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nomogram for early prediction of
sepsis-induced coagulopathy: a
multicenter study

Ruimin Tan®?, Yi Zhou®?!, Shuwei Zhang'?, Jin Yang'?,
Quansheng Du?, Jingmei Wang* and Yunxing Cao'*

!Department of Critical Care, Chongging General Hospital, Chongging, China, ?Department of Critical
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Care, Hebei General Hospital, Shijiazhuang, China, *Department of Critical Care, Handan Central
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Background: Sepsis-induced coagulopathy (SIC) is a vascular endothelial cell
injury and coagulation disorder caused by sepsis. The aim of this study was to
construct a nomogram model of the risk of early onset of SIC in patients with
sepsis by analyzing the risk factors for in-hospital development of SIC.
Methods: Patients with sepsis admitted to the intensive care unit (ICU) of
Hebei General Hospital and Handan Central Hospital (East District) from March
1, 2021 to March 1, 2024 were retrospectively included. Sepsis patients were
divided into SIC and non-SIC groups according to whether SIC occurred during
hospitalization. The patient data were randomly divided into training set and
testing set in the ratio of 7:3. The data of sepsis patients admitted to the ICU of
Hebei General Hospital between March 1, 2024 and October 31, 2024 were then
retrospectively included as the validation set for external validation. All predictors
were collected within 24 h of sepsis diagnosis to enable early risk prediction.
Various clinical variables were collected, and independent risk factors for early
onset of SIC were screened by one-way logistic regression, least absolute
shrinkage and selection operator (LASSO) regression, and multifactorial logistic
and a nomogram prediction model was constructed. The model was evaluated
for accuracy, goodness of fit, and clinical utility value using testing set and
validation set data. The accuracy of the predictive model was assessed by using
the receiver operating characteristic curve (ROC) and calculating the area under
the receiver (AUC), the fit was done by calibration curve, and the clinical utility of
the predictive model was assessed by decision curve analysis (DCA).

Results: Among 847 patients with sepsis, SIC occurred in 480 (56.7%) patients.
A nomogram model was constructed containing eight variables: lactate,
oxygenation index, total protein, total bilirubin, urea, calcitoninogen, activated
partial thromboplastin time, and monocyte count. In the training set, the AUC
value of the model was 0.783 [95% Confidence Interval (Cl): 0.746, 0.820]; in the
testing set, the AUC value was 0.768 (95% CI: 0.710, 0.826); and in the validation
set, the AUC value was 0.782 (95% Cl: 0.708, 0.856).

Conclusion: We developed a nomogram model to predict the risk of SIC in
patients with sepsis and validated its potential as a clinically reliable tool. The
overall accuracy and clinical utility value of the model was high and the fit was
good. The nomogram model can visualize the key variables associated with SIC
in sepsis patients, supporting clinicians in individualized risk assessment and
guiding timely interventions to improve patient outcomes.
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1 Introduction

Sepsis is the result of an imbalance in the host response to
infection, triggering life-threatening organ function damage, and is
essentially a disordered and dysregulated immune response with
organ dysfunction (1). Sepsis-induced coagulopathy (SIC) is a
complex pathophysiological condition triggered by sepsis,
characterized by a severe disturbance of the systemic inflammatory
response and coagulation system (2). According to statistics, SIC
occurs in 24.0 to 60.0% of sepsis patients worldwide, and in China it
is as high as 67.9%, and if not handled properly, it can develop into
disseminated intravascular coagulation (DIC), which increases the
mortality rate of the patients by two times (3, 4). Therefore, early
identification of risk factors inducing coagulation dysfunction in
sepsis patients and early warning and risk stratification of SIC patients
can provide scientific basis for clinical decision-making and promote
timely implementation of interventions to reduce their morbidity and
mortality rates.

The concept of SIC was first proposed by the International Society
for Thrombosis and Hemostasis (ISTH) in 2017, and was initially
incorporated into the clinical diagnostic system as one of the key
criteria for sepsis (5). SIC is essentially a complex pathophysiological
sepsis-induced SIC is essentially a complex pathophysiological state
induced by sepsis, and its core feature is manifested as a severe
dysregulation of the systemic inflammatory response and coagulation
system (2). From the viewpoint of pathogenesis, SIC involves a
multifaceted pathological process of endothelial cell injury, cascade
release of inflammatory mediators, and excessive activation of
coagulation factors. Continued progression of these mechanisms can
lead to serious complications such as DIC and multiple organ
dysfunction syndrome, which significantly increase the risk of patient
death (6-8). It is worth noting that there is a bidirectional synergy
between inflammation and coagulation process: the exacerbation of
inflammatory response can accelerate the coagulation cascade
through the activation of coagulation factors; conversely, the
activation of the coagulation system can further amplify the
inflammatory response through the release of pro-inflammatory
factors (9). This vicious circle is particularly prominent in the
progression of sepsis, which can lead to extensive systemic
microvascular thrombosis and ultimately to the development of DIC,
which is typically characterized by hemorrhagic tendencies and
microcirculatory failure (10, 11).

Nomograms are effective graphical visualization tools that help
users quickly and accurately process complex data for prediction
without the use of computers or other tools. Nomograms are graphical
representations of complex mathematical formulas, typically using
biological markers and clinical variables, and are depicted graphically,
with the result being the probability of a clinical event (e.g., disease
occurrence or death) for a given individual (12). In recent years,
scholars have explored the role of a nomogram model constructed
based on public databases in the prognosis of SIC patients and found
that the model provides a better prediction of 28-day mortality in SIC
patients, leading to a better assessment of prognosis (13).
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This study focuses on exploring the potential value of common
laboratory indicators, aiming to construct a nomogram model of early
morbidity risk in SIC patients through scientific and rigorous analysis
methods. This model will provide an intuitive and efficient tool for
early screening of SIC patients, and help clinicians to make accurate
decisions and implement timely interventions.

2 Materials and methods
2.1 Data source

A retrospective cohort of patients with sepsis admitted to the
intensive care units (ICUs) of Hebei General Hospital and Handan
Central Hospital (East District) between March 1, 2021, and March 1,
2024, was enrolled, provided that relatively complete clinical data were
available. Sepsis patients were divided into SIC and non-SIC groups
according to the occurrence of SIC during hospitalization, which was
defined using the SIC score established by the ISTH. The patient data
were randomly divided into training set and testing set in the ratio of
7:3. In addition, the data of sepsis patients admitted to the ICU of
Hebei General Hospital between March 1, 2024 and October 31, 2024
with relatively complete information were retrospectively included as
the validation set for external validation. This study complied with the
review and approval criteria of the Ethics Committee of Hebei General
Hospital (No. 2025-LW-0151) and the Ethics Committee of Handan
Central Hospital (No. 2025112).

2.2 Study subjects

Inclusion criteria for this study were patients who were admitted
to the ICU for the first time and met the diagnostic criteria for sepsis
3.0. Exclusion criteria included (1) age <18 years; (2) ICU stay of less
than 24 h or death within 24 h of admission; (3) patients with known
coagulation disorders or thrombocytopenic underlying diseases (e.g.,
idiopathic thrombocytopenic purpura, hemophilia, severe hepatic
failure); (4) patients with coagulation abnormalities present prior to
ICU admission (including those associated with pregnancy,
hematopoietic malignancy, history of cardiopulmonary resuscitation)
or those with a sequential organ failure score (SOFA) score <2 at
baseline; and (5) Cases with incomplete clinical information or
laboratory data (Figure 1).

According to the criteria proposed by ISTH 2017, the diagnosis of
SIC requires a comprehensive assessment of three indicators, namely
Prothrombin Time-International Normalization Ratio (PT-INR),
platelet count, and full SOFA score. The specific scoring rules were:
PT-INR < 1.2 was scored as 0 points, >1.2 was scored as 1 point, and
>1.4 was scored as 2 points; platelet count >1.5 x 10""/L (150 x 10°/L)
was scored as 0 points, <1.5x 10""/L was scored as 1 point, and
<1.0 x 10"/L (100 x 10°/L) was scored as 2 points; and all the SOFA
scores (the sum of the scores of respiratory, cardiovascular, and
hepatic systems) were scored as 2 points, renal system scores < 2 were
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FIGURE 1

Patient screening flow.

scored as 0 points, and >2 points were scored uniformly as 2 points.
SIC was diagnosed if the total score of the three items was >4, and the
sum of the individual scores of PT-INR and platelet count was >2.

2.3 Data extraction

In this study, clinical data were collected based on the
electronic medical record systems of two healthcare organizations,
and the inclusion variables contained seven dimensions: (1)
demographic characteristics (gender, age); (2) underlying
comorbidities (coronary heart disease, hypertension, diabetes,
chronic obstructive pulmonary disease, cerebrovascular lesions,
hepatic dysfunction, chronic renal disease, malignant tumors, and
recent surgical history); (3) primary infection sites (respiratory
system, abdominal cavity, blood, urinary system, central nervous
system, skin and soft tissues, and other sites); (4) ICU rating system
(Acute Physiology and Chronic Health Evaluation II [APACHE II]
and SOFA scores); (5) physiological parameters (temperature,
heart rate, blood pressure index [systolic blood pressure/diastolic
blood pressure/mean arterial pressure], respiratory rate); (6)
laboratory test index (blood gas parameters, lactate level, actual
bicarbonate, oxygenation index (OI), base excess, liver and kidney
function index), procalcitonin (PCT) concentration, complete set
of coagulation function (prothrombin time [PT]/activated partial
thromboplastin time [APTT]/fibrinogen content/thrombin time,
etc.), blood parameters and electrolyte level (potassium [K]/
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sodium [Na]/chloride [Cl]/calcium [Ca]/phosphorus/magnesium
[Mg]); and (7) clinical interventions (deep venous access
establishment,  mechanical  ventilation  implementation,
anticoagulation, glucocorticosteroid application, use of vasoactive
medications, continuous renal replacement therapy and
albumin infusion).

All predictor variables were collected at the time when sepsis was
first diagnosed according to the Sepsis-3 criteria (defined as TO0).
Physiological parameters and laboratory test indices were extracted
within 24 h of T0. When multiple measurements were available during
this window, the first recorded value was used as the baseline input.
For patients who subsequently developed SIC during hospitalization,
only variables collected at TO were included; any measurements
obtained after SIC onset were not used for model development

or validation.

2.4 Statistical analysis

The normality test of the measurement data was performed using
the Shapiro-Wilk method. Data that conformed to normal
distribution were described by mean + standard deviation, and
comparisons between groups were made using the independent
samples t-test; for data that did not conform to normal distribution,
they were expressed as median and interquartile spacing, and
comparisons between groups were made using the Wilcoxon
rank-sum test for two independent samples. Count data were
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expressed as frequency and constitutive ratio, and differences between
groups were compared using the chi-square test.

To prevent information leakage, all predictor variables were
restricted to the pre-specified baseline window at the time of
sepsis diagnosis (T0), and no data collected after SIC onset were
included in model development or validation. To reduce the
impact of multicollinearity on model stability, variables with
p <0.05 in univariate analysis were entered into least absolute
shrinkage and selection operator (LASSO) regression. The model
was penalized by introducing an L1 regularization term so that the
regression coeflicients of irrelevant or weakly correlated variables
shrank toward zero, achieving variable screening and model
simplification. The optimal penalty parameter (1) was determined
using 10-fold cross-validation with the minimum mean squared
error criterion, thereby establishing a stable LASSO regression
model and identifying variables significantly associated with
SIC occurrence.

Subsequently, the variables obtained from the LASSO screening
were further included in the multifactorial logistic regression analysis
to clarify the independent risk factors for SIC. Based on the final
regression model, a nomogram prediction model was constructed
using the rms software package, and the receiver operating
characteristic curve (ROC) was plotted, and the discriminative
performance of the model was evaluated by calculating the area under
the curve (AUC) as well as by determining the optimal cutoff values
corresponding to the sensitivity and The discriminative performance
of the model was evaluated by calculating AUC and determining the
sensitivity and specificity indexes corresponding to the optimal cutoff
value. The calibration curve was further plotted by the rms package
and subjected to the Hosmer-Lemeshow goodness-of-fit test to
evaluate the calibration capability of the model. The calibration of the
nomogram model was assessed using calibration curves. A coordinate
system was constructed with the predicted probability on the
horizontal axis and the observed probability on the vertical axis. The
Ideal line represents perfect agreement between predicted and
observed outcomes. The Apparent line indicates the actual
performance of the model on the dataset, while the Bias-corrected
line reflects the prediction results obtained after 1,000 bootstrap
resamples, which reduces potential overfitting and provides an
internally validated estimate of model performance. The rmda
software package was used to draw a decision curve analysis (DCA)
plot to analyze the net benefit of the model under different threshold
probabilities and determine its clinical application value. In the DCA
plot, the None line represents an extreme case, i.e., the model predicts
that all sepsis patients will not develop SIC, at which time the net
clinical benefit is zero. The All line represents the other extreme, i.e.,
the model predicts that all sepsis patients will develop SIC, when the
slope of the net clinical benefit is negative. The net clinical benefit is
determined by the threshold probability range, i.e., the model curve
lies above the None and All reference lines. If the model curve is
above the None and All lines, this indicates that the model has a
higher net benefit in actual clinical application. Finally, the
constructed nomogram models were externally validated in an
independent validation set and evaluated for their predictive
performance and generalization ability.

All statistical analyses were performed in SPSS software (version:
27.0), R software (version: 4.3.1), and the difference between the two
groups was considered statistically significant at p < 0.05.
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2.5 Nomogram application explanation

The nomogram allows prediction of an individual’s risk of SIC by
assigning points to each predictor variable. By drawing vertical lines
from the value of each variable to the corresponding points axis, the
individual scores are obtained. The total score, calculated by summing
the points of all variables, can then be mapped to the risk-probability
axis to estimate the probability of SIC occurrence. This graphical tool
eliminates the need for complex calculations, enabling clinicians to
rapidly and intuitively assess patient risk. Additionally, the relative
contribution of each variable to the total score highlights the main risk
factors, providing guidance for individualized clinical interventions
and early decision-making in diagnosis and treatment.

2.6 Design of the validation set

To assess the applicability and stability of the model, a validation set
was designed using a retrospective cohort of patients diagnosed with
sepsis in the ICU of Hebei General Hospital between March 1, 2024,
and October 31, 2024. The inclusion criteria were the same as before,
and the final sample size of the validation set was 150 patients. The
detailed process of patient selection is shown in Supplementary Figure S1.

3 Results
3.1 Baseline characteristics

A total of 847 patients with sepsis met the inclusion criteria, of
whom 480 (56.7%) developed SIC. Patients were randomly assigned
to a training set (n = 592, 336 with SIC [56.8%]) and a testing set
(n =255, 144 with SIC [56.5%]) in a 7:3 ratio, ensuring comparability
between the two cohorts. Baseline characteristics were generally
balanced between the training and testing sets, except that malignant
tumors were more common in the training set (p = 0.04). The baseline
characteristics of the two groups of patients are detailed in
supplementary information Supplementary Table S1.

Within the training set, patients with SIC had a higher prevalence
of hepatic insufficiency (44.94% vs. 32.81%, p = 0.003), elevated SOFA
scores (median 9 vs. 9, p < 0.001), and faster heart rates (median 100 vs.
93 bpm, p =0.047) compared with non-SIC patients. In terms of
laboratory findings, SIC patients presented with higher lactate (2.68 vs.
1.94 mmol/L, p < 0.001), total bilirubin (TBIL) (21.3 vs. 14.4 pmol/L,
p<0.001), blood urea nitrogen (BUN) (13.69 vs. 11.5 mmol/L,
p=0.01), creatinine (Cr) (130.45 vs. 98.9 pmol/L, p < 0.001), PCT
(16.59 vs. 3.9 ng/mL, p < 0.001), and prolonged APTT (36.9 vs. 32.3 s,
P <0.001). Conversely, SIC patients had lower albumin (26.7 vs.
28.65 g/L, p < 0.001), hemoglobin (102 vs. 109.5 g/L, p = 0.011), platelets
(92 vs. 232.5 x 10°/L, p < 0.001), and calcium (1.96 vs. 2.02 mmol/L,
p =0.014). Other baseline characteristics are detailed in Table 1.

3.2 Feature selection and establishment of
a nomogram model

In the training set, candidate variables were first initially screened
using one-way logistic regression analysis, and a total of 33 variables
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TABLE 1 Baseline characteristics of patients with and without SIC in the training set.

10.3389/fmed.2025.1653699

Variables SIC (n = 336) -SIC (n = 256) P
Demographic data
Male, (%) 210 (62.50) 166 (64.84) 0.557
Age, SD 70.01 (14.73) 71.01 (14.83) 0.415
Underlying diseases, n (%)
Coronary atherosclerotic heart disease 71(21.13) 56 (21.88) 0.827
Hypertension 142 (42.26) 119 (46.48) 0.305
Diabetes 87 (25.89) 72 (28.12) 0.544
Chronic obstructive pulmonary disease 37(11.01) 32 (12.50) 0.576
Cerebrovascular disease 114 (33.93) 102 (39.84) 0.139
Liver dysfunction 151 (44.94) 84 (32.81) 0.003
Chronic kidney disease 91 (27.08) 57 (22.27) 0.18
Malignancy 36 (10.71) 37 (14.45) 0.17
History of surgery within 3 months 158 (47.02) 127 (49.61) 0.533
Infection sites, n (%)
Pulmonary 220 (65.48) 178 (69.53) 0.298
Abdominal 142 (42.26) 101 (39.45) 0.491
Blood 44 (13.10) 33 (12.89) 0.942
Urinary system 53 (15.77) 55 (21.48) 0.075
Central nervous system 4(1.19) 9 (3.52) 0.056
Skin and soft tissue 8(2.38) 4 (1.56) 0.484
Other 17 (5.06) 7(2.73) 0.155
ICU disease severity scores, M (Q;, Qs)
APACHE score 24.00 [19.00, 29.00] 23.00 [18.00, 28.00] 0.063
SOFA score 9.00 [7.75, 12.00] 9.00 [7.00, 10.00] <0.001
Vital signs, M (Q;, Qs)
Temperature (°C) 36.50 [36.00, 37.20] 36.50 [36.00, 37.00] 0.137
HR (times/min) 100.00 [84.00, 113.00] 93.00 [82.00, 113.00] 0.047
SBP (mmHg) 121.00 [105.00, 140.00] 121.00 [105.00, 138.25] 0.997
DBP (mmHg) 66.00 [56.00, 76.00] 67.00 [57.00, 78.00] 0.308
MAP (mmHg) 85.00 [75.17, 94.67) 85.83 [75.92, 94.67] 0.601
RR (times/min) 21.00 [16.00, 28.00] 20.00 [16.00, 25.00] 0.281
Laboratory tests, M (Q;, Qz)
pH 7.36 [7.29,7.42] 7.39 [7.31, 7.44] 0.004
Lactate (mmol/L) 2.68 [1.70, 4.70] 1.94 [1.40, 3.10] <0.001
AB (mmol/L) 20.25 [16.50, 23.70] 22.00 [18.50, 25.52] <0.001
[0)4 202.50 [135.12, 281.82] 245.20 [166.65, 354.35] <0.001
BE (mmol/L) —4.85 [—8.00, —1.50] —2.88 [—6.30, 0.64] <0.001
TP (g/L) 48.85 [42.90, 55.12] 53.90 [47.08, 61.28] <0.001
ALB (g/L)(umol/L) 26.70 [23.17, 30.92] 28.65 [24.98, 32.60] <0.001
TBIL (umol/L) 21.30 [12.50, 38.17] 14.40 [9.50, 21.83] <0.001
DBIL (umol/L) 9.55 [5.20, 20.45] 5.40 [3.20, 10.40] <0.001
ALT (U/L) 32.10 [16.00, 78.93] 24.00 [13.00, 49.07] 0.001
AST (U/L) 61.50 [31.88, 134.73] 33.00 [21.00, 70.25] <0.001
K (mmol/L) 4.00 [3.60, 4.50] 4.15 [3.70, 4.68] 0.038
Na (mmol/L) 140.40 [135.45, 145.00] 138.00 [135.00, 142.57] 0.014
(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2025.1653699

Variables SIC (n = 336) Non-SIC (n = 256) P
Cl (mmol/L) 106.00 [101.60, 111.00] 104.00 [99.00, 108.28] <0.001
Ca (mmol/L) 1.96 [1.83, 2.16] 2.02 [1.89, 2.16] 0.014
PO, (mmol/L) 1.14 [0.80, 1.51] 1.14 [0.82, 1.40] 0.72
Mg (mmol/L) 0.82 [0.70, 0.92] 0.86 [0.73, 0.99] 0.004
BUN (mmol/L) 13.69 [8.72, 21.33] 11.50 [7.24, 19.33] 0.01
Cr (umol/L) 130.45 [81.80, 205.22] 98.90 [63.02, 158.32] <0.001
PCT (ng/mL) 16.59 [2.90, 59.87] 3.90 [0.86, 26.38] <0.001
PT (s) 16.10 [14.20, 18.10] 13.70 [12.40, 15.20] <0.001
PT-INR 1.45 [1.31, 1.60] 1.16 [1.06, 1.30] <0.001
APTT (s) 36.90 [32.70, 44.90] 32.30 [28.80, 36.62] <0.001
FIB (g/L) 5.23 [3.42, 12.70] 591 [4.16, 11.92] 0.09
TT (s) 15.60 [5.63, 17.30] 15.40 [6.06, 17.20] 0.817
WBC (10°/L) 11.26 [5.95, 17.57] 12.95 [9.10, 18.56] 0.002
NEU (10°/L) 9.63 [4.98, 16.46] 11.46 [7.36, 16.64] 0.012
LYM (10°/L) 0.52[0.32, 0.82] 0.80 [0.46, 1.30] <0.001
MON (10°/L) 0.31 [0.14, 0.51] 0.47 [0.26, 0.84] <0.001
Hb (g/L) 102.00 [88.00, 123.00] 109.50 [91.00, 128.00] 0.011
RDW (fL) 48.30 [45.00, 54.00] 48.70 [45.10, 52.85] 0.64
PLT (10°/L) 92.00 [52.00, 125.25] 232.50 [189.00, 299.50] <0.001
Interventions, n (%)

Deep venous catheterization 279 (83.04) 190 (74.22) 0.009
Anticoagulant drugs 147 (43.75) 137 (53.52) 0.018
Mechanical ventilation 295 (87.80) 231 (90.23) 0.351
Hormones 240 (71.43) 185 (72.27) 0.823
Vasoactive drugs 319 (94.94) 247 (96.48) 0.364
CRRT 188 (55.95) 139 (54.30) 0.688
Infusion of human albumin 256 (76.19) 177 (69.14) 0.055

7, Mann-Whitney test, x* Chi-square test. M, Median, Q,, 1st Quartile, Qs, 3st Quartile. SIC, sepsis-induced coagulopathy; APACHE, acute physiology and chronic health evaluation IT;
SOFA, sequential organ failure assessment; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; RR, respiratory rate; AB, actual bicarbonate;
OI, oxygenation index; BE, base excess; TP, total protein; ALB, albumin; TBIL, total bilirubin; DBIL, direct bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; K,
potassium; Na, sodium; Cl, chloride; Ca, calcium; PO,, phosphorus; Mg, magnesium; BUN, blood urea nitrogen; Cr, creatinine; PCT, procalcitonin; PT, prothrombin time; PT-INR,
prothrombin time-international normalization ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thrombin time, WBC, white blood cells; NEU, neutrophils; LYM,

lymphocytes; MON, monocytes; Hb, hemoglobin; RDW, red blood cell distribution width; PLT, platelet.

were included in the analysis, all of which were statistically significant
(p < 0.05) in the one-way analysis. Subsequently, LASSO regression
was used to further compress the variables, and the optimal penalty
parameter 4 was determined by combining the 10-fold cross-
validation (CV), and the lowest mean square error was used as a
criterion for feature selection. The dynamics of variable coefficient
changes during the screening process of LASSO regression is shown
in Figure 2A, while Figure 2B demonstrates the process of selecting
the optimal value of 4 in the cross-validation. In the end, the LASSO
regression screened a total of 19 variables that were closely related to
the occurrence of SIC, namely: hepatic insufficiency, heart rate, pH,
blood lactate, OI, total protein (TP), TBIL, aspartate
aminotransferase, K, Cl, Mg, BUN, Cr, PCT, APTT, lymphocyte
count, monocyte count, hemoglobin, and deep
intravenous catheterization.
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Based on the above variables screened by LASSO regression,
further multifactorial logistic regression analysis was incorporated
to identify the risk factors independently associated with the risk of
SIC development, and to construct a risk prediction model with
strong predictive ability and clinical utility. Multivariate logistic
regression identified eight independent predictors of SIC: lactate
(odds ratio [OR] =1.081, 95% CI: 1.002-1.167, p = 0.044), OI
(OR =0.998, 95% CI: 0.997-0.999, p = 0.009), TP (OR = 0.969, 95%
CI: 0.951-0.987, p = 0.001), TBIL (OR = 1.017, 95% CI: 1.008-1.025,
p<0.001), BUN (OR = 1.021, 95% CI: 1.005-1.036, p = 0.009), PCT
(OR = 1.008, 95% CI: 1.002-1.015, p = 0.008), APTT (OR = 1.063,
95% CI: 1.040-1.086, p < 0.001), and monocyte count (OR = 0.534,
95% CI: 0.364-0.783, p = 0.001). Detailed results are provided in
Table 2. Based on the previously screened independent predictors of
SIC occurrence, this study further constructed a nomogram model
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3.3 Validation and evaluation of model
effectiveness

3.3.1 Validation set

During the study period, a total of 184 patients with sepsis were
initially identified. Based on the pre-specified inclusion and exclusion
criteria, 25 patients with an ICU stay of less than 24 h, 1 patient with
pre-existing hematologic disorders such as thrombocytopenia, 3
patients with co-morbid hematopoietic malignancies, and 5 patients
with incomplete laboratory data were excluded. Ultimately, 150
patients were included in the validation set for this study
(Supplementary Figure S1). The incidence of SIC in this cohort was
56%. The baseline characteristics of relevant predictor variables in the
validation set are summarized in Supplementary Table S2.

3.3.2 ROC curves and AUC values

In the training set, the nomogram model achieved an AUC of
0.783 (95% CI: 0.746-0.820). In the testing set, the model yielded an
AUC of 0.768 (95% CI: 0.710-0.826). In the validation set, the AUC
was 0.782 (95% CI: 0.708-0.856). These results indicate that the
nomogram model exhibited good predictive performance for the risk
of early-onset SIC. The ROC curves of the model in the training,
testing, and validation sets are shown in Figure 4,
Supplementary Figures S2A,B, respectively, providing a visual
representation of model performance. Detailed results, including AUC
values, 95% CI, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) for each dataset, are presented in

Table 3.

3.3.3 Calibration graph, brier score, and
calibration error

The calibration analysis showed that in all datasets, the Bias-
corrected line was highly consistent with the Apparent line, with only
minor deviations, indicating that the model exhibited good reliability
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FIGURE 2

Lasso regression-based variable screening. (A) Variation
characteristics of variable coefficients. Each colored line represents
the trajectory of a specific variable's coefficient (total of 33 variables)
across different values of the regularization parameter (log 1). As A
decreases (from left to right), more variables are included in the
model, and their coefficients shift from zero toward their ordinary
least squares estimates. (B) The process of selecting the optimal
value of the parameter A in the lasso regression model is carried out
by the cross-validation method. The red dotted line indicates the
optimal A value selected via cross-validation (lambda.min), which
corresponds to the model achieving the minimum mean cross-
validated error. The upper x-axis shows the log(A) values, while the
lower x-axis indicates the corresponding number of nonzero
coefficients in the model at each A

TABLE 2 Multivariate logistic regression analysis of factors associated with the incidence of SIC.

Variables s SE Wald P OR (95% ClI)
Lactate 0.078 0.039 4.072 0.044 1.081 (1.002-1.167)
o1 —0.002 0.001 6.881 0.009 0.998 (0.997-0.999)
TP —0.032 0.01 10.757 0.001 0.969 (0.951-0.987)
TBIL 0.017 0.004 15.548 <0.001 1.017 (1.008-1.025)
BUN 0.021 0.008 6.916 0.009 1.021 (1.005-1.036)
PCT 0.008 0.003 7.003 0.008 1.008 (1.002-1.015)
APTT 0.061 0.011 29.657 <0.001 1.063 (1.040-1.086)
MON —0.628 0.195 10.338 0.001 0.534 (0.364-0.783)
Constant —0.702 0.673 1.089 0.297

B, partial regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval. SIC, sepsis-induced coagulopathy; OI, oxygenation index; TP, total protein; TBIL, total bilirubin;
BUN, blood urea nitrogen; PCT, procalcitonin; APTT, activated partial thromboplastin time; MON, monocytes.
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A nomogram model of morbidity in SIC patients. SIC, sepsis-induced coagulopathy; Ol, oxygenation index; TP, total protein; TBIL, total bilirubin; BUN,
blood urea nitrogen; PCT, procalcitonin; APTT, activated partial thromboplastin time; MON, monocytes.

ROC Curve
o |
[ee]
g
© ]
> o
=
2 /AUC: 0.783
A < ’
o /
o ]
o
o ]
o T/
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity
FIGURE 4
ROC curve of the nomogram model in the training set.

and stability. The calibration curves for the training, testing, and
validation sets are presented in Figure 5, Supplementary Figures S3A,B,
respectively. In addition, the Brier score and calibration error were
calculated to further evaluate the calibration performance of the
model in each dataset, as summarized in Table 4.

3.3.4 DCA curves

DCA was performed to evaluate the clinical utility of the
prediction model in the training, testing, and validation sets (Figure 6;
Supplementary Figures S4A,B). In the DCA plots, the horizontal axis
represents the threshold probability, and the vertical axis represents
the net benefit. The results showed that the nomogram model
provided higher net benefit than the treat-all and treat-none strategies
across most clinically relevant threshold ranges. In particular, within
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the threshold range of 0.1 to 0.8, the model curve remained
consistently above the reference strategies, suggesting favorable
clinical applicability. Furthermore, the model maintained a
comparable net benefit in the external validation set, supporting its
generalizability and robustness across different datasets.

4 Discussion

In this study, we constructed a nomogram model to predict the
risk of SIC in patients with sepsis using multicenter real-world clinical
data. The model's performance was evaluated across multiple
dimensions, including predictive accuracy, calibration, and decision
curve analysis. The validation set results indicated consistent
predictive performance, with the model achieving satisfactory AUC
values, reliable calibration, and favorable net benefit across clinically
relevant threshold probabilities. These findings suggest that the
nomogram may assist clinicians in identifying patients at higher risk
of SIC
early intervention.

and support individualized decision-making in

Coagulation changes in sepsis patients are dynamic, beginning
with early coagulation abnormalities, which may progress to SIC and
eventually DIC (14). Coagulation disorders are reported in
approximately 50-70% of sepsis patients, with nearly 35% developing
secondary DIC (15, 16). Coagulation dysfunction is nearly universal
in sepsis and is strongly associated with multi-organ failure and
increased mortality (17, 18). In SIC, pathogens and inflammatory
mediators trigger thrombus formation through mechanisms including
upregulation of procoagulant pathways, downregulation of
physiological anticoagulant systems, and inhibition of fibrinolysis
(19). Thrombin, a central regulator, binds to protease-activated
amplifying
(0, 21).
Simultaneously, inflammatory cytokine release promotes neutrophil

receptor-1 on monocytes and neutrophils,

pro-inflammatory and pro-coagulant responses
adhesion to endothelial cells, activating complement and coagulation
cascades (22). Complement C5a further induces the release of

damage-associated molecular patterns and pathogen-associated
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TABLE 3 Detailed results of the nomogram model for each dataset.

10.3389/fmed.2025.1653699

Dataset AUC 95% Cl Sensitivity Specificity PPV NPV
Training set 0.783 0.746-0.820 0.652 0.797 0.808 0.636
Testing set 0.768 0.710-0.826 0.632 0.847 0.843 0.562
Validation set 0.782 0.708-0.856 0.869 0.576 0.723 0.776

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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DCA curves of the nomogram model in the training set.

molecular patterns, exacerbating coagulation dysfunction and
inflammation (23). Monocytes and macrophages detect and
phagocytose pathogens, express pattern recognition receptors (e.g.,
Toll-like and Fcy receptors), and release inflammatory mediators,
perpetuating cycles of inflammation and coagulation (24-26). Given
the central role of the inflammatory-coagulation feedback loop and
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TABLE 4 Evaluation of the calibration of the nomogram model across
datasets.

Dataset Brier scores Calibration errors
Training set 0.188 0.015
Testing set 0.195 0.027
Validation set 0.198 0.033

endothelial injury in accelerating SIC progression, early identification
is therefore critical to guide timely intervention and targeted therapies.

Current approaches for predicting the risk of SIC include sensitive
serum biomarkers and clinical scoring systems. Biomarkers such as
PCT and lactate are readily obtained but provide only a snapshot of
the patient’s physiological state, with limited sensitivity and specificity
for predicting SIC (27-29). Clinical scores, including the SOFA, rapid
sequence organ failure, and systemic inflammatory response
syndrome (SIRS) scores, are straightforward but suffer from limited
timeliness and accuracy and are influenced by multiple
pathophysiologic factors (30, 31). Recent studies have highlighted the
prognostic value of composite biomarkers in reflecting systemic
inflammation, nutritional status, and immune function in sepsis
patients. For example, Saridas and Cetinkaya demonstrated that the
CALLY index, a composite biomarker reflecting inflammation,
nutrition, and immunity, has significant prognostic relevance in
sepsis, supporting the use of integrated biomarker-based risk
assessment (32). Additionally, Saridas et al. illustrated the clinical
utility of novel inflammatory markers in predicting complicated
appendicitis, emphasizing the broader applicability of composite
biomarkers in acute inflammatory conditions (33). These findings
underscore the potential value of incorporating multiple clinical and
laboratory parameters into predictive models for early risk
stratification in sepsis. Overall, existing methods are limited by low
predictive strength, instability, and procedural complexity. Developing
efficient and individualized prediction models is thus a priority.
Nomograms integrate multiple variables into a single, user-friendly
tool, facilitating quantitative risk assessment and clinical decision-
making. In this study, we constructed a nomogram for early morbidity
risk in SIC, supporting early warning, risk stratification,
and intervention.

Eight independent risk factors—lactate, OI, TP, TBIL, BUN, PCT,
APTT, and monocyte count—were identified and incorporated into
the predictive model.

Lactate reflects tissue perfusion and oxygen metabolism and is
widely used to detect microcirculatory disturbances in sepsis (34).
Impaired microcirculation and hepatic or renal dysfunction reduce
lactate clearance, causing hyperlactatemia (35). Elevated lactate damages
endothelial cells, alters permeability, triggers exogenous coagulation, and
promotes microthrombus formation, creating a vicious cycle of

frontiersin.org


https://doi.org/10.3389/fmed.2025.1653699
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Tanetal.

hypoperfusion and coagulation dysfunction (36-38). In this study,
lactate levels were significantly higher in SIC patients (OR = 1.018,
95%ClI: 1.002 ~ 1.167, p = 0.044), confirming its role as an independent
risk factor. Monitoring lactate may facilitate early identification of
patients at high risk for SIC, provide insights into potential coagulation
dysfunction and tissue hypoxia, and offer guidance for timely fluid
resuscitation, thus supporting improved clinical management.

O], the ratio of arterial oxygen partial pressure to inspired oxygen
fraction, reflects pulmonary gas exchange. Sepsis-induced acute lung
injury or acute respiratory distress syndrome (ARDS) impairs OI
through alveolar exudation, reduced compliance, and microvascular
thrombosis (39-41). SIC-related coagulation dysfunction contributes
to reduced OI, further exacerbating lung injury. In our cohort, SIC
patients exhibited significantly lower OI (OR = 0.998, 95%CI: 0.997-
0.999, p = 0.009), highlighting its value as an early risk predictor for
SIC. Monitoring OI informs pulmonary function assessment and
prognosis evaluation.

TP encompasses all serum proteins, including albumin and
globulins, essential for colloid osmotic pressure, transport, and
immune function. Hepatic dysfunction in sepsis reduces TP and
coagulation factor synthesis, promoting SIC. Hypoproteinemia
activates coagulation and inflammation, disrupting anticoagulant
homeostasis (42, 43). TP was lower in SIC patients (OR = 0.969,
95%CI: 0.951 ~0.987, p=0.001), suggesting a poor prognosis.
Correction of hypoproteinemia may improve coagulation and
survival outcomes.

TBIL, the sum of direct and indirect bilirubin, rises with hepatic
dysfunction and SIRS-induced cholestasis (44, 45). Elevated TBIL
reflects oxidative stress, endothelial injury, and coagulation activation,
contributing to microcirculatory disturbances. TBIL was significantly
higher in SIC patients (OR = 1.017, 95%CI: 1.008 ~ 1.025, p < 0.001),
serving as a marker of liver injury and coagulation impairment.
Monitoring TBIL guides therapeutic strategies to reduce inflammation
and oxidative stress.

BUN, an end product of protein metabolism, accumulates due to
renal impairment and hypercatabolism in SIC (46, 47). Elevated BUN
worsens coagulation by reducing clearance of coagulation factors and
fibrin degradation products, increasing blood viscosity and anemia.
SIC patients had higher BUN (OR = 1.021, 95%CI: 1.005 ~ 1.036,
p =0.009). BUN monitoring informs renal perfusion strategies and
inflammatory control.

PCT, a precursor of calcitonin, markedly elevates under
inflammatory conditions. In SIC, PCT stimulates von Willebrand
factor release and microthrombosis, exacerbating coagulation
disorders (48). Higher PCT was observed in SIC patients (OR = 1.008,
95%CI: 1.002 ~ 1.015, p = 0.008). Combining PCT with coagulation
tests enables comprehensive assessment and guides targeted anti-
infective and anticoagulant therapy.

APTT evaluates endogenous coagulation. In SIC, inflammatory
mediators activate coagulation pathways, consuming factors and
prolonging APTT. Dysfunctional anticoagulant systems, including
protein C and antithrombin, further disrupt hemostasis (49). SIC
patients exhibited prolonged APTT (OR=1.063, 95%CI:
1.040 ~ 1.086, p < 0.001), indicating factor depletion and fibrinolytic
activation. APTT informs decisions on coagulation factor
supplementation or anticoagulation therapy.

Monocytes regulate immune response and inflammation. In SIC,
myelosuppression reduces monocyte counts, impairing pathogen
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clearance and cytokine production, perpetuating coagulation
activation (50). Lower monocyte counts in SIC patients (OR = 0.534,
95%CI: 0.364 ~ 0.783, p = 0.001) reflect severe immune dysfunction
and poor prognosis.

This study has several advantages. (1) Multicenter data and
rigorous methodological design: Based on multicenter data from Hebei
General Hospital and Handan Central Hospital (East District), this
study included 847 patients with sepsis and was randomly divided into
training and testing sets using a 7:3 ratio, along with independent
external validation (150 cases). The study strictly adhered to the
TRIPOD statement, and variables were screened by univariate analysis,
LASSO regression, and multifactorial logistic regression to ensure the
scientific validity and stability of the model. (2) Construction and
validation of the integrated predictive model: This study integrated
eight key clinical indicators (lactate, OI, TP, TBIL, BUN, PCT, APTT,
and monocyte count), constructed a nomogram model, and
demonstrated good discriminative ability in the training set
(AUC =0.783), testing set (AUC=0.768), and validation set
(AUC = 0.782), suggesting that the model has high prediction accuracy.
(3) Multi-dimensional model evaluation: This study not only assessed
the discriminative ability of the model through ROC curves, but also
evaluated the calibration and clinical utility of the model by combining
calibration curves (Brier score, calibration error) and DCA curves. The
DCA results showed that the model had a significant net benefit within
the risk threshold range of 0.1-0.8, which supports its application value
in clinical decision making. (4) Clinical applicability: The nomograms
are presented in a visual way, which facilitates clinicians to quickly
assess the risk of SIC in patients without complex calculations. In
addition, the indicators included in the study are all routine laboratory
tests (e.g., lactate, PCT, APTT, etc.), which are easy to generalize in
clinical practice. (5) Mechanistic explanation and clinical significance
are clear: This study discussed in detail the association of each predictor
variable (e.g., lactate, oxygenation index, monocyte count) with the
pathogenesis of SIC, provided theoretical support for the biological
plausibility of the model, and suggested targeted clinical interventions
(e.g., monitoring of lactate, correction of hypoproteinemia, etc.).

In order to provide a practical guide for clinicians on the use of our
nomogram, we present a representative clinical scenario. Consider a
sepsis patient presenting with a lactate level of 4 mmol/L, a monocyte
count of 0.3 x 10°/L, and an APTT of 50 s. By applying our nomogram,
the total point score for this patient is calculated as 120, corresponding
to an estimated risk of developing SIC of approximately 75%. This high
predicted risk would suggest that the attending physician should
implement closer monitoring of coagulation parameters, consider early
anticoagulant therapy if indicated, and evaluate the need for ICU
admission. Such an example illustrates how different clinical variables
interact within the nomogram to generate a quantitative risk
assessment, thereby facilitating timely and evidence-based clinical
decision-making. By providing clinicians with a clear, individualized
risk estimate, the nomogram can support rapid identification of high-
risk patients, optimize resource allocation, and potentially improve
patient outcomes. We anticipate that integrating this tool into daily
clinical practice will enhance the precision of SIC management and
increase clinician confidence in initiating appropriate interventions.

This study has several limitations. First, as a retrospective study,
data were obtained from electronic medical records, which may
contain incomplete or inaccurate entries, potentially leaving some
confounding factors unaddressed. Second, despite including multiple
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clinical variables, certain factors such as genetic or environmental
influences were not captured, which may limit the model’s predictive
ability for all sepsis patients. Third, the analysis focused on baseline
parameters at ICU admission and did not fully account for dynamic
changes in coagulation function, which may restrict risk prediction
over time. Fourth, traditional logistic regression was used, without
exploring machine learning or deep learning approaches that could
capture nonlinear relationships and potentially improve predictive
accuracy. Fifth, although a multicenter study was conducted, all
patients were from hospitals in Hebei Province, which limits
generalizability to other regions with different disease spectra, medical
resources, or environmental conditions. Additionally, two specific
limitations were considered. Sixth, the overall proportion of missing
values was relatively low (<5%), and records with missing data were
excluded rather than imputed. While this approach is unlikely to
substantially affect results, different strategies for handling missing data
could influence model stability and performance. Seventh, although
data were collected on the day of sepsis diagnosis, subsequent
treatments—such as anticoagulants, corticosteroids, or Vasopressors—
may have affected the development of SIC, representing a potential
confounding factor that our model cannot fully account for. Future
prospective studies incorporating dynamic treatment data could
further improve predictive accuracy and clinical applicability. These
limitations highlight the need for cautious interpretation of our
findings and underscore the importance of further validation in
broader, dynamically monitored patient populations.

5 Conclusion

We developed a nomogram model to predict the risk of SIC in
patients with sepsis and validated its potential as a clinically
reliable tool. The overall accuracy and clinical utility value of the
model was high and the fit was good. The nomogram model can
visualize the main causes of SIC in sepsis patients to precisely guide
clinicians to take individualized diagnostic and therapeutic
measures to reduce the incidence of poor prognosis in
sepsis patients.
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