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Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus affecting 10–20 

million people worldwide. While many carriers remain asymptomatic, HTLV-

1 infection can trigger intense inflammatory responses which are defined 

by the sustained release of pro-inflammatory cytokines and chemokines. 

Central to this process is the HTLV-1 encoded Tax oncoprotein, a viral 

regulator that drives uncontrolled inflammation by hijacking multiple cellular 

signaling pathways, such as the RelA/NF-κB signal transduction pathway. CD4 

T-cells are the primary targets of Tax-mediated transformation, undergoing 

uncontrolled proliferation and significantly contributing to chronic immune 

activation seen in HTLV-1-associated diseases. However, highly activated CD4 

T-cells are not alone in fueling this inflammatory “wildfire.” Other immune 

cells, including CD8 T-cells, monocytes, macrophages, dendritic cells, and 

neutrophils, also play critical roles in exacerbating the inflammatory milieu. 

These cells, in conjunction with CD4 T-cells, release a barrage of pro-

inflammatory cytokines (IL-1α/β, IL-2, IL-6, IL-12, IL-17, TNF-α/β, and IFN-γ) 

and chemokines (MCP-1, MIP-1α/β, RANTES, MCP-3, IL-8, CXCL9, CXCL10, 

and CXCL11), all of which are perpetuating the cycle of immune activation and 

tissue damage. This hyper stimulated immune response contributes to HTLV-1 

replication/dissemination and can lead to the development of adult T-cell 

leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical 

spastic paraparesis (HAM-TSP). Despite existing treatments aimed at 

controlling viral replication, the persistent inflammation in HTLV-1-infected 

individuals even in asymptomatic carriers (ACs) remains a major challenge, 

suggesting that targeting these pro-inflammatory responses may be another 

mandatory therapeutic strategy. In this context, this short-review focuses 

on the key immune responses that drive HTLV-1-associated inflammation 
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and explores how these high pro-inflammatory responses contribute 

to the development of HTLV-1-related complications, including HAM-

TSP, ATLL, and other associated inflammatory diseases during chronic 

viral infection. 

KEYWORDS 

HTLV-1, HTLV-1 tax protein, inflammation, NF-κB signaling pathway, 
cytokine/chemokine, ATLL, HAM-TSP, asymptomatic carriers 

1 Introduction: the need to develop 
new strategies for counteracting 
HTLV-1 

The infection with the human T-cell leukemia virus type 
1 (HTLV-1), the only known human oncogenic retrovirus, has 
been recently estimated to aect up to 20 million people 
worldwide. It is predominantly spreading across endemic regions 
in Japan, Africa, Asia, the Caribbean, Central/South America, 
the Middle East and includes the Australo-Melanesia area (1– 
3). The virus is transmitted through the bodily fluids of 
infected individuals, primarily breast milk, blood, and semen 
(4, 5). Although approximately 90% of the infected individuals 
remain asymptomatic carriers during their lives, chronic infection 
with HTLV-1 can result in multiple severe pathologies; these 
include the adult T-cell leukemia/lymphoma (ATLL), an aggressive 
neoplasm of CD25+ CD4 T-cells in about 5% of infected 
individuals after a prolonged latent period of 30–50 years (2, 
6). HTLV-1 infection is also the causative agent of inflammatory 
disorders, most notably HTLV-1-associated myelopathy/tropical 
spastic paraparesis (HAM/TSP) asides other aictions, such as 
uveitis, a chronic inflammatory interstitial lung disease called 
cryptogenic fibrosing alveolitis (CFA), rheumatic syndromes and 
a high predisposition to glaucoma, sarcopenia, atherosclerosis, 
helminthic and bacterial infections (7–10). Currently, there are no 
prospects of functional vaccines for HTLV-1, screening of blood 
banks and there are no universal diagnostic tools in prenatal care 
settings. Existing treatments for ATLL and HAM/TSP are largely 
ineective, thus emphasizing the urgent need for new targeted 
therapies (1, 11–14). A deeper understanding of how HTLV-1 
infection impacts immune responses and persist in the host is a 
critical step for the development of these novel antiviral strategies. 
In this context, this short-review aims to provide a brief overview 
of the uncontrolled inflammatory responses reported in HTLV-1 
infections and how they actively contribute to viral dissemination 
and disease development. 

2 HTLV-1 infection causes strong 
and sustained inflammatory 
responses 

The immunopathogenesis of HTLV-1 is intriguing, since its 
lifelong persistence in the host determines a prolonged interaction 

between the virus and the immune system, which can ultimately 
contribute to the development of both ATLL and HAM/TSP 
conditions when inflammatory responses become uncontrolled. 
Although CD4 T-cells remain the main cell target for HTLV-1 
(1, 15), the virus can also infect CD8 T-cells and immune cells 
of the myeloid lineage like dendritic cells (DCs), monocytes, and 
macrophages, altogether sustaining a strong poly-inflammatory 
milieu in the infected hosts due to HTLV-1 persistence (16–19). 
Although multiple causal factors during chronic HTLV-1 infection 
contribute to trigger the uncontrolled inflammatory responses, 
HTLV-1 Tax protein, the host innate sensing and high TNF-α 
release play a pivotal role in the process, mainly by constitutively 
inducing RelA/NF-κB signal transduction pathway in infected 
individuals (Figure 1 and Tables 1, 2). 

2.1 Impact of HTLV-1 tax protein 

Like other retroviruses, the integrated HTLV-1 proviral genome 
is made up of two long terminal repeat sequences, flanking 
structural genes gag, pol, and env. HTLV-1 also has a unique 1.6 kb 
accessory region, termed the pX region, which encodes a few 
regulatory viral proteins when cells are productively infected (14, 
20, 21). These mainly include the expression of the trans-activator 
protein Tax, which is known to hijack multiple intracellular 
signaling pathways that contribute to inflammation and immune 
activation, thereby ultimately promoting the proliferation of 
HTLV-1-infected T-cells and viral dissemination (22, 23). Among 
those, the nuclear transcription factor NF-κB plays a central role in 
coordinating various cellular signals that serve as pivotal mediators 
of inflammatory responses in the form of multiple encoding 
cytokines and chemokines (IL-1β, IL-2, IL-6, IL-8, TNF-α, MIP-
1α/β and RANTES among others) (22, 24–26). The prototypical 
NF-κB complex corresponds to a heterodimer of the NF-κB1 (p50) 
and RelA (p65) members of the NF-κB/Rel family of transcription 
factors (27). Evidence shows that HTLV-1 Tax has developed 
multiple hijacking strategies to activate NF-κB signaling pathway; 
First, it induces the phosphorylation and degradation of both 
IκBα and IκBβ through the activation of the IκB kinase (IKK) 
complex, resulting in the nuclear translocation of active NF-κB 
(27–29). Tax also recruits the co-activator protein p300/CBP (30, 
31) whose nuclear interaction with the RelA subunit of NF-
κB is vital for RelA-dependent gene transcription (32). Finally, 
Tax stimulates the catalytic activity of the IKK-activating kinase 
TAK1 and mediates the physical recruitment of IKK to TAK1 
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FIGURE 1 

Schematic representation of HTLV-1 virological aspects and disease progression. (Left side) HTLV-1 infects multiple immune cell types, primarily 
CD41 T cells, but also CDS1 T cells, monocytes, macrophages, and dendritic cells. Viral proteins (regulatory: Tax, Rex, HBZ, p21, pl2, p13, p30; 
structural: pl9, p24, p15) activate pattern recognition receptors (PRRs) and toll-like receptors (TLRs), leading to NF-xB-mediated production of 
pro-inflammatory cytokines and chemokines, establishing a chronic inflammation feedback loop. (Right side) Disease outcomes include adult T-cell 
leukemia/lymphoma (ATLL, 3%–5% of infected individuals) characterized by uncontrolled CD4+ T-cell proliferation, persistent activation of NF-KB, 
STAT3, and PT3K/AKT pathways, and clonal expansion; and HTLV-1- associated myelopathy/tropical spastic paraparesis (HAM/TSP, 1%–4% of 
infected individuals) involving central nervous system (CNS) infiltration, persistent cytokine production, CTL dysfunction, and neuronal damage. 
ATLL, adult T-cell leukemia/lymphoma; CNS, central nervous system; CTL, cytotoxic T lymphocyte; CXCL, C-X-C motif chemokine ligand; HBZ, 
HTLV-1 basic leucine zipper factor; HAM/TSP, HTLV-1-associated myelopathy/tropical spastic paraparesis; IITLV-l, human T-cell leukemia virus type 
1; IFN, interferon; IL, interleukin; MCP, monocyte chemoattractant protein; M1P, macrophage inflammatory protein; NF-kB, nuclear factor 
kappa-light-chain-enhancer of activated B cells; PI3K/AKT, phosphoinositide 3-kinase/protein kinase B pathway; PRRs, pattern recognition 
receptors; RANTES, regulated upon activation, normal T cell expressed and secreted; STAT3, signal transducer and activator of transcription 3; TLRs, 
toll-like receptors; TNF-a, tumor necrosis factor alpha. 

in productively infected cells, including Tax-positive HTLV-1-
transformed T-cells (33–35). Evidence shows that HTLV-1 Tax 

induces the secretion of multiple pro-inflammatory cytokines (IL-
2, IL-12, TNF-α/β, and IFN- γ) and chemokines (MCP-1, MIP-
1α/β, and MCP-3) in immature monocyte-derived dendritic cells 
(MDDCs) in a NF-κB-dependent manner (36, 37). Jurkat CD4 

T-cell line, when treated with Tax, induces transactivation of the 

MCP1 gene (38). Both peripheral monocyte-derived macrophages 
(MDMs) and microglia (specialized cells, acting as the brain’s 
resident macrophages), when cultivated in vitro with HTLV-1 

Tax, secrete high amounts of pro-inflammatory IL-1β, and IL-
6, and TNF-α cytokines (39). Similarly, HTLV-1 Tax mediates 
MIP-1α/β and RANTES expression in peripheral mononuclear 

cells (PBMCs) via the NF-κB signaling pathway (40, 41). Finally, 
although Tax expression in HTLV-1-infected individuals is tightly 

regulated and often silenced to evade immune detection, especially 

in ATLL patients, it can still be reactivated by multiple stressors, 
such as hypoxia, T-cell reactivation and oxidative stress, thereby 
sustaining viral persistence and long-lasting proinflammatory 
immune responses (42–44). So far, HTLV-1 Tax is one of the 
key viral proteins which has comprehensive executive function 
associated with developing HAM-TSP and ATLL conditions, that 
especially contribute in tissue inflammation/damage and T-cell 
hyperimmune activation (24, 45–48). 

2.2 Impact of host innate sensing and 
autocrine regulation by TNF-α 

Innate immune-mediated inflammation plays a critical role in 
inhibiting pathogenic viruses through the recognition of multiple 
viral components by the host pattern recognition receptors (PRRs) 
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TABLE 1 Pro-inflammatory cytokines and HTLV-1 infection, including associations with virus-related HAM-TSP and ATLL conditions. 

Name Aliases Info in the context of HTLV-1 infection Additional info References 

pro-lnflammatory cytokines 

IL-1 (α/β) LAF Tax-treated microglia cells secrete high protein levels for IL-lp Cell supernatants (48 h of culture) (39) 

Higher protein release of IL-ip in HAM-TSP vs. HCs PBMCsupernatants (24 h of unstimulated culture) (82) 

HTLV-1-infected CD4T-cells from HTLV-1+uveitis patients produced large amounts of IL-1 Infiltrating CD4T-cells in eyes (91) 

High mRNA expression of both ILIA and IL1B in ATLLcells from Tax-transgenic mice Expression in both Tax’ and Tax+cells (105) 

IL-2 Lymphokine2 Tax-treated MDDCs secrete IL-2cytokine in culture Cell supernatants (24 h of culture) (36) 

Higher mRNA levels for IL2 in PBMCs from ATLL patients vs. HCs Along with increased Nf-KB-related genes (51) 

Neutralization of IL-2 decreases IFN-y levels in PBMC culture from ACs PBMCsupernatants (24–48 h of culture) (62) 

Higher plasma levels for IL-2 in HAM-TSP patients vs. ACs Higher levels in HAM-TSP patients vs. ATLL (67) 

High production and cell dependency to IL-2 of HTLV-l-infected CD4T-cells for proliferation Contribution to cell transformation (after weeks of culture stimulation) (98) 

IL-6 Interferon beta-2 Tax-treated microglia cells secrete high protein levels for IL-6 Cell supernatants (48 h of culture) (39) 

Higher plasma levels for IL-6 in ATLLpatients with aggressive cancer form vs. “indolent” form Correlation between high plasma IL-6levels and shorter survival rates in ATLL (67) 

Higher protein levels for IL-6 in both sera and CSF from HAM-TSP patients vs. ACs Along with higher IL-6 activity (69) 

Higher mRNA levels of IL6 in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85) 

HTLV-l-infected CD4T-cells from HTLV-1+uveitis patients produced large amounts of IL-6 Infiltrating CD4T-cells in eyes (91) 

Higher sera levels for IL-6 in ATLL patients vs. ACs and HCs Correlation between high plasma IL-6 levels and ATLL severity (100) 

High mRNA expression of both IL6 in ATLL cells from Tax-transgenic mice Expression in both Tax’ and Tax+ cells (105) 

IL-12 Tax-treated MDDCs secrete IL-12cytokine in culture Cell supernatants (24/48 h of culture); induction in a Nf-KB-dependent manner (36, 37) 

Higher proportion of IL-12-expressing monocytes and pDCs in HAM-TSP patients vs. ACs PBMCs stimulated for 48 h of culture with TLR7/8 agonist (innate sensing) (84) 

Higher mRNA levels of IL17 in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85) 

IL-17 IL-17A; CTLA-8 Higher mRNA levels of IL17 in PBMCsfrom ATLLpatients vs. HCs Along with increased Nf-KB-related genes (51) 

Higher plasma levels for IL-17 in HAM-TSP patients vs. ACs Higher levels in HAM-TSP patients vs. ATLL (67) 

Higher proportion of IL-17-expressing CD4T-cells in HAM-TSP patients vs. ACs and HCs PBMC culture with 3 days of cell stimulation (79) 

Increased proportion of CD4 + CD8 + DP cells in PBMCs from HAM-TSP patients vs. ACs 
and HCs 

DP cells are strong IL-17 producers among T-cell lineage (80) 

Higher mRNA levels of IL17 in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85) 

TNF (α/β) TNFSF 1,2 Tax-treated MDDCs secrete TNF-a and -0 cytokines in culture Cell supernatants (24/48 h of culture); induction in a Nf-KB-dependent manner (36, 37) 

Tax-treated microglia cells secrete high protein levels for TNF-a Cell supernatants (48 h of culture) (39) 

Higher mRNA levels of IL17 in PBMCs from ATLL patients vs. HCs Along with increased Nf-KB-related genes (51) 

Higher sera/plasma levels for TNF-a in HAM-TSP vs. ACs (53) 

Higher plasma levels for TNF-a in ATLLpatients with aggressive cancer form vs. “indolent” 

form 

Correlation between high plasma TNF-a levels and shorter survival rates in ATLL (67) 

(Continued) 
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TABLE 1 (Continued) 

Name Aliases Info in the context of HTLV-1 infection Additional info References 

Increased proportion of CD4 + CD8 + DP cells in PBMCs from HAM-TSP patients vs. ACs 
and HCs 

DP cells are strong TNF-a producers among T-cell lineage (80) 

Higher TNF-a expression in CD14+monocytes from HAM-TSP vs. HCs 24 h of unstimulated PBMC culture (82) 

Maintenance of high TNF-a production by CD14+CD16+ monocytes in HAM-TSP Maintenance despite GM-CSF and IL-4 DC-driven dierentiation (83) 

Higher mRNA levels of TNFA in neutrophils from HAM-TSP patients vs. ACs Along with increased Nf-kB-related genes (85) 

HTLV-l-infected CD4T-cells from HTLV-1+ uveitis patients produced large amounts of 
TNF-a 

Infiltrating CD4T-cells in eyes (91) 

Increased TNF-a expression in FoxP3+ splenocytes from HBZ transgenic mice Also higher IL-2 and IL-17 expressions in FoxP3 + cells from HBZ transgenic mice (107) 

IFN-γ IFNG; IFG Tax-treated MDDCs secrete IFN-y cytokine in culture Cell supernatants (24/48 h of culture) (36) 

Higher sera/plasma levels for IFN-y in HAM-TSP vs. ACs Correlation between IFN-y and IL-6 levels in HAM-TSP patients (53) 

Higher IFN-y production in PBMC supernatant of HAM-TSP patients vs. ACs (3 days if 
unstimulated culture) 

Correlation between IFN-y and CXCL9/or CXCL10 levels in HAM-TSP patients (66) 

Higher plasma levels for IFN-y in HAM-TSP patients vs. ACs Higher levels in HAM-TSP patients vs. ATLL (67) 

Higher IFN-y production in Tax-stimulated PBMCs in HAM-TSP patients vs. ACs and HCs Higher IFN-y levels in ACs vs. HCs (77) 

Higher plasma and mRNA levels (within PBMC) for IFN-y in HAM-TSP patients vs. Acs and 

HCs 
Higher IFN-y levels in ACs vs. HCs (plasma and mRNA levels in PBMCs) (78) 

Higher proportion of IFN-y-expressing CD8T-cells in HAM-TSP patients vs. ACs and HCs PBMC culture with 3 days of cell stimulation (79) 

Increased proportion of CD4 + CD8 + DP cells in PBMCs from HAM-TSP patients vs. ACs 
and HCs 

DP cells are strong IFN-y producers among T-cell lineage (80) 

Higher proportion of IFN-y-expressing CD56h 8hCD16NKs in HAM-TSP patients vs. ACs PBMCs stimulated for 48 h of culture with TLR7/8 agonist (innate sensing) (84) 

HTLV-l-infected CD4T-cells from HTLV-1+ uveitis patients produced large amounts of 
IFN-y 

Infiltrating CD4T-cells in eyes (91) 

Increased IFN-y expression in both FoxP3+ and FoxP3’splenocytes from HBZ transgenic 

mice 

Higher IFN-y-producing cells in both lung and PBMCs in HBZ transgenic mice (107) 

CTLA-8, cytotoxic T-lymphocyte-associated protein 8; IFN-y, interferon gamma; IL, interleukin; LAF, lymphocyte activatory factor; TNFSF, tumor necrosis factor superfamily. 
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TABLE 2 Pro-inflammatory chemokines and HTLV-1 infection, including associations with virus-related HAM-TSP and ATLL conditions. 

Name Aliases Info in the context of HTLV-1 infection Additional info References 

Pro-inflammatory chemokines 

MCP-1 CCL2 Tax-treated MDDCs secrete MCP-1 chemokinein culture Cell supernatants (24/48 h of culture); also induction of CCLU (eotaxin) (36) 

ATLL cells and HTLV-l-infected CD4 T-cell lines vs. uninfected cells display higher mRN A 

levels for MCP1 

Tax- and Nf-KB-dependent process (38) 

Higher sera and CSF protein levels for MCP-1 in both HAM-TSP patients and ACs vs. HCs Also increased sera/CSF levels in HAM-TSP vs ACs for CCLU, CCL17 and CXCL5 (72) 

Increased mRNA expression in lung cells for MCP1 in Tax transgenic mice vs. WT animals Along with increased nRNA levels for pro-inflammatory cytokines (IL1B, TNFA 

and IFNG) 
(94) 

MIP-lα/β CCL3 (MIP-lα) and 

CCL4 (MIP-1β) 
Tax-treated MDDCs secrete both MIP-lα and -β chemokines in culture Cell supernatants (24 h of culture); MIP-lα induction in a Nf-KB-dependent 

manner 

(37) 

Tax-treated PBMCs induce both MIPl-α and -β secretions in culture su pern anta nt Nf-KB-dependent processes; 2–24 h of culture (40, 41) 

Increased CSF levels for both MIPlα/β in HAM-TSP vs. ACs No dierence in sera levels (72) 

Higher proportion of MIP-lα-expressing monocytes and pDCs in HAM-TSP patients vs. ACs PBMCs stimulated for 48 h of culture with TLR7Z8 agonist (innate sensing) (84) 

High BALF levels for MIP-lα in HTLV-l-infected patients vs. HCs Correlation between MIP-lα levelsand% of activated T-cells in BALFfrom HTLV-1* 

patients with CFA 

(93) 

Increased mRNA expression in lung cells for MIP1A and IB inTax transgenic mice vs. WT 

animals 
Along with increased nRN A levels for pro-inflammatory cytokines (IL1B, TNFA 

and IFNG) 
(94) 

Increased supernatant secretion for MIP-lα in HTLV-1+CD4 T-cell lines vs. HTLV-1’ cells Tax-dependent manner process (103) 

RANTES CCL5 ATLL cells and HTLV-l-infected CD4T-cell lines vs uninfected cells display higher mRNA 

levels for RANTES 

Tax- and Nf-KB-dependent process (38) 

Tax-treated PBMCs induce RANTES secretion in culture supernantants Nf-KB-dependent processes (40, 41) 

Higher sera and CSF levels for RANTES in HAM-TSP patients vs. ACs (53, 71) 

Higher RANTES release by immature MDMs from HAM-TSP patients vs. ACs and HCs Culture supernantant (48 h of unstimulated culture) (81) 

. Increased mRNA expression in lung cells for RANTES in Tax transgenic mice vs. WT animals Along with increased nRNA levels for pro-inflammatory cytokines (IL1B, TNFA 

and IFNG) 
(94) 

Increased supernatant secretion for RANTES in HTLV-1* CD4 T-cell lines vs. HTLV-1’cells Tax-dependent manner process (103) 

Increased secretion for RANTES a dn intracellular mRNA levels in HTLV-1* CD4T-cell lines 
vs. HTLV-1 cells 

Tax- and Nf-KB-dependent manner process (104) 

MCP-3 CCL7 Tax-treated MDDCs secrete MCP-3chemokinein culture Cell supernatants (24/48 h of culture); also induction of CCLU (eotaxin) (36) 

CXCL8 IL-8 Higher sera and CSF protein levels for IL-8 in both HAM-TSP patients and ACs vs HCs Also increased sera/CSF levels in HAM-TSP vs. ACs for CCL11, CCL17 and 

CXCL5 

(72) 

Increased supernatant secretion for IL-8 in HTLV-1* CD4 T-cell lines vs. HTLV-1’ cells Tax-dependent manner process (103) 

(Continued) 
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(49). In the context of HTLV-1 infection, the replication cycle 
yields multiple pathogen-associated molecular patterns such as 
viral RNA, RNA/DNA intermediates, and single- or double-
stranded DNA, which are recognized by cytosolic sensors including 
cGAS, IFI-16, along with Ku70, which activate the STING-
TBK-1 axis to induce IRF3-driven type I interferon responses. 
Endosomal PRRs such as toll-like receptor 3 (TLR3), TLR7/8, 
and TLR9 also respond to viral RNA or CpG-rich DNA via 
TRIF- or MyD88-dependent pathways, converging on both IRF3 
and NF-κB inflammatory signaling (50). Surface TLRs such as 
TLR2 and TLR4 actively participate in sensing; For example, 
the accessory protein HTLV-1 p30 antagonizes TLR4 signaling 
in monocytes and dendritic cells, thereby deregulating MCP-1, 
TNF-α, IL-8 and IL-10 production (51). Its regulatory protein 
Tax robustly activates NF-κB and AP-1 transcription factors, 
driving expression of IL-2, IL-6, TNF-α, CCL2/MCP-1, and 
CXCL10 (47, 52), whereas HTLV-1 HBZ protein attenuates IRF3-
mediated interferon signaling, dampening IFN-I responses (53). 
Additionally, HTLV-1 p12 and p8 proteins can both modulate IL-
2 receptor signaling and enhance STAT5 activation even in the 
absence of IL-2, while facilitating immune evasion and cell-to-
cell transmission (54, 55). Collectively, this complex interplay of 
innate sensing and viral countermeasures orchestrates a potent 
inflammatory and chemotactic cytokine milieu -comprising IL-
1β, IL-2, IL-6, TNF-α, CCL2, CXCL10, and RANTES - that 
underlies chronic inflammation in HTLV-1–associated diseases 
such as ATLL and HAM-TSP (16, 50). Although there are 
intricate strategies employed by HTLV-1 to subvert the host 
innate IFN-I responses that contribute both to viral immune 
evasion and the development of HTLV-1-associated diseases (50), 
chronic HTLV-1 infection is still associated with unrelenting 
host innate sensing and immune activation accompanied by 
high levels of pro-inflammatory cytokines/chemokines (56–59). 
This outcome likely results from the host’s continuous, albeit 
unsuccessful, attempts to eradicate viral infection and maintain 
tissue homeostasis. In this context, the pro-inflammatory TNF-
α cytokine, known for triggering upstream signaling events 
leading to the autocrine activation of NF-κB pathway (60), is 
likely one of the critical players of sustained HTLV-1-driven 
inflammation. Recent studies have shown that anti-TNF-α agents 
can be eective in treating inflammatory diseases related to HTLV-
1 (such as arthropathy, uveitis, and other rheumatic conditions 
associated with the given viral infection) (61–64). In fact, the 
inflammatory response triggered by the increased of TNF-α along 
with IFN-γ and IL-2, mainly by the CD4 T-cell response, is 
what maintains the chronic inflammatory process in HAM-TSP 
patients (65–67). 

3 Strong pro-inflammatory 
signatures in HAM-TSP and ATLL 
patients 

Evidence shows that both aberrant expression and/or function 
of pro-inflammatory cytokines and chemokines actively contribute 
to the pathogenesis of HTLV-1-associated diseases involved in 
the inflammation of the central nervous system (CNS), which 
occurs in cases of HAM-TSP, as well as T-cell immortalization and 
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tissue infiltration observed in ATLL patients (19, 68, 69) (Figure 1 
and Tables 1, 2). In addition to immune activation, chronic 
HTLV-1–driven inflammation may also foster a pro-angiogenic 
microenvironment. Tax-mediated NF-κB activation stimulates 
the expression of vascular endothelial growth factor (VEGF) 
and basic fibroblast growth factor (bFGF), potent mediators of 
angiogenesis. These factors promote endothelial proliferation, 
vascular remodeling, and increased permeability changes that may 
facilitate tumor cell migration to lymph nodes in ATLL. Thus, 
angiogenesis represents a complementary mechanism through 
which HTLV-1–induced inflammation may contribute to disease 
progression (70, 71). 

3.1 Profile in HAM-TSP 

HTLV-1-associated myelopathy/tropical spastic paraparesis is a 
progressive disease of the CNS that causes weakness or paralysis 
of the legs, lower back pain, and urinary symptoms, which occur 
in approximately 2%–3% of HTLV-1 carriers (72). This HTLV-
1-related disease is characterized by a hyper-stimulated immune 
response, which includes elevated levels of inflammatory cytokines 
and chemokines, and the recruitment/oligonal expansion of virus-
specific cytotoxic CD8 T-cells in the CNS; all of which contributes 
to nerve tissue damage and loss of motor functions in patients. In 
this context, data show that the sera/plasma and cerebrospinal fluid 
(CSF) from HAM-TSP patients always display higher protein levels 
of IL-2, IL-6, IL-17, TNF-α, IFN-γ, MCP-1, RANTES, CXCL9, 
CXCL10, and CXCL11 when compared to ACs (58, 73–80). Data 
also show increased ex vivo levels of CSF neopterin in HAM-
TSP patients (77, 79–81), which is a molecule synthesized by 
macrophages upon stimulation with IFN-γ and is indicative of 
a pro-inflammatory immune status (82). In fact, CSF CXCL9, 
CXCL10, and neopterin are described as trustworthy prognostic 
biomarkers for HAM-TSP disease progression (77–79, 81, 83). 
Although no dierences are detected between HAM-TSP patients 
and ACs, levels of MCP-1 and IL-8 chemokines are higher in the 
sera and CSF from HTLV-1-infected individuals when compared 
to HCs (79). Research studies have further confirmed the higher 
cellular ability of HAM-TSP patients to secrete pro-inflammatory 
cytokines and chemokines in culture. For example, peripheral 
blood mononuclear cells (PBMCs) and CD8 T-cells of HAM-TSP 
patients stimulated or not with Tax peptides display higher mRNA 
and protein levels of IFN-γ when compared to both ACs and 
HCs (84–86). PBMCs from HAM-TSP patients further show an 
increased proportion of IL-17-expressing CD4 T-cells (86) and of 
inflammatory CD4+CD8+ T-cell populations whose IFN-γ, TNF-
α, IL-17, and CXCL10 productions are one of the most pronounced 
among stimulated T-cells (87). Immature MDMs from HAM-TSP 
patients, when incubated in unstimulated cultures, show higher 
spontaneous secretion of RANTES and CXCL9 chemokines in 
comparison to both ACs and HCs (88). It is worth noting that 
pro-inflammatory CD16+ monocytes of HAM-TSP patients, whose 
proportions are increased in PBMCs in comparison to both ACs 
and HCs (88), are unable to fully mature into dendritic cells and 
maintain a high production of TNF-α and IL-1β cytokines (89, 
90). Similarly, higher proportions of pro-inflammatory monocytes 
producing IL-12 and MIP-1α, plasmacytoid DCs producing IL-
12 and CD56highCD16− natural killer cells producing IFN-γ are 

detected in HAM-TSP blood samples in response to innate immune 
sensing when compared to ACs (91). The comparative gene 
expression profiles of polynuclear neutrophils between ACs and 
HAM-TSP patients have revealed higher expression of multiple 
genes related to the Nf-kB signaling pathway and pro-inflammatory 
responses including TNFA, IL6, and IL17 (92). Altogether, this 
evidence infers that, during HAM-TSP development model, HTLV-
1-infected cells in the CNS may produce large amounts of IFN-
γ that can induce resident macrophages, DCs, neutrophils and 
astrocytes to secrete MCP-1, MIP-1α/β, RANTES, CXCL9, and 
CXCL10 chemokines among others (7, 93–95). The latter recruit 
more infected cells, including Tax-expressing CD4 T-cells, to the 
aera along with cytotoxic CD8 T-cells, which constitute a T-helper 
type 1 (Th1)-centric feedback loop (IL-1β, IL-2, TNF-α, IL-12 and 
IFN-γ) that results in chronic inflammation in the CNS (95–97). 

3.2 Profile in other HTLV-1-associated 
inflammatory conditions 

In addition to the HAM-TSP disease, HTLV-1 infection can 
cause inflammation in other tissues than CNS. In this context, 
HTLV-1-infected CD4 T-cells collected from patients suering 
from uveitis, which is the second-most frequent HTLV-1-associated 
disease in Japan after HAM-TSP, also produce large amounts of 
various inflammatory cytokines such as IL-1, IL-6, TNF-α, and 
IFN-γ (98, 99). Similarly, evidence shows that the bronchoalveolar 
fluids (BALFs) from HTLV-1-infected patients with CFA, a chronic 
inflammatory lung disease of unknown etiology, display elevated 
levels of MIP-1α and CXCL10 chemokines, which correlate 
with higher tissue infiltration of activated T-cells (100, 101). 
Altogether, this indicates that, similarly to HAM-TSP, HTLV-1 
infection may contribute to other HTLV-1-associated inflammatory 
diseases via the chemokine-dependent recruitment of activated 
T-cells in the eyes (uveitis) and lungs (CFA), thus resulting in 
chronic tissue inflammation by the sustained release of Th1 pro-
inflammatory cytokines. 

3.3 Profile in ATLL 

Adult T-cell leukemia/lymphoma is a highly aggressive 
mature CD4+CD25+FoxP3+ T-cell neoplasm associated with 
chronic HTLV-1 infection, which aects around 10 million 
people worldwide. Although it is obvious that HTLV-1-
associated inflammatory conditions (HAM-TSP, uveitis, and 
CFA) are associated with elevated pro-inflammatory innate 
and T-cell immune responses, ATLL patients exhibit a rather 
immunosuppressive profile that is mainly highlighted by the 
abnormally high production of IL-10 cytokine (102). However, 
ATLL is a complex and multistep disease, which involves HTLV-1 
Tax and HBZ proteins and starts with high proliferation and 
survival of HTLV-1-infected CD4 T-cells (21, 103). In fact, one 
of the major hallmarks of HTLV-1-infected CD4 T-cells in ATLL 
is their ability to proliferate independently of T-cell receptor 
stimulation, contributing to the immortalization of these infected 
cells overtime (6, 21, 69). Although survival of HTLV-1-infected 
ATLL CD4 T-cells mainly depend on IL-10 production 
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(74, 102, 104), evidence shows that the maintenance of elevated 
proliferation rates is rather supported by their dependency on pro-
inflammatory cytokines such as IL-2 and IL-6. In this context, 
in vitro data confirm that HTLV-1-infected T-cells are dependent 
on IL-2 for their proliferation, until they get their immortalized 
status after several weeks in culture (105). Levels of IL-6 in sera 
are higher in ATLL patients when compared to both ACs and HCs 
(106, 107). Interestingly, IL-6 levels in ATLL do not only correlate 
with T-cell proliferation but also with ATLL severity and shorter 
survival rate in patients (107). Recent comparative transcriptomic 
analyses of PBMCs between ATLL patients and HCs have revealed 
that ATLL pathogenesis is associated with the upregulation of many 
genes related to inflammatory responses such as NFKB1, RELA, 
IL2, IL17, and TNFA (56, 108, 109). Pro-inflammatory chemokines 
are also involved in ATLL pathogenesis as they recruit cancer cells 
into the lymph nodes, spleen, liver, skin and gastrointestinal tract, 
thereby contributing to cancer spreading in infected patients (63, 
69). In fact, constitutive expression of various pro-inflammatory 
chemokines in HTLV-1-positive ATLL cells, including MCP-1, 
MIP-1α/β, RANTES, IL-8 and CXCL10, have been reported and 
involves the HTLV-1 Tax and Nf-κB signaling pathway in the 
process (38, 110, 111). Higher plasma levels of TNF-α and IL-
6 cytokines, and CXCL10 are found in patients with aggressive 
ATLL when compared to those with indolent ATLL (aka. stable 
and slow growing form of lymphoma/leukemia usually associated 
with lesser fever and lesser symptoms), indicating a worsening 
role of strong inflammatory responses in ATLL disease severity 
(74, 107). Finally, Tax- and HBZ-transgenic mice, which develop 
HTLV-1-like impairments such as T-cell lymphoma and systemic 
inflammation, display higher production of TNF-α and IFN-γ 
in FoxP3+ splenocytes, and of IL-1α/β and IL-6 in ATLL-like 
cells (112–114). 

4 Conclusive remarks 

Overall, it is obvious that the clinical burden and lack 
of eective treatment options directs the need for alternative 
treatment strategies for HTLV-1 infection (14). In this context, 
a more refined understanding of how HTLV-1 infection, in the 
presence or absence of Tax protein, influences the sustained 
pro-inflammatory cytokine/chemokine host production is key for 
identifying new mechanisms underlying HTLV-1 persistence and 
development of more eective therapies against HTLV-1-associated 
diseases (Figure 1). 
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