& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
Arvind Mukundan,
National Chung Cheng University, Taiwan

REVIEWED BY
Neda Fatima,

Manav Rachna International Institute of
Research and Studies, India

Mahendra Gawali,

Sanjivani University, India

Oluwayemisi Jaiyeoba,

Federal University Lokoja, Nigeria

*CORRESPONDENCE

Gao Yang
Dr_yanggao@163.com

Zhe Quan
403161356@qg.com

RECEIVED 27 June 2025
ACCEPTED 15 September 2025
PUBLISHED 02 October 2025

CITATION
Ren Y-Y, Mei L-H, Liu X-D, Quan Z and
Yang G (2025) Enhancing dermatological
diagnosis for differentiating actinic from
seborrheic keratosis using deep learning
model.

Front. Med. 12:1654813.

doi: 10.3389/fmed.2025.1654813

COPYRIGHT

© 2025 Ren, Mei, Liu, Quan and Yang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Medicine

Frontiers in Medicine

TYPE Original Research
PUBLISHED 02 October 2025
pol 10.3389/fmed.2025.1654813

Enhancing dermatological
diagnosis for differentiating
actinic from seborrheic keratosis
using deep learning model

Ying-Ying Ren?, Li-Hong Mei?, Xiang-Dong Liu?, Zhe Quan**
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Background: Differentiating Actinic keratosis (AK) from Seborrheic keratosis (SK)
can be challenging for dermatologists due to their visual similarities. This multi-
center prospective study aims to investigate the efficacy of deep learning (DL)
model in assisting dermatologists in accurately classifying AK from SK lesions.
Methods: A contrastive language-image pre-training (CLIP) model with ViT-B/16
architecture was trained on an dataset of 2,307 patients and validated in three
separate datasets of 386 (from Center A), 196 patients (from Center B and C)
and 215 patients (from DermNet). Two dermatologists classified the lesions
separately. Then they were showed the model's predictions and were requested
to reclassify the results if needed. Area under the receiver operating characteristic
(ROC) curve (AUC) was used to evaluate the diagnostic performances of the DL
model and the dermatologists before and after reclassification. The change in the
dermatologists’ classification decisions was also analyzed by net reclassification
index (NRI) and total integrated discrimination index (IDI).

Results: The model's diagnostic performance in the training cohort and
validation cohort 1, 2 and 3 showed an AUC of 0.85, 0.89, 0.84, and 0.89. For
dermatologist 1, the diagnostic performance improved from 0.77 to 0.80 in
the test cohort with NRI and IDI of 0.10 (p = 0.006) and 0.14 (p < 0.001). For
dermatologist 2, the diagnostic performance increased from 0.69 to 0.79 with
NRI'and IDI of 0.19 (p < 0.001) and 0.27 (p < 0.001).

Conclusion: The DL model significantly improves dermatologists’ accuracy in
differentiating AK from SK, especially for less experienced ones. The DL model has
the potential to reduce diagnostic subjectivity, aid early detection of precancerous
lesions, and transform dermatological diagnostic and therapeutic practices.

KEYWORDS

actinic keratosis, seborrheic keratosis, deep learning, dermatologist assistance,
computer-aided diagnosis

Introduction

Skin cancer represents a significant global health burden (1). Actinic keratosis (AK) is a
prevalent precancerous lesion that develops as a consequence of long-term sun exposure (2).
Accurate diagnosis of AK is critical for ensuring effective treatment and assessing therapeutic
outcomes. In contrast, seborrheic keratosis (SK) is the skin growth of keratinocytes, which is
one of the most common benign lesions (3). AK is a precancerous lesion with malignant
potential, while SK is benign and typically requires no treatment. Despite their distinct
prognostic implications, AK and SK often present with overlapping clinical and dermoscopic
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features. Accurate differentiation AK from SK is challenging, even for
experienced dermatologists.

Histopathological examination remains the gold standard, it is
invasive, time-consuming, and impractical for routine screening.
Traditional diagnosis of AK and SK relies on subjective visual
inspection. Dermatologists’ experience and interpretation can
influence their evaluation, potentially leading to inter-observer
variability and missed diagnoses (4). Additionally, visual inspection
alone may not capture subtle features crucial for differentiating AK
from SK (5). These limitations can result in unnecessary intervention
for SK or delayed treatment for AK, which can progress to squamous
cell carcinoma if left untreated (6). Thus, there is a critical need for
more objective and accurate diagnostic tools to improve
dermatological diagnosis of AK and SK.

Deep learning (DL) is a powerful sub-field of artificial intelligence,
which offers a promising solution for image analysis in healthcare (7).
DL models have demonstrated remarkable success in various medical
image classification tasks, including skin lesion analysis (8). Previous
study showed that the DL model could achieve dermatologist-level
accuracy in classifying skin cancers from dermatological images (9).
Wang et al. proposed a DL model to improve automatic medical image
classification for malignant skin lesions, which showed good
performance and potential for further development (10). Zhang et al.
used a DL model to differentiate scalp psoriasis from seborrheic
dermatitis, which outperforming dermatologists in accuracy. The
model boosted the diagnostic skills of less experienced dermatologist
with high efficiency (11). We also previously assessed a DL model’s
effectiveness in aiding dermatologists to classify basal cell carcinoma
from SK, finding that the DL model significantly improved diagnostic
accuracy and reduced misdiagnoses (12). Reddy et al. developed a DL
model to diagnosis AK and SK. The findings emphasize the DL
model’s ability in accurate distinguish AK from SK (13). However, the
role of DL models in improving dermatological diagnosis and
treatment decisions for AK and SK has not been fully investigated or
validated across different datasets.

We assumed that DL models could be used to classify AK and SK
and further improve the dermatologists’ diagnostic performance. In
this study, we developed a DL model specifically designed for AK and
SK classification and validated it on different datasets. We further
evaluate the usefulness of this DL model in improving diagnostic
accuracy of the dermatologists in differentiating AK from SK.

Materials and methods
Ethics statement

This study was conducted in accordance with the Declaration of
Helsinki. This study was reviewed and approved by the Institutional
Review Board of Jinshan Hospital (JIEC 2023-S85). Written informed

consent was obtained from all participants prior to enrollment for
publication of any potentially identifiable data or images.

Study design

This prospective study aimed to assess the effectiveness of DL
model in classifying AK and SK. Participants with histopathologically
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confirmed AK or SK were included. The datasets included: a cohort of
2,307 patients from the international skin imaging collaboration dataset
(ISIC, https://www.isic-archive.com), a cohort of 386 patients from
Center A, a cohort of 196 patients from Center B and Center C, and a
cohort of 215 patients from DermNet (https://dermnetnz.org/images).

Datasets and data split

From November 1, 2023, to April 1, 2024, adult patients undergoing
surgical resection for skin neoplasm were enrolled from three centers
(Center A, Center B and Center C). The inclusion criteria were as
follows: (1) Histopathologically confirmed AK or SK; (2) Age >
18 years. Exclusion criteria included: (1) Presence of systemic infection;
(2) Incomplete clinical data; (3) Images with motion blur or artifacts.

The data from ISIC with histopathologically confirmed AK and
SK were used as a training cohort for training the DL model. The data
from Center A was used as a validation dataset]; the data from Center
B and Center C were combined and used as a validation dataset2; the
data from DermNet (histopathologically confirmed clinical
photographs) was used as a validation dataset3. These dataset were
used for validating the DL model.

Image Preprocessing

Image preprocessing steps are consistent with what we previously
reported (12). Briefly, the images were captured by dermoscopy or
devices with a minimum camera resolution of 12 megapixels.
Adequate natural daylight or bright artificial light was used for clear
visibility of the skin lesions. All images were resized to a standard size
suitable for the input layer of DL models and converted into tensor
format. The preprocessing stage included data augmentation
operations such as random cropping, rotation, flipping, and color
transformations. The normalization process was performed by
subtracting the mean value of the entire dataset and dividing by the
standard deviation to normalize pixel values to a standard range.

DL model architecture

The DL model was based on a contrastive language-image
pre-training (CLIP) model with ViT-B/16 architecture (14, 15).
Images were first divided into a set of fixed-size patches, each patch
was then flattened and embedded into a vector. These vectors were
then passed as input to the Transformer encoder to model the image
globally. Finally, these representations went through several fully
connected layers to produce the final classification or regression
outputs. To benchmark CLIP-ViT against widely used CNNs like
ResNet or EfficientNet, we also conducted a head-to-head evaluations
of CLIP-ViT and conventional CNNs (ResNet-50 fine-tuned on the
same data sets) to clarify transformer-based architectures’ advantages.

Feature extraction

The input images were divided into fixed-size image patches, and
each image patch was mapped to a low-dimensional space through a

frontiersin.org


https://doi.org/10.3389/fmed.2025.1654813
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.isic-archive.com
https://dermnetnz.org/images

Ren et al.

learnable linear projection, forming an embedding vector for the
image patch. Position encodings were added to the embedding vectors
of each image patch to represent the relative positional relationships
between the image patches. A Transformer encoder was then
employed to encode the sequence of embedding vectors, which
included self-attention mechanisms and fully connected feed-forward
networks to capture semantic information and contextual relationships
between the image patches. A fixed-length vector representation was
obtained through feature pooling, which was then projected through
a fully connected layer to the same embedding space as the
text features.

Training parameters

The model was trained using the stochastic gradient descent
(SGD) optimizer with momentum. The initial learning rate,
momentum, and weight decay were set to 0.002, 0.9, and 0.005,
respectively. We adopt the ViT-B/16 variant of the CLIP model and set
the number of the learnable prompt vectors to 16. The number of
training epochs is set to 100. The input images of the dataset were all
resized to 224 x 224 pixels. To ensure reproducibility, we set the
random seed to 0 and used a batch size of 32 to maintain
training efficiency.

Cross-entropy loss was utilized to measure the disparity between
the predicted results and the true labels. The outputs of the model
were first processed through a softmax function to transform them
into a probability distribution. Then, these probabilities were
compared with the true labels to compute the cross-entropy loss
between the model’s predictions and the true labels. For each sample,
the cross-entropy loss was the negative log-likelihood of the predicted
label at the corresponding position (16).

Computational requirements and runtime

Our server was equipped with two NVIDIA RTX 4090 GPUs,
each with 24GB of memory. The central processing unit (CPU) was
an Intel Core i9-13900K, featuring 24 cores and 36 threads. 256 GB of
DDR4 RAM was used for memory. Data storage was managed with a
1 TB SSD, enabling fast data read and write operations. The operating
system was Ubuntu 20.04, and the software environment included
tools and libraries such as PyTorch 1.10, CUDA 11.2, Anaconda
23.3.1, CUDA 12.0, cuDNN v8.8.1, PyTorch 1.13.1, and Python 3.7.16.
For the public ISIC dataset, the total training time for 100 epochs was
approximately 1.1 h, while the average inference time per instance was
20.50 milliseconds. During the inference phase, the average inference
time per instance was 2.56 milliseconds, with a throughput of 390
samples per second.

Evaluation metrics

Attention mechanisms were employed to visualize the model’s
regions of interest during image recognition. Specifically, attention
maps were generated to illustrate the model’s focus on different
regions of the images. The attention maps revealed the image features
that the model primarily relied on for predictions, such as color, shape,
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and texture. Grad-CAM was utilized to highlight the regions in the
images considered by the model as crucial for predicting the
corresponding labels. The area under the receiver operating
characteristic (ROC) curves (AUC) were used to evaluate the clinical
application of the DL model in assisting dermatologists.

DL model in assisting dermatologists

First, two dermatologists (dermatologist 1 with 15 years and
dermatologist 2 with 3years of experience, both blinded to
histopathological data) reviewed the images to identify AK or
SK. Second, each dermatologist was shown the classification result of
the DL model. The dermatologists were allowed to reclassify the
diagnosis if needed according to the DL results. Any changes of the
dermatologist in reclassification were recorded. Net reclassification
index (NRI) and total integrated discrimination index (IDI) were
calculated to compare the discrimination performances of the
dermatologists before and after considering the DL model’s
results (17).

Statistical analysis

Statistical analysis was performed using R software (version 4.3.2;
https://www.r-project.org/). Data normality and homogeneity of
variance were assessed using appropriate tests. For continuous
variables, independent-samples t-tests (met the assumptions of
normality) or non-parametric Mann-Whitney U test (not met the
assumptions of normality) was performed. Categorical variables were
compared using the chi-squared test or Fisher’s exact test. A p-value
less than 0.05 was considered statistically significant.

Results
Datasets

The training cohort (ISIC dataset) included a total of 2,307
patients (1,004 females and 1,303 males, aged 64 + 13, ranged from 20
to 85), with 1,348 diagnosed with SK and 959 diagnosed with AK. The
validation dataset] included a total of 386 patients (211 females and
175 males, aged 60 * 15, ranged from 21 to 95). The validation
dataset2 included a total of 195 patients (138 females and 57 males,
aged 59 * 16, ranged from 23 to 91). The workflow of this study is
shown in Figure 1. The clinical characteristics of patients in training
and validation cohorts are shown in Table 1. Two case examples of AK
and SK is shown in Figure 2.

Model performance
The architecture of the DL model is shown in
Supplementary Figure 1. For the training cohort (ISIC dataset), the
model demonstrated an AUC of 0.85 with sensitivity of 0.87 and a
specificity of 0.84, with PPV and NPV of 0.79 and 0.90, respectively.
For the validation cohortl (Center A), the initial performance
metrics of the model in the training cohort revealed an AUC of 0.89,
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FIGURE 1

The workflow of the deep learning (DL) model developed for the classification of actinic keratosis (AK) and seborrheic keratosis (SK).

indicating a moderate discrimination ability. The model demonstrated a
sensitivity of 0.84 and a specificity of 0.94, with positive predictive value
(PPV) and negative predictive value (NPV) of 0.86 and 0.93, respectively.

For the validation cohort2 (Center B and C), the model’s accuracy
and discrimination capabilities were further affirmed, with an AUC of
0.84 showcasing an excellent ability to differentiate between AK and
SK. The model achieved a sensitivity of 0.71 and a specificity of 0.98.
The PPV and NPV were noted at 0.93 and 0.89, respectively (Table 2).

For the validation cohort3 (DermNet with 165 AK and 50 SK), the
model achieved an AUC of 0.89 in differentiating AK from SK with a
sensitivity of 0.81 and a specificity of 0.98. The PPV and NPV were of
0.99 and 0.60, respectively (Table 2). The comparison of the
performance of resnet50 fine-tuned and CLIP on the same data sets is
shown in Supplementary Table 1.

The performance of the DL model in
assisting dermatologists

Without the DL model’s assistance, dermatologist 1 achieved
AUCs 0f 0.77 and 0.69 in diagnosing SK from AK with SEN, SPE, PPV
and NPV of 0.66, 0.89, 0.71, and 0.86 and 0.47, 0.92, 0.71, and 0.80 for
the validation cohortl and 2. Dermatologist 2 achieved AUC:s of 0.79
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and 0.77 in diagnosing SK from AK with SEN, SPE, PPV and NPV of
0.77,0.82,0.64, and 0.90 and 0.86 and 0.79, 0.74, 0.57, and 0.89 for the
validation cohortl and 2 (Figure 3).

After giving the predict results of the model, the dermatologist 1
achieved AUC:s of 0.80 and 0.80 in diagnosing SK from AK with SEN,
SPE, PPV and NPV of 0.67, 0.93, 0.81, and 0.87 and 0.60, 0.97, 0.90
and 0.85 for the validation cohortl and 2. The dermatologist 2
achieved AUC:s of 0.89 and 0.87 in diagnosing SK from AK with SEN,
SPE, PPV and NPV of 0.89, 0.88, 0.76, and 0.95 and 0.78, 0.96, 0.90,
and0.91 for the validation cohortl and 2.

The categorical NRI was 0.10 (p = 0.006) and 0.19 (p < 0.001) for
dermatologist 1 and dermatologist 2, indicating a significant
improvement with the DL model’s assistance. The IDI was 0.14
(p <0.001) and 0.27 (p < 0.001), confirming statistically significant
betterment in discrimination between AK and SK with 14 and 27%
improvement for dermatologist 1 and dermatologist 2, respectively
(data from a merged data set of Center A-C, Figure 4).

The interpretability of the model

The results showed that when correctly predicted, the model often
relied on the color and shape features of the target objects. For both

frontiersin.org


https://doi.org/10.3389/fmed.2025.1654813
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

BUIDIPaN Ul SI21U0I4

S0

B10"uISI1UO0L

TABLE 1 Clinical characteristics of patients with actinic keratosis (AK) and seborrheic keratosis (SK).

Training cohort

Validation cohortl

Validation cohort2

Validation cohort3

Parameters SK AK p-value SK AK p-value SK AK p-value SK AK
(N =1,348) (N = 959) (N =272) (N = 114) (N =137) (N = 58) (N =50) (N = 165)

Gender <0.001 0.625 0.125

Female 543 (40.3%) 461 (48.1%) 146 (53.7%) 65 (57.0%) 92 (67.2%) 46 (79.3%) - -

Male 805 (59.7%) 498 (51.9%) 126 (46.3%) 49 (43.0%) 45 (32.8%) 12 (20.7%) - -

Age 63.0 £ 14.0 66.5+12.2 <0.001 55.8+13.4 71.5+11.9 <0.001 547 £14.2 69.2£16.2 <0.001 - -

CLIP model <0.001 <0.001 <0.001

SK 1,128 (83.7%) 123 (12.8%) 257 (94.5%) 18 (15.8%) 134 (97.8%) 17 (29.3%) 49 (98%) 32 (19.4%)

AK 220 (16.3%) 836 (87.2%) 15 (5.5%) 96 (84.2%) 3(2.2%) 41 (70.7%) 1(2%) 133 (80.6%)

Dermatologist 1 <0.001 <0.001

SK - - 222 (81.6%) 26 (22.8%) 102 (74.5%) 12 (20.7%) - -

AK - - 50 (18.4%) 88 (77.2%) 35 (25.5%) 46 (79.3%) - -

Dermatologist 1

with DL <0.001 <0.001

SK - - 240 (88.2%) 12 (10.5%) 132 (96.4%) 13 (22.4%) - -

AK - - 32 (11.8%) 102 (89.5%) 5(3.6%) 45 (77.6%) - -

Dermatologist 2 <0.001 <0.001

SK - - 242 (89.0%) 39 (34.2%) 126 (92.0%) 31 (53.4%) - -

AK - - 30 (11.0%) 75 (65.8%) 11 (8.0%) 27 (46.6%) - -

Dermatologist 2

with DL <0.001 <0.001

SK - - 254 (93.4%) 38(33.3%) 133 (97.1%) 23 (39.7%) - -

AK - - 18 (6.6%) 76 (66.7%) 4(2.9%) 35 (60.3%) - -

‘leyo usy
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FIGURE 2

Two challenging case examples of AK and SK classification. (A) An example of a uncorrectly classified lesion of pigmented AK lesion by Dermatologist
2, but the model's prediction aligns with the histopathological diagnosis. The Dermatologist 2 reclassified it to AK correctly with the assistance of DL
model. (B) An example of a uncorrectly classified SK lesion with overlapping features mimicking AK by Dermatologist 2, but the model's prediction
aligns with the histopathological diagnosis. The Dermatologist 2 reclassified it to SK correctly with the assistance of DL model. (C) The
histopathological findings of the AK case with the presence of atypical keratinocytes in the epidermis, parakeratosis, and an irregular, thickened stratum
corneum. (D) The histopathological findings of the SK case with the presence of acanthosis, hyperkeratosis, and horn cysts.

TABLE 2 Area under the curve (AUC) for model performance and dermatologist assessments.

Parameters Models AUC 95%Cl SPE SEN NPV PPV
Training cohort CLIP model 0.85 0.84-0.87 0.84 0.87 0.90 0.79
CLIP model 0.89 0.86-0.93 0.94 0.84 0.93 0.86
Dermatologist 1 0.79 0.75-0.84 0.82 0.77 0.90 0.64
Dermatologist 1 with
0.89 0.85-0.92 0.88 0.89 0.95 0.76
Validation cohortl CLIP
Dermatologist 2 0.77 0.73-0.82 0.89 0.66 0.86 0.71
Dermatologist 2 with
0.80 0.75-0.85 0.93 0.67 0.87 0.81
CLIP
CLIP model 0.84 0.78-0.9 0.98 0.71 0.89 0.93
Dermatologist 1 0.77 0.7-0.83 0.74 0.79 0.89 0.57
Dermatologist 1 with
0.87 0.81-0.93 0.96 0.78 0.91 0.90
Validation cohort2 CLIP
Dermatologist 2 0.69 0.62-0.76 0.92 0.47 0.80 0.71
Dermatologist 2 with
0.79 0.72-0.85 0.97 0.60 0.85 0.90
CLIP
Validation cohort3 CLIP model 0.89 0.86-0.93 0.98 0.81 0.60 0.99

AUG, area under the curve; CLIP, contrastive language-image pre-training; PPV, positive predictive value; NPV, negative predictive value; SEN, sensitivity; SPE, specificity.

Frontiers in Medicine 06 frontiersin.org



https://doi.org/10.3389/fmed.2025.1654813
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ren et al.

10.3389/fmed.2025.1654813

Area Under the Curve (AUC) for Model Performances in Validation cohort 1

Sensitivity (True Positive Rate)

A
FIGURE 3

(B) validation cohort2.

Area Under the Curve (AUC) for Model Performances in Validation cohort 2

Sensiivity (True Positive Rate)

B

00 02 04 08 10 00 02 04 06 10
1 - Specificity (False Positive Rate) 1 - Specificity (False Positive Rate)
= CLIP model (AUC = 0.693) = Derma.1 (AUC=0.794) ~— Derma. with DL (AUC =0.689) = Derma.2 (AUC=0.774) ~— Derma2with DL(AUC=08) = CLIP model (AUC=0842) = Derma.1 (AUC=0769) — Derma.1 with DL (AUC =0,87) = Derma.2 (AUC =0.693) ~— Derma.2 wilh DL (AUC =0.787 )

The ROC:s for the different model's classification of AK and SK. The ROC graphs provide a visual representation of the model's discriminatory power
compared to dermatologists with accuracy, sensitivity, and specificity in differentiating AK from SK across different datasets (A) validation cohortl

AK and SK the DL model focus on the background color of the
images. Additionally, features of objects within the image such as
papules or patches on the surface were also factors considered by the
model. Furthermore, the smoothness of the skin surface may also be a
factor considered by the model. The surfaces of SK were smooth,
whereas that of AK were rough (Supplementary Figure 2).

We found that when predictions were incorrect, model failures fell
into the following categories: Instances of color blending, Impact of
blurry images, Interference from similar colors, and specific features
of small sample sizes (Supplementary Figure 3).

Discussion

This study developed and validated the capability of DL model to
enhance dermatological diagnosis for differentiating AK from
SK. With the assistance of the DL model, diagnostic accuracy
significantly improved. The results suggest that DL model integration
into dermatological practice could enhance diagnostic accuracy,
reduce subjectivity, and potentially decrease misdiagnosis rates.

Recent studies underscore the efficacy of DL models in
dermatology (18, 19). DL models trained on extensive datasets have
demonstrated significant capabilities in classifying various skin
cancers with notable accuracy (20, 21). Similarly, research indicates
that DL models can achieve a diagnostic performance comparable to
or exceeding that of dermatologists, particularly in distinguishing
between benign and malignant skin conditions (22).

In the specific context of differentiating AK from SK, recent
studies have highlighted the promise of DL algorithms. Previous
studies used DL models to classify AK and SK with high accuracy and
sensitivity (12). Furthermore, studies have explored the use of
combining clinical images with patient metadata or histopathological
information, to improve the performance of DL models in skin lesion
classification (23). Moreover, studies show that an ability of CLIP to
learn rich visual representations from large-scale image datasets in
medical imaging tasks (24). Unlike conventional CNNs, which
primarily learn local image features, CLIP with a ViT backbone can
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capture long-range contextual relationships across image patches and
align them with semantic features. This is particularly valuable in
differentiating AK and SK, where subtle differences in surface texture,
border irregularity, and pigmentation may require broader contextual
modeling. Moreover, CLIP has demonstrated strong performance in
medical image analysis tasks due to its ability to leverage pretraining
on large-scale image-text pairs, leading to richer and more transferable
feature representations.

An important observation from the attention maps was that the
model occasionally focused on regions outside the lesion itself,
including background skin or surrounding areas. While this may
reflect global contextual learning by the model, it also raises valid
concerns about potential reliance on spurious features, such as lighting
variations or image framing artifacts. From a clinical perspective,
diagnostic decisions rely primarily on lesion-specific characteristics
such as border irregularity, color heterogeneity, and surface texture (4,
5). The emphasis on non-lesion areas in some cases could reduce
interpretability and cast doubt on the model’s alignment with clinical
reasoning. To address this limitation, future research should explore
incorporating lesion segmentation or masking strategies to constrain
the model’s attention to clinically relevant regions. Approaches such
as pre-processing images with automated lesion segmentation
algorithms, applying attention regularization techniques, or leveraging
multi-task learning frameworks that jointly optimize classification and
segmentation could help ensure that the model’s decision-making
more closely aligns with dermatologists clinical reasoning. Further
refinement of model training strategies through lesion segmentation-
based masking or attention regularization may be necessary to
constrain model focus to medically relevant regions, thereby
improving both interpretability and reliability, which are critical for
clinical integration.

The reclassification analysis highlights the model’s adaptability, a
critical feature for clinical applications (25). The NRI and IDI
demonstrated significant improvements for the dermatologists in
differentiating AK from SK. This comparison highlights the model’s
potential to assist dermatologists in differentiating AK from SK, where
visual similarities often lead to misclassification. Interestingly, the
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Reclassification of patients of AK by Dermatologist 1

FIGURE 4
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Reclassification of patients of SK by Dermatologist 2

The net reclassification improvement (NRI) analysis for the DL model's classification of AK and SK. The NRI quantifies the improvement in classification
accuracy when incorporating the model's predictions compared to dermatologists’ initial assessments. In the circle plots, the connections in red
represent patients who were reclassified in the incorrect direction, whereas the connections in green indicate patients who were reclassified in the
correct direction with the specific patient numbers. (A) Dermatologist 1 in classification and reclassification of AK with the assistance of DL model.

(B) Dermatologist 1 in classification and reclassification of SK with the assistance of DL model. (C) Dermatologist 2 in classification and reclassification
of AK with the assistance of DL model. (D) Dermatologist 2 in classification and reclassification of SK with the assistance of DL model.

model improved diagnostic accuracy for both dermatologists, with a
significant enchantment for the less-experienced dermatologist. The
intended role of our model is as a decision-support system rather than
a stand-alone diagnostic tool. Specifically, it can serve as a ‘second
reader’ to provide dermatologists with an additional, objective
interpretation that may reduce diagnostic uncertainty. Beyond
diagnostic assistance, the model could also be applied as a triage tool,
flagging potentially malignant or high-risk lesions for more urgent
evaluation. By integrating into clinical workflows in these supportive

Frontiers in Medicine

roles, the model has the potential to enhance efficiency and accuracy
without replacing dermatologist expertise.

Some limitations should be acknowledged. One limitation of this
study is the restricted scope of the dataset. Future work should include
multi-ethnic and international datasets to enhance the models
robustness and generalizability. Furthermore, our study lacks
longitudinal and real-world validation, leaving long-term stability,
patient outcome impact, and routine practice integration untested.
Future research should conduct prospective, longitudinal evaluations
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in clinical workflows across institutions to assess the practical value
and sustainability of Al-assisted dermatological diagnosis. Expanding
dataset diversity will be essential to validate the robustness of the
model across broader populations and to ensure its fairness and
clinical applicability worldwide.

Conclusion

The CLIP-based ViT DL model substantially enhanced
dermatologists’ ability to distinguish AK from SK, with less
experienced dermatologists benefiting more significantly. These
results imply that such models can aid dermatologists in real-world
settings by minimizing diagnostic subjectivity and enhancing the early
identification of precancerous lesions, thereby affirming the model’s
potential to improve diagnostic accuracy in dermatology. Ultimately,
integrating DL models into dermatological practice holds promise for
revolutionizing  diagnostic

approaches  and  refining

therapeutic strategies.
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