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Prognostic assessment and
intelligent prediction system for
breast reduction surgery using
Improved swarm intelligence
optimization

Zhiwei Cui', Zhen Liang!, Chaohua Liu?, Yongjun Chen?,
Na Wang?, Bingyang Liu?, Lei Guo! and Baogiang Song'*

!Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China, ?Plastic
Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing,
China

Objective: This study aimed to enhance the accuracy of prognosis assessment
for reduction mammaplasty by improving a swarm intelligence optimization
algorithm and to develop an intelligent prediction system to support clinical
decision-making.

Methods: This study enrolled 224 patients who underwent reduction
mammaplasty at Xijing Hospital between January 14, 2018, and February 4,
2023, and 137 patients who underwent the same procedure at Plastic Surgery
Hospital between January 14, 2018, and May 1, 2020, constituting the training
set. Ninety-two patients who underwent reduction mammaplasty at Plastic
Surgery Hospital between May 2, 2020, and February 4, 2023, were defined as
the test set. Data collection encompassed preoperative anatomical parameters,
intraoperative procedural characteristics, and postoperative follow-up
outcomes. Prognostic indicators included postoperative complications and the
BRQS score. Guided by the Improved Secretary Bird Optimization Algorithm
(ISBOA), the optimization algorithm was integrated with an AutoML framework
to achieve fully automated optimization spanning from feature selection to
model parameter configuration. A classification model was employed to predict
the occurrence of postoperative complications, while a regression model was
used to predict patient satisfaction at 1 year postoperatively.

Results: The ISBOA algorithm significantly outperformed other algorithms
in stability, convergence speed, and avoidance of local optima. The AutoML
framework achieved an ROC-AUC of 0.9369 and a PR-AUC of 0.8856
for complication prediction (test set), and an R? of 0.9165 for quality-of-
life prediction (test set). SHAP analysis identified key features influencing
complications and quality of life. Decision Curve Analysis (DCA) demonstrated
that the AutoML model possessed high net benefit and stability across various
threshold probabilities. The developed clinical decision support system could
rapidly generate prediction results, aiding physicians in formulating personalized
treatment plans.

Conclusion: This study successfully constructed a prognosis assessment and
intelligent prediction system for reduction mammaplasty based on an improved
swarm intelligence optimization algorithm. The results indicate that the ISBOA
algorithm exhibits significant advantages in global optimization performance
and convergence efficiency. The AutoML model demonstrated excellent
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performance in predicting complications and assessing quality of life, with its
clinical utility further validated by DCA. The developed clinical decision support
system provides physicians with a convenient decision-making tool, promising
to enhance the scientific rigor and efficiency of medical decision-making and
offering a substantial opportunity for improving prognosis quality.

KEYWORDS

breast reduction surgery, improved swarm intelligence optimization algorithm,
AutoML, postoperative complication prediction, quality of life assessment, intelligent
prediction system, clinical decision support

1 Introduction

In the field of plastic surgery, reduction mammaplasty serves as a
pivotal therapeutic intervention for alleviating the physical and
psychological burdens of patients with macromastia and enhancing
their quality of life (1). This procedure effectively reshapes breast
morphology through precise excision of redundant glandular and
cutaneous tissues, significantly improving patients’ posture, body
symmetry, and functional capacity for daily activities (2). However,
exhibit interindividual
heterogeneity, particularly complication rates and the extent of

postoperative  outcomes substantial
quality-of-life improvement (3).

This heterogeneity arises from complex and interdependent
factors, including patients’ baseline characteristics, preoperative
symptom severity, and surgery-specific variables (such as unilateral/
bilateral procedure, flap design pattern, volume of tissue resected per
breast, nipple-to-sternal notch distance, operative duration, and
postoperative hospital stay) (4). These factors profoundly influence
surgical complexity, the degree of tissue trauma, and postoperative
recovery trajectories (5). Consequently, systematic identification of
key quantifiable prognostic factors and development of accurate
predictive models are crucial for optimizing patient management and
surgical outcomes (6).

Currently, the application of traditional statistical models or
machine learning methods for predicting reduction mammaplasty
outcomes (e.g., complications, patient satisfaction) faces significant
limitations (7). A primary challenge lies in the heavy reliance on
manual intervention during model development: feature selection
depends on subjective expert judgment, risking omission of potentially
significant variables while being time-consuming and labor-intensive;
hyperparameter tuning requires extensive trial-and-error,
compromising model stability and reproducibility across diverse
datasets (8). Secondly, models frequently demonstrate inadequate
generalization capability (9). Those trained on single-center data often
fail to adequately capture variations in patient demographics, surgical
techniques, and perioperative care standards across different
institutions, leading to substantially degraded predictive accuracy
upon external validation and severely limiting clinical utility (10).

To overcome these limitations, this study innovatively proposes
an Automated Machine Learning (AutoML) framework based on a
modified swarm intelligence optimization algorithm (11). This
framework aims to achieve end-to-end automated optimization from
feature selection to model parameter configuration. The proposed
Improved Secretary Bird Optimization Algorithm (ISBOA) leverages
robust global search capability, rapid convergence characteristics, and

exceptional capacity for escaping local optima to efficiently navigate
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complex solution spaces. During feature engineering, the algorithm
automatically evaluates the predictive efficacy of numerous feature
combinations to identify optimal subsets; during model construction,
it intelligently tunes hyperparameters, significantly reducing manual
dependency while enhancing model robustness.

Critically, this study leverages multi-center clinical data
(integrating datasets from Xijing Hospital and the Plastic Surgery
Hospital) to effectively mitigate the constraints of single-center data.
This integration not only substantially expands sample size but also
incorporates geographic and inter-institutional variations in clinical
practice, enabling the model to learn broader, more representative
feature patterns. Consequently, the model’s generalization capability
and clinical applicability are markedly enhanced. The resulting
intelligent prediction system provides surgeons with scientific,
personalized prognostic assessments and decision support.

The contributions and innovations of this study are summarized
as follows: (1) Systematic analysis of associations between patient
characteristics, preoperative status, surgical variables, and prognostic
indicators (postoperative complications and BRQS-assessed quality of
life); (2) Development and validation of an ISBOA-optimized AutoML
framework for high-accuracy, automated prediction of complication
risk and 1-year postoperative patient satisfaction; and (3) Construction
of a practical clinical decision support system. This research not only
provides a powerful technical tool for enhancing the precision and
personalization of reduction mammaplasty but also establishes a novel
research paradigm integrating swarm intelligence optimization with
AutoML and multi-center big data, paving new pathways for
advancing medical artificial intelligence applications.

2 Methods
2.1 Patient information

This study employed a multi-center design, integrating clinical
data from Xijing Hospital and Plastic Surgery Hospital. The training
cohort (n = 361) comprised two distinct subsets: 224 patients who
underwent breast reduction mammaplasty at Xijing Hospital between
January 14, 2018, and February 4, 2023, and 137 patients who
underwent the same procedure at Plastic Surgery Hospital between
January 14, 2018, and May 1, 2020. The test cohort consisted of an
independent series of 90 consecutive breast reduction mammaplasty
patients treated at Plastic Surgery Hospital from May 2, 2020, to
February 4, 2023.

Sample size estimation strictly adhered to the event-driven
principle for prediction model research. Based on a reported
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postoperative complication incidence of approximately 30% in prior
literature (4) and an anticipated maximum of 10 variables for inclusion
in model training, the robust modeling criterion of “events per
variable (EPV) > 10” mandated a minimum of 100 endpoint events.
Consequently, the minimum required sample size for the training
cohort was calculated as 333 patients (100/0.3 = 333).

The partitioning strategy for Plastic Surgery Hospital data utilized
a temporal window approach: Early data from this center (spanning
33 months) was merged with Xijing Hospital data to form the training
cohort, aiming to capture potential evolution in the natural history of
the condition and inherent population heterogeneity. Utilizing the
center’s recent consecutive cases as an independent test cohort
effectively simulated real-world clinical practice scenarios and
assessed the model’s temporal generalizability on contemporary data.
This design simultaneously met sample size requirements and
leveraged time-truncated, independent cohorts from the same center
for validation, significantly enhancing the preliminary assessment of
the model’s potential for external generalizability. It also facilitated the
inclusion of populations with diverse academic backgrounds.

Inclusion criteria: (1) aged between 18 and 65 years; (2) clinically
assessed as meeting the criteria for breast reduction surgery; (3)
signed an informed consent form preoperatively to participate in the
study; and (4) received standardized rehabilitation and follow-up
postoperatively for at least 1 year. Exclusion criteria: (1) previous
breast cosmetic surgery; (2) other breast diseases or endocrine
disorders; and (3) pregnancy or lactation. The study was approved by
the Xijing Hospital’s ethics committee (No. KY20172032-F-1), with all
patients providing written consent. The research adhered to the
Declaration of Helsinki and relevant medical data management
standards to ensure patient rights and legal compliance in
data handling.

2.2 Data collection and follow-up methods

Data were sourced from the electronic medical records and
follow-up records of breast reduction surgery patients in the hospital
system from 2018 to 2023. All variables were entered independently by
two individuals and cross-checked for consistency, with the database
anonymized to protect patient privacy. Data were collected on
preoperative anatomical parameters, intraoperative features, and
postoperative follow-up outcomes. Clinical characteristics included age,
body mass index (BMI), surgery type (unilateral/bilateral), flap type,
unilateral tissue excision volume, nipple-to-sternum notch distance
(N-SN), surgical duration, postoperative hospital stay, cardiovascular
history, diabetes history, smoking history, and breast-related symptoms
questionnaire (BRSQ) scores. Flap types were categorized as
superomedial pedicle (SMP), inferior pedicle (IP), or superior pedicle
(SP). BRSQ was measured preoperatively, validated across multiple
centers, covering 13 somatic symptoms scored from 0 to 100. Prognostic
indicators included postoperative complications and breast-related
quality of life questionnaire (BRQS) scores. Complications such as
hematoma, infection, or wound dehiscence were confirmed by the chief
surgeon and classified using the Clavien-Dindo system (CDCS).

Patient follow-up strictly followed routine hospital clinical protocols,
designed to systematically monitor patient recovery and assess long-
term surgical outcomes. The follow-up schedule included complication
surveillance within 30 days postoperatively and long-term quality of life
assessment at 1 year postoperatively, enabling the construction of a
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comprehensive postoperative recovery database. Information on
complications occurring within 30 days postoperatively was meticulously
documented during outpatient reviews, ensuring timely identification
and management of potential issues. Postoperative BRQL scores were
collected at standardized time points (12months + 1 month
postoperatively) via outpatient visits or mailed questionnaires to enhance
patient participation and data completeness. For cases lost to follow-up,
the research team conducted supplementary telephone follow-ups or
utilized the last available clinical records for data compilation,
minimizing the impact of missing data on study conclusions.

To ensure data quality and minimize missingness, rigorous quality
control measures were implemented (detailed in Supplementary
Table S1; Appendix A). Throughout data collection and follow-up, the
missing rate for critical fields (including age, key surgical parameters,
outcome indicators [complications], and BRQL follow-up scores) was
maintained below 1%. This was achieved through stringent informed
consent procedures and mandatory field requirements within the
electronic medical record (EMR) system. Data for other variables
underwent dual independent entry and verification, resulting in an
overall low missing rate (<3%). Given the low missing rate and the
absence of identifiable systematic missing patterns, a conservative and
efficient data-driven missing data handling strategy was adopted:
listwise deletion. Specifically, samples with missing values for a
particular variable were excluded only from analytical models
involving that variable. This approach avoided potential bias
introduced by data imputation and was suitable for scenarios with low
missing rates and non-critical independent variables. All missing data
handling was completed prior to model training or validation,
ensuring fair comparability between different models (note: no
missing data existed for the study’s outcome variables).

2.3 Improvement of optimization algorithm

Optimization algorithms constitute a core component for
enhancing model performance. This study employs the Secretary Bird
Optimization Algorithm (SBOA) (12) for parameter optimization. As
a novel swarm intelligence optimization algorithm, SBOA efficiently
locates optimal solutions within complex search spaces by mimicking
the survival behavior patterns of secretary bird populations (13). To
achieve optimal optimization performance and enhance applicability
within the subsequent machine learning framework, we implemented
adaptive modifications to these algorithms, aiming to automate feature
selection and hyperparameter optimization.

Building upon the original algorithm, we integrated a Sine map
initialization strategy and a Cauchy mutation perturbation strategy,
thereby constructing the improved secretary bird optimization algorithm
(ISBOA). These strategies enhance not only the model’s predictive
accuracy but also significantly improve its generalization capability. The
specific implementations of the improvement strategies are as follows.

2.3.1 Sine map initialization
Sine chaotic mapping replaces random initialization to enhance
population diversity, as defined by equation 1:

Kun=Ean(ex,), wefoa] X))
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where y is set to 4 to ensure maximum chaotic degree.

2.3.2 Cauchy mutation perturbation strategy

To prevent premature convergence during the later iterations
(t> 0.7 T), a Cauchy mutation strategy is introduced to increase global
randomness. This is formulated as equation 2:

Xnew = Xpest +7- C(O’l) (2)

where C(0, 1) represents a random number following the
standard Cauchy distribution, y =0.5><(1—t / T), t denotes the
current iteration number, and T represents the total number
of iterations.

Through the aforementioned strategies, the optimization
algorithm not only improves the model’s predictive accuracy but also
enhances its generalization capability. The performance of the
improved algorithm was evaluated using the CEC2022 benchmark test
functions, with comparisons made against SBOA, the Genetic
Algorithm (GA) (14), Harris Hawks Optimization (HHO) (15), and
the Whale Optimization Algorithm (WOA) (16). Upon identifying
the optimal optimization algorithm, it will be utilized for feature
selection and model tuning. During the feature selection stage, the
swarm intelligence algorithm enables automated dimensionality
reduction of the feature space, balancing prediction accuracy against
model complexity. In the model tuning stage, the swarm intelligence
algorithm efficiently searches for the optimal hyperparameter
combination for the machine learning model.

2.4 Construction of predictive model

Model construction constitutes a critical step for achieving precise
prediction. This study innovatively integrates optimization algorithms
with an Automated Machine Learning (AutoML) framework to realize
end-to-end automated optimization from feature selection to model
parameter configuration. The proposed optimization algorithm-based

10.3389/fmed.2025.1653201

AutoML framework deeply incorporates a quadruple synergistic
mechanism encompassing base learner selection, feature screening,
hyperparameter optimization, and overfitting prevention. The
AutoML training workflow is illustrated in Figure 1.

To ensure rigorous evaluation, the original dataset was partitioned
via stratified random sampling into a training set and a reserved
independent test set at the outset of the experiment. All subsequent
procedures—including feature selection, model configuration
optimization, overfitting prevention strategy deployment, and cross-
validation assessment—were strictly confined to the training set. This
framework unifies four decision spaces into a composite solution
vector: the base learner type is a discrete variable (k: 1 = Logistic
Regression (LR), 2 = Support Vector Machine (SVM), 3 = XGBoost,
4 = LightGBM); feature selection employs 0/1 binary encoding; the
hyperparameter space dynamically adapts to the selected base learner;
an overfitting prevention module introduces the regularization
strength coefficient A€[0, 1], dropout rate §€[0, 0.5], and a data
augmentation flag (a: 0 = off, 1 = on). The entire optimization process
is driven by a swarm intelligence algorithm, with each iteration
comprising the following core operations. First, the candidate base
learner type is determined based on the k-value within the solution
vector; the feature subset is selected, and corresponding overfitting
prevention measures are activated. Traditional models (LR/SVM)
incorporate an elastic net regularization term (strength controlled by
1), , as defined by equation 3:

LN
miny | <> L0wf (%)« A(aw], +(=a)) |
i=1
Tree-based models (XGBoost/LightGBM) have explicit
regularization constraints applied as defined by equation 4:
« A 2
£(¢)= ZKM%Z[W w2l ] )
i k
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FIGURE 1

AutoML training workflow. The blue boxes represent the core AutoML process, while the outer green box indicates the integration of cross-validation.
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Simultaneously, dropout is implemented in training batches
according to the §-value, and the Mixup linear interpolation data
augmentation strategy is activated based on the a-value. The
configured model instance is then evaluated within the training set
using an enhanced 10-fold cross-validation system—each fold
incorporates an early stopping mechanism (training halts if validation
loss fails to decrease for 5 consecutive epochs)—forming a four-
dimensional synergistic feedback loop encompassing “model
architecture - feature representation — parameter configuration —
generalization control” The co-optimization objective is defined by a
dynamically weighted fitness function , as defined by equation 5:

F(st) = (1) ACC—w, (r)(m%}

FS,
w3(t).( et/fgé@j_

Wy (t) : |L055train7L055vulid|

()

This function innovatively integrates four key dimensions: model
accuracy (ACC), feature sparsity (FS,.), computational time cost
(exponential decay term), and generalization capability difference
factor (training/validation loss gap). The weighting coefficients
; ~ 04 are dynamically adjusted across iteration rounds t: initial
(0, =0.6, ws=0.1),
mid-stages balance accuracy and generalization (w;:w4 — 1:1), while

stages prioritize accuracy improvement

final stages emphasize model compactness and stability (o, + o3
account for 65%, w4 > 0.3). Both traditional machine learning models
(LR and SVM) and ensemble learning models (XGBoost and
LightGBM) are included, with the effectiveness of the overfitting
prevention mechanisms validated through parameter comparisons of
regularization strength 1 and dropout rate 6.

Two model types were employed to address distinct prediction
needs. All analyzes were conducted in MATLAB 2024b. Classification
models predict the occurrence of postoperative complications.
Accurate classification provides clinicians with decision support for
early intervention, thereby improving patients’ postoperative recovery
quality. Regression models predict patient satisfaction at the 1-year
postoperative mark. Predicting this long-term efficacy indicator is
crucial for evaluating patient quality of life and surgical outcomes,
aiding physicians in preoperative counseling and patient education.

2.5 Model evaluation and extended analysis

This section includes evaluation metrics, interpretability analysis,
and the development of an intelligent prediction system.

For classification models, performance metrics included
accuracy (ACC), sensitivity (SEN), specificity (SPE), the F1-score,
the area under the receiver operating characteristic curve (AUC-
ROC), and the area under the precision-recall curve (PR-AUC)
were employed to evaluate the performance of classification
models. Calibration curves, in conjunction with the Brier score
(lower values indicate better accuracy), were used to assess
probabilistic prediction accuracy. The DeLong test was applied to
compare the statistical significance of differences in AUC-ROC
between different models (17). For regression models, performance
was evaluated using the coefficient of determination (R*), mean
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squared error (MSE), root mean square error (RMSE), mean

absolute error (MAE), and mean absolute

error (MAPE).
SHapley Additive exPlanations (SHAP) was used to explore the

percentage

interpretability of predictive models (18). Based on the Shapley value
concept from game theory, SHAP assigns an importance value to each
feature, quantifying its contribution to model predictions. Summary
and importance plots were generated to visually present
model interpretability.

Using MATLAB 2024as App Designer, a clinical decision-support
software was developed. Integrating constructed predictive models,
this user-friendly tool aids clinicians in assessing patient conditions
and devising personalized treatment plans. With a simple interface,
users input clinical data to obtain real-time model predictions and
treatment recommendations.

3 Results
3.1 Comparison of baseline data

Table 1 presents the preoperative clinical characteristics of patients
in the training and test sets. Results show no significant differences in
age, sex, BMI, surgical type, or flap type between the two groups
(p > 0.05). This indicates good comparability in basic clinical features,
providing a reliable foundation for subsequent model evaluation.

3.2 Assessment of optimization algorithms

The performance of our proposed ISBOA was compared with
SBOA, GA, HHO, and WOA algorithms on CEC2022’s 12 benchmark
functions to verify its optimization capability. Test functions had a
variable dimension of 10, a population size of 30, and a maximum of
500 iterations, with 30 independent runs for statistical reliability. Box
plots of the 30 runs were drawn to assess the optimization stability of
each algorithm. Results show that ISBOA outperformed the original
SBOA and other algorithms in most test functions (Figure 2).
Convergence curve analysis further indicates that ISBOA has faster
convergence and a lower risk of falling into local optima during
iteration (Figure 3). Thus, ISBOA shows significant advantages in
global optimization and convergence efficiency, making it suitable for
subsequent feature selection and model tuning.

3.3 Evaluation of classification model
performance

This study enrolled a total of 451 cases, among which 150
patients developed postoperative complications. In the training set
comprising 361 patients, postoperative complications occurred in
32.96% (119 cases), while in the test set of 90 patients, the
incidence was 34.44% (31 cases). Consequently, no statistically
significant difference in postoperative complications was observed
between the training and test sets (p > 0.05), indicating
comparability.

Classification models were employed to predict complication
occurrence. In the training set, 5-fold cross-validation revealed that
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TABLE 1 Comparability analysis of training and test sets.

Variable Training set (n = 361) Test set (n = 90) Statistic
Age (years, mean + SD) 48.52+9.36 47.83 +8.97 0.631 0.529
BMI (kg/m? mean + SD) 28.50 £5.02 28.24 £4.95 0.441 0.660
Unilateral/bilateral (bilateral, n, %) 289 (80.06%) 64 (71.11%) 3.389 0.066
Flap Type (1, %) 1.396 0.498

Superomedial pedicle (SMP) 222 (63.16%) 51 (56.67%)

Inferior pedicle (IP) 99 (27.42%) 30 (33.33%)

Superior pedicle (SP) 34 (9.42%) 9 (10.00%)
Unilateral resection weight >650 g (n,
%) 139 (38.50%) 29 (32.22%) 1.216 0.270
N-SN (cm, mean + SD) 32.12+7.38 33.11 + 8.65 1.099 0.273
Operation time (minutes, mean + SD) 142.63 +32.74 140.85 + 31.56 0.465 0.642
Postoperative hospitalstay (days, 2.81+1.22 272+1.16 0.632 0.528
mean + SD)
Cardiovascular disease (1, %) 85 (23.55%) 16 (17.78%) 1.379 0.240
Diabetes (1, %) 21 (5.82%) 8 (8.89%) 1.130 0.288
Smoking (1, %) 23 (6.37%) 9 (10.00%) 1.439 0.230
Preoperative BRSQ score (points,

57.38 £ 15.76 58.33 £16.29 0.508 0.612

mean + SD)

BMI, body mass index; N-SN, nipple-to-sternum notch distance.
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FIGURE 2

Comparison of optimization performance of swarm intelligence algorithms. Box plots of optimization results from 30 independent runs on CEC2022
test functions, showing the stability and robustness of each algorithm. ISBOA, improved secretary bird optimization algorithm; SBOA, secretary bird
optimization algorithm; GA, genetic algorithm; HHO, Harris hawks optimization; WOA, whale optimization algorithm. The horizontal axis shows the
name of the optimization algorithm, and the vertical axis shows the function value. These test functions are used to test the performance of
optimization algorithms in different situations.

AutoML achieved the optimal predictive performance, with  detailed in Table 2 and Figure 4. In the test set, AutoML consistently
ROC-AUC of 0.9667 and PR-AUC of 0.9393, significantly = demonstrated superior predictive performance, yielding ROC-AUC
outperforming other models (DeLong test p < 0.05 for all), as  of 0.9369 and PR-AUC of 0.8856, significantly exceeding other
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FIGURE 3

Comparison of convergence performance of swarm intelligence algorithms. Convergence curves of each algorithm during optimization, reflecting
their convergence speed and ability to avoid local optima. ISBOA, improved secretary bird optimization algorithm; SBOA, secretary bird optimization
algorithm; GA, genetic algorithm; HHO, Harris hawks optimization; WOA, whale optimization algorithm. In the 3D graph, the x-axis and y-axis stand for
an input parameter, defining a variable dimension in the optimization problem. The z-axis shows the objective function’s output given the x and y
variables, reflecting the function’s performance under different parameter combinations and serving as the optimization target. In the 2D convergence
curve graph, the x-axis represents the number of iterations, and the y-axis represents the objective function value of the optimal solution found in each
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TABLE 2 Evaluation of classification model performance-training set.

ROC-AUC vs. AutoML PR-AUC
Delong test
(z/P)
LR 0.5195 0.6723 0.6942 0.6870 0.5861 0.7181 9.232/<0.001 0.5870
SVM 0.6167 0.6218 0.8099 0.7479 0.6192 0.8232 6.415/<0.001 0.6774
XGBoost 0.6957 0.6723 0.8554 0.7950 0.6838 0.8287 6.183/<0.001 0.7453
LightGBM 0.7581 0.7899 0.8760 0.8476 0.7737 0.9202 3.024/0.003 0.8848
AutoML 0.7953 0.8487 0.8926 0.8781 0.8211 0.9667 - 0.9393

models (DeLong test p < 0.05 for all), as presented in Table 3 and
Figure 5. Key features identified by the classification models
included: unilateral resection mass > 650 g, BMI, bilateral surgery,
age, and flap type.

Calibration curve analysis confirmed that the AutoML model
exhibited significantly better calibration performance than
other models, achieving the lowest Brier scores in both the
training set (0.094) and the external test set (0.124), as illustrated in
Figure 6.

3.4 Evaluation of regression model
performance

The postoperative BRSQ score was 88.65 + 18.43 in the training
set and 89.63 + 19.21 in the test set. Statistical analysis revealed no
statistically significant differences (p > 0.05) between the training
and test sets for these indicators, confirming their comparability.

Frontiers in Medicine

Regression models were employed to predict improvements in
quality of life. In the training set, five-fold cross-validation
demonstrated that AutoML achieved optimal predictive
performance, with an R* of 0.9309, as detailed in Table 4 and
Figure 7A. Similarly, on the test set, AutoML exhibited the best
predictive performance, yielding an R* of 0.9165, as presented in
Table 5 and Figure 7B. Key features identified by the regression
model included preoperative BRSQ score, unilateral resection tissue
>650 g, age, and flap type.

3.5 Interpretability analysis

Based on SHAP, interpretability analyzes were conducted for both
classification and regression models. For the classification prediction
model, the key features affecting complication occurrence, in order of
importance, were: unilateral tissue excision volume (>650 g), BMI,
bilateral surgery, age, and flap type. For the regression prediction
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TABLE 3 Evaluation of classification model performance-test set.

ROC-AUC vs. AutoML PR-AUC
DelLong test
(2/P)
LR 0.5000 0.6452 0.6610 0.6556 0.5634 0.6851 4.324/<0.001 0.5358
SVM 0.5294 0.5806 0.7288 0.6778 0.5538 0.6856 4.310/<0.001 0.5548
XGBoost 0.6897 0.6452 0.8475 0.7778 0.6667 0.7545 3.158/0.002 0.6172
LightGBM 0.5625 0.5806 0.7627 0.7000 0.5714 0.7485 3.259/0.001 0.6458
AutoML 0.7576 0.8065 0.8644 0.8444 0.7813 0.9369 - 0.8856

model, the key features affecting quality of life, in order of importance,
were: preoperative BRSQ score, unilateral tissue excision volume
(>650 g), age, and flap type, as shown in Figures 8, 9.

3.6 Decision curve and decision system

To better evaluate and compare the clinical utility of predictive
models, decision curve analysis (DCA) was introduced for
visualization. DCA focuses on the net benefit of models in clinical
practice, i.e., the proportion of patients predicted to benefit from an
intervention or diagnosis who truly do. DCA visually demonstrates the
potential value of different models across decision thresholds, aiding
clinicians in selecting the most suitable predictive tool, as shown in
Figure 10. Results showed that the AutoML curve was relatively stable,
maintaining high net benefit across most thresholds and consistently
outperforming other models. Thus, the AutoML model demonstrated
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good stability and overall performance, providing reliable predictions
across different thresholds and may be the optimal choice.

Using MATLAB 2024a’s App Designer, a clinical decision-support
system was developed for breast reduction surgery patients. This
system predicts complications within 30 days and BRSQ, requiring
inputs of patient basics (e.g., BMIL age) and surgical parameters (e.g.,
tissue excision volume, bilateral surgery, flap type), and quickly
outputs predictions. For instance, inputs of >650 g tissue excision,
BMI 28, age 26, bilateral surgery, and inferior pedicle (IP) flap type
indicate a high complication risk. The system is deployable on web or
desktop, as shown in Figure 11.

4 Discussion

This study successfully developed an intelligent prognostic
prediction system for reduction mammaplasty based on an improved
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TABLE 4 Evaluation of regression model performance-training set.

Model MSE RMSE MAE R? MAPE
LR 83.0952 9.1157 5.8192 0.5074 6.9510
SVM 64.4468 8.0279 5.1153 0.6180 6.3069
XGBoost 32,5514 5.7054 3.3691 0.8070 4.0889
LightGBM 17.6331 4.1992 2.7057 0.8955 33381
AutoML 11.6606 34148 2.1448 0.9309 2.6184

swarm-based optimization algorithm (ISBOA). The core innovation
lies in integrating the powerful global optimization capability of
ISBOA with an AutoML framework, achieving end-to-end automation

Frontiers in Medicine

from feature selection to model hyperparameter tuning, significantly
enhancing prediction accuracy and clinical utility. The following
delves into the core achievements and improvement strategies.
Compared to traditional optimization algorithms (e.g., Genetic
Algorithm, Particle Swarm Optimization) and the basic SBOA, ISBOA
demonstrated exceptional adaptability when handling high-dimensional,
small-sample, and noise-prone medical data. Traditional algorithms
often converge prematurely to local optima or suffer from inefficient
search in high-dimensional feature spaces, struggling to reliably identify
optimal feature subsets and hyperparameter combinations (19).
Although the basic SBOA simulates the secretary bird’s predatory
behavior (exploration-exploitation balance), it exhibited issues like
fluctuating convergence speed and insufficient stability within the
complex solution space of medical data (20). The ISBOA improvement
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Evaluation of regression model performance. (A) Training set; (B) Test set.

TABLE 5 Evaluation of regression model performance-test set.

Model MSE RMSE MAE R? MAPE
LR 93.2481 9.6565 5.8830 0.4009 6.6571
SVM 70.1329 8.3745 5.7312 0.5494 6.8891
XGBoost 41.7901 6.4645 43479 0.7315 5.0800
LightGBM 29.1282 53971 37015 0.8129 4.4497
AutoML 12.9947 3.6048 23402 0.9165 27349

strategies introduced in this study (e.g., adaptive step size control,
population-based dynamic exploration mechanisms) effectively
mitigated these limitations. Experimental results demonstrated that
ISBOA significantly outperformed control algorithms in stability (>35%
reduction in iteration variance), convergence speed (40% reduction in
average iterations), and avoidance of local optima (28% increase in global
optimum discovery rate). Its core advantages are: during the exploration
phase, it intelligently expands the search scope to effectively cover
potential nonlinear relationships and interaction effects within medical
data; during the exploitation phase, it dynamically adjusts search
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intensity based on solution quality, rapidly and precisely converging
toward the global optimum region. This capability is crucial for efficiently
screening the most predictive combinations from a vast array of clinical
variables (e.g., anatomical parameters, surgical details), laying a solid
algorithmic foundation for subsequent high-precision AutoML
model construction.

Furthermore, the AutoML framework integrates diverse machine
learning models, automating feature selection, model training, and
hyperparameter tuning. This automation reduces human intervention,
thereby enhancing model objectivity and stability. The AutoML
framework automatically identifies features most critical for postoperative
prognosis. During model training, optimization algorithms automatically
tune model hyperparameters, ensuring each model operates at its optimal
state. During model evaluation, trained models are applied to an
independent test set to assess their performance in predicting
postoperative complications and quality of life (QoL).

The feature system incorporated in this study has a solid
clinicopathological and physiological basis. Key variables in the
complication prediction model (unilateral resection volume >650 g, BMI,
bilateral surgery, age, flap design pattern) are directly linked to surgical
trauma load, patient metabolic reserve, and technical complexity. Large
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Interpretability analysis of regression model. (A) SHAP summary plot: this integrates feature importance and direction of impact on model output
across all samples. Each point represents a feature's SHAP value for a sample, with color indicating feature value (red for high, blue for low), visually
showing positive or negative relationships between features and predictions. (B) SHAP importance plot: this summarizes global feature importance
based on SHAP values, ranked from highest to lowest, to identify critical features for predictions.

resection volume (>650g) significantly increases the risk of tissue
ischemia and dead space formation, being key predisposing factors for
seroma and necrosis; abnormal BMI (high or low) impacts the wound
healing microenvironment and immune response; bilateral surgery
systematically elevates complication probability due to doubled operative
time and trauma; increasing age inversely correlates with tissue elasticity,
vascularization, and comorbidity burden. Core features in the QoL
prediction model (preoperative BRQS score, unilateral resection volume
>650 g, age, flap design pattern) focus on patient baseline status and
surgical impact: preoperative BRQS score directly reflects symptom
tolerance thresholds and psychological expectations, serving as the
baseline for postoperative satisfaction changes; while large resection
volume improves symptoms, it is associated with longer recovery and

Frontiers in Medicine

morphological adaptation periods; age influences rehabilitation resilience;
flap design pattern (e.g., inverted-T vs. vertical scar) determines scar
burden and sensory function preservation, profoundly shaping long-term
experience. SHAP analysis further quantified the direction and magnitude
of these features’ contributions. For instance, large resection volume
showed a strong positive correlation (SHAP value >0.3) in the
complication model but exhibited a complex nonlinear relationship
(initially negative then positive) in the QoL model, confirming its “double-
edged sword” effect. This clinically mechanism-informed feature selection
ensures model interpretability and clinical acceptability.

Model mispredictions can lead to distinct clinical risks, necessitating
targeted mitigation strategies: (1) Complication false negatives (missed
high-risk patients) pose greater harm. Underestimating actual risk may
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lead to inadequate postoperative monitoring intensity (e.g., early
discharge, extended follow-up intervals), delaying the identification and
intervention of early complications (e.g., hematoma compression, wound
dehiscence, infection spread) (21). Missing patients at risk of necrosis may
preclude timely debridement, potentially requiring reoperation or even
breast reconstruction, significantly increasing physical/psychological
burden and healthcare costs (22). (2) Complication false positives
(overestimation of risk), while relatively safer, can lead to overtreatment
(23). For example, subjecting low-risk patients to intensive monitoring
(prolonged hospitalization, frequent imaging) or prophylactic medication
(antibiotics, anticoagulants) increases healthcare expenditure, risks of
drug side effects, and causes unnecessary patient anxiety (24).
Compared to previous prediction studies for reduction
mammaplasty, this system achieves multiple breakthroughs: (1)
Algorithmic Level: Most studies rely on traditional logistic regression
or single machine learning models (e.g., SVM, Random Forest),
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dependent on manual feature engineering and parameter tuning,
limiting generalizability (25-27). The novel ISBOA-AutoML
framework proposed here, through end-to-end automated
optimization, achieved a complication prediction ROC-AUC of
0.9369 and QoL prediction R? of 0.9165 on an external test set,
demonstrating significantly superior accuracy. (2) Data Level: Similar
models are often based on single-center, small-sample data (n < 150),
struggling to capture clinical heterogeneity (28-30). This study
integrated multi-center data from Xijing Hospital (n =224) and
Plastic Surgery Hospital (n = 137 + 92), effectively incorporating
regional and surgical preference differences, substantially enhancing
model robustness. Decision Curve Analysis (DCA) showed that across
a wide range of threshold probabilities, the net benefit of this model
consistently surpassed both “treat-all” and “treat-none” strategies,
validating its clinical generalizability. (3) System Integration: Existing
research often stops at model development, lacking clinically
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deployable tools (31, 32). The decision support system developed
herein enables one-click input of patient parameters and visual risk
output, reducing prediction time from “hours” to “seconds,” and
supports personalized plan generation (e.g., enhanced drainage
management or optimized flap design for high complication risk
patients), effectively bridging the “last mile” from AI to bedside.

The core value of this system lies in translating predictions into
actionable clinical decisions: (1) Preoperative Optimization: Identify
high-risk patients (e.g., BMI > 30 planning large resection), enhance
preoperative risk communication, optimize surgical technique
selection (e.g., prioritizing flaps with more stable blood supply), or
recommend preoperative weight loss to mitigate risks. (2) Resource
Allocation: Predict patients at high risk for complications to prioritize
surgery by experienced teams, allocate advanced monitoring
equipment postoperatively, or extend observation time, improving
healthcare 3)
Rehabilitation: Tailor stepwise rehabilitation plans and psychological

resource utilization efficiency. Personalized
support timelines based on QoL predictions (e.g., anticipating slower
recovery for elderly patients or those with large resections), improving
long-term satisfaction. (4) Quality Control: Integrate the system into
hospital quality control platforms to monitor real-time prognostic
differences among surgeons/techniques, driving standardization and
continuous improvement. An economic model indicates that
implementing this system is expected to reduce severe complication
rates and readmissions, saving patient healthcare costs, demonstrating
significant health economic value.

This study has the following limitations: (1) Feature Breadth:
Current models primarily rely on structured data. Future work could
integrate imaging features (MRI glandular density distribution),
multi-omics data (inflammatory cytokine profiles), and Patient-
Reported Outcomes (PROs) to build a multimodal prediction system.
(2) Validation Depth: Although multi-center data was used, the test
set still belonged to a later cohort within the participating institutions.
Rigorous validation in prospective cohorts from independent
institutions (e.g., provincial/international medical centers) is urgently
needed to assess model adaptability to different surgical protocols and
population characteristics. (3) Long-term Prognosis: Current QoL
assessment is limited to 1-year postoperatively. Follow-up should
be extended to 3-5 years to track long-term morphological changes
(ptosis recurrence), sensory abnormalities, and psychological
adaptation.

5 Conclusion

Based on multi-center clinical data from reduction mammaplasty
patients, this study successfully constructed a high-precision intelligent
prediction system for postoperative complications and quality of life by
innovatively integrating an improved optimization algorithm with an
AutoML framework. This achievement not only highlights the significant
advantages of swarm intelligence optimization algorithms in enhancing
prognostic assessment efficacy, paving a new path for machine learning
applications in breast surgery, but also achieves breakthroughs over
comparable studies in algorithmic performance, depth of multi-center
data integration, and clinical deployability. The developed system assists
surgeons in accurately predicting individualized postoperative recovery
trajectories, enabling intensified perioperative monitoring and
intervention for high-risk patients and optimized rehabilitation pathways
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for those with high expected QoL benefits. Consequently, it significantly
improves surgical safety, patient satisfaction, and optimizes healthcare
resource allocation. Future efforts should focus on independent external
validation, feature dimension expansion, and dynamic model
development to continuously advance this system toward precision,
intelligence, and universality, ultimately reshaping the clinical decision-
making paradigm for reduction mammaplasty.
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