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Background: Differentiating Actinic keratosis (AK) from Seborrheic keratosis (SK) 
can be challenging for dermatologists due to their visual similarities. This multi-
center prospective study aims to investigate the efficacy of deep learning (DL) 
model in assisting dermatologists in accurately classifying AK from SK lesions.
Methods: A contrastive language-image pre-training (CLIP) model with ViT-B/16 
architecture was trained on an dataset of 2,307 patients and validated in three 
separate datasets of 386 (from Center A), 196 patients (from Center B and C) 
and 215 patients (from DermNet). Two dermatologists classified the lesions 
separately. Then they were showed the model’s predictions and were requested 
to reclassify the results if needed. Area under the receiver operating characteristic 
(ROC) curve (AUC) was used to evaluate the diagnostic performances of the DL 
model and the dermatologists before and after reclassification. The change in the 
dermatologists’ classification decisions was also analyzed by net reclassification 
index (NRI) and total integrated discrimination index (IDI).
Results: The model’s diagnostic performance in the training cohort and 
validation cohort 1, 2 and 3 showed an AUC of 0.85, 0.89, 0.84, and 0.89. For 
dermatologist 1, the diagnostic performance improved from 0.77 to 0.80  in 
the test cohort with NRI and IDI of 0.10 (p = 0.006) and 0.14 (p < 0.001). For 
dermatologist 2, the diagnostic performance increased from 0.69 to 0.79 with 
NRI and IDI of 0.19 (p < 0.001) and 0.27 (p < 0.001).
Conclusion: The DL model significantly improves dermatologists’ accuracy in 
differentiating AK from SK, especially for less experienced ones. The DL model has 
the potential to reduce diagnostic subjectivity, aid early detection of precancerous 
lesions, and transform dermatological diagnostic and therapeutic practices.
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Introduction

Skin cancer represents a significant global health burden (1). Actinic keratosis (AK) is a 
prevalent precancerous lesion that develops as a consequence of long-term sun exposure (2). 
Accurate diagnosis of AK is critical for ensuring effective treatment and assessing therapeutic 
outcomes. In contrast, seborrheic keratosis (SK) is the skin growth of keratinocytes, which is 
one of the most common benign lesions (3). AK is a precancerous lesion with malignant 
potential, while SK is benign and typically requires no treatment. Despite their distinct 
prognostic implications, AK and SK often present with overlapping clinical and dermoscopic 
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features. Accurate differentiation AK from SK is challenging, even for 
experienced dermatologists.

Histopathological examination remains the gold standard, it is 
invasive, time-consuming, and impractical for routine screening. 
Traditional diagnosis of AK and SK relies on subjective visual 
inspection. Dermatologists’ experience and interpretation can 
influence their evaluation, potentially leading to inter-observer 
variability and missed diagnoses (4). Additionally, visual inspection 
alone may not capture subtle features crucial for differentiating AK 
from SK (5). These limitations can result in unnecessary intervention 
for SK or delayed treatment for AK, which can progress to squamous 
cell carcinoma if left untreated (6). Thus, there is a critical need for 
more objective and accurate diagnostic tools to improve 
dermatological diagnosis of AK and SK.

Deep learning (DL) is a powerful sub-field of artificial intelligence, 
which offers a promising solution for image analysis in healthcare (7). 
DL models have demonstrated remarkable success in various medical 
image classification tasks, including skin lesion analysis (8). Previous 
study showed that the DL model could achieve dermatologist-level 
accuracy in classifying skin cancers from dermatological images (9). 
Wang et al. proposed a DL model to improve automatic medical image 
classification for malignant skin lesions, which showed good 
performance and potential for further development (10). Zhang et al. 
used a DL model to differentiate scalp psoriasis from seborrheic 
dermatitis, which outperforming dermatologists in accuracy. The 
model boosted the diagnostic skills of less experienced dermatologist 
with high efficiency (11). We also previously assessed a DL model’s 
effectiveness in aiding dermatologists to classify basal cell carcinoma 
from SK, finding that the DL model significantly improved diagnostic 
accuracy and reduced misdiagnoses (12). Reddy et al. developed a DL 
model to diagnosis AK and SK. The findings emphasize the DL 
model’s ability in accurate distinguish AK from SK (13). However, the 
role of DL models in improving dermatological diagnosis and 
treatment decisions for AK and SK has not been fully investigated or 
validated across different datasets.

We assumed that DL models could be used to classify AK and SK 
and further improve the dermatologists’ diagnostic performance. In 
this study, we developed a DL model specifically designed for AK and 
SK classification and validated it on different datasets. We further 
evaluate the usefulness of this DL model in improving diagnostic 
accuracy of the dermatologists in differentiating AK from SK.

Materials and methods

Ethics statement

This study was conducted in accordance with the Declaration of 
Helsinki. This study was reviewed and approved by the Institutional 
Review Board of Jinshan Hospital (JIEC 2023-S85). Written informed 
consent was obtained from all participants prior to enrollment for 
publication of any potentially identifiable data or images.

Study design

This prospective study aimed to assess the effectiveness of DL 
model in classifying AK and SK. Participants with histopathologically 

confirmed AK or SK were included. The datasets included: a cohort of 
2,307 patients from the international skin imaging collaboration dataset 
(ISIC, https://www.isic-archive.com), a cohort of 386 patients from 
Center A, a cohort of 196 patients from Center B and Center C, and a 
cohort of 215 patients from DermNet (https://dermnetnz.org/images).

Datasets and data split

From November 1, 2023, to April 1, 2024, adult patients undergoing 
surgical resection for skin neoplasm were enrolled from three centers 
(Center A, Center B and Center C). The inclusion criteria were as 
follows: (1) Histopathologically confirmed AK or SK; (2) Age ≥ 
18 years. Exclusion criteria included: (1) Presence of systemic infection; 
(2) Incomplete clinical data; (3) Images with motion blur or artifacts.

The data from ISIC with histopathologically confirmed AK and 
SK were used as a training cohort for training the DL model. The data 
from Center A was used as a validation dataset1; the data from Center 
B and Center C were combined and used as a validation dataset2; the 
data from DermNet (histopathologically confirmed clinical 
photographs) was used as a validation dataset3. These dataset were 
used for validating the DL model.

Image Preprocessing

Image preprocessing steps are consistent with what we previously 
reported (12). Briefly, the images were captured by dermoscopy or 
devices with a minimum camera resolution of 12 megapixels. 
Adequate natural daylight or bright artificial light was used for clear 
visibility of the skin lesions. All images were resized to a standard size 
suitable for the input layer of DL models and converted into tensor 
format. The preprocessing stage included data augmentation 
operations such as random cropping, rotation, flipping, and color 
transformations. The normalization process was performed by 
subtracting the mean value of the entire dataset and dividing by the 
standard deviation to normalize pixel values to a standard range.

DL model architecture

The DL model was based on a contrastive language-image 
pre-training (CLIP) model with ViT-B/16 architecture (14, 15). 
Images were first divided into a set of fixed-size patches, each patch 
was then flattened and embedded into a vector. These vectors were 
then passed as input to the Transformer encoder to model the image 
globally. Finally, these representations went through several fully 
connected layers to produce the final classification or regression 
outputs. To benchmark CLIP-ViT against widely used CNNs like 
ResNet or EfficientNet, we also conducted a head-to-head evaluations 
of CLIP-ViT and conventional CNNs (ResNet-50 fine-tuned on the 
same data sets) to clarify transformer-based architectures’ advantages.

Feature extraction

The input images were divided into fixed-size image patches, and 
each image patch was mapped to a low-dimensional space through a 
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learnable linear projection, forming an embedding vector for the 
image patch. Position encodings were added to the embedding vectors 
of each image patch to represent the relative positional relationships 
between the image patches. A Transformer encoder was then 
employed to encode the sequence of embedding vectors, which 
included self-attention mechanisms and fully connected feed-forward 
networks to capture semantic information and contextual relationships 
between the image patches. A fixed-length vector representation was 
obtained through feature pooling, which was then projected through 
a fully connected layer to the same embedding space as the 
text features.

Training parameters

The model was trained using the stochastic gradient descent 
(SGD) optimizer with momentum. The initial learning rate, 
momentum, and weight decay were set to 0.002, 0.9, and 0.005, 
respectively. We adopt the ViT-B/16 variant of the CLIP model and set 
the number of the learnable prompt vectors to 16. The number of 
training epochs is set to 100. The input images of the dataset were all 
resized to 224 × 224 pixels. To ensure reproducibility, we  set the 
random seed to 0 and used a batch size of 32 to maintain 
training efficiency.

Cross-entropy loss was utilized to measure the disparity between 
the predicted results and the true labels. The outputs of the model 
were first processed through a softmax function to transform them 
into a probability distribution. Then, these probabilities were 
compared with the true labels to compute the cross-entropy loss 
between the model’s predictions and the true labels. For each sample, 
the cross-entropy loss was the negative log-likelihood of the predicted 
label at the corresponding position (16).

Computational requirements and runtime

Our server was equipped with two NVIDIA RTX 4090 GPUs, 
each with 24GB of memory. The central processing unit (CPU) was 
an Intel Core i9-13900K, featuring 24 cores and 36 threads. 256 GB of 
DDR4 RAM was used for memory. Data storage was managed with a 
1 TB SSD, enabling fast data read and write operations. The operating 
system was Ubuntu 20.04, and the software environment included 
tools and libraries such as PyTorch 1.10, CUDA 11.2, Anaconda 
23.3.1, CUDA 12.0, cuDNN v8.8.1, PyTorch 1.13.1, and Python 3.7.16. 
For the public ISIC dataset, the total training time for 100 epochs was 
approximately 1.1 h, while the average inference time per instance was 
20.50 milliseconds. During the inference phase, the average inference 
time per instance was 2.56 milliseconds, with a throughput of 390 
samples per second.

Evaluation metrics

Attention mechanisms were employed to visualize the model’s 
regions of interest during image recognition. Specifically, attention 
maps were generated to illustrate the model’s focus on different 
regions of the images. The attention maps revealed the image features 
that the model primarily relied on for predictions, such as color, shape, 

and texture. Grad-CAM was utilized to highlight the regions in the 
images considered by the model as crucial for predicting the 
corresponding labels. The area under the receiver operating 
characteristic (ROC) curves (AUC) were used to evaluate the clinical 
application of the DL model in assisting dermatologists.

DL model in assisting dermatologists

First, two dermatologists (dermatologist 1 with 15 years and 
dermatologist 2 with 3 years of experience, both blinded to 
histopathological data) reviewed the images to identify AK or 
SK. Second, each dermatologist was shown the classification result of 
the DL model. The dermatologists were allowed to reclassify the 
diagnosis if needed according to the DL results. Any changes of the 
dermatologist in reclassification were recorded. Net reclassification 
index (NRI) and total integrated discrimination index (IDI) were 
calculated to compare the discrimination performances of the 
dermatologists before and after considering the DL model’s 
results (17).

Statistical analysis

Statistical analysis was performed using R software (version 4.3.2; 
https://www.r-project.org/). Data normality and homogeneity of 
variance were assessed using appropriate tests. For continuous 
variables, independent-samples t-tests (met the assumptions of 
normality) or non-parametric Mann–Whitney U test (not met the 
assumptions of normality) was performed. Categorical variables were 
compared using the chi-squared test or Fisher’s exact test. A p-value 
less than 0.05 was considered statistically significant.

Results

Datasets

The training cohort (ISIC dataset) included a total of 2,307 
patients (1,004 females and 1,303 males, aged 64 ± 13, ranged from 20 
to 85), with 1,348 diagnosed with SK and 959 diagnosed with AK. The 
validation dataset1 included a total of 386 patients (211 females and 
175 males, aged 60 ± 15, ranged from 21 to 95). The validation 
dataset2 included a total of 195 patients (138 females and 57 males, 
aged 59 ± 16, ranged from 23 to 91). The workflow of this study is 
shown in Figure 1. The clinical characteristics of patients in training 
and validation cohorts are shown in Table 1. Two case examples of AK 
and SK is shown in Figure 2.

Model performance

The architecture of the DL model is shown in 
Supplementary Figure 1. For the training cohort (ISIC dataset), the 
model demonstrated an AUC of 0.85 with sensitivity of 0.87 and a 
specificity of 0.84, with PPV and NPV of 0.79 and 0.90, respectively.

For the validation cohort1 (Center A), the initial performance 
metrics of the model in the training cohort revealed an AUC of 0.89, 
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indicating a moderate discrimination ability. The model demonstrated a 
sensitivity of 0.84 and a specificity of 0.94, with positive predictive value 
(PPV) and negative predictive value (NPV) of 0.86 and 0.93, respectively.

For the validation cohort2 (Center B and C), the model’s accuracy 
and discrimination capabilities were further affirmed, with an AUC of 
0.84 showcasing an excellent ability to differentiate between AK and 
SK. The model achieved a sensitivity of 0.71 and a specificity of 0.98. 
The PPV and NPV were noted at 0.93 and 0.89, respectively (Table 2).

For the validation cohort3 (DermNet with 165 AK and 50 SK), the 
model achieved an AUC of 0.89 in differentiating AK from SK with a 
sensitivity of 0.81 and a specificity of 0.98. The PPV and NPV were of 
0.99 and 0.60, respectively (Table  2). The comparison of the 
performance of resnet50 fine-tuned and CLIP on the same data sets is 
shown in Supplementary Table 1.

The performance of the DL model in 
assisting dermatologists

Without the DL model’s assistance, dermatologist 1 achieved 
AUCs of 0.77 and 0.69 in diagnosing SK from AK with SEN, SPE, PPV 
and NPV of 0.66, 0.89, 0.71, and 0.86 and 0.47, 0.92, 0.71, and 0.80 for 
the validation cohort1 and 2. Dermatologist 2 achieved AUCs of 0.79 

and 0.77 in diagnosing SK from AK with SEN, SPE, PPV and NPV of 
0.77, 0.82, 0.64, and 0.90 and 0.86 and 0.79, 0.74, 0.57, and 0.89 for the 
validation cohort1 and 2 (Figure 3).

After giving the predict results of the model, the dermatologist 1 
achieved AUCs of 0.80 and 0.80 in diagnosing SK from AK with SEN, 
SPE, PPV and NPV of 0.67, 0.93, 0.81, and 0.87 and 0.60, 0.97, 0.90 
and 0.85 for the validation cohort1 and 2. The dermatologist 2 
achieved AUCs of 0.89 and 0.87 in diagnosing SK from AK with SEN, 
SPE, PPV and NPV of 0.89, 0.88, 0.76, and 0.95 and 0.78, 0.96, 0.90, 
and0.91 for the validation cohort1 and 2.

The categorical NRI was 0.10 (p = 0.006) and 0.19 (p < 0.001) for 
dermatologist 1 and dermatologist 2, indicating a significant 
improvement with the DL model’s assistance. The IDI was 0.14 
(p < 0.001) and 0.27 (p < 0.001), confirming statistically significant 
betterment in discrimination between AK and SK with 14 and 27% 
improvement for dermatologist 1 and dermatologist 2, respectively 
(data from a merged data set of Center A–C, Figure 4).

The interpretability of the model

The results showed that when correctly predicted, the model often 
relied on the color and shape features of the target objects. For both 

FIGURE 1

The workflow of the deep learning (DL) model developed for the classification of actinic keratosis (AK) and seborrheic keratosis (SK).
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TABLE 1  Clinical characteristics of patients with actinic keratosis (AK) and seborrheic keratosis (SK).

Training cohort Validation cohort1 Validation cohort2 Validation cohort3

Parameters SK 
(N = 1,348)

AK 
(N = 959)

p-value SK 
(N = 272)

AK 
(N = 114)

p-value SK 
(N = 137)

AK 
(N = 58)

p-value SK 
(N = 50)

AK 
(N = 165)

Gender <0.001 0.625 0.125

Female 543 (40.3%) 461 (48.1%) 146 (53.7%) 65 (57.0%) 92 (67.2%) 46 (79.3%) - -

Male 805 (59.7%) 498 (51.9%) 126 (46.3%) 49 (43.0%) 45 (32.8%) 12 (20.7%) - -

Age 63.0 ± 14.0 66.5 ± 12.2 <0.001 55.8 ± 13.4 71.5 ± 11.9 <0.001 54.7 ± 14.2 69.2 ± 16.2 <0.001 - -

CLIP model <0.001 <0.001 <0.001

SK 1,128 (83.7%) 123 (12.8%) 257 (94.5%) 18 (15.8%) 134 (97.8%) 17 (29.3%) 49 (98%) 32 (19.4%)

AK 220 (16.3%) 836 (87.2%) 15 (5.5%) 96 (84.2%) 3 (2.2%) 41 (70.7%) 1 (2%) 133 (80.6%)

Dermatologist 1 <0.001 <0.001

SK - - 222 (81.6%) 26 (22.8%) 102 (74.5%) 12 (20.7%) - -

AK - - 50 (18.4%) 88 (77.2%) 35 (25.5%) 46 (79.3%) - -

Dermatologist 1 

with DL
<0.001 <0.001

SK - - 240 (88.2%) 12 (10.5%) 132 (96.4%) 13 (22.4%) - -

AK - - 32 (11.8%) 102 (89.5%) 5 (3.6%) 45 (77.6%) - -

Dermatologist 2 <0.001 <0.001

SK - - 242 (89.0%) 39 (34.2%) 126 (92.0%) 31 (53.4%) - -

AK - - 30 (11.0%) 75 (65.8%) 11 (8.0%) 27 (46.6%) - -

Dermatologist 2 

with DL
<0.001 <0.001

SK - - 254 (93.4%) 38 (33.3%) 133 (97.1%) 23 (39.7%) - -

AK - - 18 (6.6%) 76 (66.7%) 4 (2.9%) 35 (60.3%) - -

https://doi.org/10.3389/fmed.2025.1654813
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ren et al.� 10.3389/fmed.2025.1654813

Frontiers in Medicine 06 frontiersin.org

FIGURE 2

Two challenging case examples of AK and SK classification. (A) An example of a uncorrectly classified lesion of pigmented AK lesion by Dermatologist 
2, but the model’s prediction aligns with the histopathological diagnosis. The Dermatologist 2 reclassified it to AK correctly with the assistance of DL 
model. (B) An example of a uncorrectly classified SK lesion with overlapping features mimicking AK by Dermatologist 2, but the model’s prediction 
aligns with the histopathological diagnosis. The Dermatologist 2 reclassified it to SK correctly with the assistance of DL model. (C) The 
histopathological findings of the AK case with the presence of atypical keratinocytes in the epidermis, parakeratosis, and an irregular, thickened stratum 
corneum. (D) The histopathological findings of the SK case with the presence of acanthosis, hyperkeratosis, and horn cysts.

TABLE 2  Area under the curve (AUC) for model performance and dermatologist assessments.

Parameters Models AUC 95%CI SPE SEN NPV PPV

Training cohort CLIP model 0.85 0.84–0.87 0.84 0.87 0.90 0.79

Validation cohort1

CLIP model 0.89 0.86–0.93 0.94 0.84 0.93 0.86

Dermatologist 1 0.79 0.75–0.84 0.82 0.77 0.90 0.64

Dermatologist 1 with 

CLIP
0.89 0.85–0.92 0.88 0.89 0.95 0.76

Dermatologist 2 0.77 0.73–0.82 0.89 0.66 0.86 0.71

Dermatologist 2 with 

CLIP
0.80 0.75–0.85 0.93 0.67 0.87 0.81

Validation cohort2

CLIP model 0.84 0.78–0.9 0.98 0.71 0.89 0.93

Dermatologist 1 0.77 0.7–0.83 0.74 0.79 0.89 0.57

Dermatologist 1 with 

CLIP
0.87 0.81–0.93 0.96 0.78 0.91 0.90

Dermatologist 2 0.69 0.62–0.76 0.92 0.47 0.80 0.71

Dermatologist 2 with 

CLIP
0.79 0.72–0.85 0.97 0.60 0.85 0.90

Validation cohort3 CLIP model 0.89 0.86–0.93 0.98 0.81 0.60 0.99

AUC, area under the curve; CLIP, contrastive language-image pre-training; PPV, positive predictive value; NPV, negative predictive value; SEN, sensitivity; SPE, specificity.
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AK and SK the DL model focus on the background color of the 
images. Additionally, features of objects within the image such as 
papules or patches on the surface were also factors considered by the 
model. Furthermore, the smoothness of the skin surface may also be a 
factor considered by the model. The surfaces of SK were smooth, 
whereas that of AK were rough (Supplementary Figure 2).

We found that when predictions were incorrect, model failures fell 
into the following categories: Instances of color blending, Impact of 
blurry images, Interference from similar colors, and specific features 
of small sample sizes (Supplementary Figure 3).

Discussion

This study developed and validated the capability of DL model to 
enhance dermatological diagnosis for differentiating AK from 
SK. With the assistance of the DL model, diagnostic accuracy 
significantly improved. The results suggest that DL model integration 
into dermatological practice could enhance diagnostic accuracy, 
reduce subjectivity, and potentially decrease misdiagnosis rates.

Recent studies underscore the efficacy of DL models in 
dermatology (18, 19). DL models trained on extensive datasets have 
demonstrated significant capabilities in classifying various skin 
cancers with notable accuracy (20, 21). Similarly, research indicates 
that DL models can achieve a diagnostic performance comparable to 
or exceeding that of dermatologists, particularly in distinguishing 
between benign and malignant skin conditions (22).

In the specific context of differentiating AK from SK, recent 
studies have highlighted the promise of DL algorithms. Previous 
studies used DL models to classify AK and SK with high accuracy and 
sensitivity (12). Furthermore, studies have explored the use of 
combining clinical images with patient metadata or histopathological 
information, to improve the performance of DL models in skin lesion 
classification (23). Moreover, studies show that an ability of CLIP to 
learn rich visual representations from large-scale image datasets in 
medical imaging tasks (24). Unlike conventional CNNs, which 
primarily learn local image features, CLIP with a ViT backbone can 

capture long-range contextual relationships across image patches and 
align them with semantic features. This is particularly valuable in 
differentiating AK and SK, where subtle differences in surface texture, 
border irregularity, and pigmentation may require broader contextual 
modeling. Moreover, CLIP has demonstrated strong performance in 
medical image analysis tasks due to its ability to leverage pretraining 
on large-scale image-text pairs, leading to richer and more transferable 
feature representations.

An important observation from the attention maps was that the 
model occasionally focused on regions outside the lesion itself, 
including background skin or surrounding areas. While this may 
reflect global contextual learning by the model, it also raises valid 
concerns about potential reliance on spurious features, such as lighting 
variations or image framing artifacts. From a clinical perspective, 
diagnostic decisions rely primarily on lesion-specific characteristics 
such as border irregularity, color heterogeneity, and surface texture (4, 
5). The emphasis on non-lesion areas in some cases could reduce 
interpretability and cast doubt on the model’s alignment with clinical 
reasoning. To address this limitation, future research should explore 
incorporating lesion segmentation or masking strategies to constrain 
the model’s attention to clinically relevant regions. Approaches such 
as pre-processing images with automated lesion segmentation 
algorithms, applying attention regularization techniques, or leveraging 
multi-task learning frameworks that jointly optimize classification and 
segmentation could help ensure that the model’s decision-making 
more closely aligns with dermatologists’ clinical reasoning. Further 
refinement of model training strategies through lesion segmentation-
based masking or attention regularization may be  necessary to 
constrain model focus to medically relevant regions, thereby 
improving both interpretability and reliability, which are critical for 
clinical integration.

The reclassification analysis highlights the model’s adaptability, a 
critical feature for clinical applications (25). The NRI and IDI 
demonstrated significant improvements for the dermatologists in 
differentiating AK from SK. This comparison highlights the model’s 
potential to assist dermatologists in differentiating AK from SK, where 
visual similarities often lead to misclassification. Interestingly, the 

FIGURE 3

The ROCs for the different model’s classification of AK and SK. The ROC graphs provide a visual representation of the model’s discriminatory power 
compared to dermatologists with accuracy, sensitivity, and specificity in differentiating AK from SK across different datasets (A) validation cohort1 
(B) validation cohort2.
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model improved diagnostic accuracy for both dermatologists, with a 
significant enchantment for the less-experienced dermatologist. The 
intended role of our model is as a decision-support system rather than 
a stand-alone diagnostic tool. Specifically, it can serve as a ‘second 
reader’ to provide dermatologists with an additional, objective 
interpretation that may reduce diagnostic uncertainty. Beyond 
diagnostic assistance, the model could also be applied as a triage tool, 
flagging potentially malignant or high-risk lesions for more urgent 
evaluation. By integrating into clinical workflows in these supportive 

roles, the model has the potential to enhance efficiency and accuracy 
without replacing dermatologist expertise.

Some limitations should be acknowledged. One limitation of this 
study is the restricted scope of the dataset. Future work should include 
multi-ethnic and international datasets to enhance the model’s 
robustness and generalizability. Furthermore, our study lacks 
longitudinal and real-world validation, leaving long-term stability, 
patient outcome impact, and routine practice integration untested. 
Future research should conduct prospective, longitudinal evaluations 

FIGURE 4

The net reclassification improvement (NRI) analysis for the DL model’s classification of AK and SK. The NRI quantifies the improvement in classification 
accuracy when incorporating the model’s predictions compared to dermatologists’ initial assessments. In the circle plots, the connections in red 
represent patients who were reclassified in the incorrect direction, whereas the connections in green indicate patients who were reclassified in the 
correct direction with the specific patient numbers. (A) Dermatologist 1 in classification and reclassification of AK with the assistance of DL model. 
(B) Dermatologist 1 in classification and reclassification of SK with the assistance of DL model. (C) Dermatologist 2 in classification and reclassification 
of AK with the assistance of DL model. (D) Dermatologist 2 in classification and reclassification of SK with the assistance of DL model.
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in clinical workflows across institutions to assess the practical value 
and sustainability of AI-assisted dermatological diagnosis. Expanding 
dataset diversity will be essential to validate the robustness of the 
model across broader populations and to ensure its fairness and 
clinical applicability worldwide.

Conclusion

The CLIP-based ViT DL model substantially enhanced 
dermatologists’ ability to distinguish AK from SK, with less 
experienced dermatologists benefiting more significantly. These 
results imply that such models can aid dermatologists in real-world 
settings by minimizing diagnostic subjectivity and enhancing the early 
identification of precancerous lesions, thereby affirming the model’s 
potential to improve diagnostic accuracy in dermatology. Ultimately, 
integrating DL models into dermatological practice holds promise for 
revolutionizing diagnostic approaches and refining 
therapeutic strategies.
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