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Introduction: Liver cancer is among the leading causes of cancer-related deaths
worldwide. Accurate delineation of hepatic tumors is crucial for diagnosis,
prognosis, and treatment planning, yet manual annotation is labor-intensive
and subject to variability. Deep neural networks (DNNs) have shown promise in
automating segmentation but require large amounts of high-quality labeled data,
which is difficult to obtain. Incorporating noisy labels without proper handling
can corrupt training and degrade performance.

Methods: We introduce MPVT+, a noise-robust training framework that
integrates a pixel-wise noise-adaptation module with a multi-stage perturbation
and variable-teacher (MPVT) consistency strategy. The noise adaptor infers
corruption probabilities and re-weights unreliable supervision, while MPVT
assembles an ensemble of stochastic teacher models that apply progressively
stringent perturbations. This combination enables the network to exploit both
clean and noisy labels without overfitting.

Results: Experiments conducted on 739 retrospectively collected liver-tumor
CT datasets demonstrated that MPVT+ significantly outperformed baseline and
traditional noise-handling approaches. Compared to a noise-free U-Net baseline
(Dice Similarity Coefficient [DSC] 75.1%), MPVT+ improved segmentation
accuracy to 80.3%. The framework consistently achieved superior results across
multiple evaluation metrics, including DSC, JSC, SVD, and VOE.

Discussion: The MPVT+ framework demonstrates that principled noise
modeling, coupled with consistency training, effectively unlocks the potential of
imperfect medical datasets. This strategy reduces the dependency on perfectly
labeled datasets and moves fully automated liver tumor delineation closer to
clinical applicability.

KEYWORDS

liver tumor segmentation, noisy label, semi-supervised learning, deep learning,
annotation

1 Introduction

Liver cancer is a prevalent malignant tumor and ranks as the third leading cause of
cancer-related deaths globally in 2020 (1). An annual rise in liver cancer cases is noted,
making it the only cancer among the top five deadliest (2). Diagnosing liver cancer typically
involves various medical imaging techniques such as ultrasound, magnetic resonance
imaging (MRI), and computer tomography (CT). Among these, CT is the most commonly
used method because of its multiphasic contrast enhancement capabilities, providing more
advanced imaging modalities (3). However, accurate diagnosis and subsequent treatment
planning rely heavily on precise delineation of the tumor boundaries within the liver.
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The physical characteristics of a tumor, such as its size, shape, and
location, are important biomarkers that play a key role in accurate
diagnosis and treatment (4).

Deep learning has shown great potential in medical
segmentation tasks (5, 6). However, the quality of labels used
for training is particularly concerning (7, 8) as it directly impacts
model performance of correctly discerning and segmenting tumors
and consequently influences clinician’ decisions of diagnoses
and treatments of tumors. Accurate, consistent, and clear labels
not only enhance the performance and generalization ability of
the model but also ensure that the segmentation results possess
clinical interpretability and application reliability. Primarily,
erroneous label data can impact the performance of deep learning
models, potentially leading to the learning of incorrect features
or segmentation boundaries. Second, noisy labels can affect the
model’s generalization ability, resulting in poor performance on
unseen data (9). In addition, overfitting to noisy labels can cause
a decline in the model’s performance on test data as it fails to
accurately capture the true distribution of the data. Finally, the
presence of low-quality labels increases the difficulty of training
and requires corresponding strategies to mitigate their impact,
to enhance the model’s performance and generalization ability.
Therefore, ensuring high-quality label data is crucial for the success
of tumor segmentation tasks.

To tackle the challenges posed by noisy labels, various strategies
have been explored in this study. Some studies utilize annotations
or consistent labels from numerous domain experts to improve
the quality of data (10, 11). However, this method is impractical
due to its significant financial and logistical resource consumption,
which is not easily accessible. Moreover, inter-observer variability
further compounds this issue as different radiologists may interpret
ambiguous features differently based on their experience and
training (12, 13). Other studies aim to reduce the workload of
experts in medical image annotation by using computer assistance
(14). However, variability among different observers and within
the same observer cannot be disregarded when using this method,
since a single radiologist may provide different annotations at
different times, influenced by varying conditions such as fatigue
or changes in perceptual criteria (15). Some studies utilize data
automatically extracted from medical image databases such as
hospital picture archiving and communication systems to create
their training datasets (16, 17). Historical data may not always be
available for every study and tend to be noisy. Some studies use
crowd-sourcing to collect labeled data from non-experts (18, 19).
However, they often do not produce labels of sufficient quality for
general studies and typically have a high noise rate (19). Some
researchers proposed to utilize noisy labels to enhance performance
of models. These methods focus on creating a robust architecture
to model latent parameters, enhance generalization, adjust loss
functions, and select appropriate samples to reduce the impact
of noisy labels on the model (9). For instance, some approaches
leverage robust optimization techniques that specifically account
for noise in the labels (20), some other proposed noise-robust loss
functions aiming to lessen the influence of incorrectly labeled data
during the training process (21). In addition, there is a growing
interest in the implementation of transfer learning, where models
pre-trained on large, clean datasets are fine-tuned on smaller,
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noisier datasets, thereby capitalizing on the learned representations
that are less susceptible to label noise (22). Techniques such as label
smoothing (23) and uncertainty modeling (24, 25) can also help
the model to not overfit to the noisy labels and instead focus on
the underlying pattern in the data (26). Some methods completely
ignore the noisy labels and train the networks using a semi-
supervised approach. These evolving methodologies underscore
the dynamic nature of deep learning in medical images, where
ongoing research continually refines the balance between data
quality and model reliability.

Probabilistic noise model is a fundamental concept in robust
architecture. These methods are founded on the concept that
noise can be represented by latent variables using neural networks
(9, 27). Our method is inspired by both robust architecture and
semi-supervised learning. To train deep neural network with
noisy labels, it is crucial to identify noisy labels and eliminate
the negative impact of them as much as possible. Based on
the concept of noise adaptation layer (28), we introduced noise
adaptor which alters convolutional neural networks by adding fully
connected layers and softmax layers to predict hidden variables and
simulate the generation of label noise. This module dynamically
adjusts during training and refurbish the unreliable pixels in
labels to produce unbiased supervisory signal. Furthermore, to
prevent the model from overfitting due to potential changes
in the data distribution, a semi-supervised framework called
MPVT is implemented. This framework includes mean teachers
with variable parameters updating inspired by dropout (29) to
generate more robust pseudo-label guidance, which then allow
us to introduce more perturbations into the training process to
enhance the robustness and stability of the student model. This
process effectively increases the model’s resilience to overfitting by
presenting it with a variety of training scenarios, ensuring that it
learns to generalize from the core features of the data rather than
its noisy aspects. This framework aims to help the model learn
from reliable data and extract valuable information from noisy
labels without being affected by the noise. Compared with previous
methods, our method not only identifies and reduces the influence
of noisy labels but also reinforces the robustness of the network
by harnessing the inherent uncertainty within the data. This dual
strategy effectively creates a noise-robust learning process, thereby
improving the quality of the model’s predictions and ensuring
greater reliability in clinical applications.

2 Materials and methods

2.1 Datasets acquisition

This retrospective cross-sectional study received approval
from the institutional review board at West China Hospital of
Sichuan University. It primarily focused on patients diagnosed with
hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma
(ICC), or liver metastasis (MET). Due to the retrospective nature
of the study, patient consent was waived. The objective was to
analyze imaging datasets derived from patients who underwent CT
screening at our institution. To maintain scientific rigor, patients
included in the study were required to meet specific inclusion
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criteria: 1. Patients had to be at least 18 years old to ensure that
the research subjects exhibited adult physiological characteristics,
thereby enhancing the relevance of our findings to the adult
population. 2. Patients with a history of hepatectomy, transarterial
chemoembolization, or radiofrequency ablation prior to the CT
examination were excluded to eliminate potential confounding
factors that could affect the experimental outcomes. 3. All included
patients had confirmed diagnoses of HCC, ICC, or MET, either
through pathology reports or follow-up imaging studies lasting
at least 6 months, verified by at least two independent imaging
methods. This stringent criterion aimed to ensure the accuracy and
reliability of the tumor diagnoses.

Furthermore, to identify data with noisy labels, several specific
criteria were established for CT images of patients: 1. Cases with
labels that are visibly misaligned with the anatomical structures
they are supposed to represent should be marked. 2. Cases where
labels bleed into adjacent structures due to segmentation errors
should be marked. 3. Cases with labels that are inconsistent across
slices or with conflicting boundaries should be marked. 4. Cases
with labels that contain random noise or are not representative of
the true anatomy should be marked. 5. Cases where the labeled
regions are incomplete or cutoff should be marked. In this study,
a total of 739 patients were included, with further details provided
in Figure 1.

10.3389/fmed.2025.1653865

2.2 Overall structure

To address the detrimental impact of noisy labels on network
training, we introduced a module termed the noise adaptor. This
module is designed to mitigate the disturbances caused by noise.
Furthermore, we proposed a consistency regularization scheme,
Multi-Stage Perturbations and Variable Teachers (MPVT), to
effectively harness the latent information present in the CT images.
The noise adaptor module, akin to the decoder of U-Net (30),
generates probabilities of mislabeling. These probabilities enable
the prediction of the likelihood of mislabeling or the introduction
of noise to good labels. This information, when used in conjunction
with the noisy labels, aids the supervised learning process. The
noise adaptor seeks to extract a clean supervisory signal from the
noisy labels by simulating noise, allowing the backbone network to
learn the true data distribution more effectively, thereby enhancing
the model’s generalization ability and robustness.

Considering the significant impact of semi-supervised learning
on model performance in the absence of accurate labels, we
proposed a model that employs consistency regularization with
multi-stage perturbations and variable teachers. This combined
approach enhances the model’s ability to cope with noisy labels
and optimizes the use of input images by introducing various
perturbations using different teacher models ensemble from
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FIGURE 1
Dataset acquisition process.
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different stages of training. We integrated the noise adaptor and
MPVT scheme into the training process. Consequently, the overall
training loss is:

L :Esup (De) + Bada (‘Cada (Dn) + ,BregU)

(1
+ ﬁsemi (Esemi (Dc) + ﬁsemi (Dn)) >

where D, and D,, represent datasets with accurate labels and noisy
labels, respectively; Lsup, Laga> and Lgem; denote the supervision
loss, adaptor loss, and semi-supervised loss, respectively; B,4, is the
weight that determines the extent of the noise adaptor’s supervision
in training; o represents the penalty term, and By is the weight
of the penalty term, which penalizes the noise adaptor to prevent
it from finding shortcuts and not performing its supervisory role
during training; Bsemi is the weight of the semi-supervised learning
component, and its magnitude is critical for the model’s accuracy
and generalization capability.

2.3 Noise adaptor module

To develop robust architecture that can adapt to label noise,
it is essential to identify and model the types of label noise. Label
corruption can be caused by the characteristics of images and
labels themselves, which may increase inter- and intra-observer
variation due to ambiguity that can prevent annotators from
behaving consistently. In addition, random perturbation should be
considered as the labeling process cannot be consistent and ideal.

Assuming that the corruption process is conditionally
independent of label categories, label noise can be categorized as
symmetrical and asymmetric noise. Symmetrical noise, or pure
random noise, occurs when labels are corrupted by label transition
probabilities p;j, where i is the true label and j is the corrupted label.
This type of noise is termed symmetrical because the probabilities
of flipping a true label into any other labels are equal, which can be
expressed as follows:

3p € [0,1) A (Yigpij = 1 = p) A (Viqéjpij =71 'ic) (@)

where p is the noise rate, and ¢ is the number of classes. This
equation reflects the equal likelihood of a label being incorrectly
assigned to any other class in the presence of symmetrical noise;

Gp e [0, 1) A (Yigpy =1—p) A Vi D _pi=p |,
j=0

where the probabilities of a true label being mislabeled as another
one differ from one another. This implies that the true label is
most likely to be mislabeled as a particular label. To implement
this concept, we introduce a learnable layer at the end of the
segmentation network output, inspired by Goldberger and Ben-
Reuven (28).

In more realistic scenarios, label corruption is assumed to
be related to both labels and features. This type of label noise
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is referred to as instance-dependent label noise (27, 28). The
probability with noise can be formulated as:

P =p(F=jly=ix), (4)

where x represents the input to the networks. This implies that,
in addition to the aforementioned noises, the features of the input
data also have an impact on the annotations. For instance, in some
images, the form of the portal vein may resemble a lesion, making
it more likely to be mistaken as a tumor.

However, in the context of segmentation, there are differences
compared to classification. Segmentation involves pixel-wise
classification, where positional factors must be taken into account.
Therefore, we modified the noise adaptation layer based on the
concept that different pixels should have different probabilities. For
instance, the edges around CT images are likely to have low signal
intensity as patients are typically positioned in the middle of the
images. Conversely, distinct areas with signal intensity differing
from their surroundings are more likely to be lesions. This concept
is referred to as positional label noise, and it can be expressed as:

pi(@) =p(y=jly=iw), (5)

where w represents a particular pixel in the images.

As depicted in Figure 2, we have implemented a noise
adaptor based on the U-Net architecture (30). The adaptor is
a decoder similar to the original U-Net decoder, receiving the
extracted features from the encoder, which is part of the U-Net
architecture. Then, the adaptor uses a single, direct convolutional
layer (3x3 conv with 2 output channels) followed by a sigmoid
layer to produce 2-channel probabilities. The 2-channel output
represents the two probability endpoints that are used for linear
interpolation with the main networK’s predictions. Through these
two decoders, we obtain the predicted probabilities from the U-
Net and the predicted corruption probabilities from the adaptor.
The corruption probabilities consist of two parts: the probabilities
of mislabeling background as foreground and the probabilities of
correctly labeling foreground. We can then obtain the predicted
probabilities with label noise according to the law of total
probability, which can be formally expressed as:

jjada :}A/'pudu(j: lli= 1)+ (1 _}A’) 'puda(i: lli:())) (6)

where ¥,4, represents the prediction after adaptation, y is the
prediction of the U-Net, p,4,(j = 1|i = 0) is the probabilities of
mislabeling background as foreground, and p,4,(j = 1]i = 1) is
the probabilities of correctly labeling foreground. This process can
be viewed as the corruption process from accurate labels to noisy
labels. By employing this approach, we can train the model with
data containing noisy labels in a normal supervised fashion.

To implement the aforementioned concept, we define the
training loss for the network with the noise adaptor as:

L= [/sup + Bada (Eada + ,Brega) . @)
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FIGURE 2

Overall structure diagram. (a) In the training process for supervised learning with the proposed noise adaptor, the data flow is represented by two
distinct lines: The red line indicates the data flow of data with accurate labels, while the orange line represents the data flow of data with noisy labels
After the encoder processes the data, the features of data with noisy labels are fed into both the decoder and the adaptor. The adaptor then
generates predicted noisy labels, which provide a supervisory signal for network training. (b) Consistency regularization is conducted with data that
has accurate labels, while data with noisy labels are regarded as unlabeled data. This approach is used to enhance both the backbone networks and
adaptor networks. By employing multi-stage perturbations and variable teachers, the consistency regularization process helps to improve the
robustness and generalization capability of the model.

This loss consists of two terms: the supervised loss and the  where D, is the dataset with noisy labels, [ is the loss function

adaptor loss. The supervised loss is denoted as: for supervised learning (we select cross-entropy loss and Dice
loss), Tweak represents weak augmentation (both images and

labels are augmented with the same settings), and fy is the U-

Lop = 5ia Z Z l(fe (Toveak X)), neak( )) (8)  Net parameterized with 0. Q denotes the set of pixels in each
241 || | (xy)eD, ve< training sample over which the pixel-wise loss is computed.
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Since segmentation is formulated as pixel-wise classification, the
summation over 2 ensures that the loss function accounts for every
pixel in each training image. The adaptor loss is denoted as:

L= e ( > X el (Tl

x,y)eDn wel2 %)
Fouta (Tweak (%)) Toear (¥)):

where fy . is the adaptor and g is the transform function. According

to the previous discussion, we define the transform function as:

g (}A”Pada) =j/ada =j\’ * Pada (] = 1|i = 1)

(10)
+(1=9)  pada (j = 11i = 0).

In addition, a regularization term o is added to prevent the
adaptor from taking shortcuts and preventing the U-Net from
learning anything. o can be defined as:

1
[Dall2|

D0 D o (Tovear )

(xy)eD, 0€Q
— g (fo (Toeak ) 113

(11)

2.4 Multi-stage perturbations and variable
teachers

Semi-supervised learning techniques are valuable for extracting
features from unlabeled data, aiding neural networks in learning
from it to enhance their overall generalization. When training
a model with noisy labels, it can eventually become biased and
suffer from poor generalization. By discarding noisy labels, the
training process transitions to semi-supervised learning and fully
utilizes the data with corrupted labels. Common techniques include
consistency regularization via pseudo-labeling and perturbations.
To implement this concept, we propose the MPVT framework-a
self-training and consistency regularization framework with multi-
stage perturbations and variable teachers-with reference to (31)
and (32).

In the training process, the loss is defined as:

L= »Csup + ,Bsemi»csemi) (12)

where Ly, is the loss of supervised learning, and Ly; is the loss of
semi-supervised learning, which is calculated as:

1
£semi = m Z Z l(fé)s (ﬁtmng(’nveak(x)))’

x,y) eD, weR

peves (Fo (Totrong (Tweak (x)))). ¥):

(13)

where Titrong represents the strong augmentations, fy denotes the
student model parameterized by 6;, Fy, is the ensemble of teacher
networks, and p; is the function used to obtain pseudo-labels from
predicted probabilities with thresholds 7; and ;. To address the
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sample selection bias that can affect the training process, a tailored
pseudo-label generation method is proposed, formulated as:

Ypseudo (0= (}A’ ©=nuv (5’ ©=nAyl)= 1)) . (14)
In summary, we constructed a U-Net with a noise adaptor and
trained it using the described training processes and losses. The
main hyperparameters were as follows: we used Rectified Adam
(RAdam) as the optimizer with an initial learning rate of 0.001
and a weight decay of 0.0001. Gradients were accumulated every
2 batches, with a batch size of 24 per worker. The learning rate
was dynamically scaled down by a factor of 10 for epochs based on
the current loss trend. We implemented the proposed model using
PyTorch 1.2.0. The experiments were conducted on an Ubuntu
20.04.6 LTS server with two NVIDIA GeForce RTX 3090 cards.

2.5 Statistic indices

Here, we selected seven statistical indices to assess the
performance of our method, including the Dice Similarity
Coefhicient (DSC), Jaccard Similarity Coefhicient (JSC), Symmetric
Volume Difference (SVD) and Volumetric Overlap Error
(VOE)(33). These indices collectively provide a comprehensive
evaluation of the method’s accuracy, robustness, and efficiency in
segmenting and quantifying the regions of interest.

DSC measures the overlap between two sets by calculating twice
the intersection divided by the sum of the sizes of the two sets.
JSC, also known as the Intersection over Union, is the ratio of the
intersection of the sets to their union. SVD evaluates the symmetry
of volume differences between two sets, providing insights into
segmentation errors. VOE is the complement of the DSC and
measures the volume not overlapping between two sets, often used
to quantify segmentation accuracy.

To assess whether the proposed method achieved statistically
significant improvements, we performed pairwise comparisons
between the proposed method and other methods using a paired
t-test on DSC, JSC, SVD, and VOE scores. The corresponding
p-values were reported.

3 Data visualization and results

3.1 Negative impact of noisy label

Because introducing additional data with noisy labels may
enhance the model’s generalization ability, while noise also has
the potential to impair generalization. Therefore, quantitatively
analyzing the impact of noisy labels on the model becomes a pivotal
aspect of our proposed noisy label handling framework. Hence,
we conducted experiments with different noise rates (proportion
of data with noisy labels in the training set) for evaluation. As
shown in Table I and Figure 3, when the training data had a 0%
noise rate, the U-Net with a ResNet34 (34) backbone achieved the
best performance. The performance degraded with increasing noise
rates, with the 50% and 100% noise rates resulting in the second and
third-best performances, respectively. These results highlight that
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TABLE 1 Comparison of segmentation performance of different noise rates.

10.3389/fmed.2025.1653865

Method DSC p-value JSC p-value SVD p-value VOE p-value
(95% CI) (95% CI) (95% CI) (95% CI)

ResNet34 75.09 - 63.18 - 24.91 - 36.82 -

(0% noisy) (72.30, 77.88) (60.07, 66.28) (22.12,27.70) (33.72,39.93)

ResNet34 7321 0.068 61.61 0.093 26.79 0.068 38.39 0.092

(50% noisy) (69.97, 76.46) (58.18, 65.04) (23.54,30.03) (34.96, 41.82)

ResNet34 70.55 0.000 58.86 0.000 29.45 0.000 41.14 0.000

(100% noisy) (67.01,74.09) (55.24, 62.48) (25.91,32.99) (37.52, 44.76)

The best results are bolded.

Segmentation Performance under Different Noise Rates

80 4 75.09

73.21

Performance Indicators

0% noisy

FIGURE 3

50% noisy

Display of results of segmentation performance under different noise rates.

Metrics
DSC
Jsc
SVD
VOE

70.55

100% noisy

data with noisy labels can significantly impair model performance,
regardless of the quantity utilized. Therefore, it is crucial to
develop robust techniques for handling noisy labels in training
datasets to ensure the reliability and effectiveness of machine
learning models.

3.2 Contrastive analysis

To validate the superior performance of our proposed method,
we conducted a comparative analysis against several traditional
methods designed for handling data with noisy labels (31, 34-
37). The summarized results of these comparisons are presented
in Table 2. We also plot column charts to provide a more intuitive
visual comparison of performance indicators, as demonstrated in
Figure 4.

Our experimental results clearly demonstrate that our
method outperforms all other methods across various metrics,
including DSC, JSC, SVD, and VOE. Particularly noteworthy

Frontiersin Medicine 07

are the improvements in DSC and JSC, which are key indicators
of segmentation performance, where our method exhibits
enhancements of 1.79% and 1.93%, respectively, compared to
the best-performing alternative methods. Moreover, to assess the
impact of data containing noisy labels on network performance,
we conducted experiments using varying amounts of data with
noisy labels.

Furthermore, to investigate whether the observed
improvements are solely due to the increased model parameters,
we compared the performance of ResNet34 with ResNet50 and
ResNet101 (34). The results suggest that the modest increase in
parameters marginally enhances the model’s performance.

Therefore, proposed method effectively leverages
information from data with noisy labels, addressing the issue
of deep learning models memorizing noisy information during
training (38, 39), which can harm model performance. These
findings suggest that our method can be a valuable tool in
supporting the diagnosis of clinical liver tumors by providing
auxiliary guidance.

our
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TABLE 2 Comparison of segmentation performance of different methods for liver tumors.

10.3389/fmed.2025.1653865

DSC p-value JSC p-value SVD p-value VOE p-value

(95% ClI) (95% CI) (95% CI) (95% CI)

ResNet34 (34) 75.09 0.000 63.18 0.000 24.91 0.000 36.82 0.000
(72.30, 77.88) (60.07, 66.28) (22.12, 27.70) (33.72,39.93)

ResNet50 (34) 76.02 0.000 64.18 0.000 23.98 0.000 35.82 0.000
(73.32,78.71) (61.18,67.18) (21.29, 26.68) (32.82,38.82)

ResNet101 (34) 75.72 0.000 63.66 0.000 24.28 0.000 36.34 0.000
(73.11,78.34) (60.72, 66.60) (21.66, 26.89) (33.40, 39.28)

Pseudo (35) 77.89 0.011 66.21 0.019 22.11 0.010 33.79 0.020
(75.50, 80.28) (63.41, 69.01) (19.72, 24.50) (30.99, 36.59)

Bootstrap (36) 76.58 0.000 64.51 0.000 23.42 0.000 35.49 0.000
(74.12,79.03) (61.69, 67.33) (20.97, 25.88) (32.67,38.31)

Teacher (31) 78.50 0.041 66.74 0.023 21.50 0.045 33.26 0.022
(76.28, 80.72) (64.10, 69.38) (19.28,23.72) (30.62, 35.90)

ELR (37) 74.19 0.000 62.56 0.000 25.81 0.000 37.44 0.000
(71.10,77.28) (59.24, 65.88) (22.72,28.90) (34.12, 40.76)

Proposed 80.29 - 68.68 - 19.71 - 31.32 -
(78.42, 82.17) (66.35, 71.00) (17.83,21.58) (29.00, 33.65)

The best results are bolded.
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Display of results of segmentation performance using different methods.
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For a more intuitive qualitative assessment, Figure 5 illustrates
eight liver tumor segmentation cases, each column representing
a different stage of the segmentation process. The first column
shows the original CT image, followed by manual annotations by
a doctor in the second column. The third column presents the
segmentation results using U-Net with the ResNet34 backbone.
Subsequent columns demonstrate the impact of different
techniques on the segmentation results, including pseudo-labeling,
hard bootstrapping, mean teacher integration, ELR method for
preventing noisy label memorization, and finally, our proposed
method. A detailed examination of these columns reveals the
effectiveness of our proposed method in addressing issues such as
false positives, under-segmentation, and coarse boundaries across

Frontiersin Medicine

various scenarios. Compared to alternative methods, our approach
leads to notable improvements in liver segmentation accuracy.

3.3 Ablation analysis

To validate the effectiveness of our proposed method, we
conducted an ablation study, the results of which are presented in
Table 3. Our baseline model, depicted in the first row of Table 3,
is the U-Net with backbone of ResNet34 trained using cross-
entropy loss and dice loss. The ablation study focuses on evaluating
the contributions of two key components: the noise adaptor
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Display of results of liver tumor segmentation by different methods. Eight samples were selected to display the results of the six methods. (a) Original
CT images; (b) Labels; (c) Results of U-Net with a backbone structure Resnet34; (d) Results of training with pseudo label; (e) Results of hard
bootstrapping; (f) Results of training with mean teacher; (g) Results of training with ELR loss; (h) Results of our method

(NA) and the Multi-Stage Perturbations and Variable Teachers
framework (MPVT).

The results of the ablation study indicate that each
component contributes in a complementary manner to the
overall performance. Specifically, the noise adaptor enhances
accuracy by approximately 2.98% and 2.89% in terms of DSC
and JSC, respectively, compared to the baseline model, indicating
that the noise adaptor effectively learns label noise information,

Frontiersin

thereby assisting the backbone network in learning without the
perturbation caused by noise, which helps prevent the network
from memorizing noisy data.

Furthermore, the implementation of the MPVT scheme
resulted in improvements of approximately 4.18% and 4.07%
in DSC and JSC, respectively, compared to the baseline model.
Particularly noteworthy is the significant improvement in
sensitivity, suggesting that the consistency regularization enhances
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TABLE 3 Results of ablation analysis.

Method DSC JSC SVD VOE
(95% Cl)  (95% Cl) (95% Cl) (95% Cl)
ResNet34 75.09 63.18 24.91 36.82
(72.30, (60.07, (22.12, (33.72,
77.88) 66.28) 27.70) 39.93)
Noise Adaptor 78.08 66.08 21.92 33.92
(75.92, (63.48, (19.76, (31.32,
80.24) 68.68) 24.08) 36.52)
MPVT 79.27 67.25 20.73 32.75
(77.41, (64.92, (18.87, (30.43,
81.13) 69.57) 22.59) 35.08)
w/o Input 78.55 66.85 21.45 33.15
Perturbations (76.28, (64.22, (19.17, (30.51,
80.83) 69.49) 23.72) 35.78)
w/o Feature 78.42 66.44 21.58 33.56
Perturbations (76.30, (63.92, (19.46, (31.03,
80.54) 68.97) 23.70) 36.08)
w/ One 77.92 65.74 22.08 34.26
Teacher (75.84, (63.20, (20.00, (31.72,
Model 80.00) 68.28) 24.16) 36.80)
Proposed 80.29 68.68 19.71 31.32
Method (78.42, (66.35, (17.83, (29.00,
82.16) 71.00) 21.58) 33.65)

The best results are bolded.

the robustness of the backbone network and leverages latent
information present in the CT images. In addition, to validate the
improvement of model performance by multi-stage perturbations
and variable teachers, we conducted ablation experiments on
each perturbation and teacher model variability, respectively. The
experimental results indicate that performance declines when any
stage of perturbation is missing during training, compared to the
complete MPVT. This demonstrates that the enhancement of
model robustness from each stage of perturbation is indispensable.
Specifically, when the training process lacks the variability of the
teacher model, the model’s performance deteriorates the most. This
underscores the necessity of using a variable teacher to enhance the
model’s adaptability to strict multi-stage perturbations for training.
These results indicate that training the network with the MPVT
scheme enhances the network’s robustness.

In a comparative analysis, we have selected four cases depicted
in Figure 6 to contrast seven distinct experiments. The results
obtained from the baseline model exhibit a basic detection of lesion
outlines and areas, with a tendency to mislabel regions resembling
tumors and an inability to accurately identify all lesions. This
limitation is attributed to the complex nature of liver CT images
and the constraints of a limited training dataset.

In contrast, both the noise adaptor and MPVT approaches
leverage additional data containing noisy labels, resulting in
improved prediction quality. The noise adaptor tends toward
conservative predictions, potentially overlooking some lesions,
as seen in column 4 of Figure 6. On the other hand, MPVT
leans toward bolder predictions, leading to over-expansion of the
predicted area and mislabeling of other regions, as demonstrated in
column 5 of Figure 6. Moreover, when multi-stage perturbations or
variable teachers are removed, the model’s ability to segment details
and recognize interference areas decreases. This reflects the impact
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of lacking perturbations in the training process on the model’s
generalization ability and robustness.

Our proposed method combines the advantages of both
approaches, adopting a compromise strategy that yields the most
favorable results among the four methods. This suggests that
our approach, utilizing training with noise adaptor and MPVT
schemes, enables these two distinct strategies to mitigate each
other’s weaknesses and guide training outcomes toward a direction
without bias.

4 Discussion

Automated liver-tumor segmentation remains hamstrung by
the scarcity of perfectly annotated images and by the pernicious
effect of label noise on deep neural networks. Here, we show that a
multi-stage perturbation and variable-teacher (MPVT) consistency
framework as well as a pixel-wise noise-adaptation module, termed
MPVT+, enables convolutional networks to learn effectively from
imperfect datasets, delivering state-of-the-art delineation accuracy.
Across 739 retrospectively collected liver-tumor CT volumes,
MPVT+ achieved the Dice similarity coeflicient (DSC) from 75.1
% for a noise-free U-Net baseline to 80.3 %.

Various methods have been investigated to reduce the
negative impact of noisy labels on medical image segmentation.
For instance, obtaining annotations from multiple experts
aims to establish a reliable ground truth but is limited by
costs and remaining variability among annotators (10-13).
Semi-automated tools can ease the annotation effort, although
consistency issues among annotators still exist (14, 15). Utilizing
historical hospital data provides scale but often suffers from
(16, 17).
more participants but typically introduces significant label

inaccurate annotations Crowdsourcing  involves
noise (18, 19). To address noise during training, techniques
such as designing robust models that account for latent noise
parameters (9, 20), using custom loss functions to reduce the
impact of incorrect labels (21), and applying transfer learning
approaches that leverage knowledge from clean datasets (22) have
been proposed. Additional regularization methods-such as label
smoothing (23), help prevent the model from memorizing incorrect
annotations (26). Building on these approaches, our MPVT+
framework integrates multiple components: a noise-adaptation
module that explicitly models pixel-level corruption, multi-stage
perturbations, and variable teachers that provide the network
with self-supervised, noise-agnostic guidance. This combination
advances liver-tumor segmentation beyond the performance of
existing methods.

In addition, other recent studies have also emphasized the
importance of robustness under imperfect or noisy annotations.
Fang et al. (40) proposed a reliable mutual distillation framework,
where two segmentation models collaborate to mitigate the impact
of coarse or noisy labels through consistency constraints and
sample selection strategies. Similarly, Qiu et al. (41) developed
a hierarchical multimodal fusion framework that incorporates
noisy label learning with attention mechanisms to enhance cancer
classification performance from pathology and genomic data.
Both works highlight complementary perspectives on leveraging
imperfect supervision and noisy annotations, which aligns with
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FIGURE 6

Display of results of ablation analysis. Four samples were selected to display the results of the six methods. (a) Original CT images; (b) Labels; (c)
Results of U-Net with a backbone structure Resnet34; (d) Results of training with noise adaptor; (e) Results of MPVT; (f) Results of MPVT without
input perturbations; (g) Results of MPVT without feature perturbations; (h) Results of MPVT with only one teacher model; (i) Results of our method

the design philosophy of MPVT+ that explicitly models label
corruption while enforcing consistency. These directions together
underscore a growing consensus that noise-robust strategies are
crucial for advancing reliable medical image analysis in real-world
clinical scenarios.

In the broader context of semi-supervised medical image
segmentation, recent work has emphasized the integration of
consistency learning with uncertainty modeling. Zhang et al. (25)
proposed an uncertainty-guided mutual consistency framework
that leverages intra-task and cross-task regularization while
filtering unreliable predictions through uncertainty estimation,
thereby enhancing the exploitation of unlabeled data. More
recently, (24) introduced an uncertainty-aware consistency
learning strategy that incorporates multi-level perturbations
and perturbation-based uncertainty estimation to suppress
noisy predictions and improve generalization across diverse
segmentation tasks. Compared with these approaches, the present
MPVT+ framework addresses robustness from a complementary
perspective: Instead of relying solely on uncertainty-guided
filtering, MPVT+ explicitly models label corruption through
a noise adaptor while simultaneously enforcing multi-stage
perturbations and variable-teacher consistency. This dual strategy
allows the model to effectively utilize both reliable and noisy
supervision, mitigating the adverse effects of corrupted labels.
Taken together, these studies suggest that uncertainty-guided
consistency learning and explicit noise-robust adaptation are not
mutually exclusive but potentially synergistic directions. Future
research may benefit from combining these paradigms to further
advance the reliability and clinical applicability of automated
tumor segmentation systems.
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The devised framework presents a suite of significant
enhancements to traditional deep learning models. Primarily, it
utilizes a noise adaptor module that refurbishing noisy pixels.
This reduces the detrimental impact of label noise on the training
process without compromising the quantity of training samples,
ensuring that the model can be trained on a vast and diverse
dataset, crucial for the development of a robust liver tumor
segmentation tool. In addition, the proposed module might be used
for understanding mechanisms of noise generation and how to
effectively eliminate the negative impact of noisy labels. Second,
the introduction of variable teachers equips the model with the
capability to generalize better by preventing it from focusing on
any special subset of datasets and perturbations during training,
thereby reducing overfitting to corner cases and enable the model
to be trained with more strict perturbations. Third, the semi-
supervised learning framework, along with strict perturbations,
trains the network to be robust against data variability and
capable of extracting more general and robust features. This
addresses the weakness of the noise adaptor being susceptible to
perturbations that could degrade its performance. Furthermore,
by synthesizing the strengths of robust architecture with the
flexibility of semi-supervised learning, our method demonstrates
superior utilization of noisy-labeled data, significantly elevating the
model’s performance. Finally, the adaptability of the framework
ensures its suitability across various extents of noise intensity
and types, augmenting its potential application in diverse medical
imaging contexts.

However, there are some limitations of our study. We did
not consider discrepancies between annotators during the training
process, as obtaining annotations from multiple radiologists and
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pathologists is time-consuming. Future research will focus on
incorporating factors such as the grading provided by each doctor
to address label noise dependent on the annotator. In addition,
while our implementation of the noise adaptor is effective, a more
sophisticated architecture may be more adept at capturing intricate
label noise patterns. Moreover, the use of multiple networks in
the MPVT approach results in higher computational costs. Future
research could explore training the network using a meta-learning
framework to mitigate this issue. Finally, our study focused on
scenarios where data with accurate labels could be differentiated
from data with noisy labels, which can be a time-consuming
process. Future research should investigate integrating mechanisms
such as confidence curriculum learning to accelerate this data
filtering process.

5 Conclusion

This study presents a novel deep learning framework that
integrates a robust architecture with consistency regularization
techniques to mitigate the adverse impact of noisy labels on
DNNs training. By incorporating clean and noisy-labeled data,
our approach enhances the model’s robustness to noise and
generalization capability, outperforming traditional methods and
achieving better results. Our method shows promise for training
segmentation CNNs tailored for detecting lesions in datasets
affected by noisy labels. It effectively reduces the need for
constructing a perfectly labeled dataset for DNNs training, serving
as a valuable tool for aiding in clinical decision-making.
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