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Background: Sepsis-induced coagulopathy (SIC) is a vascular endothelial cell 
injury and coagulation disorder caused by sepsis. The aim of this study was to 
construct a nomogram model of the risk of early onset of SIC in patients with 
sepsis by analyzing the risk factors for in-hospital development of SIC.
Methods: Patients with sepsis admitted to the intensive care unit (ICU) of 
Hebei General Hospital and Handan Central Hospital (East District) from March 
1, 2021 to March 1, 2024 were retrospectively included. Sepsis patients were 
divided into SIC and non-SIC groups according to whether SIC occurred during 
hospitalization. The patient data were randomly divided into training set and 
testing set in the ratio of 7:3. The data of sepsis patients admitted to the ICU of 
Hebei General Hospital between March 1, 2024 and October 31, 2024 were then 
retrospectively included as the validation set for external validation. All predictors 
were collected within 24 h of sepsis diagnosis to enable early risk prediction. 
Various clinical variables were collected, and independent risk factors for early 
onset of SIC were screened by one-way logistic regression, least absolute 
shrinkage and selection operator (LASSO) regression, and multifactorial logistic 
and a nomogram prediction model was constructed. The model was evaluated 
for accuracy, goodness of fit, and clinical utility value using testing set and 
validation set data. The accuracy of the predictive model was assessed by using 
the receiver operating characteristic curve (ROC) and calculating the area under 
the receiver (AUC), the fit was done by calibration curve, and the clinical utility of 
the predictive model was assessed by decision curve analysis (DCA).
Results: Among 847 patients with sepsis, SIC occurred in 480 (56.7%) patients. 
A nomogram model was constructed containing eight variables: lactate, 
oxygenation index, total protein, total bilirubin, urea, calcitoninogen, activated 
partial thromboplastin time, and monocyte count. In the training set, the AUC 
value of the model was 0.783 [95% Confidence Interval (CI): 0.746, 0.820]; in the 
testing set, the AUC value was 0.768 (95% CI: 0.710, 0.826); and in the validation 
set, the AUC value was 0.782 (95% CI: 0.708, 0.856).
Conclusion: We developed a nomogram model to predict the risk of SIC in 
patients with sepsis and validated its potential as a clinically reliable tool. The 
overall accuracy and clinical utility value of the model was high and the fit was 
good. The nomogram model can visualize the key variables associated with SIC 
in sepsis patients, supporting clinicians in individualized risk assessment and 
guiding timely interventions to improve patient outcomes.
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1 Introduction

Sepsis is the result of an imbalance in the host response to 
infection, triggering life-threatening organ function damage, and is 
essentially a disordered and dysregulated immune response with 
organ dysfunction (1). Sepsis-induced coagulopathy (SIC) is a 
complex pathophysiological condition triggered by sepsis, 
characterized by a severe disturbance of the systemic inflammatory 
response and coagulation system (2). According to statistics, SIC 
occurs in 24.0 to 60.0% of sepsis patients worldwide, and in China it 
is as high as 67.9%, and if not handled properly, it can develop into 
disseminated intravascular coagulation (DIC), which increases the 
mortality rate of the patients by two times (3, 4). Therefore, early 
identification of risk factors inducing coagulation dysfunction in 
sepsis patients and early warning and risk stratification of SIC patients 
can provide scientific basis for clinical decision-making and promote 
timely implementation of interventions to reduce their morbidity and 
mortality rates.

The concept of SIC was first proposed by the International Society 
for Thrombosis and Hemostasis (ISTH) in 2017, and was initially 
incorporated into the clinical diagnostic system as one of the key 
criteria for sepsis (5). SIC is essentially a complex pathophysiological 
sepsis-induced SIC is essentially a complex pathophysiological state 
induced by sepsis, and its core feature is manifested as a severe 
dysregulation of the systemic inflammatory response and coagulation 
system (2). From the viewpoint of pathogenesis, SIC involves a 
multifaceted pathological process of endothelial cell injury, cascade 
release of inflammatory mediators, and excessive activation of 
coagulation factors. Continued progression of these mechanisms can 
lead to serious complications such as DIC and multiple organ 
dysfunction syndrome, which significantly increase the risk of patient 
death (6–8). It is worth noting that there is a bidirectional synergy 
between inflammation and coagulation process: the exacerbation of 
inflammatory response can accelerate the coagulation cascade 
through the activation of coagulation factors; conversely, the 
activation of the coagulation system can further amplify the 
inflammatory response through the release of pro-inflammatory 
factors (9). This vicious circle is particularly prominent in the 
progression of sepsis, which can lead to extensive systemic 
microvascular thrombosis and ultimately to the development of DIC, 
which is typically characterized by hemorrhagic tendencies and 
microcirculatory failure (10, 11).

Nomograms are effective graphical visualization tools that help 
users quickly and accurately process complex data for prediction 
without the use of computers or other tools. Nomograms are graphical 
representations of complex mathematical formulas, typically using 
biological markers and clinical variables, and are depicted graphically, 
with the result being the probability of a clinical event (e.g., disease 
occurrence or death) for a given individual (12). In recent years, 
scholars have explored the role of a nomogram model constructed 
based on public databases in the prognosis of SIC patients and found 
that the model provides a better prediction of 28-day mortality in SIC 
patients, leading to a better assessment of prognosis (13).

This study focuses on exploring the potential value of common 
laboratory indicators, aiming to construct a nomogram model of early 
morbidity risk in SIC patients through scientific and rigorous analysis 
methods. This model will provide an intuitive and efficient tool for 
early screening of SIC patients, and help clinicians to make accurate 
decisions and implement timely interventions.

2 Materials and methods

2.1 Data source

A retrospective cohort of patients with sepsis admitted to the 
intensive care units (ICUs) of Hebei General Hospital and Handan 
Central Hospital (East District) between March 1, 2021, and March 1, 
2024, was enrolled, provided that relatively complete clinical data were 
available. Sepsis patients were divided into SIC and non-SIC groups 
according to the occurrence of SIC during hospitalization, which was 
defined using the SIC score established by the ISTH. The patient data 
were randomly divided into training set and testing set in the ratio of 
7:3. In addition, the data of sepsis patients admitted to the ICU of 
Hebei General Hospital between March 1, 2024 and October 31, 2024 
with relatively complete information were retrospectively included as 
the validation set for external validation. This study complied with the 
review and approval criteria of the Ethics Committee of Hebei General 
Hospital (No. 2025-LW-0151) and the Ethics Committee of Handan 
Central Hospital (No. 2025112).

2.2 Study subjects

Inclusion criteria for this study were patients who were admitted 
to the ICU for the first time and met the diagnostic criteria for sepsis 
3.0. Exclusion criteria included (1) age <18 years; (2) ICU stay of less 
than 24 h or death within 24 h of admission; (3) patients with known 
coagulation disorders or thrombocytopenic underlying diseases (e.g., 
idiopathic thrombocytopenic purpura, hemophilia, severe hepatic 
failure); (4) patients with coagulation abnormalities present prior to 
ICU admission (including those associated with pregnancy, 
hematopoietic malignancy, history of cardiopulmonary resuscitation) 
or those with a sequential organ failure score (SOFA) score <2 at 
baseline; and (5) Cases with incomplete clinical information or 
laboratory data (Figure 1).

According to the criteria proposed by ISTH 2017, the diagnosis of 
SIC requires a comprehensive assessment of three indicators, namely 
Prothrombin Time-International Normalization Ratio (PT-INR), 
platelet count, and full SOFA score. The specific scoring rules were: 
PT-INR ≤ 1.2 was scored as 0 points, >1.2 was scored as 1 point, and 
>1.4 was scored as 2 points; platelet count ≥1.5 × 1011/L (150 × 109/L) 
was scored as 0 points, <1.5 × 1011/L was scored as 1 point, and 
<1.0 × 1011/L (100 × 109/L) was scored as 2 points; and all the SOFA 
scores (the sum of the scores of respiratory, cardiovascular, and 
hepatic systems) were scored as 2 points, renal system scores ≤ 2 were 
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scored as 0 points, and >2 points were scored uniformly as 2 points. 
SIC was diagnosed if the total score of the three items was ≥4, and the 
sum of the individual scores of PT-INR and platelet count was >2.

2.3 Data extraction

In this study, clinical data were collected based on the 
electronic medical record systems of two healthcare organizations, 
and the inclusion variables contained seven dimensions: (1) 
demographic characteristics (gender, age); (2) underlying 
comorbidities (coronary heart disease, hypertension, diabetes, 
chronic obstructive pulmonary disease, cerebrovascular lesions, 
hepatic dysfunction, chronic renal disease, malignant tumors, and 
recent surgical history); (3) primary infection sites (respiratory 
system, abdominal cavity, blood, urinary system, central nervous 
system, skin and soft tissues, and other sites); (4) ICU rating system 
(Acute Physiology and Chronic Health Evaluation II [APACHE II] 
and SOFA scores); (5) physiological parameters (temperature, 
heart rate, blood pressure index [systolic blood pressure/diastolic 
blood pressure/mean arterial pressure], respiratory rate); (6) 
laboratory test index (blood gas parameters, lactate level, actual 
bicarbonate, oxygenation index (OI), base excess, liver and kidney 
function index), procalcitonin (PCT) concentration, complete set 
of coagulation function (prothrombin time [PT]/activated partial 
thromboplastin time [APTT]/fibrinogen content/thrombin time, 
etc.), blood parameters and electrolyte level (potassium [K]/

sodium [Na]/chloride [Cl]/calcium [Ca]/phosphorus/magnesium 
[Mg]); and (7) clinical interventions (deep venous access 
establishment, mechanical ventilation implementation, 
anticoagulation, glucocorticosteroid application, use of vasoactive 
medications, continuous renal replacement therapy and 
albumin infusion).

All predictor variables were collected at the time when sepsis was 
first diagnosed according to the Sepsis-3 criteria (defined as T0). 
Physiological parameters and laboratory test indices were extracted 
within 24 h of T0. When multiple measurements were available during 
this window, the first recorded value was used as the baseline input. 
For patients who subsequently developed SIC during hospitalization, 
only variables collected at T0 were included; any measurements 
obtained after SIC onset were not used for model development 
or validation.

2.4 Statistical analysis

The normality test of the measurement data was performed using 
the Shapiro–Wilk method. Data that conformed to normal 
distribution were described by mean ± standard deviation, and 
comparisons between groups were made using the independent 
samples t-test; for data that did not conform to normal distribution, 
they were expressed as median and interquartile spacing, and 
comparisons between groups were made using the Wilcoxon 
rank-sum test for two independent samples. Count data were 

FIGURE 1

Patient screening flow.
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expressed as frequency and constitutive ratio, and differences between 
groups were compared using the chi-square test.

To prevent information leakage, all predictor variables were 
restricted to the pre-specified baseline window at the time of 
sepsis diagnosis (T0), and no data collected after SIC onset were 
included in model development or validation. To reduce the 
impact of multicollinearity on model stability, variables with 
p < 0.05  in univariate analysis were entered into least absolute 
shrinkage and selection operator (LASSO) regression. The model 
was penalized by introducing an L1 regularization term so that the 
regression coefficients of irrelevant or weakly correlated variables 
shrank toward zero, achieving variable screening and model 
simplification. The optimal penalty parameter (λ) was determined 
using 10-fold cross-validation with the minimum mean squared 
error criterion, thereby establishing a stable LASSO regression 
model and identifying variables significantly associated with 
SIC occurrence.

Subsequently, the variables obtained from the LASSO screening 
were further included in the multifactorial logistic regression analysis 
to clarify the independent risk factors for SIC. Based on the final 
regression model, a nomogram prediction model was constructed 
using the rms software package, and the receiver operating 
characteristic curve (ROC) was plotted, and the discriminative 
performance of the model was evaluated by calculating the area under 
the curve (AUC) as well as by determining the optimal cutoff values 
corresponding to the sensitivity and The discriminative performance 
of the model was evaluated by calculating AUC and determining the 
sensitivity and specificity indexes corresponding to the optimal cutoff 
value. The calibration curve was further plotted by the rms package 
and subjected to the Hosmer-Lemeshow goodness-of-fit test to 
evaluate the calibration capability of the model. The calibration of the 
nomogram model was assessed using calibration curves. A coordinate 
system was constructed with the predicted probability on the 
horizontal axis and the observed probability on the vertical axis. The 
Ideal line represents perfect agreement between predicted and 
observed outcomes. The Apparent line indicates the actual 
performance of the model on the dataset, while the Bias-corrected 
line reflects the prediction results obtained after 1,000 bootstrap 
resamples, which reduces potential overfitting and provides an 
internally validated estimate of model performance. The rmda 
software package was used to draw a decision curve analysis (DCA) 
plot to analyze the net benefit of the model under different threshold 
probabilities and determine its clinical application value. In the DCA 
plot, the None line represents an extreme case, i.e., the model predicts 
that all sepsis patients will not develop SIC, at which time the net 
clinical benefit is zero. The All line represents the other extreme, i.e., 
the model predicts that all sepsis patients will develop SIC, when the 
slope of the net clinical benefit is negative. The net clinical benefit is 
determined by the threshold probability range, i.e., the model curve 
lies above the None and All reference lines. If the model curve is 
above the None and All lines, this indicates that the model has a 
higher net benefit in actual clinical application. Finally, the 
constructed nomogram models were externally validated in an 
independent validation set and evaluated for their predictive 
performance and generalization ability.

All statistical analyses were performed in SPSS software (version: 
27.0), R software (version: 4.3.1), and the difference between the two 
groups was considered statistically significant at p < 0.05.

2.5 Nomogram application explanation

The nomogram allows prediction of an individual’s risk of SIC by 
assigning points to each predictor variable. By drawing vertical lines 
from the value of each variable to the corresponding points axis, the 
individual scores are obtained. The total score, calculated by summing 
the points of all variables, can then be mapped to the risk-probability 
axis to estimate the probability of SIC occurrence. This graphical tool 
eliminates the need for complex calculations, enabling clinicians to 
rapidly and intuitively assess patient risk. Additionally, the relative 
contribution of each variable to the total score highlights the main risk 
factors, providing guidance for individualized clinical interventions 
and early decision-making in diagnosis and treatment.

2.6 Design of the validation set

To assess the applicability and stability of the model, a validation set 
was designed using a retrospective cohort of patients diagnosed with 
sepsis in the ICU of Hebei General Hospital between March 1, 2024, 
and October 31, 2024. The inclusion criteria were the same as before, 
and the final sample size of the validation set was 150 patients. The 
detailed process of patient selection is shown in Supplementary Figure S1.

3 Results

3.1 Baseline characteristics

A total of 847 patients with sepsis met the inclusion criteria, of 
whom 480 (56.7%) developed SIC. Patients were randomly assigned 
to a training set (n = 592, 336 with SIC [56.8%]) and a testing set 
(n = 255, 144 with SIC [56.5%]) in a 7:3 ratio, ensuring comparability 
between the two cohorts. Baseline characteristics were generally 
balanced between the training and testing sets, except that malignant 
tumors were more common in the training set (p = 0.04). The baseline 
characteristics of the two groups of patients are detailed in 
supplementary information Supplementary Table S1.

Within the training set, patients with SIC had a higher prevalence 
of hepatic insufficiency (44.94% vs. 32.81%, p = 0.003), elevated SOFA 
scores (median 9 vs. 9, p < 0.001), and faster heart rates (median 100 vs. 
93 bpm, p = 0.047) compared with non-SIC patients. In terms of 
laboratory findings, SIC patients presented with higher lactate (2.68 vs. 
1.94 mmol/L, p < 0.001), total bilirubin (TBIL) (21.3 vs. 14.4 μmol/L, 
p < 0.001), blood urea nitrogen (BUN) (13.69 vs. 11.5 mmol/L, 
p = 0.01), creatinine (Cr) (130.45 vs. 98.9 μmol/L, p < 0.001), PCT 
(16.59 vs. 3.9 ng/mL, p < 0.001), and prolonged APTT (36.9 vs. 32.3 s, 
p < 0.001). Conversely, SIC patients had lower albumin (26.7 vs. 
28.65 g/L, p < 0.001), hemoglobin (102 vs. 109.5 g/L, p = 0.011), platelets 
(92 vs. 232.5 × 109/L, p < 0.001), and calcium (1.96 vs. 2.02 mmol/L, 
p = 0.014). Other baseline characteristics are detailed in Table 1.

3.2 Feature selection and establishment of 
a nomogram model

In the training set, candidate variables were first initially screened 
using one-way logistic regression analysis, and a total of 33 variables 
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TABLE 1  Baseline characteristics of patients with and without SIC in the training set.

Variables SIC (n = 336) Non-SIC (n = 256) P

Demographic data

Male, n (%) 210 (62.50) 166 (64.84) 0.557

Age, SD 70.01 (14.73) 71.01 (14.83) 0.415

Underlying diseases, n (%)

Coronary atherosclerotic heart disease 71 (21.13) 56 (21.88) 0.827

Hypertension 142 (42.26) 119 (46.48) 0.305

Diabetes 87 (25.89) 72 (28.12) 0.544

Chronic obstructive pulmonary disease 37 (11.01) 32 (12.50) 0.576

Cerebrovascular disease 114 (33.93) 102 (39.84) 0.139

Liver dysfunction 151 (44.94) 84 (32.81) 0.003

Chronic kidney disease 91 (27.08) 57 (22.27) 0.18

Malignancy 36 (10.71) 37 (14.45) 0.17

History of surgery within 3 months 158 (47.02) 127 (49.61) 0.533

Infection sites, n (%)

Pulmonary 220 (65.48) 178 (69.53) 0.298

Abdominal 142 (42.26) 101 (39.45) 0.491

Blood 44 (13.10) 33 (12.89) 0.942

Urinary system 53 (15.77) 55 (21.48) 0.075

Central nervous system 4 (1.19) 9 (3.52) 0.056

Skin and soft tissue 8 (2.38) 4 (1.56) 0.484

Other 17 (5.06) 7 (2.73) 0.155

ICU disease severity scores, M (Q₁, Q₃)

APACHE score 24.00 [19.00, 29.00] 23.00 [18.00, 28.00] 0.063

SOFA score 9.00 [7.75, 12.00] 9.00 [7.00, 10.00] <0.001

Vital signs, M (Q₁, Q₃)

Temperature (°C) 36.50 [36.00, 37.20] 36.50 [36.00, 37.00] 0.137

HR (times/min) 100.00 [84.00, 113.00] 93.00 [82.00, 113.00] 0.047

SBP (mmHg) 121.00 [105.00, 140.00] 121.00 [105.00, 138.25] 0.997

DBP (mmHg) 66.00 [56.00, 76.00] 67.00 [57.00, 78.00] 0.308

MAP (mmHg) 85.00 [75.17, 94.67] 85.83 [75.92, 94.67] 0.601

RR (times/min) 21.00 [16.00, 28.00] 20.00 [16.00, 25.00] 0.281

Laboratory tests, M (Q₁, Q₃)

pH 7.36 [7.29, 7.42] 7.39 [7.31, 7.44] 0.004

Lactate (mmol/L) 2.68 [1.70, 4.70] 1.94 [1.40, 3.10] <0.001

AB (mmol/L) 20.25 [16.50, 23.70] 22.00 [18.50, 25.52] <0.001

OI 202.50 [135.12, 281.82] 245.20 [166.65, 354.35] <0.001

BE (mmol/L) −4.85 [−8.00, −1.50] −2.88 [−6.30, 0.64] <0.001

TP (g/L) 48.85 [42.90, 55.12] 53.90 [47.08, 61.28] <0.001

ALB (g/L)(μmol/L) 26.70 [23.17, 30.92] 28.65 [24.98, 32.60] <0.001

TBIL (μmol/L) 21.30 [12.50, 38.17] 14.40 [9.50, 21.83] <0.001

DBIL (μmol/L) 9.55 [5.20, 20.45] 5.40 [3.20, 10.40] <0.001

ALT (U/L) 32.10 [16.00, 78.93] 24.00 [13.00, 49.07] 0.001

AST (U/L) 61.50 [31.88, 134.73] 33.00 [21.00, 70.25] <0.001

K (mmol/L) 4.00 [3.60, 4.50] 4.15 [3.70, 4.68] 0.038

Na (mmol/L) 140.40 [135.45, 145.00] 138.00 [135.00, 142.57] 0.014

(Continued)
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were included in the analysis, all of which were statistically significant 
(p < 0.05) in the one-way analysis. Subsequently, LASSO regression 
was used to further compress the variables, and the optimal penalty 
parameter λ was determined by combining the 10-fold cross-
validation (CV), and the lowest mean square error was used as a 
criterion for feature selection. The dynamics of variable coefficient 
changes during the screening process of LASSO regression is shown 
in Figure 2A, while Figure 2B demonstrates the process of selecting 
the optimal value of λ in the cross-validation. In the end, the LASSO 
regression screened a total of 19 variables that were closely related to 
the occurrence of SIC, namely: hepatic insufficiency, heart rate, pH, 
blood lactate, OI, total protein (TP), TBIL, aspartate 
aminotransferase, K, Cl, Mg, BUN, Cr, PCT, APTT, lymphocyte 
count, monocyte count, hemoglobin, and deep 
intravenous catheterization.

Based on the above variables screened by LASSO regression, 
further multifactorial logistic regression analysis was incorporated 
to identify the risk factors independently associated with the risk of 
SIC development, and to construct a risk prediction model with 
strong predictive ability and clinical utility. Multivariate logistic 
regression identified eight independent predictors of SIC: lactate 
(odds ratio [OR] = 1.081, 95% CI: 1.002–1.167, p = 0.044), OI 
(OR = 0.998, 95% CI: 0.997–0.999, p = 0.009), TP (OR = 0.969, 95% 
CI: 0.951–0.987, p = 0.001), TBIL (OR = 1.017, 95% CI: 1.008–1.025, 
p < 0.001), BUN (OR = 1.021, 95% CI: 1.005–1.036, p = 0.009), PCT 
(OR = 1.008, 95% CI: 1.002–1.015, p = 0.008), APTT (OR = 1.063, 
95% CI: 1.040–1.086, p < 0.001), and monocyte count (OR = 0.534, 
95% CI: 0.364–0.783, p = 0.001). Detailed results are provided in 
Table 2. Based on the previously screened independent predictors of 
SIC occurrence, this study further constructed a nomogram model 

TABLE 1  (Continued)

Variables SIC (n = 336) Non-SIC (n = 256) P

Cl (mmol/L) 106.00 [101.60, 111.00] 104.00 [99.00, 108.28] <0.001

Ca (mmol/L) 1.96 [1.83, 2.16] 2.02 [1.89, 2.16] 0.014

PO4 (mmol/L) 1.14 [0.80, 1.51] 1.14 [0.82, 1.40] 0.72

Mg (mmol/L) 0.82 [0.70, 0.92] 0.86 [0.73, 0.99] 0.004

BUN (mmol/L) 13.69 [8.72, 21.33] 11.50 [7.24, 19.33] 0.01

Cr (μmol/L) 130.45 [81.80, 205.22] 98.90 [63.02, 158.32] <0.001

PCT (ng/mL) 16.59 [2.90, 59.87] 3.90 [0.86, 26.38] <0.001

PT (s) 16.10 [14.20, 18.10] 13.70 [12.40, 15.20] <0.001

PT-INR 1.45 [1.31, 1.60] 1.16 [1.06, 1.30] <0.001

APTT (s) 36.90 [32.70, 44.90] 32.30 [28.80, 36.62] <0.001

FIB (g/L) 5.23 [3.42, 12.70] 5.91 [4.16, 11.92] 0.09

TT (s) 15.60 [5.63, 17.30] 15.40 [6.06, 17.20] 0.817

WBC (109/L) 11.26 [5.95, 17.57] 12.95 [9.10, 18.56] 0.002

NEU (109/L) 9.63 [4.98, 16.46] 11.46 [7.36, 16.64] 0.012

LYM (109/L) 0.52 [0.32, 0.82] 0.80 [0.46, 1.30] <0.001

MON (109/L) 0.31 [0.14, 0.51] 0.47 [0.26, 0.84] <0.001

Hb (g/L) 102.00 [88.00, 123.00] 109.50 [91.00, 128.00] 0.011

RDW (fL) 48.30 [45.00, 54.00] 48.70 [45.10, 52.85] 0.64

PLT (109/L) 92.00 [52.00, 125.25] 232.50 [189.00, 299.50] <0.001

Interventions, n (%)

Deep venous catheterization 279 (83.04) 190 (74.22) 0.009

Anticoagulant drugs 147 (43.75) 137 (53.52) 0.018

Mechanical ventilation 295 (87.80) 231 (90.23) 0.351

Hormones 240 (71.43) 185 (72.27) 0.823

Vasoactive drugs 319 (94.94) 247 (96.48) 0.364

CRRT 188 (55.95) 139 (54.30) 0.688

Infusion of human albumin 256 (76.19) 177 (69.14) 0.055

Z, Mann–Whitney test, χ2, Chi-square test. M, Median, Q₁, 1st Quartile, Q₃, 3st Quartile. SIC, sepsis-induced coagulopathy; APACHE, acute physiology and chronic health evaluation II; 
SOFA, sequential organ failure assessment; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; RR, respiratory rate; AB, actual bicarbonate; 
OI, oxygenation index; BE, base excess; TP, total protein; ALB, albumin; TBIL, total bilirubin; DBIL, direct bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; K, 
potassium; Na, sodium; Cl, chloride; Ca, calcium; PO4, phosphorus; Mg, magnesium; BUN, blood urea nitrogen; Cr, creatinine; PCT, procalcitonin; PT, prothrombin time; PT-INR, 
prothrombin time-international normalization ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thrombin time, WBC, white blood cells; NEU, neutrophils; LYM, 
lymphocytes; MON, monocytes; Hb, hemoglobin; RDW, red blood cell distribution width; PLT, platelet.
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(Figure  3), aiming to visualize the complex regression 
formula graphically.

3.3 Validation and evaluation of model 
effectiveness

3.3.1 Validation set
During the study period, a total of 184 patients with sepsis were 

initially identified. Based on the pre-specified inclusion and exclusion 
criteria, 25 patients with an ICU stay of less than 24 h, 1 patient with 
pre-existing hematologic disorders such as thrombocytopenia, 3 
patients with co-morbid hematopoietic malignancies, and 5 patients 
with incomplete laboratory data were excluded. Ultimately, 150 
patients were included in the validation set for this study 
(Supplementary Figure S1). The incidence of SIC in this cohort was 
56%. The baseline characteristics of relevant predictor variables in the 
validation set are summarized in Supplementary Table S2.

3.3.2 ROC curves and AUC values
In the training set, the nomogram model achieved an AUC of 

0.783 (95% CI: 0.746–0.820). In the testing set, the model yielded an 
AUC of 0.768 (95% CI: 0.710–0.826). In the validation set, the AUC 
was 0.782 (95% CI: 0.708–0.856). These results indicate that the 
nomogram model exhibited good predictive performance for the risk 
of early-onset SIC. The ROC curves of the model in the training, 
testing, and validation sets are shown in Figure  4, 
Supplementary Figures S2A,B, respectively, providing a visual 
representation of model performance. Detailed results, including AUC 
values, 95% CI, sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) for each dataset, are presented in 
Table 3.

3.3.3 Calibration graph, brier score, and 
calibration error

The calibration analysis showed that in all datasets, the Bias-
corrected line was highly consistent with the Apparent line, with only 
minor deviations, indicating that the model exhibited good reliability 

FIGURE 2

Lasso regression-based variable screening. (A) Variation 
characteristics of variable coefficients. Each colored line represents 
the trajectory of a specific variable’s coefficient (total of 33 variables) 
across different values of the regularization parameter (log λ). As λ 
decreases (from left to right), more variables are included in the 
model, and their coefficients shift from zero toward their ordinary 
least squares estimates. (B) The process of selecting the optimal 
value of the parameter λ in the lasso regression model is carried out 
by the cross-validation method. The red dotted line indicates the 
optimal λ value selected via cross-validation (lambda.min), which 
corresponds to the model achieving the minimum mean cross-
validated error. The upper x-axis shows the log(λ) values, while the 
lower x-axis indicates the corresponding number of nonzero 
coefficients in the model at each λ.

TABLE 2  Multivariate logistic regression analysis of factors associated with the incidence of SIC.

Variables β SE Wald P OR (95% CI)

Lactate 0.078 0.039 4.072 0.044 1.081 (1.002–1.167)

OI −0.002 0.001 6.881 0.009 0.998 (0.997–0.999)

TP −0.032 0.01 10.757 0.001 0.969 (0.951–0.987)

TBIL 0.017 0.004 15.548 <0.001 1.017 (1.008–1.025)

BUN 0.021 0.008 6.916 0.009 1.021 (1.005–1.036)

PCT 0.008 0.003 7.003 0.008 1.008 (1.002–1.015)

APTT 0.061 0.011 29.657 <0.001 1.063 (1.040–1.086)

MON −0.628 0.195 10.338 0.001 0.534 (0.364–0.783)

Constant −0.702 0.673 1.089 0.297

β, partial regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval. SIC, sepsis-induced coagulopathy; OI, oxygenation index; TP, total protein; TBIL, total bilirubin; 
BUN, blood urea nitrogen; PCT, procalcitonin; APTT, activated partial thromboplastin time; MON, monocytes.
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and stability. The calibration curves for the training, testing, and 
validation sets are presented in Figure 5, Supplementary Figures S3A,B, 
respectively. In addition, the Brier score and calibration error were 
calculated to further evaluate the calibration performance of the 
model in each dataset, as summarized in Table 4.

3.3.4 DCA curves
DCA was performed to evaluate the clinical utility of the 

prediction model in the training, testing, and validation sets (Figure 6; 
Supplementary Figures S4A,B). In the DCA plots, the horizontal axis 
represents the threshold probability, and the vertical axis represents 
the net benefit. The results showed that the nomogram model 
provided higher net benefit than the treat-all and treat-none strategies 
across most clinically relevant threshold ranges. In particular, within 

the threshold range of 0.1 to 0.8, the model curve remained 
consistently above the reference strategies, suggesting favorable 
clinical applicability. Furthermore, the model maintained a 
comparable net benefit in the external validation set, supporting its 
generalizability and robustness across different datasets.

4 Discussion

In this study, we constructed a nomogram model to predict the 
risk of SIC in patients with sepsis using multicenter real-world clinical 
data. The model’s performance was evaluated across multiple 
dimensions, including predictive accuracy, calibration, and decision 
curve analysis. The validation set results indicated consistent 
predictive performance, with the model achieving satisfactory AUC 
values, reliable calibration, and favorable net benefit across clinically 
relevant threshold probabilities. These findings suggest that the 
nomogram may assist clinicians in identifying patients at higher risk 
of SIC and support individualized decision-making in 
early intervention.

Coagulation changes in sepsis patients are dynamic, beginning 
with early coagulation abnormalities, which may progress to SIC and 
eventually DIC (14). Coagulation disorders are reported in 
approximately 50–70% of sepsis patients, with nearly 35% developing 
secondary DIC (15, 16). Coagulation dysfunction is nearly universal 
in sepsis and is strongly associated with multi-organ failure and 
increased mortality (17, 18). In SIC, pathogens and inflammatory 
mediators trigger thrombus formation through mechanisms including 
upregulation of procoagulant pathways, downregulation of 
physiological anticoagulant systems, and inhibition of fibrinolysis 
(19). Thrombin, a central regulator, binds to protease-activated 
receptor-1 on monocytes and neutrophils, amplifying 
pro-inflammatory and pro-coagulant responses (20, 21). 
Simultaneously, inflammatory cytokine release promotes neutrophil 
adhesion to endothelial cells, activating complement and coagulation 
cascades (22). Complement C5a further induces the release of 
damage-associated molecular patterns and pathogen-associated 

FIGURE 3

A nomogram model of morbidity in SIC patients. SIC, sepsis-induced coagulopathy; OI, oxygenation index; TP, total protein; TBIL, total bilirubin; BUN, 
blood urea nitrogen; PCT, procalcitonin; APTT, activated partial thromboplastin time; MON, monocytes.

FIGURE 4

ROC curve of the nomogram model in the training set.
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molecular patterns, exacerbating coagulation dysfunction and 
inflammation (23). Monocytes and macrophages detect and 
phagocytose pathogens, express pattern recognition receptors (e.g., 
Toll-like and Fcγ receptors), and release inflammatory mediators, 
perpetuating cycles of inflammation and coagulation (24–26). Given 
the central role of the inflammatory–coagulation feedback loop and 

endothelial injury in accelerating SIC progression, early identification 
is therefore critical to guide timely intervention and targeted therapies.

Current approaches for predicting the risk of SIC include sensitive 
serum biomarkers and clinical scoring systems. Biomarkers such as 
PCT and lactate are readily obtained but provide only a snapshot of 
the patient’s physiological state, with limited sensitivity and specificity 
for predicting SIC (27–29). Clinical scores, including the SOFA, rapid 
sequence organ failure, and systemic inflammatory response 
syndrome (SIRS) scores, are straightforward but suffer from limited 
timeliness and accuracy and are influenced by multiple 
pathophysiologic factors (30, 31). Recent studies have highlighted the 
prognostic value of composite biomarkers in reflecting systemic 
inflammation, nutritional status, and immune function in sepsis 
patients. For example, Sarıdaş and Çetinkaya demonstrated that the 
CALLY index, a composite biomarker reflecting inflammation, 
nutrition, and immunity, has significant prognostic relevance in 
sepsis, supporting the use of integrated biomarker-based risk 
assessment (32). Additionally, Saridas et  al. illustrated the clinical 
utility of novel inflammatory markers in predicting complicated 
appendicitis, emphasizing the broader applicability of composite 
biomarkers in acute inflammatory conditions (33). These findings 
underscore the potential value of incorporating multiple clinical and 
laboratory parameters into predictive models for early risk 
stratification in sepsis. Overall, existing methods are limited by low 
predictive strength, instability, and procedural complexity. Developing 
efficient and individualized prediction models is thus a priority. 
Nomograms integrate multiple variables into a single, user-friendly 
tool, facilitating quantitative risk assessment and clinical decision-
making. In this study, we constructed a nomogram for early morbidity 
risk in SIC, supporting early warning, risk stratification, 
and intervention.

Eight independent risk factors—lactate, OI, TP, TBIL, BUN, PCT, 
APTT, and monocyte count—were identified and incorporated into 
the predictive model.

Lactate reflects tissue perfusion and oxygen metabolism and is 
widely used to detect microcirculatory disturbances in sepsis (34). 
Impaired microcirculation and hepatic or renal dysfunction reduce 
lactate clearance, causing hyperlactatemia (35). Elevated lactate damages 
endothelial cells, alters permeability, triggers exogenous coagulation, and 
promotes microthrombus formation, creating a vicious cycle of 

TABLE 3  Detailed results of the nomogram model for each dataset.

Dataset AUC 95% CI Sensitivity Specificity PPV NPV

Training set 0.783 0.746–0.820 0.652 0.797 0.808 0.636

Testing set 0.768 0.710–0.826 0.632 0.847 0.843 0.562

Validation set 0.782 0.708–0.856 0.869 0.576 0.723 0.776

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 5

Calibration curves of the nomogram model in the training set.

TABLE 4  Evaluation of the calibration of the nomogram model across 
datasets.

Dataset Brier scores Calibration errors

Training set 0.188 0.015

Testing set 0.195 0.027

Validation set 0.198 0.033

FIGURE 6

DCA curves of the nomogram model in the training set.
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hypoperfusion and coagulation dysfunction (36–38). In this study, 
lactate levels were significantly higher in SIC patients (OR = 1.018, 
95%CI: 1.002 ~ 1.167, p = 0.044), confirming its role as an independent 
risk factor. Monitoring lactate may facilitate early identification of 
patients at high risk for SIC, provide insights into potential coagulation 
dysfunction and tissue hypoxia, and offer guidance for timely fluid 
resuscitation, thus supporting improved clinical management.

OI, the ratio of arterial oxygen partial pressure to inspired oxygen 
fraction, reflects pulmonary gas exchange. Sepsis-induced acute lung 
injury or acute respiratory distress syndrome (ARDS) impairs OI 
through alveolar exudation, reduced compliance, and microvascular 
thrombosis (39–41). SIC-related coagulation dysfunction contributes 
to reduced OI, further exacerbating lung injury. In our cohort, SIC 
patients exhibited significantly lower OI (OR = 0.998, 95%CI: 0.997–
0.999, p = 0.009), highlighting its value as an early risk predictor for 
SIC. Monitoring OI informs pulmonary function assessment and 
prognosis evaluation.

TP encompasses all serum proteins, including albumin and 
globulins, essential for colloid osmotic pressure, transport, and 
immune function. Hepatic dysfunction in sepsis reduces TP and 
coagulation factor synthesis, promoting SIC. Hypoproteinemia 
activates coagulation and inflammation, disrupting anticoagulant 
homeostasis (42, 43). TP was lower in SIC patients (OR = 0.969, 
95%CI: 0.951 ~ 0.987, p = 0.001), suggesting a poor prognosis. 
Correction of hypoproteinemia may improve coagulation and 
survival outcomes.

TBIL, the sum of direct and indirect bilirubin, rises with hepatic 
dysfunction and SIRS-induced cholestasis (44, 45). Elevated TBIL 
reflects oxidative stress, endothelial injury, and coagulation activation, 
contributing to microcirculatory disturbances. TBIL was significantly 
higher in SIC patients (OR = 1.017, 95%CI: 1.008 ~ 1.025, p < 0.001), 
serving as a marker of liver injury and coagulation impairment. 
Monitoring TBIL guides therapeutic strategies to reduce inflammation 
and oxidative stress.

BUN, an end product of protein metabolism, accumulates due to 
renal impairment and hypercatabolism in SIC (46, 47). Elevated BUN 
worsens coagulation by reducing clearance of coagulation factors and 
fibrin degradation products, increasing blood viscosity and anemia. 
SIC patients had higher BUN (OR = 1.021, 95%CI: 1.005 ~ 1.036, 
p = 0.009). BUN monitoring informs renal perfusion strategies and 
inflammatory control.

PCT, a precursor of calcitonin, markedly elevates under 
inflammatory conditions. In SIC, PCT stimulates von Willebrand 
factor release and microthrombosis, exacerbating coagulation 
disorders (48). Higher PCT was observed in SIC patients (OR = 1.008, 
95%CI: 1.002 ~ 1.015, p = 0.008). Combining PCT with coagulation 
tests enables comprehensive assessment and guides targeted anti-
infective and anticoagulant therapy.

APTT evaluates endogenous coagulation. In SIC, inflammatory 
mediators activate coagulation pathways, consuming factors and 
prolonging APTT. Dysfunctional anticoagulant systems, including 
protein C and antithrombin, further disrupt hemostasis (49). SIC 
patients exhibited prolonged APTT (OR = 1.063, 95%CI: 
1.040 ~ 1.086, p < 0.001), indicating factor depletion and fibrinolytic 
activation. APTT informs decisions on coagulation factor 
supplementation or anticoagulation therapy.

Monocytes regulate immune response and inflammation. In SIC, 
myelosuppression reduces monocyte counts, impairing pathogen 

clearance and cytokine production, perpetuating coagulation 
activation (50). Lower monocyte counts in SIC patients (OR = 0.534, 
95%CI: 0.364 ~ 0.783, p = 0.001) reflect severe immune dysfunction 
and poor prognosis.

This study has several advantages. (1) Multicenter data and 
rigorous methodological design: Based on multicenter data from Hebei 
General Hospital and Handan Central Hospital (East District), this 
study included 847 patients with sepsis and was randomly divided into 
training and testing sets using a 7:3 ratio, along with independent 
external validation (150 cases). The study strictly adhered to the 
TRIPOD statement, and variables were screened by univariate analysis, 
LASSO regression, and multifactorial logistic regression to ensure the 
scientific validity and stability of the model. (2) Construction and 
validation of the integrated predictive model: This study integrated 
eight key clinical indicators (lactate, OI, TP, TBIL, BUN, PCT, APTT, 
and monocyte count), constructed a nomogram model, and 
demonstrated good discriminative ability in the training set 
(AUC = 0.783), testing set (AUC = 0.768), and validation set 
(AUC = 0.782), suggesting that the model has high prediction accuracy. 
(3) Multi-dimensional model evaluation: This study not only assessed 
the discriminative ability of the model through ROC curves, but also 
evaluated the calibration and clinical utility of the model by combining 
calibration curves (Brier score, calibration error) and DCA curves. The 
DCA results showed that the model had a significant net benefit within 
the risk threshold range of 0.1–0.8, which supports its application value 
in clinical decision making. (4) Clinical applicability: The nomograms 
are presented in a visual way, which facilitates clinicians to quickly 
assess the risk of SIC in patients without complex calculations. In 
addition, the indicators included in the study are all routine laboratory 
tests (e.g., lactate, PCT, APTT, etc.), which are easy to generalize in 
clinical practice. (5) Mechanistic explanation and clinical significance 
are clear: This study discussed in detail the association of each predictor 
variable (e.g., lactate, oxygenation index, monocyte count) with the 
pathogenesis of SIC, provided theoretical support for the biological 
plausibility of the model, and suggested targeted clinical interventions 
(e.g., monitoring of lactate, correction of hypoproteinemia, etc.).

In order to provide a practical guide for clinicians on the use of our 
nomogram, we present a representative clinical scenario. Consider a 
sepsis patient presenting with a lactate level of 4 mmol/L, a monocyte 
count of 0.3 × 109/L, and an APTT of 50 s. By applying our nomogram, 
the total point score for this patient is calculated as 120, corresponding 
to an estimated risk of developing SIC of approximately 75%. This high 
predicted risk would suggest that the attending physician should 
implement closer monitoring of coagulation parameters, consider early 
anticoagulant therapy if indicated, and evaluate the need for ICU 
admission. Such an example illustrates how different clinical variables 
interact within the nomogram to generate a quantitative risk 
assessment, thereby facilitating timely and evidence-based clinical 
decision-making. By providing clinicians with a clear, individualized 
risk estimate, the nomogram can support rapid identification of high-
risk patients, optimize resource allocation, and potentially improve 
patient outcomes. We anticipate that integrating this tool into daily 
clinical practice will enhance the precision of SIC management and 
increase clinician confidence in initiating appropriate interventions.

This study has several limitations. First, as a retrospective study, 
data were obtained from electronic medical records, which may 
contain incomplete or inaccurate entries, potentially leaving some 
confounding factors unaddressed. Second, despite including multiple 
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clinical variables, certain factors such as genetic or environmental 
influences were not captured, which may limit the model’s predictive 
ability for all sepsis patients. Third, the analysis focused on baseline 
parameters at ICU admission and did not fully account for dynamic 
changes in coagulation function, which may restrict risk prediction 
over time. Fourth, traditional logistic regression was used, without 
exploring machine learning or deep learning approaches that could 
capture nonlinear relationships and potentially improve predictive 
accuracy. Fifth, although a multicenter study was conducted, all 
patients were from hospitals in Hebei Province, which limits 
generalizability to other regions with different disease spectra, medical 
resources, or environmental conditions. Additionally, two specific 
limitations were considered. Sixth, the overall proportion of missing 
values was relatively low (<5%), and records with missing data were 
excluded rather than imputed. While this approach is unlikely to 
substantially affect results, different strategies for handling missing data 
could influence model stability and performance. Seventh, although 
data were collected on the day of sepsis diagnosis, subsequent 
treatments—such as anticoagulants, corticosteroids, or vasopressors—
may have affected the development of SIC, representing a potential 
confounding factor that our model cannot fully account for. Future 
prospective studies incorporating dynamic treatment data could 
further improve predictive accuracy and clinical applicability. These 
limitations highlight the need for cautious interpretation of our 
findings and underscore the importance of further validation in 
broader, dynamically monitored patient populations.

5 Conclusion

We developed a nomogram model to predict the risk of SIC in 
patients with sepsis and validated its potential as a clinically 
reliable tool. The overall accuracy and clinical utility value of the 
model was high and the fit was good. The nomogram model can 
visualize the main causes of SIC in sepsis patients to precisely guide 
clinicians to take individualized diagnostic and therapeutic 
measures to reduce the incidence of poor prognosis in 
sepsis patients.
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