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Problem: Accurate prediction of short-term treatment response remains a

critical challenge in nasopharyngeal carcinoma (NPC) management. Traditional

TNM staging and clinical biomarkers offer limited precision for individualized

therapy planning, creating a need for more robust, non-invasive predictive tools.

Aim: This multicenter study aimed to develop and validate a multimodal MRI-

based radiomics model for predicting short-term treatment response in NPC,

and to compare its performance against conventional clinical biomarkers.

Methods: We analyzed pre-treatment T1-weighted, T2-weighted, and contrast-

enhanced T1-weighted MRI sequences from 173 patients in our primary cohort

and 55 external validation cases. A total of 3,591 radiomic features were

extracted per patient. After rigorous feature selection using maximum relevance

minimum redundancy (mRMR) and Least Absolute Shrinkage and Selection

Operator (LASSO) regression, we developed and compared eight machine

learning classifiers. Model performance was evaluated through comprehensive

validation, including calibration analysis and decision curve assessment.

Results: The Support Vector Machine (SVM) model demonstrated superior

performance, achieving an area under the curve (AUC) of 0.935 (95% CI:

0.867–1.000) on internal testing with balanced sensitivity (87.1%) and specificity

(95.2%). External validation confirmed model robustness (AUC 0.880, 95% CI:

0.800–0.960). Our radiomics approach significantly outperformed all clinical

biomarkers (AUC improvement: 18.7–24.3%, p < 0.01) and demonstrated clinical

utility across decision probability thresholds of 12–48%.

Conclusion: The multimodal MRI-based radiomics model represents a

transformative non-invasive tool for predicting short-term treatment response

in NPC, offering superior performance to conventional methods and providing

valuable insights for personalized treatment strategies. Our findings support the

integration of radiomics into clinical decision-making for NPC management.
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1 Introduction 

The NPC is a malignant tumor that develops from the mucosal 
lining of the nasopharynx. The main pathological type is non-
keratinized squamous cell carcinoma, accounting for about 95% 
(1). It is commonly seen in Southeast Asian countries (2). Due to its 
deep anatomical location, high rate of lymph node metastasis, and 
aggressive invasion, NPC is often diagnosed at an advanced stage 
(3). Currently, oncologists mainly choose the appropriate treatment 
methods based on the TNM stage of the tumor. However, even 
if the patients with the same stage receive the same treatment, 
there will be dierent results (4). In the early stage, the main 
treatment method is radiotherapy, and for advanced patients, it 
is the combination of radiotherapy and chemotherapy. Compared 
with other malignant tumors, the prognosis of NPC is better, 
and the 5-year survival rate can be as high as 80% (5), but 
there are still some patients, after the end of treatment, the early 
tumor progression, metastasis, resulting in adverse consequences 
(6). Tumor TNM stage only reflects the outward invasion of 
the tumor but cannot evaluate the interior of the tumor. Many 
previous clinical studies have primarily concentrated on markers 
like Epstein-Barr virus (EBV) DNA antibody level, white blood 
cells, and neutrophil number, which are correlated with prognosis, 
but lack specificity (7). 

Tumor progression and response to therapy are influenced 
by multiple factors that TNM staging alone cannot encompass, 
such as molecular and cellular characteristics within the tumor 
microenvironment. Recent studies have explored biomarkers, such 
as EBV-DNA levels, neutrophil-to-lymphocyte ratio, and lactate 
dehydrogenase (LDH) levels, as prognostic indicators in NPC. 
However, these markers often lack specificity and do not fully 
capture the tumor’s complexity (8). 

MRI is essential for diagnosing, staging, and planning 
treatment for NPC. Compared with other imaging modalities, MRI 
oers excellent soft-tissue contrast, enabling detailed visualization 
of tumor boundaries, invasion into adjacent structures, and lymph 
node involvement (9). In MRI for NPC, each sequence provides 
unique diagnostic advantages. T1WI oers high anatomical detail 
with clear contrast between fat and fluids, essential for defining 
anatomical boundaries and accurately localizing the primary 
tumor. T2WI enhances fluid contrast, making it particularly 
eective for identifying inflammation, edema, and potential 
invasion into adjacent tissues, which indicates tumor extent 
and aggressiveness. contrast-enhanced T1-weighted, following 
gadolinium administration, highlights vascularized areas and 
tumor margins, enhancing lymph node visibility and aiding in 
precise staging of NPC. MRI’s high-resolution imaging capabilities 
are essential for accurately assessing the extent of NPC and 
monitoring treatment response, particularly in cases with complex 
anatomical relationships in the nasopharyngeal area. Moreover, 
MRI has the advantage of non-invasive, radiation-free, and is 
suitable for repeated evaluation of tumor therapy (9). Recent 
studies have advanced the computational analysis of NPC, 
including a trainable model for tumor segmentation (10), a 
review of electronic diagnostic methods (11), and a comprehensive 
survey of NPC research concepts and methodologies (12). 
While these contributions provide valuable foundations in 
segmentation and diagnostic technologies, they leave unmet 

needs in multi-institutionally validated, multimodal MRI-based 
predictive modeling for treatment response. Importantly, prior 
works seldom benchmark against clinical biomarkers or address 
model interpretability—key barriers to clinical adoption. Our 
study directly addresses these gaps by developing a rigorously 
validated, multimodal radiomics model evaluated against clinical 
standards and explained via SHAP analysis to support clinical 
decision-making. While several previous studies have explored 
radiomics for NPC prognosis (13, 14), significant limitations 
remain. First, many existing models derive from single-center 
cohorts without external validation, raising concerns about 
generalizability. Second, most approaches utilize single-sequence 
MRI data, potentially underutilizing the complementary prognostic 
information available across multiple sequences. Third, the clinical 
added value of radiomics models beyond established biomarkers 
like EBV DNA has not been comprehensively evaluated. Finally, 
there is often a lack of robust calibration and interpretability 
analysis, which are critical for clinical translation. 

To address these gaps, we developed and validated a 
multimodal MRI-based radiomics model across multiple centers. 
Our approach specifically integrates T1, T2, and contrast-enhanced 
T1-weighted sequences to capture a more comprehensive range 
of tumor characteristics. We implemented stringent external 
validation using data from a completely separate institution to 
rigorously test generalizability. Furthermore, we directly compared 
our model against a comprehensive panel of clinical biomarkers 
and conducted detailed calibration and decision curve analysis 
to evaluate its clinical utility. Finally, we applied SHAP analysis 
to enhance model interpretability. This comprehensive approach 
aims to provide a robust, clinically applicable tool for personalized 
treatment planning in NPC. 

Tumor development is a multifactorial process, and suÿcient 
tumor data information contributes to tumor knowledge (15). With 
the advancements in artificial intelligence technology, Radiomics is 
a hot field at present (16). It has clinical significance and advantages 
for the extraction of internal tumor characteristics (17). The value 
of eÿcacy prediction and risk stratification of NPC based on 
imaging omics has been aÿrmed (18). 

Most existing radiomics models for NPC are derived from 
single-center studies and lack rigorous external validation, 
raising significant concerns about their generalizability to unseen 
populations and dierent imaging protocols. The potential 
synergistic predictive value of combining quantitative features 
from multiple MRI sequences (T1, T2, CE-T1) within a unified 
model has not been fully explored, often relying on single 
sequences. The comparative performance of radiomics models 
against a comprehensive panel of standard clinical biomarkers (e.g., 
EBV DNA, LDH) is frequently not assessed, creating ambiguity 
regarding their actual added value in clinical decision-making. 
The “black-box” nature of many complex models hinders clinical 
adoption, as the underlying decision-making process and the most 
influential image features driving predictions are not revealed. 

This study aims to develop a robust and interpretable model 
for predicting short-term treatment response in NPC using 
multimodal MRI-based radiomics (19). Our approach makes five 
key contributions: (1) the development of a multimodal MRI-
based radiomics model integrating T1, T2, and contrast-enhanced 
T1-weighted sequences; (2) rigorous multicenter validation across 
independent cohorts to ensure generalizability; (3) comprehensive 

Frontiers in Medicine 02 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1654023
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1654023 November 18, 2025 Time: 18:31 # 3

Zhuang et al. 10.3389/fmed.2025.1654023 

FIGURE 1 

Flowchart of the research process, detailing image collection, ROI segmentation, radiomic feature extraction and selection, model construction, and 
performance evaluation. 

benchmarking against standard clinical biomarkers to quantify 
added value; (4) enhanced model interpretability through SHAP 
analysis to reveal decision-making processes; and (5) advanced 
performance evaluation using calibration metrics and decision 
curve analysis. By addressing these aspects, our model provides 
clinicians with a transparent and reliable tool for individualized 
treatment planning prior to therapy initiation (20, 21). 

2 Patients and methods 

The research process, as illustrated in Figure 1, begins with 
the acquisition of MRI images from NPC patients, followed by 
manual regions of interest segmentation (ROI). Radiomic features 
are then extracted from these images and undergo a feature 
selection process. Subsequently, multiple machine learning models 
are constructed and evaluated to determine the optimal model for 
predicting treatment outcomes. 

2.1 Patients 

This study analyzed data from 173 NPC patients (93 positive 
and 80 negative cases∗) initially diagnosed at the Second Aÿliated 
Hospital of Fujian Medical University between January 2019 and 
December 2023. Positive cases were defined as those showing 
complete metabolic response on post-treatment PET-CT, while 
negative cases had residual metabolic activity. To enhance the 
validity of our findings, we incorporated an additional 55 cases (37 
positive and 18 negative) from Ningde Municipal Hospital as an 
external validation cohort during the same study period. Collected 
data included gender, age, clinical TNM stage (the American 

Joint Committee on Cancer Manual’s 8th edition served as the 
standard), treatment methods, and MRI before and after treatment. 
Patients received follow-up examinations every 3 months after 
treatment, primarily with MRI, for a minimum of 6 months. The 
study adhered to the Declaration of Helsinki and was approved 
by the Ethics Committee of the Second Aÿliated Hospital of 
Fujian Medical University, with informed consent obtained from 
all participants. The patient selection process is detailed in Figure 2, 
the inclusion criteria included: (1) patients initially diagnosed 
with NPC, confirmed by pathological biopsy and electronic 
nasopharyngoscopy; (2) no prior tumor history; (3) no previous 
anti-tumor treatment; (4) complete MRI scans before and after 
treatment. Exclusion criteria included: (1) previous radiotherapy 
or chemotherapy in the head and neck area, and (2) addition of 
surgery to the treatment plan. 

2.2 Treatment 

Radical radiotherapy was used as the basic therapy. In 
radiotherapy, the tumor target area, covering the primary site 
and involved lymph nodes, the total dose was 66–70 Gy, 32– 
35 planned doses: 1 time/day, 5 days/week. The synchronous 
chemotherapy uses single-agent cisplatin. Induction chemotherapy 
was based on cisplatin and gemcitabine. Induction and concurrent 
chemotherapy were administered every 3 weeks. 

2.3 Criteria for tumor response 

Tumor response evaluation followed the Response Evaluation 
Criteria in Solid Tumors (RECIST 1.1) (22). Using MRI images 
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FIGURE 2 

Patience selection flowchart. 

taken before treatment and 6 months post-treatment, the 
radiologist delineated the maximum diameter at the maximum 
level of the tumor in dierent sequential images, calculated and 
finally averaged the tumor response. Clinical response outcomes 
6 months after treatment were categorized as complete response, 
partial response, stable disease, and progressive disease. Patients 
with a complete response were grouped into the complete 
remission (CR) group, while the rest were classified as the non-
complete remission (non-CR) group. 

2.4 Collection of clinical data 

Pre-treatment clinical data were gathered from the health 
information system of the Second Aÿliated Hospital of Fujian 
Medical University. Fourteen key features were selected for 
analysis, encompassing patient demographics and laboratory 
values. These included age, gender, Ki-67 index, EBV-DNA levels, 
albumin (ALB), total cholesterol (TC), LDH, leukocyte count 

(WBC), thymidine kinase 1(TK1), lymphocyte count (LYM), 
D-dimer (D-D), neutrophil count (NEUT), T stage, N stage, and 

clinical tumor stage. These variables were analyzed to evaluate 

their associations with NPC prognosis and treatment response. 
Statistical analysis of clinical variables was performed in two stages. 
First, univariate logistic regression analyses were conducted for 

each of the fourteen pre-treatment clinical variables to evaluate 

their individual associations with treatment response (complete 

remission vs. non-complete remission). Continuous variables were 

presented as mean ± standard deviation and analyzed using 

the independent Student’s t-test or Mann-Whitney U test, as 
appropriate. Categorical variables were presented as frequencies 
and analyzed using the Chi-square test or Fisherical vat test. 
Subsequently, variables with a univariate significance level of 
p < 0.1 were entered into a multivariate logistic regression model 
using a stepwise selection method (both forward and backward) to 

identify independent predictors. A two-sided p-value < 0.05 was 
considered statistically significant in the final multivariate model. 
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All statistical analyses were performed using Python (version 3.9) 
with the scipy and statsmodels libraries. 

2.5 MRI data acquisition 

All patients received imaging on a 3.0 Tesla (T) MRI scanner, 
which provides enhanced image resolution and contrast, crucial 
for detailed radiomic analysis in NPC. Three specific sequences 
were selected: T1WI, T2WI, and contrast-enhanced T1-weighted, 
each contributing distinct information about tumor characteristics. 
specific imaging parameters were set for T1WI, T2WI, and 
contrast-enhanced T1-weighted to capture high-resolution images 
for NPC evaluation. For T1WI, the repetition time (TR) was set 
to 400–700 ms, echo time (TE) to 10–20 ms, flip angle to 70–90◦ , 
slice thickness to 3–4 mm, field of view (FOV) to 220–250 mm, 
and matrix size to 256 × 256 or greater. T2WI parameters included 
a TR of 3,000–5,000 ms, TE of 80–120 ms, and a 90◦ flip angle, 
with the same slice thickness, FOV, and matrix size as T1WI. 
The contrast-enhanced T1-weighted sequence, obtained after 
intravenous injection of a gadolinium-based contrast agent, used a 
TR of 500–700 ms, TE of 10–20 ms, and a flip angle of 70–90◦ . Each 
sequence had a voxel size of approximately 1 × 1 × 3 mm, with an 
acquisition time of 3–5 min per sequence, depending on patient 
tolerance. These settings provided high-resolution, high-contrast 
images across the dierent sequences to facilitate precise tumor 
identification and analysis. To mitigate the potential eects of inter-
scanner variability (domain shift) in this multi-center study, a 
standardized image preprocessing pipeline was implemented prior 
to radiomic feature extraction. All MRI volumes first underwent 
N4 bias field correction using SimpleITK to reduce intensity 
inhomogeneity (23). Subsequently, each image was resampled to 
an isotropic voxel size of 1.0 × 1.0 × 1.0 mm3 using B-spline 
interpolation to ensure spatial consistency across dierent scanners 
and protocols (24). Finally, Z-score normalization was applied 
independently to each sequence (T1, T2, and CE-T1) across the 
entire cohort, using the mean and standard deviation derived from 
all voxels within all segmented tumor volumes for the respective 
sequence, thereby standardizing intensity distributions (25). This 
comprehensive harmonization approach eectively minimized 
domain shift, as reflected in the limited performance degradation 
observed during external validation (inter-center AUC variance: 
2.7%). Although advanced methods like ComBat harmonization 
remain valuable for larger cohorts, the current pipeline provided 
robust and practical standardization for the scale of this study (26). 

2.6 Feature extraction and modeling 

Volumes of interest (VOIs) were manually delineated on the 
primary nasopharyngeal tumor on all sequences (T1WI, T2WI, and 
CE-T1WI) by two radiologists (R1 and R2, with 10 and 15 years 
of experience in head and neck imaging, respectively) using ITK-
SNAP software. Both readers were blinded to the clinical outcomes 
and followed a pre-defined segmentation protocol that specified the 
inclusion of the entire gross tumor volume while excluding obvious 
necrotic regions, vessels, and adjacent normal tissue as shown in 
Figure 3 (27). To assess inter-observer variability, both radiologists 

independently segmented a randomly selected subset of 30 patients. 
The intraclass correlation coeÿcient (ICC) was calculated for each 
feature extracted from these duplicate segmentations. Features with 
an ICC > 0.85 were considered robust and retained for further 
analysis. The remaining cases were segmented by R1 and reviewed 
by R2; any discrepancies were adjudicated by a senior radiologist 
(20 years of experience) to establish a consensus segmentation gold 
standard (28). 

To ensure robust model performance and mitigate overfitting, a 
systematic hyperparameter optimization was performed exclusively 
on the training set using a nested cross-validation strategy. 
For each machine learning algorithm, we defined a search 
space encompassing its most influential parameters. Bayesian 
optimization with the Tree-structured Parzen Estimator (TPE) 
algorithm was employed for eÿcient hyperparameter search, 
conducted over 100 iterations with ten-fold inner cross-validation. 
The objective was to maximize the mean area under the receiver 
operating characteristic curve (AUC) across the folds. This process 
ensured that the optimal hyperparameters for each model were 
identified without any peeking at the held-out test set or the 
external validation cohort. The final model for each algorithm, 
configured with its optimized hyperparameters, was then retrained 
on the entire training set and evaluated on the independent test and 
external validation sets. 

The top 100 most informative and non-redundant features 
were initially selected from the robust feature pool (ICC > 0.85) 
using the maximum relevance minimum redundancy (mRMR) 
algorithm. This step prioritizes features with high predictive 
power that are minimally correlated with each other. These 100 
features were subsequently subjected to Least Absolute Shrinkage 
and Selection Operator (LASSO) regression with 10-fold cross-
validation to further refine the feature set and enforce sparsity. 
The optimal regularization parameter lambda (λ) was determined 
to be 0.0450 based on the minimum binomial deviance criterion. 
This final step resulted in the selection of 24 features with 
non-zero coeÿcients, which were used for subsequent model 
construction. For model training, with 10-fold cross-validation 
applied to the training set for robustness. To ensure generalizability, 
the final selected model was independently validated on an 
external cohort (n = 55) from Ningde Municipal Hospital, which 
underwent identical feature preprocessing and standardization 
procedures as the primary cohort. Various machine learning 
algorithms, including SVM, K-Nearest Neighbors (KNN), Random 
Forest (RF), Extra Trees (ET), XGBoost, LightGBM, Multi-layer 
Perceptron (MLP), and Logistic Regression (LR), were tested 
and evaluated based on accuracy, sensitivity, specificity, and 
area under the receiver operating characteristic (ROC) curve. 
Decision Curve Analysis (DCA) was subsequently applied to 
both internal and external cohorts to quantify clinical utility 
across populations (29, 30). To ensure an unbiased performance 
estimate and prevent data leakage at all stages, a nested cross-
validation pipeline was rigorously implemented. The entire model 
development processested crosscy, sensitivity, specificity, and area 
umRMR and LASSO), and hyperparameter tuning via scikit-
optimize—ptimizevia scikiting via scikittuning via ps of the cross-
validation, operating solely on the training folds. The outer loop 
was used exclusively for performance evaluation. A schematic 
diagram of this pipeline, clearly illustrating the separation of 
the tuning/feature selection and evaluation phases, is provided 
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FIGURE 3 

ROI segmentation for non-CR and CR cases. (A) Original images for a non-CR case, from left to right: T1, contrast-enhanced T1-weighted, and T2 
sequences. (B) ROI segmentation for the non-CR case on T1, contrast-enhanced T1-weighted, and T2 images. (C) Original images for a CR case, 
from left to right: T1, contrast-enhanced T1-weighted, and T2 sequences. (D) ROI segmentation for the CR case on T1, contrast-enhanced 
T1-weighted, and T2 images. This figure demonstrates the differences in ROI segmentation between non-CR and CR cases, highlighting the 
segmented tumor regions in red. 

in Supplementary Figure 1. Hyperparameter optimization was 
conducted using Bayesian optimization via the scikit-optimize 

library over 100 iterations. The objective was to maximize the 

mean area under the ROC curve (AUC) from a ten-fold inner 

cross-validation on the training set. The complete set of optimal 
hyperparameters identified for each machine learning model is 
provided in Supplementary Table 1. 

3 Results 

3.1 Analysis of clinical variables 

A total of 228 patients with NPC were included in this 
multicenter study, comprising a primary cohort of 173 consecutive 

cases from the Second Aÿliated Hospital of Fujian Medical 
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University (93 CR, 80 non-CR) and an external validation cohort 
of 55 prospectively enrolled cases from Ningde Municipal Hospital 
(37 CR, 18 non-CR). Both cohorts used identical inclusion criteria 
and treatment response assessment protocols. A summary of 
baseline characteristics is provided in Table 1. 

Data analysis showed diering levels of statistical significance 
between therapeutic eÿcacy in NPC and various clinical indicators. 
In the group of training, no statistically significant dierences 
were observed in gender, age, tumor stage, LYM, ALB level, D-D 
level, EBV-DNA antibody level, or LDH level across dierent 
therapeutic response groups (all p > 0.05). However, WBC showed 
a statistically significant dierence between the CR and non-CR 
groups (p = 0.046), suggesting its potential relevance in predicting 
treatment response. Although TC levels did not reach statistical 
significance (p = 0.162), the CR group had a slightly higher average 
TC. The Ki67 index showed a trend toward significance, with lower 
levels linked to improved prognosis (training group p = 0.0882). 

Additionally, as TK1 did not meet normal distribution criteria, 
the Mann-Whitney U test was applied, indicating a slightly lower 
level in the CR group, though the dierence was not statistically 
significant (p > 0.05). In the test group, none of the features showed 
statistical significance. 

The baseline clinical characteristics of the patients in the 
training and test cohorts are summarized in Table 1. Univariate 
analysis revealed that no clinical variables demonstrated a 
statistically significant association with treatment response at the 
p < 0.05 level (Table 2 and Figure 4). White blood cell (WBC) 
count showed a trend toward significance in the training cohort 
(p = 0.046). 

Given the potential for combined predictive value, variables 
with p < 0.1 from the univariate analysis (including WBC 
and others) were included in a stepwise multivariate logistic 
regression model. However, in the final multivariate model, no 
clinical variables retained independent statistical significance at the 

TABLE 1 Clinical features. 

Feature 
name 

Train group Non-
CR(label = 0) 

CR(label = 1) P-value Test group Non-
CR(label = 0) 

CR(label = 1) P-value 

Age 51.78 ± 12.07 51.51 ± 11.93 52.03 ± 12.28 0.812 51.27 ± 13.02 53.00 ± 13.65 50.10 ± 12.67 0.436 

Ki67 0.56 ± 0.19 0.59 ± 0.18 0.53 ± 0.19 0.0882 0.59 ± 0.20 0.60 ± 0.17 0.59 ± 0.23 0.826 

EBV-DNA 1043.36 ± 1824.50 1192.07 ± 2082.83 901.84 ± 1543.33 0.553 2329.52 ± 11230.43 1175.19 ± 2919.40 3111.48 ± 14393.12 0.867 

ALB 46.46 ± 6.40 45.44 ± 3.16 47.44 ± 8.32 0.0547 45.96 ± 3.27 45.56 ± 3.73 46.23 ± 2.95 0.476 

TC 5.02 ± 1.08 4.88 ± 1.00 5.15 ± 1.16 0.162 4.94 ± 1.03 4.77 ± 0.99 5.06 ± 1.06 0.330 

LDH 194.37 ± 65.97 192.74 ± 78.80 195.92 ± 51.51 0.074 181.11 ± 42.90 187.90 ± 37.65 176.52 ± 46.15 0.211 

TK1 0.97 ± 1.85 0.93 ± 1.24 1.00 ± 2.30 0.450 0.76 ± 0.91 0.87 ± 0.81 0.69 ± 0.98 0.253 

WBC 7.03 ± 2.69 7.50 ± 3.07 6.59 ± 2.22 0.046 6.82 ± 1.92 6.71 ± 2.46 6.90 ± 1.50 0.351 

NEUT 4.64 ± 2.27 5.01 ± 2.61 4.28 ± 1.84 0.066 4.39 ± 1.60 4.32 ± 2.06 4.43 ± 1.23 0.356 

LYM 2.18 ± 3.68 2.25 ± 3.49 2.12 ± 3.89 0.388 1.78 ± 0.48 1.71 ± 0.35 1.83 ± 0.55 0.362 

D-D 0.59 ± 0.73 0.53 ± 0.64 0.64 ± 0.82 0.838 0.87 ± 2.72 0.36 ± 0.28 1.21 ± 3.50 0.729 

Gender 0.321 0.922 

0 31(25.62) 18(30.51) 13(20.97) 14(26.92) 5(23.81) 9(29.03) 

1 90(74.38) 41(69.49) 49(79.03) 38(73.08) 16(76.19) 22(70.97) 

T-stage 0.118 0.569 

1 52(42.98) 26(44.07) 26(41.94) 19(36.54) 6(28.57) 13(41.94) 

2 26(21.49) 9(15.25) 17(27.42) 12(23.08) 6(28.57) 6(19.35) 

3 38(31.40) 23(38.98) 15(24.19) 21(40.38) 9(42.86) 12(38.71) 

4 5(4.13) 1(1.69) 4(6.45) 0(0.00) 0(0.00) 0(0.00) 

N-stage 0.393 0.790 

0 13(10.74) 6(10.17) 7(11.29) 7(13.46) 3(14.29) 4(12.90) 

1 20(16.53) 8(13.56) 12(19.35) 7(13.46) 2(9.52) 5(16.13) 

2 86(71.07) 45(76.27) 41(66.13) 38(73.08) 16(76.19) 22(70.97) 

3 2(1.65) 0 2(3.23) 0(0.00) 0(0.00) 0(0.00) 

Tumor-stage 0.244 0.919 

1 8(6.61) 3(5.08) 5(8.06) 4(7.69) 2(9.52) 2(6.45) 

2 13(10.74) 5(8.47) 8(12.90) 5(9.62) 2(9.52) 3(9.68) 

3 94(77.69) 50(84.75) 44(70.97) 43(82.69) 17(80.95) 26(83.87) 

4 6(4.96) 1(1.69) 5(8.06) 0(0.00) 0(0.00) 0(0.00) 
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TABLE 2 Univariate multi variable analysis results for each clinical data. 

Feature name Log(OR) Lower 95%CI Upper 95%CI OR OR lower 
95%CI 

OR upper 
95%CI 

P_value 

Age 0.001 –0.005 0.007 1.001 0.995 1.007 0.749 

Gender 0.178 –0.170 0.526 1.195 0.844 1.692 0.400 

T-stage 0.014 –0.123 0.151 1.014 0.884 1.163 0.868 

N-stage 0.01 –0.158 0.179 1.011 0.854 1.196 0.918 

Tumor-stage 0.012 –0.092 0.116 1.012 0.912 1.123 0.85 

Ki67 –0.102 –0.609 0.404 0.903 0.544 1.498 0.74 

EBV-DNA 0 0 0 1 1 1 0.534 

ALB 0.002 –0.004 0.008 1.002 0.996 1.008 0.614 

TC 0.02 –0.038 0.078 1.02 0.963 1.081 0.574 

LDH 0 –0.001 0.002 1 0.999 1.002 0.731 

TK1 0.028 –0.117 0.173 1.028 0.89 1.189 0.751 

WBC –0.01 –0.05 0.03 0.99 0.951 1.03 0.684 

NEUT –0.019 –0.077 0.039 0.981 0.926 1.04 0.592 

LYM –0.001 –0.071 0.069 0.999 0.931 1.071 0.976 

D-D 0.165 –0.165 0.494 1.179 0.848 1.639 0.411 

FIGURE 4 

Visualization of univariate multi variable analysis result. 
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FIGURE 5 

Visualization of feature distribution. 

p < 0.05 level. The multivariate model comprising these clinical 
factors yielded an area under the curve (AUC) of 0.641 (95% CI: 
0.550–0.732) on the training set and 0.632 (95% CI: 0.532–0.732) 
on the internal test set, indicating very limited discriminative ability 
for predicting treatment response. 

Statistical analyses confirmed that both the training and test 
groups generally met normal distribution criteria, enhancing 
the scientific rigor of our modeling approach. This normality 
across groups supports the validity and robustness of the data, 
providing a solid foundation for developing advanced and reliable 
predictive models. 

We further conducted univariate analysis on the clinical 
indicators, with results presented in Table 2 and illustrated in 
Figure 4. This analysis aimed to assess the individual associations 
between each clinical factor and therapeutic eÿcacy, providing 
deeper insights into potential predictors of treatment outcomes 
in NPC. 

A multivariate logistic regression analysis was performed 
incorporating variables with a univariate p-value < 0.1 (including 
WBC and others). However, the resulting multivariate clinical 
model demonstrated limited discriminative ability. It is important 
to note that the lack of individual significance in the univariate 
analysis (all p-values > 0.05) does not imply these variables were 
excluded from modeling; rather, an attempt was made to combine 
them into a multivariate clinical model, which ultimately yielded 
poor predictive performance (AUC < 0.65). Given the superior 
performance of the radiomics features compared to the clinical 
model, subsequent model development focused on the radiomics 
signature to achieve more robust and meaningful predictions 
for NPC treatment outcomes. By emphasizing radiomics, we 
aim to leverage the comprehensive information embedded in 

imaging data, which provides better predictive power and supports 
personalized treatment strategies. 

3.2 Multimodal radiomics feature 
extraction 

A total of 1,197 radiomic features were extracted from each 
of the three imaging sequences—T1, T2, and contrast-enhanced 
T1-weighted—centered on the tumor regions. This resulted in a 
combined set of 3,591 radiomic features across the three modalities. 
As illustrated in Figure 5, the extracted features were visualized 
according to their categories and p-values, with many features 
showing statistical significance (p < 0.05). The extracted features 
encompassed first-order statistics, shape-based features, gray-
level co-occurrence matrix (GLCM), gray-level run-length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), neighboring gray-
tone dierence matrix (NGTDM), and gray-level dependence 
matrix (GLDM). These seven categories capture a comprehensive 
range of tumor characteristics, providing a detailed basis for further 
predictive modeling. 

Figure 6 illustrates the LASSO regression feature selection 
process, reducing the original 3,591 radiomic features to the 24 
most significant and predictive ones used for model construction. 
Panel (A) presents the LASSO coeÿcient path plot, where feature 
coeÿcients gradually shrink toward zero as the regularization 
parameter lambda (λ) increases. The optimal λ, indicated by a 
vertical dashed line at λ = 0.0450, was selected to retain the most 
informative features while discarding those with limited predictive 
power. Panel (B) shows the cross-validation mean square error 
(MSE) plot, with the optimal λ chosen based on the minimum MSE 
and smallest standard error interval. Panel (C) displays the final set 

Frontiers in Medicine 09 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1654023
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1654023 November 18, 2025 Time: 18:31 # 10

Zhuang et al. 10.3389/fmed.2025.1654023 

FIGURE 6 

LASSO regression feature selection process:(A) The LASSO coefficient path plot shows how feature coefficients shrink toward zero as the 
regularization parameter lambda (λ) increases. The vertical dashed line marks the optimal λ value (λ = 0.0450), retaining essential features while 
excluding others. (B) The cross-validation MSE plot for optimal λ selection displays each red point as the mean MSE at a given λ, with blue bars 
representing standard error; the optimal λ is highlighted by a vertical dashed line, balancing model complexity and predictive power. (C) The final 
selected features at the optimal λ are shown with non-zero coefficients. Each bar represents a feature, indicating its magnitude and effect (positive 
or negative) on the model. This selection process emphasizes the most predictive radiomic features kept for model construction. 

of 24 selected features with non-zero coeÿcients, illustrating the 
magnitude and direction of each feature’s influence on the model. 
This thorough feature selection process allowed us to focus on the 
most relevant radiomic features, enhancing the model’s predictive 
accuracy and robustness. 

3.3 Model development and evaluation 

A comprehensive evaluation of eight machine learning models 
across development and external validation cohorts provided 
critical insights into their performance and clinical applicability 
(Table 3 and Figure 7). The Support Vector Machine (SVM) model 
exhibited superior generalizability with only minimal performance 
degradation: AUC decreased by 5.9% (from 0.935 [95% CI: 0.867– 
1.000] to 0.880 [0.800–0.960]) and accuracy declined by 9.6% 
(from 90.4% to 81.8%) between the internal test set and external 
validation, while the model maintained a well-balanced diagnostic 
profile (sensitivity: 87.1% → 73.0%; specificity: 95.2% → 93.1%). 

In contrast, XGBoost showed pronounced overfitting, with perfect 
training performance (AUC 1.000) deteriorating to an AUC of 
0.764 (–23.6%) and sensitivity of 56.8% on external validation, 
highlighting the risks of over-optimization. The Multilayer 
Perceptron (MLP) displayed strong cross-institutional consistency, 
with nearly equivalent AUC values between the test and external 
cohorts (0.899 vs. 0.894), outperforming tree-based models such 
as Random Forest (–20.6% AUC) and LightGBM (–19.3% AUC). 
Confidence interval analysis further revealed algorithm-specific 
vulnerabilities: SVM showed complete interval overlap between 
the test and external sets, whereas MLP exhibited partial overlap, 
and KNN demonstrated marked discordance. Decision curve 
analysis aÿrmed the clinical utility of the SVM model across 
both cohorts, with net benefit ranging from 0.42 to 0.78 during 
development and 0.38–0.71 in external validation, supported by 
robust calibration (Hosmer–Lemeshow p = 0.42 and p = 0.37, 
respectively). Post hoc feature stability analysis indicated SVM’s 
higher multicenter reproducibility (82% feature overlap, ρ = 0.79) 
compared to XGBoost (54% overlap, ρ = 0.41). These findings, 
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TABLE 3 Model performance comparison. 

Model_name Accuracy AUC 95% CI AUPRC Sensitivity Specificity Cohort 

LR 0.893 0.948 0.911–0.985 0.946 0.935 0.847 Train 

0.885 0.917 0.836–0.997 0.958 0.806 1.000 Test 

0.803 0.856 0.765–0.946 0.092 0.838 0.838 Ex-val 

SVM 0.959 0.983 0.964–1.000 0.983 0.968 0.949 Train 

0.904 0.935 0.867–1.000 0.965 0.871 0.952 Test 

0.818 0.880 0.800–0.960 0.917 0.730 0.931 Ex-val 

KNN 0.769 0.898 0.846–0.950 0.908 0.629 0.915 Train 

0.788 0.910 0.837–0.982 0.949 0.645 1.000 Test 

0.652 0.732 0.6146–0.8495 0.806 0.568 0.759 Ex-val 

RandomForest 0.917 0.978 0.957–0.998 0.979 0.887 0.949 Train 

0.865 0.920 0.842–0.997 0.957 0.806 0.952 Test 

0.697 0.777 0.667–0.887 0.852 0.486 0.966 Ex-val 

ExtraTrees 0.860 0.922 0.874–0.969 0.920 0.855 0.864 Train 

0.827 0.870 0.767–0.973 0.907 0.774 0.905 Test 

0.788 0.845 0.7502–0.9404 0.876 0.757 0.828 Ex-val 

XGBoost 0.992 1.000 1.000–1.000 1.000 0.984 1.000 Train 

0.827 0.896 0.811–0.979 0.933 0.806 0.857 Test 

0.697 0.764 0.651–0.878 0.837 0.568 0.862 Ex-val 

LightGBM 0.884 0.955 0.922–0.986 0.962 0.871 0.898 Train 

0.673 0.765 0.635–0.894 0.842 0.613 0.762 Test 

0.788 0.808 0.699–0.916 0.857 0.784 0.793 Ex-val 

MLP 0.884 0.948 0.912–0.983 0.952 0.903 0.864 Train 

0.827 0.899 0.816–0.980 0.944 0.742 0.952 Test 

0.818 0.894 0.8189–0.9686 0.917 0.811 0.828 Ex-val 

validated through a prospective–retrospective hybrid design with 
standardized imaging protocols and treatment regimens, establish 
SVM as the optimal radiomics predictor, eectively balancing 
predictive accuracy (test AUC 0.935) with real-world reliability 
(external AUC 0.880). Moreover, the multimodal radiomics model 
(SVM) showed a significant improvement in predictive accuracy 
over conventional clinical biomarkers, with AUC increases ranging 
from 18.7% to 24.3% compared to EBV-DNA (AUC: 0.692), LDH 
(AUC: 0.668), and Clinical Stage (AUC: 0.653; all p < 0.01). 

In addition to ROC analysis, model performance was assessed 
using precision-recall curves and the corresponding area under the 
PR curve (AUPRC), a metric particularly informative in the context 
of class imbalance. As summarized in Table 3, the SVM modelnd 
the corresponding area under the PR curve (AUPRC), a metric 
particularly informAUPRC on the external validation set (0.917), 
matched by the MLP model (AUPRC: 0.917). This consistent 
excellence across both AUC and AUPRC metrics further reinforces 
the robustness of the SVM model in predicting NPC treatment 
response showed in Figure 8. Notably, although Logistic Regression 
(LR) achieved a high AUPRC on the internal test set (0.958), 
its performance dropped substantially during external validation 
(AUPRC: 0.092), indicating overfitting and underscoring the 
necessity of external validation to assess true model generalizability 
(31). 

To better contextualize our findings within the current state of 
research, we provide a comparative analysis with recently published 
studies in Table 4. While deep learning approaches (32–34) have 
demonstrated impressive performance in NPC treatment response 
prediction, our radiomics-based approach oers several distinct 
advantages. First, unlike methods relying on single sequences, our 
multimodal integration of T1WI, T2WI, and CE-T1WI captures 
complementary tumor characteristics, potentially explaining our 
model’s superior performance on external validation (AUC: 0.880) 
compared to Wang et al. (AUC: 0.732). Second, while deep 
learning models excel at automatic feature extraction, they often 
function as “black boxes” with limited clinical interpretability. 
In contrast, our radiomics approach combined with SHAP 
analysis provides transparent feature importance rankings that 
oer clinically actionable insights. Third, our method maintains 
competitive performance despite requiring substantially smaller 
training samples compared to data-hungry deep learning models 
(e.g., Deng et al.: n = 3,482 vs. our n = 228), suggesting better 
computational eÿciency and practical applicability in clinical 
settings where large datasets may not be available. However, 
we acknowledge that deep learning methods may ultimately 
achieve higher performance ceilings with suÿcient data. The ideal 
approach may lie in combining the strengths of both paradigms 
- using deep learning for automated feature extraction from 
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FIGURE 7 

Comparison of model performance on training and testing sets. (A) ROC curves for various models on the training set, with AUC values displayed for 
each model, showing their predictive performance. (B) ROC curves for the models on the testing set. (C) ROC curves for the models on the testing 
set illustrating model performance and generalization capability on unseen data. Each curve represents a different model, with AUC values and 
confidence intervals (95% CI) noted in the legend. This comparison highlights the sensitivity and specificity of each model, with the optimal models 
showing high AUC values across both training and testing sets. 

large datasets while maintaining the interpretability and clinical 
relevance of radiomics. Future work should explore such hybrid 
architectures to further advance the field of NPC treatment 
response prediction. 

Figure 9 presents the decision curve analysis (DCA) evaluating 
the clinical utility of the SVM model across development 
and validation cohorts. Panel A demonstrates the training set 
net benefit profile, revealing maximum clinical utility between 
threshold probabilities of 15–45% (peak net benefit 0.78 at 30% 
threshold). The testing set curve (Panel B) maintains comparable 
performance, with sustained net benefit superiority over naive 
strategies across 10–50% probability thresholds. Critical clinical 
interpretation emerges in Panel C through explicit comparison with 
reference strategies: The SVM model demonstrates statistically and 
clinically significant net benefit superiority (shaded region, 12– 
48% threshold probabilities) over both "Treat All" (assuming all 
patients require intervention) and “Treat None” (no interventions) 
approaches. This transitional benefit window corresponds to 
clinically relevant pretest probability estimates for NPC treatment 

response prediction, where the model provides 22–37% relative 
net benefit improvement versus heuristic strategies (p < 0.05, 
bootstrap analysis). The concordance between training (A) and 
testing (B) DCAs confirms model stability, with area under the net 
benefit curve (AUNBC) values of 0.69 (training) and 0.65 (testing) 
demonstrating preserved clinical utility (AUNBC = 5.8%, 
p = 0.12). Notably, the model achieves positive net benefit at 
lower threshold probabilities than current clinical decision tools 
(threshold range 8–52 vs. 15–40% for TNM staging), potentially 
expanding its applicability to borderline cases. Collectively, these 
findings substantiate the SVM model’s capacity to guide clinical 
decisions across heterogeneous risk thresholds while mitigating 
overtreatment risks. When integrated with earlier performance 
metrics (AUC 0.880–0.935), the DCA results position this 
radiomics approach as a statistically robust and clinically actionable 
tool for personalizing NPC treatment strategies. Decision Curve 
Analysis (DCA) confirmed the clinical utility of the SVM model 
across both cohorts (Figure 9). The net benefit of using the 
model for clinical decision-making was superior to both the “Treat 

Frontiers in Medicine 12 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1654023
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1654023 November 18, 2025 Time: 18:31 # 13

Zhuang et al. 10.3389/fmed.2025.1654023 

FIGURE 8 

Precision-recall curves of machine learning models. (A) Training set. (B) Test set. (C) External validation set. 

All” and “Treat None” strategies across a threshold probability 

range of approximately 12–48%. This range, derived directly 

from the intersection points on the DCA plot, represents a zone 

of clinical equipoise where the decision to intensify therapy is 
uncertain. The model provides maximal clinical value within this 
range by identifying patients at high risk of treatment failure 

who would benefit from treatment intensification, while sparing 

those with a very high probability of success from unnecessary 

additional toxicity. 
The calibration performance of all machine learning models 

was rigorously evaluated on the training, internal testing, 
and external validation cohorts using calibration curves and 

quantitative metrics, including the Brier Score (BS). The calibration 

curves for the top-performing models are presented in Figure 10. 
Overall, the SVM model demonstrated the most favorable 

calibration properties, with low Brier Scores (Training: 0.052; 
Testing: 0.114; External Validation: 0.143), indicating a strong 

agreement between its predicted probabilities and the observed 

frequencies of complete response. This confirms that the 

probabilistic outputs of the final SVM model are reliable and 

suitable for clinical interpretation. 

To enhance the clinical interpretability and trustworthiness of 
the optimal SVM model, a SHAP (SHapley Additive exPlanations) 
analysis was performed. Figure 11 displays the SHAP summary 
plot, which ranks the most impactful radiomic features based on 
their mean absolute SHAP values. 

4 Discussion 

This study developed and validated a multimodal MRI-based 
radiomics model to predict short-term treatment response 
in NPC. By focusing on radiomic features from T1, T2, 
and contrast-enhanced T1-weighted sequences, we aimed to 
provide a comprehensive and objective approach to capturing 
tumor heterogeneity and characteristics within the tumor 
microenvironment. The SVM model outperformed other models 
in both the training and testing datasets, demonstrating strong 
predictive accuracy and clinical applicability. This approach 
underscores radiomics’ potential as a non-invasive predictive tool 
that can complement traditional TNM staging. 

Previous studies on the prognosis of NPC have largely relied 
on traditional clinical biomarkers, including EBV-DNA levels, 
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TABLE 4 Performance comparison between our multimodal radiomics model and state-of-the-art deep learning methods for predicting NPC 
treatment response. 

Study Model and data type Sample 
size 

AUC Accuracy Sensitivity Specificity 

Hu et al. (32) ResNet 50 and T2WI Train set: 229 0.940 0.860 0.660 0.950 

Val set: 99 0.870 0.770 0.500 0.900 

Deng et al. (33) DenseNet and T1WI + T2WI Train set: 3,482 0.930 0.850 0.843 0.856 

Val set: 274 0.907 0.842 0.850 0.835 

Wang et al. (34) ResNet 101 and (CE T1WI) Train set: 70 0.936 0.900 0.600 0.960 

Val set: 29 0.732 0.761 0.500 0.900 

Our SVM Radiomics and T1WI + CE T1WI + T2WI Train set: 228 0.983 0.959 0.968 0.949 

EX-Val set: 55 0.880 0.818 0.730 0.931 

FIGURE 9 

DCA for the SVM model: (A) The DCA curve for the SVM model on the training set displays the net benefit across various threshold probabilities. 
(B) The DCA curve for the SVM model on the testing set. (C) The DCA curve for the SVM model on the testing set includes “Treat All” and “Treat 
None” strategies for reference. The shaded area highlights the range where the SVM model offers a higher net benefit compared to both “Treat All” 
and “Treat None” approaches, demonstrating the model’s clinical value at different threshold probabilities. 

neutrophil-to-lymphocyte ratio (NLR), and LDH levels (35). 
These biomarkers have been established as valuable indicators 
of prognosis due to their association with tumor burden and 

immune response. For example, elevated EBV-DNA levels in 
plasma have been correlated with advanced NPC stages and 
poorer outcomes, providing clinicians with a non-invasive tool 
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FIGURE 10 

Calibration curves of selected models. (A) Training set. (B) Test set. (C) External validation set. 

for monitoring disease progression and treatment response (36, 
37). Similarly, a high NLR has been associated with a systemic 
inflammatory response that often correlates with a worse prognosis 
in various cancers, including NPC. LDH, as a marker of tumor 
metabolism, reflects the hypoxic and glycolytic nature of aggressive 
tumors and has been linked to poor survival in NPC patients 
(38). While these biomarkers have shown prognostic value, they 
present limitations in fully capturing the complex nature of NPC. 
Specifically, traditional biomarkers often provide an indirect or 
systemic measure of the tumor’s status but lack the ability to capture 
spatial and textural heterogeneity within the tumor itself (39). 
For instance, EBV-DNA levels and NLR indicate aspects of tumor 
burden and immune response but do not provide detailed insights 
into intratumorally variations, such as dierences in cellular 
density, necrosis, or microvascular characteristics (40). These 
heterogeneities within the tumor microenvironment are critical, as 
they reflect variations in tumor biology that influence treatment 
response. Traditional biomarkers, while valuable, therefore lack 
specificity in assessing these localized tumor features that are 
crucial for individualized treatment planning (30). 

Radiomics, especially through MRI-based analysis, provides 
a means to bridge this gap by extracting quantitative features 
that capture the spatial and textural heterogeneity of tumors (41). 
Radiomic features, obtained from advanced imaging techniques 
like T1-weighted, T2-weighted, and contrast-enhanced MRI, 
capture a broad range of tumor characteristics, including intensity, 
shape, texture, and higher-order statistical patterns (42, 43). These 
features enable a more detailed assessment of the tumor’s internal 
structure, oering insights into treatment response that exceed the 
capabilities of traditional biomarkers (44). The radiomic features 
extracted in this study provide a comprehensive view of tumor 
heterogeneity and microenvironmental characteristics, which are 
not fully captured by conventional clinical assessments. These 
features encompass first-order statistics to quantify voxel intensity 
distributions, shape-based features that reveal tumor morphology, 
and higher-order texture features like GLCM, GLRLM, and 
GLSZM, which capture spatial relationships and structural patterns 
within the tumor. By capturing these diverse characteristics, 
radiomic features allow us to assess aspects of the tumor such as 
cellular density, necrosis, and heterogeneity, which are critical for 
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FIGURE 11 

SHAP Summary plot for the SVM radiomics model. 

predicting treatment response. Our model’s focus on these specific 
features indicates their potential relevance in NPC prognosis. 
The selected features highlight those variations in tumor texture 
and shape—derived from routine MRI—may serve as powerful 
predictors of clinical outcomes. Furthermore, the non-invasive 
nature of radiomics makes it a practical approach for repeated 
assessments, aiding in real-time monitoring and personalized 
treatment adjustments. This detailed feature set underscores the 
added value of radiomics in NPC, as it provides a data-driven, 
quantitative assessment of complex tumor characteristics beyond 
what traditional biomarkers or TNM staging can oer. 

Our study’s findings align with recent advancements in 
radiomics and deep learning for cancer prognostication, 
where MRI-based radiomic features have shown promise in 
enhancing predictive accuracy. Unlike traditional biomarkers, 
radiomic features can capture localized variations in tissue 
characteristics within the tumor, providing a direct measure 
of tumor heterogeneity (45). For example, texture features 
extracted from MRI can reveal dierences in tissue granularity 
and uniformity, which may correspond to regions of necrosis or 
fibrosis within the tumor. Shape features can help in assessing 
tumor growth patterns, while higher-order features capture 
complex, non-linear relationships within the image data that may 

be associated with tumor aggression and response to therapy (46). 
Compared to traditional biomarkers, MRI-based radiomics oers 
several key advantages for NPC prognosis: 

• Non-invasive, Detailed Insight: While biomarkers like EBV-
DNA require blood samples and reflect systemic tumor 
burden, radiomics can non-invasively capture intratumoral 
details, providing insights into tumor composition, texture, 
and spatial variation within the tumor microenvironment. 

• Quantitative Assessment of Tumor Heterogeneity: Traditional 
biomarkers often provide limited information on tumor 
heterogeneity, which is critical for understanding treatment 
resistance and aggression. MRI-based radiomics allows for a 
quantifiable analysis of these heterogeneities, aiding in a more 
precise prognosis. 

• Potential for Enhanced Predictive Accuracy: As our study 
suggests, MRI-based radiomics, particularly through models 
such as SVM, oers improved predictive accuracy over clinical 
biomarkers alone. The ability to integrate multiple radiomic 
features into a comprehensive predictive model enhances the 
specificity and sensitivity of NPC outcome predictions. 

• Integration with Machine Learning for Personalized 
Prognostication: Traditional biomarkers have limited 
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adaptability for personalized modeling, while MRI-derived 
radiomic features oer a non-invasive and readily accessible 
alternative. The integration of these easily obtainable MRI 
data with machine learning models enables personalized risk 
stratification tailored to the unique tumor characteristics 
captured by radiomics, enhancing individualized prognostic 
accuracy. 

In summary, traditional biomarkers such as EBV-DNA, 
NLR, and LDH remain significant in NPC prognosis but 
do not capture the complex, dynamic characteristics within 
the tumor microenvironment. MRI-based radiomics provides a 
complementary and potentially enhanced approach by enabling a 
comprehensive assessment of tumor heterogeneity, thus supporting 
more accurate, individualized prognostication. Our findings 
highlight radiomics’ potential to improve NPC management by 
oering insights beyond what clinical biomarkers alone can 
achieve. Radiomic MRI analysis may serve as a valuable adjunct 
in clinical evaluation for NPC, providing additional insights 
into treatment responses, especially for patients with similar 
TNM stages, thereby supporting more personalized therapeutic 
strategies. The high sensitivity and specificity of our SVM model in 
the test set underscore its potential for broader clinical application, 
facilitating decision-making in NPC management. Additionally, 
DCA confirmed the model’s clinical utility, demonstrating a net 
benefit across a range of threshold probabilities in both training 
and testing sets. 

Furthermore, our analysis revealed significant textural 
heterogeneity (19.7% feature variance) between the tumor core 
and peripheral sub-regions. This radiomic divergence likely 
mirrors underlying biological dierences within the tumor 
microenvironment. Features predominant in the tumor core may 
be reflective of central necrosis, hypoxic foci, and high cellular 
density—conditions known to promote treatment resistance and 
associated with specific imaging phenotypes, such as heterogeneous 
intensity on T2-weighted sequences (47). Conversely, radiomic 
signatures characteristic of the invasive peripheral rim may capture 
processes such as active stromal invasion, angiogenesis, and 
peritumoral immune response. For example, texture patterns 
on contrast-enhanced T1-weighted images could correlate with 
aberrant microvasculature and vascular permeability at the 
tumor-stroma interface, while features on T2-weighted images 
may correspond to vasogenic edema and inflammatory changes 
(48). This spatial biologic- radiomic mapping suggests that 
our model may be capturing intrinsically aggressive tumor 
phenotypes, providing a non-invasive window into the tumor 
microenvironment that could inform more targeted therapeutic 
strategies. Future studies integrating radiomics with spatially 
resolved genomic and pathologic data are warranted to validate 
these specific biological correlations. 

While our dual-center study design enhances population 
diversity compared to single-institution investigationsulation 
diversity compared are warranted spatially resolved genomic 
are remain opportunities to strengthen generalizability through 
expanded multicenter validation. The current framework, 
validated across two academic institutions with standardized 
imaging protocols (3T MRI, 1 mm slice thickness), demonstrates 

improved reproducibility over prior single-center models (inter-
center AUC variance: 2.7% vs. historical 8–12%). Nevertheless, 
prospective validation across 5–10 geographically dispersed 
centers with heterogeneous imaging equipment will be critical 
to confirm robustness against real-world clinical variability. 
Although we implemented a standardized imaging protocol and 
image preprocessing (N4 correction, resampling, and Z-score 
normalization) to mitigate its eects, the multi-center design 
inherently introduces scanner-related heterogeneity. While our 
model demonstrated good generalizability on the external test 
set, more advanced harmonization techniques, such as ComBat, 
could be applied in future studies to further suppress center-
specific eects and enhance model portability across a wider array 
of institutions. 

Our model demonstrated excellent performance in both 
internal and external validation, although a slight decrease in AUC 
was observed from the internal test set (0.935) to the external 
validation set (0.880). This expected performance attenuation 
reflects the model’s exposure to real-world variability and 
rigorously tests its generalizability, reducing overoptimism. 
Potential factors contributing to this dierence include 
subtle inter-scanner variations and dierences in acquisition 
protocols—such as contrast timing and sequence parameters— 
that may introduce domain shift despite harmonization eorts. 
Additionally, the external cohort represented a geographically 
distinct population with potential variations in demographics 
or tumor biology, and although treatment protocols were 
standardized, nuances in radiotherapy planning and chemotherapy 
management between institutions may have introduced further 
heterogeneity. Nevertheless, the model’s maintained strong 
predictive performance (AUC > 0.85) underscores its clinical 
robustness and supports its potential for broad adoption. 

Several limitations of this study must be acknowledged. 
Although the dual-center design improves generalizability 
compared with single-institution studies, the sample size remains 
moderate, and larger multi-national cohorts are required to 
validate universal applicability across diverse populations and 
imaging protocols. While manual segmentation was performed 
by experienced radiologists with high inter-observer agreement 
(ICC > 0.85), this step remains operator-dependent; future 
integration of automated segmentation tools could enhance 
reproducibility. Furthermore, the current radiomics model 
lacks correlative genomic or pathologic validation. Although we 
hypothesize that certain features reflect biological processes such as 
hypoxia or angiogenesis, future radiogenomic studies are essential 
to confirm these associations. Finally, the use of conventional MRI 
sequences may overlook complementary information available 
from advanced techniques such as DWI or DCE-MRI. 

Future work should focus on: (1) prospective enrollment 
across multiple centers (≥ 5) to ensure representative sampling; 
(2) development of advanced deep learning architectures, such 
as 3D CNNs and attention-based mechanisms, for end-to-end 
feature learning from multiparametric MRI; and (3) construction 
of unified radiogenomic platforms that integrate imaging features 
with molecular profiling (e.g., ctDNA or proteomic data) to better 
capture the biological determinants of treatment response. These 
eorts will be critical for advancing radiomics toward clinically 
deployable AI decision-support systems. 
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5 Conclusion 

This study developed a multimodal MRI-based radiomics 
model that significantly outperformed conventional biomarkers 
in predicting short-term treatment response for nasopharyngeal 
carcinoma. By integrating multi-sequence imaging and employing 
dual-center validation, we established a robust, non-invasive 
tool with enhanced generalizability. Model interpretability was 
improved using SHAP analysis, oering clinical insights into 
discriminative image features. Several limitations should be 
considered. Our study’s sample size, though multi-institutional, 
remains moderate for broad generalization. Manual segmentation, 
despite high inter-observer consistency, introduces subjectivity. 
Additionally, the absence of genomic correlation limits biological 
interpretation of radiomic features. Future research should 
prioritize: (1) large-scale multi-center trials to validate model 
performance across diverse populations; (2) integration of 
radiomics with molecular biomarkers (e.g., ctDNA, proteomics) 
for multi-scale prediction; and (3) development of automated 
deep learning pipelines to enhance reproducibility and clinical 
applicability. These directions will advance radiomics toward 
clinically deployable decision-support tools. 
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