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Problem: Accurate prediction of short-term treatment response remains a
critical challenge in nasopharyngeal carcinoma (NPC) management. Traditional
TNM staging and clinical biomarkers offer limited precision for individualized
therapy planning, creating a need for more robust, non-invasive predictive tools.

Aim: This multicenter study aimed to develop and validate a multimodal MRI-
based radiomics model for predicting short-term treatment response in NPC,
and to compare its performance against conventional clinical biomarkers.

Methods: We analyzed pre-treatment T1-weighted, T2-weighted, and contrast-
enhanced T1-weighted MRI sequences from 173 patients in our primary cohort
and 55 external validation cases. A total of 3,591 radiomic features were
extracted per patient. After rigorous feature selection using maximum relevance
minimum redundancy (MRMR) and Least Absolute Shrinkage and Selection
Operator (LASSO) regression, we developed and compared eight machine
learning classifiers. Model performance was evaluated through comprehensive
validation, including calibration analysis and decision curve assessment.

Results: The Support Vector Machine (SVM) model demonstrated superior
performance, achieving an area under the curve (AUC) of 0.935 (95% CI:
0.867-1.000) on internal testing with balanced sensitivity (87.1%) and specificity
(95.2%). External validation confirmed model robustness (AUC 0.880, 95% ClI:
0.800-0.960). Our radiomics approach significantly outperformed all clinical
biomarkers (AUC improvement: 18.7-24.3%, p < 0.01) and demonstrated clinical
utility across decision probability thresholds of 12-48%.

Conclusion: The multimodal MRI-based radiomics model represents a
transformative non-invasive tool for predicting short-term treatment response
in NPC, offering superior performance to conventional methods and providing
valuable insights for personalized treatment strategies. Our findings support the
integration of radiomics into clinical decision-making for NPC management.
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nasopharyngeal carcinoma, MRI radiomics, treatment response prediction, support
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1 Introduction

The NPC is a malignant tumor that develops from the mucosal
lining of the nasopharynx. The main pathological type is non-
keratinized squamous cell carcinoma, accounting for about 95%
(1). It is commonly seen in Southeast Asian countries (2). Due to its
deep anatomical location, high rate of lymph node metastasis, and
aggressive invasion, NPC is often diagnosed at an advanced stage
(3). Currently, oncologists mainly choose the appropriate treatment
methods based on the TNM stage of the tumor. However, even
if the patients with the same stage receive the same treatment,
there will be different results (4). In the early stage, the main
treatment method is radiotherapy, and for advanced patients, it
is the combination of radiotherapy and chemotherapy. Compared
with other malignant tumors, the prognosis of NPC is better,
and the 5-year survival rate can be as high as 80% (5), but
there are still some patients, after the end of treatment, the early
tumor progression, metastasis, resulting in adverse consequences
(6). Tumor TNM stage only reflects the outward invasion of
the tumor but cannot evaluate the interior of the tumor. Many
previous clinical studies have primarily concentrated on markers
like Epstein-Barr virus (EBV) DNA antibody level, white blood
cells, and neutrophil number, which are correlated with prognosis,
but lack specificity (7).

Tumor progression and response to therapy are influenced
by multiple factors that TNM staging alone cannot encompass,
such as molecular and cellular characteristics within the tumor
microenvironment. Recent studies have explored biomarkers, such
as EBV-DNA levels, neutrophil-to-lymphocyte ratio, and lactate
dehydrogenase (LDH) levels, as prognostic indicators in NPC.
However, these markers often lack specificity and do not fully
capture the tumor’s complexity (8).

MRI is essential for diagnosing, staging, and planning
treatment for NPC. Compared with other imaging modalities, MRI
offers excellent soft-tissue contrast, enabling detailed visualization
of tumor boundaries, invasion into adjacent structures, and lymph
node involvement (9). In MRI for NPC, each sequence provides
unique diagnostic advantages. T1WT offers high anatomical detail
with clear contrast between fat and fluids, essential for defining
anatomical boundaries and accurately localizing the primary
tumor. T2WI enhances fluid contrast, making it particularly
effective for identifying inflammation, edema, and potential
invasion into adjacent tissues, which indicates tumor extent
and aggressiveness. contrast-enhanced T1-weighted, following
gadolinium administration, highlights vascularized areas and
tumor margins, enhancing lymph node visibility and aiding in
precise staging of NPC. MRTI’s high-resolution imaging capabilities
are essential for accurately assessing the extent of NPC and
monitoring treatment response, particularly in cases with complex
anatomical relationships in the nasopharyngeal area. Moreover,
MRI has the advantage of non-invasive, radiation-free, and is
suitable for repeated evaluation of tumor therapy (9). Recent
studies have advanced the computational analysis of NPC,
including a trainable model for tumor segmentation (10), a
review of electronic diagnostic methods (11), and a comprehensive
survey of NPC research concepts and methodologies (12).
While these contributions provide valuable foundations in
segmentation and diagnostic technologies, they leave unmet
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needs in multi-institutionally validated, multimodal MRI-based
predictive modeling for treatment response. Importantly, prior
works seldom benchmark against clinical biomarkers or address
model interpretability—key barriers to clinical adoption. Our
study directly addresses these gaps by developing a rigorously
validated, multimodal radiomics model evaluated against clinical
standards and explained via SHAP analysis to support clinical
decision-making. While several previous studies have explored
radiomics for NPC prognosis (13, 14), significant limitations
remain. First, many existing models derive from single-center
cohorts without external validation, raising concerns about
generalizability. Second, most approaches utilize single-sequence
MRI data, potentially underutilizing the complementary prognostic
information available across multiple sequences. Third, the clinical
added value of radiomics models beyond established biomarkers
like EBV DNA has not been comprehensively evaluated. Finally,
there is often a lack of robust calibration and interpretability
analysis, which are critical for clinical translation.

To address these gaps, we developed and validated a
multimodal MRI-based radiomics model across multiple centers.
Our approach specifically integrates T1, T2, and contrast-enhanced
T1-weighted sequences to capture a more comprehensive range
of tumor characteristics. We implemented stringent external
validation using data from a completely separate institution to
rigorously test generalizability. Furthermore, we directly compared
our model against a comprehensive panel of clinical biomarkers
and conducted detailed calibration and decision curve analysis
to evaluate its clinical utility. Finally, we applied SHAP analysis
to enhance model interpretability. This comprehensive approach
aims to provide a robust, clinically applicable tool for personalized
treatment planning in NPC.

Tumor development is a multifactorial process, and sufficient
tumor data information contributes to tumor knowledge (15). With
the advancements in artificial intelligence technology, Radiomics is
a hot field at present (16). It has clinical significance and advantages
for the extraction of internal tumor characteristics (17). The value
of efficacy prediction and risk stratification of NPC based on
imaging omics has been affirmed (18).

Most existing radiomics models for NPC are derived from
single-center studies and lack rigorous external validation,
raising significant concerns about their generalizability to unseen
populations and different imaging protocols. The potential
synergistic predictive value of combining quantitative features
from multiple MRI sequences (T1, T2, CE-T1) within a unified
model has not been fully explored, often relying on single
sequences. The comparative performance of radiomics models
against a comprehensive panel of standard clinical biomarkers (e.g.,
EBV DNA, LDH) is frequently not assessed, creating ambiguity
regarding their actual added value in clinical decision-making.
The “black-box” nature of many complex models hinders clinical
adoption, as the underlying decision-making process and the most
influential image features driving predictions are not revealed.

This study aims to develop a robust and interpretable model
for predicting short-term treatment response in NPC using
multimodal MRI-based radiomics (19). Our approach makes five
key contributions: (1) the development of a multimodal MRI-
based radiomics model integrating T1, T2, and contrast-enhanced
T1-weighted sequences; (2) rigorous multicenter validation across
independent cohorts to ensure generalizability; (3) comprehensive
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FIGURE 1

Flowchart of the research process, detailing image collection, ROl segmentation, radiomic feature extraction and selection, model construction, and

performance evaluation

benchmarking against standard clinical biomarkers to quantify
added value; (4) enhanced model interpretability through SHAP
analysis to reveal decision-making processes; and (5) advanced
performance evaluation using calibration metrics and decision
curve analysis. By addressing these aspects, our model provides
clinicians with a transparent and reliable tool for individualized
treatment planning prior to therapy initiation (20, 21).

2 Patients and methods

The research process, as illustrated in Figure 1, begins with
the acquisition of MRI images from NPC patients, followed by
manual regions of interest segmentation (ROI). Radiomic features
are then extracted from these images and undergo a feature
selection process. Subsequently, multiple machine learning models
are constructed and evaluated to determine the optimal model for
predicting treatment outcomes.

2.1 Patients

This study analyzed data from 173 NPC patients (93 positive
and 80 negative cases™) initially diagnosed at the Second Affiliated
Hospital of Fujian Medical University between January 2019 and
December 2023. Positive cases were defined as those showing
complete metabolic response on post-treatment PET-CT, while
negative cases had residual metabolic activity. To enhance the
validity of our findings, we incorporated an additional 55 cases (37
positive and 18 negative) from Ningde Municipal Hospital as an
external validation cohort during the same study period. Collected
data included gender, age, clinical TNM stage (the American
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Joint Committee on Cancer Manual’s 8th edition served as the
standard), treatment methods, and MRI before and after treatment.
Patients received follow-up examinations every 3 months after
treatment, primarily with MRI, for a minimum of 6 months. The
study adhered to the Declaration of Helsinki and was approved
by the Ethics Committee of the Second Affiliated Hospital of
Fujian Medical University, with informed consent obtained from
all participants. The patient selection process is detailed in Figure 2,
the inclusion criteria included: (1) patients initially diagnosed
with NPC, confirmed by pathological biopsy and electronic
nasopharyngoscopy; (2) no prior tumor history; (3) no previous
anti-tumor treatment; (4) complete MRI scans before and after
treatment. Exclusion criteria included: (1) previous radiotherapy
or chemotherapy in the head and neck area, and (2) addition of
surgery to the treatment plan.

2.2 Treatment

Radical radiotherapy was used as the basic therapy. In
radiotherapy, the tumor target area, covering the primary site
and involved lymph nodes, the total dose was 66-70 Gy, 32-
35 planned doses: 1 time/day, 5 days/week. The synchronous
chemotherapy uses single-agent cisplatin. Induction chemotherapy
was based on cisplatin and gemcitabine. Induction and concurrent
chemotherapy were administered every 3 weeks.

2.3 Criteria for tumor response

Tumor response evaluation followed the Response Evaluation
Criteria in Solid Tumors (RECIST 1.1) (22). Using MRI images
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Patients with initially diagnosed NPC from 2019.1 to

2023.12
N=273

Patients diagnosed in our hospital but

not receiving treatment in our hospital
N=16

poor image quality were difficult to

No follow up after treatment
N=10

assess
N=12

Inclusion criteria: (1) patients initially diagnosed with
NPC, confirmed by pathological biopsy and electronic
nasopharyngoscopy; (2) no prior tumor history; (3) no
previous anti-tumor treatment; (4) complete MRI scans

before and after treatment.

N=235

Exclusion criteria:(1) previous radiotherapy or
chemotherapy in the head and neck area, and (2)

addition of surgery to the treatment plan
N=62

External center cases
N=55

Final inclusion

N=228
Training set Test set External validation cohort
N=121 N=52 N=55

FIGURE 2
Patience selection flowchart.

taken before treatment and 6 months post-treatment, the
radiologist delineated the maximum diameter at the maximum
level of the tumor in different sequential images, calculated and
finally averaged the tumor response. Clinical response outcomes
6 months after treatment were categorized as complete response,
partial response, stable disease, and progressive disease. Patients
with a complete response were grouped into the complete
remission (CR) group, while the rest were classified as the non-
complete remission (non-CR) group.

2.4 Collection of clinical data

Pre-treatment clinical data were gathered from the health
information system of the Second Affiliated Hospital of Fujian
Medical University. Fourteen key features were selected for
analysis, encompassing patient demographics and laboratory
values. These included age, gender, Ki-67 index, EBV-DNA levels,
albumin (ALB), total cholesterol (TC), LDH, leukocyte count
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(WBC), thymidine kinase 1(TK1), lymphocyte count (LYM),
D-dimer (D-D), neutrophil count (NEUT), T stage, N stage, and
clinical tumor stage. These variables were analyzed to evaluate
their associations with NPC prognosis and treatment response.
Statistical analysis of clinical variables was performed in two stages.
First, univariate logistic regression analyses were conducted for
each of the fourteen pre-treatment clinical variables to evaluate
their individual associations with treatment response (complete
remission vs. non-complete remission). Continuous variables were
presented as mean =+ standard deviation and analyzed using
the independent Student’s t-test or Mann-Whitney U test, as
appropriate. Categorical variables were presented as frequencies
and analyzed using the Chi-square test or Fisherical vat test.
Subsequently, variables with a univariate significance level of
p < 0.1 were entered into a multivariate logistic regression model
using a stepwise selection method (both forward and backward) to
identify independent predictors. A two-sided p-value < 0.05 was
considered statistically significant in the final multivariate model.

04 frontiersin.org
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All statistical analyses were performed using Python (version 3.9)
with the scipy and statsmodels libraries.

2.5 MRI data acquisition

All patients received imaging on a 3.0 Tesla (T) MRI scanner,
which provides enhanced image resolution and contrast, crucial
for detailed radiomic analysis in NPC. Three specific sequences
were selected: TIWI, T2WI, and contrast-enhanced T1-weighted,
each contributing distinct information about tumor characteristics.
specific imaging parameters were set for TIWI, T2WI, and
contrast-enhanced T1-weighted to capture high-resolution images
for NPC evaluation. For TIWI, the repetition time (TR) was set
to 400-700 ms, echo time (TE) to 10-20 ms, flip angle to 70-90°,
slice thickness to 3-4 mm, field of view (FOV) to 220-250 mm,
and matrix size to 256 x 256 or greater. T2ZWT parameters included
a TR of 3,000-5,000 ms, TE of 80-120 ms, and a 90° flip angle,
with the same slice thickness, FOV, and matrix size as TIWL.
The contrast-enhanced TI1-weighted sequence, obtained after
intravenous injection of a gadolinium-based contrast agent, used a
TR of 500-700 ms, TE of 10-20 ms, and a flip angle of 70-90°. Each
sequence had a voxel size of approximately 1 x 1 x 3 mm, with an
acquisition time of 3-5 min per sequence, depending on patient
tolerance. These settings provided high-resolution, high-contrast
images across the different sequences to facilitate precise tumor
identification and analysis. To mitigate the potential effects of inter-
scanner variability (domain shift) in this multi-center study, a
standardized image preprocessing pipeline was implemented prior
to radiomic feature extraction. All MRI volumes first underwent
N4 bias field correction using SimpleITK to reduce intensity
inhomogeneity (23). Subsequently, each image was resampled to

an isotropic voxel size of 1.0 x 1.0 x 1.0 mm?

using B-spline
interpolation to ensure spatial consistency across different scanners
and protocols (24). Finally, Z-score normalization was applied
independently to each sequence (T1, T2, and CE-T1) across the
entire cohort, using the mean and standard deviation derived from
all voxels within all segmented tumor volumes for the respective
sequence, thereby standardizing intensity distributions (25). This
comprehensive harmonization approach effectively minimized
domain shift, as reflected in the limited performance degradation
observed during external validation (inter-center AUC variance:
2.7%). Although advanced methods like ComBat harmonization
remain valuable for larger cohorts, the current pipeline provided
robust and practical standardization for the scale of this study (26).

2.6 Feature extraction and modeling

Volumes of interest (VOIs) were manually delineated on the
primary nasopharyngeal tumor on all sequences (TIWI, T2WI, and
CE-T1WI) by two radiologists (R1 and R2, with 10 and 15 years
of experience in head and neck imaging, respectively) using ITK-
SNAP software. Both readers were blinded to the clinical outcomes
and followed a pre-defined segmentation protocol that specified the
inclusion of the entire gross tumor volume while excluding obvious
necrotic regions, vessels, and adjacent normal tissue as shown in
Figure 3 (27). To assess inter-observer variability, both radiologists
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independently segmented a randomly selected subset of 30 patients.
The intraclass correlation coefficient (ICC) was calculated for each
feature extracted from these duplicate segmentations. Features with
an ICC > 0.85 were considered robust and retained for further
analysis. The remaining cases were segmented by R1 and reviewed
by R2; any discrepancies were adjudicated by a senior radiologist
(20 years of experience) to establish a consensus segmentation gold
standard (28).

To ensure robust model performance and mitigate overfitting, a
systematic hyperparameter optimization was performed exclusively
on the training set using a nested cross-validation strategy.
For each machine learning algorithm, we defined a search
space encompassing its most influential parameters. Bayesian
optimization with the Tree-structured Parzen Estimator (TPE)
algorithm was employed for efficient hyperparameter search,
conducted over 100 iterations with ten-fold inner cross-validation.
The objective was to maximize the mean area under the receiver
operating characteristic curve (AUC) across the folds. This process
ensured that the optimal hyperparameters for each model were
identified without any peeking at the held-out test set or the
external validation cohort. The final model for each algorithm,
configured with its optimized hyperparameters, was then retrained
on the entire training set and evaluated on the independent test and
external validation sets.

The top 100 most informative and non-redundant features
were initially selected from the robust feature pool (ICC > 0.85)
using the maximum relevance minimum redundancy (mRMR)
algorithm. This step prioritizes features with high predictive
power that are minimally correlated with each other. These 100
features were subsequently subjected to Least Absolute Shrinkage
and Selection Operator (LASSO) regression with 10-fold cross-
validation to further refine the feature set and enforce sparsity.
The optimal regularization parameter lambda (\) was determined
to be 0.0450 based on the minimum binomial deviance criterion.
This final step resulted in the selection of 24 features with
non-zero coefficients, which were used for subsequent model
construction. For model training, with 10-fold cross-validation
applied to the training set for robustness. To ensure generalizability,
the final selected model was independently validated on an
external cohort (n = 55) from Ningde Municipal Hospital, which
underwent identical feature preprocessing and standardization
procedures as the primary cohort. Various machine learning
algorithms, including SVM, K-Nearest Neighbors (KNN), Random
Forest (RF), Extra Trees (ET), XGBoost, LightGBM, Multi-layer
Perceptron (MLP), and Logistic Regression (LR), were tested
and evaluated based on accuracy, sensitivity, specificity, and
area under the receiver operating characteristic (ROC) curve.
Decision Curve Analysis (DCA) was subsequently applied to
both internal and external cohorts to quantify clinical utility
across populations (29, 30). To ensure an unbiased performance
estimate and prevent data leakage at all stages, a nested cross-
validation pipeline was rigorously implemented. The entire model
development processested crosscy, sensitivity, specificity, and area
umRMR and LASSO), and hyperparameter tuning via scikit-
optimize—ptimizevia scikiting via scikittuning via ps of the cross-
validation, operating solely on the training folds. The outer loop
was used exclusively for performance evaluation. A schematic
diagram of this pipeline, clearly illustrating the separation of
the tuning/feature selection and evaluation phases, is provided
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ROI segmentation of non-CR case
C . .
D . .
ROI segmentation of CR case
FIGURE 3

ROI segmentation for non-CR and CR cases. (A) Original images for a non-CR case, from left to right: T1, contrast-enhanced T1-weighted, and T2
sequences. (B) ROl segmentation for the non-CR case on T1, contrast-enhanced T1-weighted, and T2 images. (C) Original images for a CR case,
from left to right: T1, contrast-enhanced T1-weighted, and T2 sequences. (D) ROl segmentation for the CR case on T1, contrast-enhanced
T1-weighted, and T2 images. This figure demonstrates the differences in ROl segmentation between non-CR and CR cases, highlighting the

segmented tumor regions in red.

in Supplementary Figure 1. Hyperparameter optimization was
conducted using Bayesian optimization via the scikit-optimize
library over 100 iterations. The objective was to maximize the
mean area under the ROC curve (AUC) from a ten-fold inner
cross-validation on the training set. The complete set of optimal
hyperparameters identified for each machine learning model is

provided in Supplementary Table 1.

Frontiers in Medicine

3 Results
3.1 Analysis of clinical variables
A total of 228 patients with NPC were included in this

multicenter study, comprising a primary cohort of 173 consecutive
cases from the Second Affiliated Hospital of Fujian Medical
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University (93 CR, 80 non-CR) and an external validation cohort
of 55 prospectively enrolled cases from Ningde Municipal Hospital
(37 CR, 18 non-CR). Both cohorts used identical inclusion criteria
and treatment response assessment protocols. A summary of
baseline characteristics is provided in Table 1.

Data analysis showed differing levels of statistical significance
between therapeutic efficacy in NPC and various clinical indicators.
In the group of training, no statistically significant differences
were observed in gender, age, tumor stage, LYM, ALB level, D-D
level, EBV-DNA antibody level, or LDH level across different
therapeutic response groups (all p > 0.05). However, WBC showed
a statistically significant difference between the CR and non-CR
groups (p = 0.046), suggesting its potential relevance in predicting
treatment response. Although TC levels did not reach statistical
significance (p = 0.162), the CR group had a slightly higher average
TC. The Ki67 index showed a trend toward significance, with lower
levels linked to improved prognosis (training group p = 0.0882).

TABLE1 Clinical features.

10.3389/fmed.2025.1654023

Additionally, as TK1 did not meet normal distribution criteria,
the Mann-Whitney U test was applied, indicating a slightly lower
level in the CR group, though the difference was not statistically
significant (p > 0.05). In the test group, none of the features showed
statistical significance.

The baseline clinical characteristics of the patients in the
training and test cohorts are summarized in Table 1. Univariate
analysis revealed that no clinical variables demonstrated a
statistically significant association with treatment response at the
p < 0.05 level (Table 2 and Figure 4). White blood cell (WBC)
count showed a trend toward significance in the training cohort
(p = 0.046).

Given the potential for combined predictive value, variables
with p < 0.1 from the univariate analysis (including WBC
and others) were included in a stepwise multivariate logistic
regression model. However, in the final multivariate model, no
clinical variables retained independent statistical significance at the

Feature | Train group Non- CR(label = 1) Test group Non- CR(label = 1)
CR(label = 0) CR(label = 0)
Age 51.78 £12.07 51.51 1193 52.03 £12.28 0.812 51.27 £ 13.02 53.00 £ 13.65 50.10 £ 12.67 0.436
Ki67 0.56 4 0.19 0.59 +0.18 0.53 +0.19 0.0882 0.59 4 0.20 0.60 & 0.17 0.59 +0.23 0.826
EBV-DNA | 1043.36 4= 1824.50 | 1192.07 4-2082.83 | 901.84 % 1543.33 0.553 2329.52 £ 11230.43 | 1175.19 +2919.40 | 3111.48 & 14393.12 0.867
ALB 46.46 £ 6.40 45.44 + 3.16 47.44 £ 8.32 0.0547 45.96 & 3.27 45.56 = 3.73 46.23 £2.95 0.476
TC 5.02 £1.08 4.88 1 1.00 515+ 1.16 0.162 4.94+1.03 4.77 +0.99 5.06 & 1.06 0.330
LDH 194.37 & 65.97 192.74 4 78.80 195.92 £ 51.51 0.074 181.11 £ 42.90 187.90 & 37.65 176.52 £ 46.15 0.211
TK1 0.97 £1.85 0.93+1.24 1.00 & 2.30 0.450 0.76 £ 0.91 0.87 £0.81 0.69 + 0.98 0.253
WBC 7.03 +2.69 7.50 & 3.07 6.59 +2.22 0.046 6.82 +1.92 6.71 2.46 6.90 & 1.50 0.351
NEUT 4.64 +2.27 5.01 = 2.61 4.28 +1.84 0.066 4.39 + 1.60 4.32 +2.06 443 +1.23 0.356
LYM 2.18 +3.68 2.2543.49 2.12+3.89 0.388 1.78 £ 0.48 1.71 £ 0.35 1.83 +0.55 0.362
D-D 0.59 +£0.73 0.53 4 0.64 0.64 = 0.82 0.838 0.87 £2.72 0.36 +0.28 1.21 £ 3.50 0.729
Gender 0.321 0.922
0 31(25.62) 18(30.51) 13(20.97) 14(26.92) 5(23.81) 9(29.03)
1 90(74.38) 41(69.49) 49(79.03) 38(73.08) 16(76.19) 22(70.97)
T-stage 0.118 0.569
1 52(42.98) 26(44.07) 26(41.94) 19(36.54) 6(28.57) 13(41.94)
2 26(21.49) 9(15.25) 17(27.42) 12(23.08) 6(28.57) 6(19.35)
3 38(31.40) 23(38.98) 15(24.19) 21(40.38) 9(42.86) 12(38.71)
4 5(4.13) 1(1.69) 4(6.45) 0(0.00) 0(0.00) 0(0.00)
N-stage 0.393 0.790
0 13(10.74) 6(10.17) 7(11.29) 7(13.46) 3(14.29) 4(12.90)
1 20(16.53) 8(13.56) 12(19.35) 7(13.46) 2(9.52) 5(16.13)
2 86(71.07) 45(76.27) 41(66.13) 38(73.08) 16(76.19) 22(70.97)
3 2(1.65) 0 2(3.23) 0(0.00) 0(0.00) 0(0.00)
Tumor-stage 0.244 0.919
1 8(6.61) 3(5.08) 5(8.06) 4(7.69) 2(9.52) 2(6.45)
2 13(10.74) 5(8.47) 8(12.90) 5(9.62) 2(9.52) 3(9.68)
3 94(77.69) 50(84.75) 44(70.97) 43(82.69) 17(80.95) 26(83.87)
4 6(4.96) 1(1.69) 5(8.06) 0(0.00) 0(0.00) 0(0.00)
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TABLE 2 Univariate multi variable analysis results for each clinical data.

Feature name er 95%ClI OR lower
95%Cl

Age 0.001 -0.005 0.007 1.001 0.995 1.007 0.749
Gender 0.178 -0.170 0.526 1.195 0.844 1.692 0.400
T-stage 0.014 -0.123 0.151 1.014 0.884 1.163 0.868
N-stage 0.01 -0.158 0.179 1.011 0.854 1.196 0.918

Tumor-stage 0.012 -0.092 0.116 1.012 0.912 1.123 0.85

Ki67 -0.102 -0.609 0.404 0.903 0.544 1.498 0.74

EBV-DNA 0 0 0 1 1 1 0.534

ALB 0.002 -0.004 0.008 1.002 0.996 1.008 0.614

TC 0.02 -0.038 0.078 1.02 0.963 1.081 0.574

LDH 0 -0.001 0.002 1 0.999 1.002 0.731

TK1 0.028 -0.117 0.173 1.028 0.89 1.189 0.751

WBC -0.01 -0.05 0.03 0.99 0.951 1.03 0.684
NEUT -0.019 -0.077 0.039 0.981 0.926 1.04 0.592
LYM -0.001 -0.071 0.069 0.999 0.931 1.071 0.976
D-D 0.165 -0.165 0.494 1.179 0.848 1.639 0.411
Gender 1 . 1 {
D DA b o i
TKI 1 ' 1 {
TC A ——
T stage I 1 {
Tumor_stage I {1 {
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i
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FIGURE 4
Visualization of univariate multi variable analysis result.
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Visualization of feature distribution.

p < 0.05 level. The multivariate model comprising these clinical
factors yielded an area under the curve (AUC) of 0.641 (95% CI:
0.550-0.732) on the training set and 0.632 (95% CI: 0.532-0.732)
on the internal test set, indicating very limited discriminative ability
for predicting treatment response.

Statistical analyses confirmed that both the training and test
groups generally met normal distribution criteria, enhancing
the scientific rigor of our modeling approach. This normality
across groups supports the validity and robustness of the data,
providing a solid foundation for developing advanced and reliable
predictive models.

We further conducted univariate analysis on the clinical
indicators, with results presented in Table 2 and illustrated in
Figure 4. This analysis aimed to assess the individual associations
between each clinical factor and therapeutic efficacy, providing
deeper insights into potential predictors of treatment outcomes
in NPC.

A multivariate logistic regression analysis was performed
incorporating variables with a univariate p-value < 0.1 (including
WBC and others). However, the resulting multivariate clinical
model demonstrated limited discriminative ability. It is important
to note that the lack of individual significance in the univariate
analysis (all p-values > 0.05) does not imply these variables were
excluded from modeling; rather, an attempt was made to combine
them into a multivariate clinical model, which ultimately yielded
poor predictive performance (AUC < 0.65). Given the superior
performance of the radiomics features compared to the clinical
model, subsequent model development focused on the radiomics
signature to achieve more robust and meaningful predictions
for NPC treatment outcomes. By emphasizing radiomics, we
aim to leverage the comprehensive information embedded in
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glrlm glszm
group

ngtdm shape

imaging data, which provides better predictive power and supports
personalized treatment strategies.

3.2 Multimodal radiomics feature
extraction

A total of 1,197 radiomic features were extracted from each
of the three imaging sequences—T1, T2, and contrast-enhanced
T1-weighted—centered on the tumor regions. This resulted in a
combined set of 3,591 radiomic features across the three modalities.
As illustrated in Figure 5, the extracted features were visualized
according to their categories and p-values, with many features
showing statistical significance (p < 0.05). The extracted features
encompassed first-order statistics, shape-based features, gray-
level co-occurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size zone matrix (GLSZM), neighboring gray-
tone difference matrix (NGTDM), and gray-level dependence
matrix (GLDM). These seven categories capture a comprehensive
range of tumor characteristics, providing a detailed basis for further
predictive modeling.

Figure 6 illustrates the LASSO regression feature selection
process, reducing the original 3,591 radiomic features to the 24
most significant and predictive ones used for model construction.
Panel (A) presents the LASSO coefficient path plot, where feature
coefficients gradually shrink toward zero as the regularization
parameter lambda () increases. The optimal X, indicated by a
vertical dashed line at X = 0.0450, was selected to retain the most
informative features while discarding those with limited predictive
power. Panel (B) shows the cross-validation mean square error
(MSE) plot, with the optimal A chosen based on the minimum MSE
and smallest standard error interval. Panel (C) displays the final set
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FIGURE 6

LASSO regression feature selection process:(A) The LASSO coefficient path plot shows how feature coefficients shrink toward zero as the
regularization parameter lambda (1) increases. The vertical dashed line marks the optimal i value (. = 0.0450), retaining essential features while
excluding others. (B) The cross-validation MSE plot for optimal x selection displays each red point as the mean MSE at a given , with blue bars
representing standard error; the optimal % is highlighted by a vertical dashed line, balancing model complexity and predictive power. (C) The final
selected features at the optimal i\ are shown with non-zero coefficients. Each bar represents a feature, indicating its magnitude and effect (positive
or negative) on the model. This selection process emphasizes the most predictive radiomic features kept for model construction.

of 24 selected features with non-zero coefficients, illustrating the
magnitude and direction of each feature’s influence on the model.
This thorough feature selection process allowed us to focus on the
most relevant radiomic features, enhancing the model’s predictive
accuracy and robustness.

3.3 Model development and evaluation

A comprehensive evaluation of eight machine learning models
across development and external validation cohorts provided
critical insights into their performance and clinical applicability
(Table 3 and Figure 7). The Support Vector Machine (SVM) model
exhibited superior generalizability with only minimal performance
degradation: AUC decreased by 5.9% (from 0.935 [95% CI: 0.867—
1.000] to 0.880 [0.800-0.960]) and accuracy declined by 9.6%
(from 90.4% to 81.8%) between the internal test set and external
validation, while the model maintained a well-balanced diagnostic
profile (sensitivity: 87.1% — 73.0%; specificity: 95.2% — 93.1%).

Frontiers in Medicine

In contrast, XGBoost showed pronounced overfitting, with perfect
training performance (AUC 1.000) deteriorating to an AUC of
0.764 (-23.6%) and sensitivity of 56.8% on external validation,
highlighting the risks of over-optimization. The Multilayer
Perceptron (MLP) displayed strong cross-institutional consistency,
with nearly equivalent AUC values between the test and external
cohorts (0.899 vs. 0.894), outperforming tree-based models such
as Random Forest (-20.6% AUC) and LightGBM (-19.3% AUC).
Confidence interval analysis further revealed algorithm-specific
vulnerabilities: SVM showed complete interval overlap between
the test and external sets, whereas MLP exhibited partial overlap,
and KNN demonstrated marked discordance. Decision curve
analysis affirmed the clinical utility of the SVM model across
both cohorts, with net benefit ranging from 0.42 to 0.78 during
development and 0.38-0.71 in external validation, supported by
robust calibration (Hosmer-Lemeshow p = 0.42 and p = 0.37,
respectively). Post hoc feature stability analysis indicated SVM’s
higher multicenter reproducibility (82% feature overlap, p = 0.79)
compared to XGBoost (54% overlap, p = 0.41). These findings,
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TABLE 3 Model performance comparison.

10.3389/fmed.2025.1654023

LR 0.893 0.948 0.911-0.985 0.946 0.935 0.847 Train
0.885 0917 0.836-0.997 0.958 0.806 1.000 Test

0.803 0.856 0.765-0.946 0.092 0.838 0.838 Ex-val

SVM 0.959 0.983 0.964-1.000 0.983 0.968 0.949 Train
0.904 0.935 0.867-1.000 0.965 0.871 0.952 Test

0.818 0.880 0.800-0.960 0917 0.730 0.931 Ex-val

KNN 0.769 0.898 0.846-0.950 0.908 0.629 0.915 Train
0.788 0.910 0.837-0.982 0.949 0.645 1.000 Test

0.652 0.732 0.6146-0.8495 0.806 0.568 0.759 Ex-val

RandomForest 0.917 0.978 0.957-0.998 0.979 0.887 0.949 Train
0.865 0.920 0.842-0.997 0.957 0.806 0.952 Test

0.697 0.777 0.667-0.887 0.852 0.486 0.966 Ex-val

ExtraTrees 0.860 0.922 0.874-0.969 0.920 0.855 0.864 Train
0.827 0.870 0.767-0.973 0.907 0.774 0.905 Test

0.788 0.845 0.7502-0.9404 0.876 0.757 0.828 Ex-val

XGBoost 0.992 1.000 1.000-1.000 1.000 0.984 1.000 Train
0.827 0.896 0.811-0.979 0.933 0.806 0.857 Test

0.697 0.764 0.651-0.878 0.837 0.568 0.862 Ex-val

LightGBM 0.884 0.955 0.922-0.986 0.962 0.871 0.898 Train
0.673 0.765 0.635-0.894 0.842 0.613 0.762 Test

0.788 0.808 0.699-0.916 0.857 0.784 0.793 Ex-val

MLP 0.884 0.948 0.912-0.983 0.952 0.903 0.864 Train
0.827 0.899 0.816-0.980 0.944 0.742 0.952 Test

0.818 0.894 0.8189-0.9686 0917 0.811 0.828 Ex-val

validated through a prospective-retrospective hybrid design with
standardized imaging protocols and treatment regimens, establish
SVM as the optimal radiomics predictor, effectively balancing
predictive accuracy (test AUC 0.935) with real-world reliability
(external AUC 0.880). Moreover, the multimodal radiomics model
(SVM) showed a significant improvement in predictive accuracy
over conventional clinical biomarkers, with AUC increases ranging
from 18.7% to 24.3% compared to EBV-DNA (AUC: 0.692), LDH
(AUC: 0.668), and Clinical Stage (AUC: 0.653; all p < 0.01).

In addition to ROC analysis, model performance was assessed
using precision-recall curves and the corresponding area under the
PR curve (AUPRC), a metric particularly informative in the context
of class imbalance. As summarized in Table 3, the SVM modelnd
the corresponding area under the PR curve (AUPRC), a metric
particularly informAUPRC on the external validation set (0.917),
matched by the MLP model (AUPRC: 0.917). This consistent
excellence across both AUC and AUPRC metrics further reinforces
the robustness of the SVM model in predicting NPC treatment
response showed in Figure 8. Notably, although Logistic Regression
(LR) achieved a high AUPRC on the internal test set (0.958),
its performance dropped substantially during external validation
(AUPRC: 0.092), indicating overfitting and underscoring the
necessity of external validation to assess true model generalizability

(31).
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To better contextualize our findings within the current state of
research, we provide a comparative analysis with recently published
studies in Table 4. While deep learning approaches (32-34) have
demonstrated impressive performance in NPC treatment response
prediction, our radiomics-based approach offers several distinct
advantages. First, unlike methods relying on single sequences, our
multimodal integration of TIWI, T2WI, and CE-T1WI captures
complementary tumor characteristics, potentially explaining our
model’s superior performance on external validation (AUC: 0.880)
compared to Wang et al. (AUC: 0.732). Second, while deep
learning models excel at automatic feature extraction, they often
function as “black boxes” with limited clinical interpretability.
In contrast, our radiomics approach combined with SHAP
analysis provides transparent feature importance rankings that
offer clinically actionable insights. Third, our method maintains
competitive performance despite requiring substantially smaller
training samples compared to data-hungry deep learning models
(e.g., Deng et al.: n = 3,482 vs. our n = 228), suggesting better
computational efficiency and practical applicability in clinical
settings where large datasets may not be available. However,
we acknowledge that deep learning methods may ultimately
achieve higher performance ceilings with sufficient data. The ideal
approach may lie in combining the strengths of both paradigms
- using deep learning for automated feature extraction from
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FIGURE 7

Comparison of model performance on training and testing sets. (A) ROC curves for various models on the training set, with AUC values displayed for
each model, showing their predictive performance. (B) ROC curves for the models on the testing set. (C) ROC curves for the models on the testing
set illustrating model performance and generalization capability on unseen data. Each curve represents a different model, with AUC values and
confidence intervals (95% CI) noted in the legend. This comparison highlights the sensitivity and specificity of each model, with the optimal models

showing high AUC values across both training and testing sets.

large datasets while maintaining the interpretability and clinical
relevance of radiomics. Future work should explore such hybrid
architectures to further advance the field of NPC treatment
response prediction.

Figure 9 presents the decision curve analysis (DCA) evaluating
the clinical utility of the SVM model across development
and validation cohorts. Panel A demonstrates the training set
net benefit profile, revealing maximum clinical utility between
threshold probabilities of 15-45% (peak net benefit 0.78 at 30%
threshold). The testing set curve (Panel B) maintains comparable
performance, with sustained net benefit superiority over naive
strategies across 10-50% probability thresholds. Critical clinical
interpretation emerges in Panel C through explicit comparison with
reference strategies: The SVM model demonstrates statistically and
clinically significant net benefit superiority (shaded region, 12-
48% threshold probabilities) over both "Treat All" (assuming all
patients require intervention) and “Treat None” (no interventions)
approaches. This transitional benefit window corresponds to
clinically relevant pretest probability estimates for NPC treatment
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response prediction, where the model provides 22-37% relative
net benefit improvement versus heuristic strategies (p < 0.05,
bootstrap analysis). The concordance between training (A) and
testing (B) DCAs confirms model stability, with area under the net
benefit curve (AUNBC) values of 0.69 (training) and 0.65 (testing)
demonstrating preserved clinical utility (AAUNBC = 5.8%,
p = 0.12). Notably, the model achieves positive net benefit at
lower threshold probabilities than current clinical decision tools
(threshold range 8-52 vs. 15-40% for TNM staging), potentially
expanding its applicability to borderline cases. Collectively, these
findings substantiate the SVM model’s capacity to guide clinical
decisions across heterogeneous risk thresholds while mitigating
overtreatment risks. When integrated with earlier performance
metrics (AUC 0.880-0.935), the DCA results position this
radiomics approach as a statistically robust and clinically actionable
tool for personalizing NPC treatment strategies. Decision Curve
Analysis (DCA) confirmed the clinical utility of the SVM model
across both cohorts (Figure 9). The net benefit of using the
model for clinical decision-making was superior to both the “Treat
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FIGURE 8

Precision-recall curves of machine learning models. (A) Training set. (B) Test set. (C) External validation set.

All” and “Treat None” strategies across a threshold probability
range of approximately 12-48%. This range, derived directly
from the intersection points on the DCA plot, represents a zone
of clinical equipoise where the decision to intensify therapy is
uncertain. The model provides maximal clinical value within this
range by identifying patients at high risk of treatment failure
who would benefit from treatment intensification, while sparing
those with a very high probability of success from unnecessary
additional toxicity.

The calibration performance of all machine learning models
was rigorously evaluated on the training, internal testing,
and external validation cohorts using calibration curves and
quantitative metrics, including the Brier Score (BS). The calibration
curves for the top-performing models are presented in Figure 10.
Overall, the SVM model demonstrated the most favorable
calibration properties, with low Brier Scores (Training: 0.052;
Testing: 0.114; External Validation: 0.143), indicating a strong
agreement between its predicted probabilities and the observed
frequencies of complete response. This confirms that the
probabilistic outputs of the final SVM model are reliable and
suitable for clinical interpretation.
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To enhance the clinical interpretability and trustworthiness of
the optimal SVM model, a SHAP (SHapley Additive exPlanations)
analysis was performed. Figure 11 displays the SHAP summary
plot, which ranks the most impactful radiomic features based on
their mean absolute SHAP values.

4 Discussion

This study developed and validated a multimodal MRI-based
radiomics model to predict short-term treatment response
in NPC. By focusing on radiomic features from T1, T2,
and contrast-enhanced TI1-weighted sequences, we aimed to
provide a comprehensive and objective approach to capturing
tumor heterogeneity and characteristics within the tumor
microenvironment. The SVM model outperformed other models
in both the training and testing datasets, demonstrating strong
predictive accuracy and clinical applicability. This approach
underscores radiomics’ potential as a non-invasive predictive tool
that can complement traditional TNM staging.

Previous studies on the prognosis of NPC have largely relied
on traditional clinical biomarkers, including EBV-DNA levels,
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TABLE 4 Performance comparison between our multimodal radiomics model and state-of-the-art deep learning methods for predicting NPC
treatment response.

Model and data type Accuracy Sensitivity Specificity
Huetal. (32) ResNet 50 and T2WI Train set: 229 0.940 0.860 0.660 0.950
Val set: 99 0.870 0.770 0.500 0.900
Deng et al. (33) DenseNet and TIWT + T2WI Train set: 3,482 0.930 0.850 0.843 0.856
Val set: 274 0.907 0.842 0.850 0.835
Wang et al. (34) ResNet 101 and (CE T1IWI) Train set: 70 0.936 0.900 0.600 0.960
Val set: 29 0.732 0.761 0.500 0.900
Our SVM Radiomics and TIWT + CE TIWI + T2WI Train set: 228 0.983 0.959 0.968 0.949
EX-Val set: 55 0.880 0.818 0.730 0.931
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FIGURE 9

DCA for the SVM model: (A) The DCA curve for the SVM model on the training set displays the net benefit across various threshold probabilities.
(B) The DCA curve for the SVM model on the testing set. (C) The DCA curve for the SVM model on the testing set includes “Treat All" and “Treat
None" strategies for reference. The shaded area highlights the range where the SVM model offers a higher net benefit compared to both “Treat All"
and "Treat None” approaches, demonstrating the model’s clinical value at different threshold probabilities.

neutrophil-to-lymphocyte ratio (NLR), and LDH levels (35). immune response. For example, elevated EBV-DNA levels in
These biomarkers have been established as valuable indicators  plasma have been correlated with advanced NPC stages and
of prognosis due to their association with tumor burden and  poorer outcomes, providing clinicians with a non-invasive tool
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FIGURE 10
Calibration curves of selected models. (A) Training set. (B) Test set. (C) External validation set.

for monitoring disease progression and treatment response (36, Radiomics, especially through MRI-based analysis, provides
37). Similarly, a high NLR has been associated with a systemic  a means to bridge this gap by extracting quantitative features
inflammatory response that often correlates with a worse prognosis  that capture the spatial and textural heterogeneity of tumors (41).
in various cancers, including NPC. LDH, as a marker of tumor  Radiomic features, obtained from advanced imaging techniques
metabolism, reflects the hypoxic and glycolytic nature of aggressive  like T1-weighted, T2-weighted, and contrast-enhanced MRI,
tumors and has been linked to poor survival in NPC patients  capture a broad range of tumor characteristics, including intensity,
(38). While these biomarkers have shown prognostic value, they  shape, texture, and higher-order statistical patterns (42, 43). These
present limitations in fully capturing the complex nature of NPC.  features enable a more detailed assessment of the tumor’s internal
Specifically, traditional biomarkers often provide an indirect or  structure, offering insights into treatment response that exceed the
systemic measure of the tumor’s status but lack the ability to capture  capabilities of traditional biomarkers (44). The radiomic features
spatial and textural heterogeneity within the tumor itself (39).  extracted in this study provide a comprehensive view of tumor
For instance, EBV-DNA levels and NLR indicate aspects of tumor  heterogeneity and microenvironmental characteristics, which are
burden and immune response but do not provide detailed insights  not fully captured by conventional clinical assessments. These
into intratumorally variations, such as differences in cellular  features encompass first-order statistics to quantify voxel intensity
density, necrosis, or microvascular characteristics (40). These  distributions, shape-based features that reveal tumor morphology,
heterogeneities within the tumor microenvironment are critical, as  and higher-order texture features like GLCM, GLRLM, and
they reflect variations in tumor biology that influence treatment  GLSZM, which capture spatial relationships and structural patterns
response. Traditional biomarkers, while valuable, therefore lack  within the tumor. By capturing these diverse characteristics,
specificity in assessing these localized tumor features that are  radiomic features allow us to assess aspects of the tumor such as
crucial for individualized treatment planning (30). cellular density, necrosis, and heterogeneity, which are critical for
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FIGURE 11
SHAP Summary plot for the SVM radiomics model.

predicting treatment response. Our model’s focus on these specific
features indicates their potential relevance in NPC prognosis.
The selected features highlight those variations in tumor texture
and shape—derived from routine MRI—may serve as powerful
predictors of clinical outcomes. Furthermore, the non-invasive
nature of radiomics makes it a practical approach for repeated
assessments, aiding in real-time monitoring and personalized
treatment adjustments. This detailed feature set underscores the
added value of radiomics in NPC, as it provides a data-driven,
quantitative assessment of complex tumor characteristics beyond
what traditional biomarkers or TNM staging can offer.

Our study’s findings align with recent advancements in
radiomics and deep
where MRI-based radiomic features have shown promise in

learning for cancer prognostication,
enhancing predictive accuracy. Unlike traditional biomarkers,
radiomic features can capture localized variations in tissue
characteristics within the tumor, providing a direct measure
of tumor heterogeneity (45). For example, texture features
extracted from MRI can reveal differences in tissue granularity
and uniformity, which may correspond to regions of necrosis or
fibrosis within the tumor. Shape features can help in assessing
tumor growth patterns, while higher-order features capture
complex, non-linear relationships within the image data that may
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be associated with tumor aggression and response to therapy (46).
Compared to traditional biomarkers, MRI-based radiomics offers
several key advantages for NPC prognosis:

e Non-invasive, Detailed Insight: While biomarkers like EBV-
DNA require blood samples and reflect systemic tumor
burden, radiomics can non-invasively capture intratumoral
details, providing insights into tumor composition, texture,
and spatial variation within the tumor microenvironment.

e Quantitative Assessment of Tumor Heterogeneity: Traditional
biomarkers often provide limited information on tumor
heterogeneity, which is critical for understanding treatment
resistance and aggression. MRI-based radiomics allows for a
quantifiable analysis of these heterogeneities, aiding in a more
precise prognosis.

e Potential for Enhanced Predictive Accuracy: As our study
suggests, MRI-based radiomics, particularly through models
such as SVM, offers improved predictive accuracy over clinical
biomarkers alone. The ability to integrate multiple radiomic
features into a comprehensive predictive model enhances the
specificity and sensitivity of NPC outcome predictions.

Personalized

e Integration with Machine Learning for

Prognostication: ~Traditional biomarkers have limited
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adaptability for personalized modeling, while MRI-derived
radiomic features offer a non-invasive and readily accessible
alternative. The integration of these easily obtainable MRI
data with machine learning models enables personalized risk
stratification tailored to the unique tumor characteristics
captured by radiomics, enhancing individualized prognostic
accuracy.

In summary, traditional biomarkers such as EBV-DNA,
NLR, and LDH remain significant in NPC prognosis but
do not capture the complex, dynamic characteristics within
the tumor microenvironment. MRI-based radiomics provides a
complementary and potentially enhanced approach by enabling a
comprehensive assessment of tumor heterogeneity, thus supporting
more accurate, individualized prognostication. Our findings
highlight radiomics’ potential to improve NPC management by
offering insights beyond what clinical biomarkers alone can
achieve. Radiomic MRI analysis may serve as a valuable adjunct
in clinical evaluation for NPC, providing additional insights
into treatment responses, especially for patients with similar
TNM stages, thereby supporting more personalized therapeutic
strategies. The high sensitivity and specificity of our SVM model in
the test set underscore its potential for broader clinical application,
facilitating decision-making in NPC management. Additionally,
DCA confirmed the model’s clinical utility, demonstrating a net
benefit across a range of threshold probabilities in both training
and testing sets.

Furthermore, our analysis revealed significant textural
heterogeneity (19.7% feature variance) between the tumor core
and peripheral sub-regions. This radiomic divergence likely
mirrors underlying biological differences within the tumor
microenvironment. Features predominant in the tumor core may
be reflective of central necrosis, hypoxic foci, and high cellular
density—conditions known to promote treatment resistance and
associated with specific imaging phenotypes, such as heterogeneous
intensity on T2-weighted sequences (47). Conversely, radiomic
signatures characteristic of the invasive peripheral rim may capture
processes such as active stromal invasion, angiogenesis, and
peritumoral immune response. For example, texture patterns
on contrast-enhanced T1-weighted images could correlate with
aberrant microvasculature and vascular permeability at the
tumor-stroma interface, while features on T2-weighted images
may correspond to vasogenic edema and inflammatory changes
(48). This spatial biologic- radiomic mapping suggests that
our model may be capturing intrinsically aggressive tumor
phenotypes, providing a non-invasive window into the tumor
microenvironment that could inform more targeted therapeutic
strategies. Future studies integrating radiomics with spatially
resolved genomic and pathologic data are warranted to validate
these specific biological correlations.

While our dual-center study design enhances population
diversity compared to single-institution investigationsulation
diversity compared are warranted spatially resolved genomic
are remain opportunities to strengthen generalizability through
The
validated across two academic institutions with standardized

expanded multicenter validation. current framework,

imaging protocols (3T MRI, 1 mm slice thickness), demonstrates
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improved reproducibility over prior single-center models (inter-
center AUC variance: 2.7% vs. historical 8-12%). Nevertheless,
prospective validation across 5-10 geographically dispersed
centers with heterogeneous imaging equipment will be critical
to confirm robustness against real-world clinical variability.
Although we implemented a standardized imaging protocol and
image preprocessing (N4 correction, resampling, and Z-score
normalization) to mitigate its effects, the multi-center design
inherently introduces scanner-related heterogeneity. While our
model demonstrated good generalizability on the external test
set, more advanced harmonization techniques, such as ComBat,
could be applied in future studies to further suppress center-
specific effects and enhance model portability across a wider array
of institutions.

Our model demonstrated excellent performance in both
internal and external validation, although a slight decrease in AUC
was observed from the internal test set (0.935) to the external
validation set (0.880). This expected performance attenuation
reflects the model’s exposure to real-world variability and
rigorously tests its generalizability, reducing overoptimism.
this
subtle inter-scanner variations and differences in acquisition

Potential factors contributing to difference include
protocols—such as contrast timing and sequence parameters—
that may introduce domain shift despite harmonization efforts.
Additionally, the external cohort represented a geographically
distinct population with potential variations in demographics
or tumor biology, and although treatment protocols were
standardized, nuances in radiotherapy planning and chemotherapy
management between institutions may have introduced further
heterogeneity. Nevertheless, the model’s maintained strong
predictive performance (AUC > 0.85) underscores its clinical
robustness and supports its potential for broad adoption.

Several limitations of this study must be acknowledged.
Although the

compared with single-institution studies, the sample size remains

dual-center design improves generalizability
moderate, and larger multi-national cohorts are required to
validate universal applicability across diverse populations and
imaging protocols. While manual segmentation was performed
by experienced radiologists with high inter-observer agreement
(ICC > 0.85), this step remains operator-dependent; future
integration of automated segmentation tools could enhance
reproducibility. Furthermore, the current radiomics model
lacks correlative genomic or pathologic validation. Although we
hypothesize that certain features reflect biological processes such as
hypoxia or angiogenesis, future radiogenomic studies are essential
to confirm these associations. Finally, the use of conventional MRI
sequences may overlook complementary information available
from advanced techniques such as DWI or DCE-MRI.

Future work should focus on: (1) prospective enrollment
across multiple centers (> 5) to ensure representative sampling;
(2) development of advanced deep learning architectures, such
as 3D CNNs and attention-based mechanisms, for end-to-end
feature learning from multiparametric MRI; and (3) construction
of unified radiogenomic platforms that integrate imaging features
with molecular profiling (e.g., ctDNA or proteomic data) to better
capture the biological determinants of treatment response. These
efforts will be critical for advancing radiomics toward clinically
deployable AI decision-support systems.
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5 Conclusion

This study developed a multimodal MRI-based radiomics
model that significantly outperformed conventional biomarkers
in predicting short-term treatment response for nasopharyngeal
carcinoma. By integrating multi-sequence imaging and employing
dual-center validation, we established a robust, non-invasive
tool with enhanced generalizability. Model interpretability was
improved using SHAP analysis, offering clinical insights into
discriminative image features. Several limitations should be
considered. Our study’s sample size, though multi-institutional,
remains moderate for broad generalization. Manual segmentation,
despite high inter-observer consistency, introduces subjectivity.
Additionally, the absence of genomic correlation limits biological
interpretation of radiomic features. Future research should
prioritize: (1) large-scale multi-center trials to validate model
performance across diverse populations; (2) integration of
radiomics with molecular biomarkers (e.g., ctDNA, proteomics)
for multi-scale prediction; and (3) development of automated
deep learning pipelines to enhance reproducibility and clinical
applicability. These directions will advance radiomics toward
clinically deployable decision-support tools.
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