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Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus affecting 10-20
million people worldwide. While many carriers remain asymptomatic, HTLV-
1 infection can trigger intense inflammatory responses which are defined
by the sustained release of pro-inflammatory cytokines and chemokines.
Central to this process is the HTLV-1 encoded Tax oncoprotein, a viral
regulator that drives uncontrolled inflammation by hijacking multiple cellular
signaling pathways, such as the RelA/NF-kB signal transduction pathway. CD4
T-cells are the primary targets of Tax-mediated transformation, undergoing
uncontrolled proliferation and significantly contributing to chronic immune
activation seen in HTLV-1-associated diseases. However, highly activated CD4
T-cells are not alone in fueling this inflammatory “wildfire.” Other immune
cells, including CD8 T-cells, monocytes, macrophages, dendritic cells, and
neutrophils, also play critical roles in exacerbating the inflammatory milieu.
These cells, in conjunction with CD4 T-cells, release a barrage of pro-
inflammatory cytokines (IL-1a/B, IL-2, IL-6, IL-12, IL-17, TNF-a/B, and IFN-vy)
and chemokines (MCP-1, MIP-1a/B, RANTES, MCP-3, IL-8, CXCL9, CXCL10,
and CXCL11), all of which are perpetuating the cycle of immune activation and
tissue damage. This hyper stimulated immune response contributes to HTLV-1
replication/dissemination and can lead to the development of adult T-cell
leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical
spastic paraparesis (HAM-TSP). Despite existing treatments aimed at
controlling viral replication, the persistent inflammation in HTLV-1-infected
individuals even in asymptomatic carriers (ACs) remains a major challenge,
suggesting that targeting these pro-inflammatory responses may be another
mandatory therapeutic strategy. In this context, this short-review focuses
on the key immune responses that drive HTLV-1-associated inflammation

01 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1653384
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1653384&domain=pdf&date_stamp=2025-09-12
mailto:julien.vangrevenynghe@inrs.ca
https://doi.org/10.3389/fmed.2025.1653384
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1653384/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Shegefti et al.

and explores how these high pro-inflammatory
to the development of HTLV-1-related complications,
TSP, ATLL, and other associated

viral infection.

KEYWORDS

HTLV-1, HTLV-1

tax protein,

10.3389/fmed.2025.1653384

responses contribute
including HAM-
infammatory diseases during chronic

inflammation, NF-kB signaling pathway,

cytokine/chemokine, ATLL, HAM-TSP, asymptomatic carriers

1 Introduction: the need to develop
new strategies for counteracting
HTLV-1

The infection with the human T-cell leukemia virus type
1 (HTLV-1), the only known human oncogenic retrovirus, has
been recently estimated to affect up to 20 million people
worldwide. It is predominantly spreading across endemic regions
in Japan, Africa, Asia, the Caribbean, Central/South America,
the Middle East and includes the Australo-Melanesia area (1-
3). The virus is transmitted through the bodily fluids of
infected individuals, primarily breast milk, blood, and semen
(4, 5). Although approximately 90% of the infected individuals
remain asymptomatic carriers during their lives, chronic infection
with HTLV-1 can result in multiple severe pathologies; these
include the adult T-cell leukemia/lymphoma (ATLL), an aggressive
neoplasm of CD25" CD4 T-cells in about 5% of infected
individuals after a prolonged latent period of 30-50 years (2,
6). HTLV-1 infection is also the causative agent of inflammatory
disorders, most notably HTLV-1-associated myelopathy/tropical
spastic paraparesis (HAM/TSP) asides other afflictions, such as
uveitis, a chronic inflammatory interstitial lung disease called
cryptogenic fibrosing alveolitis (CFA), rheumatic syndromes and
a high predisposition to glaucoma, sarcopenia, atherosclerosis,
helminthic and bacterial infections (7-10). Currently, there are no
prospects of functional vaccines for HTLV-1, screening of blood
banks and there are no universal diagnostic tools in prenatal care
settings. Existing treatments for ATLL and HAM/TSP are largely
ineffective, thus emphasizing the urgent need for new targeted
therapies (1, 11-14). A deeper understanding of how HTLV-1
infection impacts immune responses and persist in the host is a
critical step for the development of these novel antiviral strategies.
In this context, this short-review aims to provide a brief overview
of the uncontrolled inflammatory responses reported in HTLV-1
infections and how they actively contribute to viral dissemination
and disease development.

2 HTLV-1 infection causes strong
and sustained inflammatory
responses

The immunopathogenesis of HTLV-1 is intriguing, since its
lifelong persistence in the host determines a prolonged interaction
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between the virus and the immune system, which can ultimately
contribute to the development of both ATLL and HAM/TSP
conditions when inflammatory responses become uncontrolled.
Although CD4 T-cells remain the main cell target for HTLV-1
(1, 15), the virus can also infect CD8 T-cells and immune cells
of the myeloid lineage like dendritic cells (DCs), monocytes, and
macrophages, altogether sustaining a strong poly-inflammatory
milieu in the infected hosts due to HTLV-1 persistence (16-19).
Although multiple causal factors during chronic HTLV-1 infection
contribute to trigger the uncontrolled inflammatory responses,
HTLV-1 Tax protein, the host innate sensing and high TNF-a
release play a pivotal role in the process, mainly by constitutively
inducing RelA/NF-kB signal transduction pathway in infected
individuals (Figure 1 and Tables 1, 2).

2.1 Impact of HTLV-1 tax protein

Like other retroviruses, the integrated HTLV-1 proviral genome
is made up of two long terminal repeat sequences, flanking
structural genes gag, pol, and env. HTLV-1 also has a unique 1.6 kb
accessory region, termed the pX region, which encodes a few
regulatory viral proteins when cells are productively infected (14,
20, 21). These mainly include the expression of the trans-activator
protein Tax, which is known to hijack multiple intracellular
signaling pathways that contribute to inflammation and immune
activation, thereby ultimately promoting the proliferation of
HTLV-1-infected T-cells and viral dissemination (22, 23). Among
those, the nuclear transcription factor NF-kB plays a central role in
coordinating various cellular signals that serve as pivotal mediators
of inflammatory responses in the form of multiple encoding
cytokines and chemokines (IL-1f, IL-2, IL-6, IL-8, TNF-a, MIP-
la/p and RANTES among others) (22, 24-26). The prototypical
NF-kB complex corresponds to a heterodimer of the NF-kB1 (p50)
and RelA (p65) members of the NF-kB/Rel family of transcription
factors (27). Evidence shows that HTLV-1 Tax has developed
multiple hijacking strategies to activate NF-kB signaling pathway;
First, it induces the phosphorylation and degradation of both
IkBa and IkBf through the activation of the IkB kinase (IKK)
complex, resulting in the nuclear translocation of active NF-kB
(27-29). Tax also recruits the co-activator protein p300/CBP (30,
31) whose nuclear interaction with the RelA subunit of NF-
kB is vital for RelA-dependent gene transcription (32). Finally,
Tax stimulates the catalytic activity of the IKK-activating kinase
TAK1 and mediates the physical recruitment of IKK to TAKI
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FIGURE 1

toll-like receptors; TNF-a, tumor necrosis factor alpha.

Schematic representation of HTLV-1 virological aspects and disease progression. (Left side) HTLV-1 infects multiple immune cell types, primarily
CD4L T cells, but also CDS! T cells, monocytes, macrophages, and dendritic cells. Viral proteins (regulatory: Tax, Rex, HBZ, p21, pl2, p13, p30;
structural: pl9, p24, p15) activate pattern recognition receptors (PRRs) and toll-like receptors (TLRs), leading to NF-xB-mediated production of
pro-inflammatory cytokines and chemokines, establishing a chronic inflammation feedback loop. (Right side) Disease outcomes include adult T-cell
leukemia/lymphoma (ATLL, 3%-5% of infected individuals) characterized by uncontrolled CD4* T-cell proliferation, persistent activation of NF-kB,
STAT3, and PT3K/AKT pathways, and clonal expansion; and HTLV-1- associated myelopathy/tropical spastic paraparesis (HAM/TSP, 1%-4% of
infected individuals) involving central nervous system (CNS) infiltration, persistent cytokine production, CTL dysfunction, and neuronal damage.
ATLL, adult T-cell leukemia/lymphoma; CNS, central nervous system; CTL, cytotoxic T lymphocyte; CXCL, C-X-C motif chemokine ligand; HBZ,
HTLV-1 basic leucine zipper factor; HAM/TSP, HTLV-1-associated myelopathy/tropical spastic paraparesis; ITLV-l, human T-cell leukemia virus type
1; IFN, interferon; IL, interleukin; MCP, monocyte chemoattractant protein; M1P, macrophage inflammatory protein; NF-kB, nuclear factor
kappa-light-chain-enhancer of activated B cells; PI3K/AKT, phosphoinositide 3-kinase/protein kinase B pathway; PRRs, pattern recognition
receptors; RANTES, regulated upon activation, normal T cell expressed and secreted; STAT3, signal transducer and activator of transcription 3; TLRs,

in productively infected cells, including Tax-positive HTLV-1-
transformed T-cells (33-35). Evidence shows that HTLV-1 Tax
induces the secretion of multiple pro-inflammatory cytokines (IL-
2, IL-12, TNF-a/B, and IFN- y) and chemokines (MCP-1, MIP-
la/B, and MCP-3) in immature monocyte-derived dendritic cells
(MDDCs) in a NF-kB-dependent manner (36, 37). Jurkat CD4
T-cell line, when treated with Tax, induces transactivation of the
MCPI gene (38). Both peripheral monocyte-derived macrophages
(MDMs) and microglia (specialized cells, acting as the brain’s
resident macrophages), when cultivated in vitro with HTLV-1
Tax, secrete high amounts of pro-inflammatory IL-1f, and IL-
6, and TNF-a cytokines (39). Similarly, HTLV-1 Tax mediates
MIP-1a/p and RANTES expression in peripheral mononuclear
cells (PBMCs) via the NF-kB signaling pathway (40, 41). Finally,
although Tax expression in HTLV-1-infected individuals is tightly
regulated and often silenced to evade immune detection, especially
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in ATLL patients, it can still be reactivated by multiple stressors,
such as hypoxia, T-cell reactivation and oxidative stress, thereby
sustaining viral persistence and long-lasting proinflammatory
immune responses (42-44). So far, HTLV-1 Tax is one of the
key viral proteins which has comprehensive executive function
associated with developing HAM-TSP and ATLL conditions, that
especially contribute in tissue inflammation/damage and T-cell
hyperimmune activation (24, 45-48).

2.2 Impact of host innate sensing and
autocrine regulation by TNF-a

Innate immune-mediated inflammation plays a critical role in
inhibiting pathogenic viruses through the recognition of multiple
viral components by the host pattern recognition receptors (PRRs)
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TABLE 1 Pro-inflammatory cytokines and HTLV-1 infection, including associations with virus-related HAM-TSP and ATLL conditions.

Aliases Info in the context of HTLV-1 infection Additional info References
pro-Inflammatory cytokines

IL-1 (a/B) LAF Tax-treated microglia cells secrete high protein levels for IL-Ip Cell supernatants (48 h of culture) (39)
Higher protein release of IL-ip in HAM-TSP vs. HCs PBMCsupernatants (24 h of unstimulated culture) (82)
HTLV-1-infected CD4T-cells from HTLV-1Tuveitis patients produced large amounts of IL-1 Infiltrating CD4T-cells in eyes 1)
High mRNA expression of both ILIA and IL1B in ATLLcells from Tax-transgenic mice Expression in both Tax’ and Tax™cells (105)
1L-2 Lymphokine2 Tax-treated MDDCs secrete IL-2cytokine in culture Cell supernatants (24 h of culture) (36)
Higher mRNA levels for IL2 in PBMCs from ATLL patients vs. HCs Along with increased Nf-KB-related genes (51)
Neutralization of IL-2 decreases IFN-y levels in PBMC culture from ACs PBMCsupernatants (24-48 h of culture) (62)
Higher plasma levels for IL-2 in HAM-TSP patients vs. ACs Higher levels in HAM-TSP patients vs. ATLL (67)
High production and cell dependency to IL-2 of HTLV-l-infected CD4T-cells for proliferation Contribution to cell transformation (after weeks of culture stimulation) (98)
1L-6 Interferon beta-2 Tax-treated microglia cells secrete high protein levels for IL-6 Cell supernatants (48 h of culture) (39)
Higher plasma levels for IL-6 in ATLLpatients with aggressive cancer form vs. “indolent” form Correlation between high plasma IL-6levels and shorter survival rates in ATLL (67)
Higher protein levels for IL-6 in both sera and CSF from HAM-TSP patients vs. ACs Along with higher IL-6 activity (69)
Higher mRNA levels of IL6 in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85)
HTLV-l-infected CD4T-cells from HTLV-1" uveitis patients produced large amounts of IL-6 Infiltrating CD4T-cells in eyes 91)
Higher sera levels for IL-6 in ATLL patients vs. ACs and HCs Correlation between high plasma IL-6 levels and ATLL severity (100)
High mRNA expression of both IL6 in ATLL cells from Tax-transgenic mice Expression in both Tax’ and Tax™ cells (105)

1L-12 Tax-treated MDDCs secrete IL-12cytokine in culture Cell supernatants (24/48 h of culture); induction in a Nf-KB-dependent manner (36, 37)
Higher proportion of IL-12-expressing monocytes and pDCs in HAM-TSP patients vs. ACs PBMCs stimulated for 48 h of culture with TLR;7 /g agonist (innate sensing) (84)
Higher mRNA levels of IL17 in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85)
1L-17 IL-17A; CTLA-8 Higher mRNA levels of IL17 in PBMCsfrom ATLLpatients vs. HCs Along with increased Nf-KB-related genes (51)
Higher plasma levels for IL-17 in HAM-TSP patients vs. ACs Higher levels in HAM-TSP patients vs. ATLL (67)
Higher proportion of IL-17-expressing CD4T-cells in HAM-TSP patients vs. ACs and HCs PBMC culture with 3 days of cell stimulation (79)
Increased proportion of CD4 + CD8 + DP cells in PBMCs from HAM-TSP patients vs. ACs DP cells are strong IL-17 producers among T-cell lineage (80)

and HCs

Higher mRNA levels of IL17 in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85)

TNF (a/B) TNESF 1,2 Tax-treated MDDCs secrete TNF-a and -0 cytokines in culture Cell supernatants (24/48 h of culture); induction in a Nf-KB-dependent manner (36,37)
Tax-treated microglia cells secrete high protein levels for TNF-a Cell supernatants (48 h of culture) (39)
Higher mRNA levels of IL17 in PBMCs from ATLL patients vs. HCs Along with increased Nf-KB-related genes (51)
Higher sera/plasma levels for TNF-a in HAM-TSP vs. ACs (53)
Higher plasma levels for TNF-a in ATLLpatients with aggressive cancer form vs. “indolent” Correlation between high plasma TNF-a levels and shorter survival rates in ATLL (67)

form
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TABLE 1 (Continued)

Aliases Info in the context of HTLV-1 infection Additional info References
Increased proportion of CD4 + CD8 + DP cells in PBMCs from HAM-TSP patients vs. ACs DP cells are strong TNF-a producers among T-cell lineage (80)
and HCs

Higher TNF-a expression in CD14 ™ monocytes from HAM-TSP vs. HCs 24 h of unstimulated PBMC culture (82)

Maintenance of high TNF-a production by CD14+CD16™ monocytes in HAM-TSP Maintenance despite GM-CSF and IL-4 DC-driven differentiation (83)

Higher mRNA levels of TNFA in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85)

HTLV-l-infected CD4T-cells from HTLV-17 uveitis patients produced large amounts of Infiltrating CD4T-cells in eyes (91)
TNF-a

Increased TNF-a expression in FoxP3™ splenocytes from HBZ transgenic mice Also higher IL-2 and IL-17 expressions in FoxP3 + cells from HBZ transgenic mice (107)

IFN-y IFNG; [FG Tax-treated MDDCs secrete IFN-y cytokine in culture Cell supernatants (24/48 h of culture) (36)

Higher sera/plasma levels for IFN-y in HAM-TSP vs. ACs Correlation between IFN-y and IL-6 levels in HAM-TSP patients (53)

Higher IFN-y production in PBMC supernatant of HAM-TSP patients vs. ACs (3 days if Correlation between IFN-y and CXCL9/or CXCL10 levels in HAM-TSP patients (66)

unstimulated culture)

Higher plasma levels for IFN-y in HAM-TSP patients vs. ACs Higher levels in HAM-TSP patients vs. ATLL (67)

Higher IFN-y production in Tax-stimulated PBMCs in HAM-TSP patients vs. ACs and HCs Higher IFN-y levels in ACs vs. HCs (77)

Higher plasma and mRNA levels (within PBMC) for IFN-y in HAM-TSP patients vs. Acs and Higher IFN-y levels in ACs vs. HCs (plasma and mRNA levels in PBMCs) (78)

HCs
Higher proportion of IFN-y-expressing CD8T-cells in HAM-TSP patients vs. ACs and HCs PBMC culture with 3 days of cell stimulation (79)
Increased proportion of CD4 + CD8 + DP cells in PBMCs from HAM-TSP patients vs. ACs DP cells are strong IFN-y producers among T-cell lineage (80)
and HCs

Higher proportion of IFN-y-expressing CD56"8CD16'NKs in HAM-TSP patients vs. ACs PBMCs stimulated for 48 h of culture with TLRy7/g agonist (innate sensing) (84)

HTLV-l-infected CD4T-cells from HTLV-1T uveitis patients produced large amounts of Infiltrating CD4T-cells in eyes 1)
IFN-y

Increased IFN-y expression in both FoxP3™ and FoxP3’splenocytes from HBZ transgenic Higher IFN-y-producing cells in both lung and PBMCs in HBZ transgenic mice (107)
mice

CTLA-8, cytotoxic T-lymphocyte-associated protein 8; IFN-y, interferon gamma; IL, interleukin; LAF, lymphocyte activatory factor; TNFSE, tumor necrosis factor superfamily.
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TABLE 2 Pro-inflammatory chemokines and HTLV-1 infection, including associations with virus-related HAM-TSP and ATLL conditions.

Info in the context of HTLV-1 infection Additional info

References

Pro-inflammatory chemokines
MCP-1 CCL2 Tax-treated MDDCs secrete MCP-1 chemokinein culture Cell supernatants (24/48 h of culture); also induction of CCLU (eotaxin) (36)
ATLL cells and HTLV-l-infected CD4 T-cell lines vs. uninfected cells display higher mRN A Tax- and Nf-KB-dependent process (38)
levels for MCP1
Higher sera and CSF protein levels for MCP-1 in both HAM-TSP patients and ACs vs. HCs Also increased sera/CSF levels in HAM-TSP vs ACs for CCLU, CCL17 and CXCL5 (72)
Increased mRNA expression in lung cells for MCP1I in Tax transgenic mice vs. WT animals Along with increased nRNA levels for pro-inflammatory cytokines (IL1B, TNFA (94)
and IFNG)
MIP-la/B CCL3 (MIP-la) and Tax-treated MDDCs secrete both MIP-la and -B chemokines in culture Cell supernatants (24 h of culture); MIP-la induction in a Nf-KB-dependent 37)
CCL4 (MIP-1B) manner
Tax-treated PBMCs induce both MIPl-a and - secretions in culture su pern anta nt Nf-KB-dependent processes; 2-24 h of culture (40, 41)
Increased CSF levels for both MIPla/p in HAM-TSP vs. ACs No difference in sera levels (72)
Higher proportion of MIP-la-expressing monocytes and pDCs in HAM-TSP patients vs. ACs PBMCs stimulated for 48 h of culture with TLR7zg agonist (innate sensing) (84)
High BALF levels for MIP-lo in HTLV-l-infected patients vs. HCs Correlation between MIP-la levelsand% of activated T-cells in BALFfrom HTLV-1* (93)
patients with CFA
Increased mRNA expression in lung cells for MIPIA and IB inTax transgenic mice vs. WT Along with increased nRN A levels for pro-inflammatory cytokines (IL1B, TNFA (94)
animals and IFNG)
Increased supernatant secretion for MIP-la in HTLV-1*CD4 T-cell lines vs. HTLV-1’ cells Tax-dependent manner process (103)
RANTES CCL5 ATLL cells and HTLV-l-infected CD4T-cell lines vs uninfected cells display higher mRNA Tax- and Nf-KB-dependent process (38)
levels for RANTES
Tax-treated PBMCs induce RANTES secretion in culture supernantants Nf-KB-dependent processes (40, 41)
Higher sera and CSF levels for RANTES in HAM-TSP patients vs. ACs (53,71)
Higher RANTES release by immature MDMs from HAM-TSP patients vs. ACs and HCs Culture supernantant (48 h of unstimulated culture) (81)
. Increased mRNA expression in lung cells for RANTES in Tax transgenic mice vs. WT animals Along with increased nRNA levels for pro-inflammatory cytokines (IL1B, TNFA (94)
and IFNG)
Increased supernatant secretion for RANTES in HTLV-1* CD4 T-cell lines vs. HTLV-1'cells Tax-dependent manner process (103)
Increased secretion for RANTES a dn intracellular mRNA levels in HTLV-1* CD4T-cell lines Tax- and Nf-KB-dependent manner process (104)
vs. HTLV-1 cells
MCP-3 CCL7 Tax-treated MDDCs secrete MCP-3chemokinein culture Cell supernatants (24/48 h of culture); also induction of CCLU (eotaxin) (36)
CXCL8 IL-8 Higher sera and CSF protein levels for IL-8 in both HAM-TSP patients and ACs vs HCs Also increased sera/CSF levels in HAM-TSP vs. ACs for CCL11, CCL17 and (72)
CXCL5
Increased supernatant secretion for IL-8 in HTLV-1* CD4 T-cell lines vs. HTLV-1’ cells Tax-dependent manner process (103)
(Continued)
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Higher sera and CSF levels for CXCL9 in HAM-TSP patients vs. ACs and HCs

Higher CXCL9 release by immature MDMs from HAM-TSP patients vs. ACs and HCs

Higher sera and CSF levels for CXCL10 in HAM-TSP patients vs. ACs and HCs

Higher plasma levels for CXCL10 in HAM-TSP patients vs. ACs and ATLL
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CCL, C-C motif chemokine ligand; CXCL, C-X-C motif chemokine ligand; IP-10, interferon-induced protein 10; I-TAC, interferon-inducible T-cell alpha chemoattractant; MCP, monocyte chemoattractant protein; MIG, monokine induced by gamma interferon; MIP,

macrophage inflammatory protein; RANTES, regulated on activation, normal T-cell expressed and secreted.
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(49). In the context of HTLV-1 infection, the replication cycle
yields multiple pathogen-associated molecular patterns such as
viral RNA, RNA/DNA intermediates, and single- or double-
stranded DNA, which are recognized by cytosolic sensors including
cGAS, IFI-16, along with Ku70, which activate the STING-
TBK-1 axis to induce IRF3-driven type I interferon responses.
Endosomal PRRs such as toll-like receptor 3 (TLR3), TLR7/8,
and TLRY also respond to viral RNA or CpG-rich DNA via
TRIF- or MyD88-dependent pathways, converging on both IRF3
and NF-kB inflammatory signaling (50). Surface TLRs such as
TLR2 and TLR4 actively participate in sensing; For example,
the accessory protein HTLV-1 p30 antagonizes TLR4 signaling
in monocytes and dendritic cells, thereby deregulating MCP-1,
TNF-a, IL-8 and IL-10 production (51). Its regulatory protein
Tax robustly activates NF-kB and AP-1 transcription factors,
driving expression of IL-2, IL-6, TNF-a, CCL2/MCP-1, and
CXCL10 (47, 52), whereas HTLV-1 HBZ protein attenuates IRF3-
mediated interferon signaling, dampening IFN-I responses (53).
Additionally, HTLV-1 p12 and p8 proteins can both modulate IL-
2 receptor signaling and enhance STATS5 activation even in the
absence of IL-2, while facilitating immune evasion and cell-to-
cell transmission (54, 55). Collectively, this complex interplay of
innate sensing and viral countermeasures orchestrates a potent
inflammatory and chemotactic cytokine milieu -comprising IL-
18, IL-2, IL-6, TNF-a, CCL2, CXCL10, and RANTES - that
underlies chronic inflammation in HTLV-1-associated diseases
such as ATLL and HAM-TSP (16, 50). Although there are
intricate strategies employed by HTLV-1 to subvert the host
innate IFN-I responses that contribute both to viral immune
evasion and the development of HTLV-1-associated diseases (50),
chronic HTLV-1 infection is still associated with unrelenting
host innate sensing and immune activation accompanied by
high levels of pro-inflammatory cytokines/chemokines (56-59).
This outcome likely results from the host’s continuous, albeit
unsuccessful, attempts to eradicate viral infection and maintain
tissue homeostasis. In this context, the pro-inflammatory TNF-
a cytokine, known for triggering upstream signaling events
leading to the autocrine activation of NF-kB pathway (60), is
likely one of the critical players of sustained HTLV-1-driven
inflammation. Recent studies have shown that anti-TNF-a agents
can be effective in treating inflammatory diseases related to HTLV-
1 (such as arthropathy, uveitis, and other rheumatic conditions
associated with the given viral infection) (61-64). In fact, the
inflammatory response triggered by the increased of TNF-a along
with IFN-y and IL-2, mainly by the CD4 T-cell response, is
what maintains the chronic inflammatory process in HAM-TSP
patients (65-67).

3 Strong pro-inflammatory
signatures in HAM-TSP and ATLL
patients

Evidence shows that both aberrant expression and/or function
of pro-inflammatory cytokines and chemokines actively contribute
to the pathogenesis of HTLV-1-associated diseases involved in
the inflammation of the central nervous system (CNS), which
occurs in cases of HAM-TSP, as well as T-cell immortalization and
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tissue infiltration observed in ATLL patients (19, 68, 69) (Figure 1
and Tables 1, 2). In addition to immune activation, chronic
HTLV-1-driven inflammation may also foster a pro-angiogenic
microenvironment. Tax-mediated NF-kB activation stimulates
the expression of vascular endothelial growth factor (VEGF)
and basic fibroblast growth factor (bFGF), potent mediators of
angiogenesis. These factors promote endothelial proliferation,
vascular remodeling, and increased permeability changes that may
facilitate tumor cell migration to lymph nodes in ATLL. Thus,
angiogenesis represents a complementary mechanism through
which HTLV-1-induced inflammation may contribute to disease
progression (70, 71).

3.1 Profile in HAM-TSP

HTLV-1-associated myelopathy/tropical spastic paraparesis is a
progressive disease of the CNS that causes weakness or paralysis
of the legs, lower back pain, and urinary symptoms, which occur
in approximately 2%-3% of HTLV-1 carriers (72). This HTLV-
1-related disease is characterized by a hyper-stimulated immune
response, which includes elevated levels of inflammatory cytokines
and chemokines, and the recruitment/oligonal expansion of virus-
specific cytotoxic CD8 T-cells in the CNS; all of which contributes
to nerve tissue damage and loss of motor functions in patients. In
this context, data show that the sera/plasma and cerebrospinal fluid
(CSF) from HAM-TSP patients always display higher protein levels
of IL-2, IL-6, IL-17, TNF-a, IFN-y, MCP-1, RANTES, CXCL9,
CXCL10, and CXCLI11 when compared to ACs (58, 73-80). Data
also show increased ex vivo levels of CSF neopterin in HAM-
TSP patients (77, 79-81), which is a molecule synthesized by
macrophages upon stimulation with IFN-y and is indicative of
a pro-inflammatory immune status (82). In fact, CSF CXCL9,
CXCL10, and neopterin are described as trustworthy prognostic
biomarkers for HAM-TSP disease progression (77-79, 81, 83).
Although no differences are detected between HAM-TSP patients
and ACs, levels of MCP-1 and IL-8 chemokines are higher in the
sera and CSF from HTLV-1-infected individuals when compared
to HCs (79). Research studies have further confirmed the higher
cellular ability of HAM-TSP patients to secrete pro-inflammatory
cytokines and chemokines in culture. For example, peripheral
blood mononuclear cells (PBMCs) and CD8 T-cells of HAM-TSP
patients stimulated or not with Tax peptides display higher mRNA
and protein levels of IFN-y when compared to both ACs and
HCs (84-86). PBMCs from HAM-TSP patients further show an
increased proportion of IL-17-expressing CD4 T-cells (86) and of
inflammatory CD4TCD8* T-cell populations whose IFN-y, TNF-
o, IL-17, and CXCL10 productions are one of the most pronounced
among stimulated T-cells (87). Immature MDMs from HAM-TSP
patients, when incubated in unstimulated cultures, show higher
spontaneous secretion of RANTES and CXCL9 chemokines in
comparison to both ACs and HCs (88). It is worth noting that
pro-inflammatory CD16™ monocytes of HAM-TSP patients, whose
proportions are increased in PBMCs in comparison to both ACs
and HCs (88), are unable to fully mature into dendritic cells and
maintain a high production of TNF-a and IL-1p cytokines (89,
90). Similarly, higher proportions of pro-inflammatory monocytes
producing IL-12 and MIP-1a, plasmacytoid DCs producing IL-
12 and CD56"$"CD16™ natural killer cells producing IFN-y are
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detected in HAM-TSP blood samples in response to innate immune
sensing when compared to ACs (91). The comparative gene
expression profiles of polynuclear neutrophils between ACs and
HAM-TSP patients have revealed higher expression of multiple
genes related to the Nf-kB signaling pathway and pro-inflammatory
responses including TNFA, IL6, and IL17 (92). Altogether, this
evidence infers that, during HAM-TSP development model, HTLV-
1-infected cells in the CNS may produce large amounts of IFN-
y that can induce resident macrophages, DCs, neutrophils and
astrocytes to secrete MCP-1, MIP-1a/B, RANTES, CXCL9, and
CXCL10 chemokines among others (7, 93-95). The latter recruit
more infected cells, including Tax-expressing CD4 T-cells, to the
aera along with cytotoxic CD8 T-cells, which constitute a T-helper
type 1 (Thl)-centric feedback loop (IL-1p, IL-2, TNF-a, IL-12 and
IFN-v) that results in chronic inflammation in the CNS (95-97).

3.2 Profile in other HTLV-1-associated
inflammatory conditions

In addition to the HAM-TSP disease, HTLV-1 infection can
cause inflammation in other tissues than CNS. In this context,
HTLV-1-infected CD4 T-cells collected from patients suffering
from uveitis, which is the second-most frequent HTLV-1-associated
disease in Japan after HAM-TSP, also produce large amounts of
various inflammatory cytokines such as IL-1, IL-6, TNF-a, and
IFN-y (98, 99). Similarly, evidence shows that the bronchoalveolar
fluids (BALFs) from HTLV-1-infected patients with CFA, a chronic
inflammatory lung disease of unknown etiology, display elevated
levels of MIP-lo0 and CXCL10 chemokines, which correlate
with higher tissue infiltration of activated T-cells (100, 101).
Altogether, this indicates that, similarly to HAM-TSP, HTLV-1
infection may contribute to other HTLV-1-associated inflammatory
diseases via the chemokine-dependent recruitment of activated
T-cells in the eyes (uveitis) and lungs (CFA), thus resulting in
chronic tissue inflammation by the sustained release of Thl pro-
inflammatory cytokines.

3.3 Profile in ATLL

Adult T-cell leukemia/lymphoma is a highly aggressive
mature CD4+TCD25"FoxP3" T-cell neoplasm associated with
chronic HTLV-1 infection, which affects around 10 million
people worldwide. Although it is obvious that HTLV-1-
associated inflammatory conditions (HAM-TSP, uveitis, and
CFA) are associated with elevated pro-inflammatory innate
and T-cell immune responses, ATLL patients exhibit a rather
immunosuppressive profile that is mainly highlighted by the
abnormally high production of IL-10 cytokine (102). However,
ATLL is a complex and multistep disease, which involves HTLV-1
Tax and HBZ proteins and starts with high proliferation and
survival of HTLV-1-infected CD4 T-cells (21, 103). In fact, one
of the major hallmarks of HTLV-1-infected CD4 T-cells in ATLL
is their ability to proliferate independently of T-cell receptor
stimulation, contributing to the immortalization of these infected
cells overtime (6, 21, 69). Although survival of HTLV-1-infected

ATLL CD4 T-cells mainly depend on IL-10 production
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(74, 102, 104), evidence shows that the maintenance of elevated
proliferation rates is rather supported by their dependency on pro-
inflammatory cytokines such as IL-2 and IL-6. In this context,
in vitro data confirm that HTLV-1-infected T-cells are dependent
on IL-2 for their proliferation, until they get their immortalized
status after several weeks in culture (105). Levels of IL-6 in sera
are higher in ATLL patients when compared to both ACs and HCs
(106, 107). Interestingly, IL-6 levels in ATLL do not only correlate
with T-cell proliferation but also with ATLL severity and shorter
survival rate in patients (107). Recent comparative transcriptomic
analyses of PBMCs between ATLL patients and HCs have revealed
that ATLL pathogenesis is associated with the upregulation of many
genes related to inflammatory responses such as NFKBI, RELA,
IL2, IL17, and TNFA (56, 108, 109). Pro-inflammatory chemokines
are also involved in ATLL pathogenesis as they recruit cancer cells
into the lymph nodes, spleen, liver, skin and gastrointestinal tract,
thereby contributing to cancer spreading in infected patients (63,
69). In fact, constitutive expression of various pro-inflammatory
chemokines in HTLV-1-positive ATLL cells, including MCP-1,
MIP-1a/B, RANTES, IL-8 and CXCL10, have been reported and
involves the HTLV-1 Tax and Nf-kB signaling pathway in the
process (38, 110, 111). Higher plasma levels of TNF-a and IL-
6 cytokines, and CXCL10 are found in patients with aggressive
ATLL when compared to those with indolent ATLL (aka. stable
and slow growing form of lymphoma/leukemia usually associated
with lesser fever and lesser symptoms), indicating a worsening
role of strong inflammatory responses in ATLL disease severity
(74, 107). Finally, Tax- and HBZ-transgenic mice, which develop
HTLV-1-like impairments such as T-cell lymphoma and systemic
inflammation, display higher production of TNF-a and IFN-y
in FoxP3t splenocytes, and of IL-1a/p and IL-6 in ATLL-like
cells (112-114).

4 Conclusive remarks

Overall, it is obvious that the clinical burden and lack
of effective treatment options directs the need for alternative
treatment strategies for HTLV-1 infection (14). In this context,
a more refined understanding of how HTLV-1 infection, in the
presence or absence of Tax protein, influences the sustained
pro-inflammatory cytokine/chemokine host production is key for
identifying new mechanisms underlying HTLV-1 persistence and
development of more effective therapies against HTLV-1-associated
diseases (Figure 1).
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