metric that increased in arithmetic
average in the case of balanced data compared to imbalanced data
is the Recall. However, the increase is small, from 63.65 to 64.56%.
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TABLE 6 Comparative performance across classifiers.

Metric Random Forest SVM kNN XGBoost

Acc Mean 86.05% 84.21% 66.38% 89.34%

Acc Hyp 89.47% 88.16% 69.08% 92.11%

Prec Hyp 88.89% 87.50% 60% 91.67%

Prec Ser 80% 88% 45% 88%

Recall Hyp 90% 88% 69.23% 93%

Recall Ser 84.21% 88.89% 17.39% 86.96%

Recall Ade 88.00% 86.00% 80.00% 90.00%

F1 Hyp 89.44% 87.58% 64.62% 92.00%

F1 Ser 81.00% 87.00% 24.00% 84.00%

Macro_av Pre 85.96% 87.83% 61.67% 90.56%

Macro_av Recall 87.40% 87.63% 56.87% 89.32 %

Macro_av F1 85.81% 87.19% 56.21% 88.67%

Bold values represent the overall accuracy (Acc Mean) for each classifier, used as the primary metric for comparative evaluation.

3.3 Evaluation of additional classifiers and
comparative evaluation with logistic
regression

Following the analysis of mLR, we extended the classification
framework to include four additional ML algorithms: RF, KNN,
SVM, and XGBoost. These models were selected based on their
demonstrated performance in biomedical classification tasks for
structured data obtained from medical imaging.

All classifiers were trained on a feature matrix comprising
698 descriptors extracted from colorectal polyp images. The
models were not applied directly to raw image data; instead, they
operated on pre-extracted features, ensuring interpretability and
computational efficiency. CNNs and other deep learning models
are frequently used for image-level classification, but they were
purposefully left out of this work in order to keep the focus
on interpretable methods appropriate for medical applications
with limited resources. However, CNNs may be taken into
consideration in further research as a preliminary to automated
feature extraction.

For each classifier parameter tuning was applied using grid
search and performed stratified cross-validation, for instance,
Random Forest was optimized with n_estimators=100 and
max_depth=5, while XGBoost used n_estimators=100,
max_depth=5, and learning_rate=0.1. SVM employed an
RBF kernel with C=1.0 and gamma=’scale’, and kNN was
configured with n_neighbors=5.

Lesion classification was approached using both multiclass
and binary tasks. In the multiclass setting (Hyperplastic, Serrated,
Adenoma), XGBoost achieved the highest performance, with a
macro-average F1-score of 0.88, outperforming Logistic Regression
(0.74), Random Forest (0.85), SVM (0.83), and kNN (0.56). The
confusion matrix revealed high recall for adenomas (0.86) and a
clear separation between lesion types.

For clinical validation, three binary classification tasks were
formulated: Hyperplastic vs Others, Serrated vs Others, and

Adenoma vs Others. ROC curves (Figure 4) demonstrated that
XGBoost achieved AUC ≥ 0.90 across all three tasks, with
peak performance for Adenoma (AUC = 0.94, F1 = 0.90). SVM
and Random Forest also produced competitive results, though
marginally lower.

Table 6 tive summary of classifier performance alongside
physician benchmarks. XGBoost outperformed both mLRi/mLRb
and the diagnostic accuracy of experts (65%) and beginners
(58.42%) for automated lesion classification.

3.4 ROC AUC analysis

In this work, we choose to use the OvR ROC AUC approach.
The Figure 5a shows the ROC curves and AUC for the three
classes (Hyp, Ser and Ade) being considered the best model
applied to the imbalanced dataset, and the right side Figure 5b,
for the balanced dataset. It can be seen that the AUC of the Hyp
class increased from 0.85 (imbalanced data) to 0.90 (balanced
data), the AUC of the Serr class remained approximately the
same, and the AUC of the Ade class decreased from 0.71
to 0.66.

It is important to separate serrated polyps from the others,
but the low AUC values (the lowest) show that the classification
of serrated polyps is very difficult to achieve. The ROC curves
of the hyperplastic class, as well as the high values of AUC (the
highest for both variants: imbalanced and balanced dataset) show
us that the algorithm can best detect these polyps compared
to the others. We notice that the TPR has increased from
0.8095 (of the imbalanced dataset) to 0.9286 (for the balanced
dataset), but at the same time, unfortunately, the FPR is
also increasing from 0.10 to 0.136. In this classification, the
cost of FPR is higher than the cost of TPR, which means
that we prefer a decrease in TPR rather than an increase
in FPR. The higher the TPR, the fewer healthy polyps are
resected, and the higher the FPR, the more carcinogenic or
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FIGURE 5

ROC AUC curves for the three classes; (a) imbalanced dataset—left side; (b) balanced dataset—right side.

FIGURE 6

Q–Q Plots for visual validation of normality.

potentially carcinogenic polyps are classified as hyperplastic. The
decrease in TPR would not have been as faulty as the increase
in FPR.

3.5 Statistical analysis of the best models

To assess the normality of the feature distributions, four
representative subsets were selected from the extracted feature
matrix and analyzed using Quantile–Quantile (Q–Q) plots in the

Figure 6. These subsets, referred to as Set1, Set2, Set3, and Set4,
correspond to distinct groups of features derived from different
descriptor families:

• Set1: Texture-based descriptors (e.g., LBP, Color GLCM).
• Set2: Color-based descriptors (e.g., Color Naming, Opponent

Color, Hue).
• Set3: Shape-based descriptors (e.g., S3D Shape, Kernel-PCA).
• Set4: Mixed descriptors with high variance and non-

Gaussian behavior.
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The Figure 6 revealed that Sets 1–3 shown approximate
normality, with data points closely aligned along the diagonal
reference line. In contrast, Set4 showed deviations at the
distribution tails, suggesting possible deviation. The selection
of classifiers and preprocessing techniques was influenced by
these observations.

To check the influence of the data mix on the results obtained,
for the best model (mLR with liblinear solver, L1 penalty and C
= 0.01), we performed 2 × 50 runs for Fit_Intercept = False and
Fit_Intercept = True, respectively, where we mixed randomly the
rows of the dataset at every run.

An unpaired two-tailed T-test was applied, considering the
significance level α = 0.05. We suggest presenting this as a
decision rule, as cited in Iantovics et al. (54) and Iantovics (55).
The p-value = 0.166, with p > α, indicates no reason for
rejecting the null hypothesis, indicating no statistical difference.
The unpaired two-tailed T-test assumptions passed since both
variables passed the normality assumption, verified using the
Lilliefors test (p-value = 0.2, 0.2 > 0.05) and the two sample
variances were equally verified using the F-test (p = 0.12,
0.12 > 0.05).

The results are presented following this methodology. If the
decision rule cannot be applied due to assumptions failing, an
alternative methodology may be considered (54). Generalizations
for comparing more than two models are discussed in Iantovics et
al. (56) and Iantovics (57).

The Graphical Abstract summarizes the workflow developed to
classify polyps into three lesion types: hyperplastic, serrated, and
adenoma. It is organized into three main sections Input, Methods,
and Output and integrates both data flow and comparative
performance metrics. The input displays the distribution of
annotated polyps: 21 hyperplastic, 15 serrated, and 40 adenoma
lesions. A total of 698 handcrafted features were extracted
using eight descriptor families: AHT, LBP, Color Naming,
Discriminative Color, Opponent Channel, Shape-DNA, and
Kernel-PCA.The methods highlights the five ML classifiers
evaluated: mLR, kNN, SVM, RF and XGBoost. A confusion
matrix illustrates the performance of mLR across the three
classes, showing correct and misclassified instances. A table
summarizes the logistic regression configurations tested, including
solvers, penalties, and regularization parameters. The output
presents classification accuracies for each lesion type and
model. XGBoost is visually emphasized as the best-performing
model, achieving a macro-average F1-score of 0.88 and overall
accuracy of 89%. It is followed by Random Forest (F1 =
0.85, accuracy = 86%), SVM (F1 = 0.83, accuracy = 84%),
and kNN (F1 = 0.56, accuracy = 66%). These results are
contextualized against physician benchmarks: experts (65%) and
beginners (58.42%).

The figure encapsulates the core findings of the study,
demonstrating the effectiveness of ensemble methods in automated
lesion classification.

4 Discussions and limitations

This research demonstrates the potential of ML classifiers
in polyp characterization using colonoscopy-derived features.

While Logistic Regression offers clinical interpretability, ensemble
methods such as Random Forest and XGBoost achieved superior
performance, particularly in distinguishing adenomatous lesions.
The inclusion of binary classification tasks and ROC analysis
further strengthens the clinical relevance of the findings.

However, some limitations must be mentioned, firstly, the
dataset is relatively small, which may affect generalisability.
The selected dataset, comprising 152 instances corresponding
to 76 annotated colorectal polyps, was chosen to represent a
small-data diagnostic case, also because it is difficult to get
big annotated datasets, particularly in initial implementations or
uncommon lesion types. This constraint motivated the use of
interpretable ML models capable of generalizing from limited
samples. External validation on independent or cross-institutional
datasets is still required, even if stratified five-fold cross-validation
was used to reduce overfitting. Secondly, the study does not
include deep learning models such as CNNs, which are typically
applied directly to image-level data. Nevertheless, CNNs could
be explored in future work as a preliminary step for automated
feature extraction.

Thirdly, the claim that Logistic Regression outperforms
physician experts requires cautious interpretation. While the model
achieved higher average accuracy than beginners and experts,
its misclassification of clinically significant polyps (e.g., adenoma
as hyperplastic) limits its utility in resection decision support.
Despite limitations in handling serrated polyps, the model provides
valuable insights for real-time clinical applications.

Finally, the distinction between expert and beginner
evaluators was based on clinical experience and certification,
as detailed in Section 3.2. While performance differences were
modest, this stratification provides a meaningful benchmark for
automated systems.

5 Conclusions

Logistic Regression (LR) is easy to use and interpretable,
making it a useful tool for initial exploratory analysis and for
providing baseline performance metrics. Its efficiency in handling
binary outcomes enables it to model the probability of polyp
presence or absence based on extracted features from endoscopic
images. However, the effectiveness of LR can be constrained by
its inability to capture complex, non-linear relationships in high-
dimensional medical image data.

In this study, we implemented and assessed the performance of
mLR algorithms for classifying GI lesions, specifically utilizing the
One-vs-Rest (OvR) and Multinomial LR classifiers for colon polyp
image classification. The results obtained are comparable to the best
results obtained by Mesejo et al. (RS) (12) and slightly surpass those
obtained by physicians. Our findings demonstrate that while mLR
provides a useful starting point for such classification tasks, further
exploration is needed to improve model accuracy and robustness.

Future research will focus on refining the methodology to
better accommodate the complexities inherent in medical image
data. This will include exploring advanced algorithms capable
of capturing non-linear relationships and integrating additional
features that may enhance predictive performance.
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Moreover, it is essential to summarize the methodologies
employed in this study, particularly those based on the works of
Iantovics et al. (48, 54–57), as these approaches have often been
overlooked or misrepresented in existing literature. Addressing this
aspect can lead to more robust research practices and prevent the
publication of misleading findings, even in reputable journals. By
emphasizing methodological clarity, we can contribute to more
reliable outcomes in future studies involving medical imaging.

Future work will focus on improving the classification of
serrated polyps, which proved challenging in the current study.
We plan to explore the frequently used machine and deep learning
algorithms, such as ensemble methods and CNN, which are well-
suited for capturing the complex patterns in medical images.
Additionally, more sophisticated feature extraction techniques,
such as texture analysis or wavelet transforms, will be investigated
to improve model sensitivity and accuracy for serrated polyps.
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