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Objective: This study aimed to enhance the accuracy of prognosis assessment 
for reduction mammaplasty by improving a swarm intelligence optimization 
algorithm and to develop an intelligent prediction system to support clinical 
decision-making.
Methods: This study enrolled 224 patients who underwent reduction 
mammaplasty at Xijing Hospital between January 14, 2018, and February 4, 
2023, and 137 patients who underwent the same procedure at Plastic Surgery 
Hospital between January 14, 2018, and May 1, 2020, constituting the training 
set. Ninety-two patients who underwent reduction mammaplasty at Plastic 
Surgery Hospital between May 2, 2020, and February 4, 2023, were defined as 
the test set. Data collection encompassed preoperative anatomical parameters, 
intraoperative procedural characteristics, and postoperative follow-up 
outcomes. Prognostic indicators included postoperative complications and the 
BRQS score. Guided by the Improved Secretary Bird Optimization Algorithm 
(ISBOA), the optimization algorithm was integrated with an AutoML framework 
to achieve fully automated optimization spanning from feature selection to 
model parameter configuration. A classification model was employed to predict 
the occurrence of postoperative complications, while a regression model was 
used to predict patient satisfaction at 1 year postoperatively.
Results: The ISBOA algorithm significantly outperformed other algorithms 
in stability, convergence speed, and avoidance of local optima. The AutoML 
framework achieved an ROC-AUC of 0.9369 and a PR-AUC of 0.8856 
for complication prediction (test set), and an R2 of 0.9165 for quality-of-
life prediction (test set). SHAP analysis identified key features influencing 
complications and quality of life. Decision Curve Analysis (DCA) demonstrated 
that the AutoML model possessed high net benefit and stability across various 
threshold probabilities. The developed clinical decision support system could 
rapidly generate prediction results, aiding physicians in formulating personalized 
treatment plans.
Conclusion: This study successfully constructed a prognosis assessment and 
intelligent prediction system for reduction mammaplasty based on an improved 
swarm intelligence optimization algorithm. The results indicate that the ISBOA 
algorithm exhibits significant advantages in global optimization performance 
and convergence efficiency. The AutoML model demonstrated excellent 
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performance in predicting complications and assessing quality of life, with its 
clinical utility further validated by DCA. The developed clinical decision support 
system provides physicians with a convenient decision-making tool, promising 
to enhance the scientific rigor and efficiency of medical decision-making and 
offering a substantial opportunity for improving prognosis quality.

KEYWORDS

breast reduction surgery, improved swarm intelligence optimization algorithm, 
AutoML, postoperative complication prediction, quality of life assessment, intelligent 
prediction system, clinical decision support

1 Introduction

In the field of plastic surgery, reduction mammaplasty serves as a 
pivotal therapeutic intervention for alleviating the physical and 
psychological burdens of patients with macromastia and enhancing 
their quality of life (1). This procedure effectively reshapes breast 
morphology through precise excision of redundant glandular and 
cutaneous tissues, significantly improving patients’ posture, body 
symmetry, and functional capacity for daily activities (2). However, 
postoperative outcomes exhibit substantial interindividual 
heterogeneity, particularly complication rates and the extent of 
quality-of-life improvement (3).

This heterogeneity arises from complex and interdependent 
factors, including patients’ baseline characteristics, preoperative 
symptom severity, and surgery-specific variables (such as unilateral/
bilateral procedure, flap design pattern, volume of tissue resected per 
breast, nipple-to-sternal notch distance, operative duration, and 
postoperative hospital stay) (4). These factors profoundly influence 
surgical complexity, the degree of tissue trauma, and postoperative 
recovery trajectories (5). Consequently, systematic identification of 
key quantifiable prognostic factors and development of accurate 
predictive models are crucial for optimizing patient management and 
surgical outcomes (6).

Currently, the application of traditional statistical models or 
machine learning methods for predicting reduction mammaplasty 
outcomes (e.g., complications, patient satisfaction) faces significant 
limitations (7). A primary challenge lies in the heavy reliance on 
manual intervention during model development: feature selection 
depends on subjective expert judgment, risking omission of potentially 
significant variables while being time-consuming and labor-intensive; 
hyperparameter tuning requires extensive trial-and-error, 
compromising model stability and reproducibility across diverse 
datasets (8). Secondly, models frequently demonstrate inadequate 
generalization capability (9). Those trained on single-center data often 
fail to adequately capture variations in patient demographics, surgical 
techniques, and perioperative care standards across different 
institutions, leading to substantially degraded predictive accuracy 
upon external validation and severely limiting clinical utility (10).

To overcome these limitations, this study innovatively proposes 
an Automated Machine Learning (AutoML) framework based on a 
modified swarm intelligence optimization algorithm (11). This 
framework aims to achieve end-to-end automated optimization from 
feature selection to model parameter configuration. The proposed 
Improved Secretary Bird Optimization Algorithm (ISBOA) leverages 
robust global search capability, rapid convergence characteristics, and 
exceptional capacity for escaping local optima to efficiently navigate 

complex solution spaces. During feature engineering, the algorithm 
automatically evaluates the predictive efficacy of numerous feature 
combinations to identify optimal subsets; during model construction, 
it intelligently tunes hyperparameters, significantly reducing manual 
dependency while enhancing model robustness.

Critically, this study leverages multi-center clinical data 
(integrating datasets from Xijing Hospital and the Plastic Surgery 
Hospital) to effectively mitigate the constraints of single-center data. 
This integration not only substantially expands sample size but also 
incorporates geographic and inter-institutional variations in clinical 
practice, enabling the model to learn broader, more representative 
feature patterns. Consequently, the model’s generalization capability 
and clinical applicability are markedly enhanced. The resulting 
intelligent prediction system provides surgeons with scientific, 
personalized prognostic assessments and decision support.

The contributions and innovations of this study are summarized 
as follows: (1) Systematic analysis of associations between patient 
characteristics, preoperative status, surgical variables, and prognostic 
indicators (postoperative complications and BRQS-assessed quality of 
life); (2) Development and validation of an ISBOA-optimized AutoML 
framework for high-accuracy, automated prediction of complication 
risk and 1-year postoperative patient satisfaction; and (3) Construction 
of a practical clinical decision support system. This research not only 
provides a powerful technical tool for enhancing the precision and 
personalization of reduction mammaplasty but also establishes a novel 
research paradigm integrating swarm intelligence optimization with 
AutoML and multi-center big data, paving new pathways for 
advancing medical artificial intelligence applications.

2 Methods

2.1 Patient information

This study employed a multi-center design, integrating clinical 
data from Xijing Hospital and Plastic Surgery Hospital. The training 
cohort (n = 361) comprised two distinct subsets: 224 patients who 
underwent breast reduction mammaplasty at Xijing Hospital between 
January 14, 2018, and February 4, 2023, and 137 patients who 
underwent the same procedure at Plastic Surgery Hospital between 
January 14, 2018, and May 1, 2020. The test cohort consisted of an 
independent series of 90 consecutive breast reduction mammaplasty 
patients treated at Plastic Surgery Hospital from May 2, 2020, to 
February 4, 2023.

Sample size estimation strictly adhered to the event-driven 
principle for prediction model research. Based on a reported 
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postoperative complication incidence of approximately 30% in prior 
literature (4) and an anticipated maximum of 10 variables for inclusion 
in model training, the robust modeling criterion of “events per 
variable (EPV) ≥ 10” mandated a minimum of 100 endpoint events. 
Consequently, the minimum required sample size for the training 
cohort was calculated as 333 patients (100/0.3 ≈ 333).

The partitioning strategy for Plastic Surgery Hospital data utilized 
a temporal window approach: Early data from this center (spanning 
33 months) was merged with Xijing Hospital data to form the training 
cohort, aiming to capture potential evolution in the natural history of 
the condition and inherent population heterogeneity. Utilizing the 
center’s recent consecutive cases as an independent test cohort 
effectively simulated real-world clinical practice scenarios and 
assessed the model’s temporal generalizability on contemporary data. 
This design simultaneously met sample size requirements and 
leveraged time-truncated, independent cohorts from the same center 
for validation, significantly enhancing the preliminary assessment of 
the model’s potential for external generalizability. It also facilitated the 
inclusion of populations with diverse academic backgrounds.

Inclusion criteria: (1) aged between 18 and 65 years; (2) clinically 
assessed as meeting the criteria for breast reduction surgery; (3) 
signed an informed consent form preoperatively to participate in the 
study; and (4) received standardized rehabilitation and follow-up 
postoperatively for at least 1 year. Exclusion criteria: (1) previous 
breast cosmetic surgery; (2) other breast diseases or endocrine 
disorders; and (3) pregnancy or lactation. The study was approved by 
the Xijing Hospital’s ethics committee (No. KY20172032-F-1), with all 
patients providing written consent. The research adhered to the 
Declaration of Helsinki and relevant medical data management 
standards to ensure patient rights and legal compliance in 
data handling.

2.2 Data collection and follow-up methods

Data were sourced from the electronic medical records and 
follow-up records of breast reduction surgery patients in the hospital 
system from 2018 to 2023. All variables were entered independently by 
two individuals and cross-checked for consistency, with the database 
anonymized to protect patient privacy. Data were collected on 
preoperative anatomical parameters, intraoperative features, and 
postoperative follow-up outcomes. Clinical characteristics included age, 
body mass index (BMI), surgery type (unilateral/bilateral), flap type, 
unilateral tissue excision volume, nipple-to-sternum notch distance 
(N-SN), surgical duration, postoperative hospital stay, cardiovascular 
history, diabetes history, smoking history, and breast-related symptoms 
questionnaire (BRSQ) scores. Flap types were categorized as 
superomedial pedicle (SMP), inferior pedicle (IP), or superior pedicle 
(SP). BRSQ was measured preoperatively, validated across multiple 
centers, covering 13 somatic symptoms scored from 0 to 100. Prognostic 
indicators included postoperative complications and breast-related 
quality of life questionnaire (BRQS) scores. Complications such as 
hematoma, infection, or wound dehiscence were confirmed by the chief 
surgeon and classified using the Clavien-Dindo system (CDCS).

Patient follow-up strictly followed routine hospital clinical protocols, 
designed to systematically monitor patient recovery and assess long-
term surgical outcomes. The follow-up schedule included complication 
surveillance within 30 days postoperatively and long-term quality of life 
assessment at 1 year postoperatively, enabling the construction of a 

comprehensive postoperative recovery database. Information on 
complications occurring within 30 days postoperatively was meticulously 
documented during outpatient reviews, ensuring timely identification 
and management of potential issues. Postoperative BRQL scores were 
collected at standardized time points (12 months ± 1 month 
postoperatively) via outpatient visits or mailed questionnaires to enhance 
patient participation and data completeness. For cases lost to follow-up, 
the research team conducted supplementary telephone follow-ups or 
utilized the last available clinical records for data compilation, 
minimizing the impact of missing data on study conclusions.

To ensure data quality and minimize missingness, rigorous quality 
control measures were implemented (detailed in Supplementary  
Table S1; Appendix A). Throughout data collection and follow-up, the 
missing rate for critical fields (including age, key surgical parameters, 
outcome indicators [complications], and BRQL follow-up scores) was 
maintained below 1%. This was achieved through stringent informed 
consent procedures and mandatory field requirements within the 
electronic medical record (EMR) system. Data for other variables 
underwent dual independent entry and verification, resulting in an 
overall low missing rate (<3%). Given the low missing rate and the 
absence of identifiable systematic missing patterns, a conservative and 
efficient data-driven missing data handling strategy was adopted: 
listwise deletion. Specifically, samples with missing values for a 
particular variable were excluded only from analytical models 
involving that variable. This approach avoided potential bias 
introduced by data imputation and was suitable for scenarios with low 
missing rates and non-critical independent variables. All missing data 
handling was completed prior to model training or validation, 
ensuring fair comparability between different models (note: no 
missing data existed for the study’s outcome variables).

2.3 Improvement of optimization algorithm

Optimization algorithms constitute a core component for 
enhancing model performance. This study employs the Secretary Bird 
Optimization Algorithm (SBOA) (12) for parameter optimization. As 
a novel swarm intelligence optimization algorithm, SBOA efficiently 
locates optimal solutions within complex search spaces by mimicking 
the survival behavior patterns of secretary bird populations (13). To 
achieve optimal optimization performance and enhance applicability 
within the subsequent machine learning framework, we implemented 
adaptive modifications to these algorithms, aiming to automate feature 
selection and hyperparameter optimization.

Building upon the original algorithm, we integrated a Sine map 
initialization strategy and a Cauchy mutation perturbation strategy, 
thereby constructing the improved secretary bird optimization algorithm 
(ISBOA). These strategies enhance not only the model’s predictive 
accuracy but also significantly improve its generalization capability. The 
specific implementations of the improvement strategies are as follows.

2.3.1 Sine map initialization
Sine chaotic mapping replaces random initialization to enhance 

population diversity, as defined by equation 1:

	
( )µ π µ+ = ∈ ∈ −      1 sin , 0,4 , 1,1

4n nX X X
	

(1)
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where μ is set to 4 to ensure maximum chaotic degree.

2.3.2 Cauchy mutation perturbation strategy
To prevent premature convergence during the later iterations 

(t > 0.7 T), a Cauchy mutation strategy is introduced to increase global 
randomness. This is formulated as equation 2:

	 ( )γ= + ⋅new best 0,1X X C 	 (2)

where C(0, 1) represents a random number following the 
standard Cauchy distribution, ( )γ = × −0.5 1 /t T , t denotes the 
current iteration number, and T represents the total number 
of iterations.

Through the aforementioned strategies, the optimization 
algorithm not only improves the model’s predictive accuracy but also 
enhances its generalization capability. The performance of the 
improved algorithm was evaluated using the CEC2022 benchmark test 
functions, with comparisons made against SBOA, the Genetic 
Algorithm (GA) (14), Harris Hawks Optimization (HHO) (15), and 
the Whale Optimization Algorithm (WOA) (16). Upon identifying 
the optimal optimization algorithm, it will be  utilized for feature 
selection and model tuning. During the feature selection stage, the 
swarm intelligence algorithm enables automated dimensionality 
reduction of the feature space, balancing prediction accuracy against 
model complexity. In the model tuning stage, the swarm intelligence 
algorithm efficiently searches for the optimal hyperparameter 
combination for the machine learning model.

2.4 Construction of predictive model

Model construction constitutes a critical step for achieving precise 
prediction. This study innovatively integrates optimization algorithms 
with an Automated Machine Learning (AutoML) framework to realize 
end-to-end automated optimization from feature selection to model 
parameter configuration. The proposed optimization algorithm-based 

AutoML framework deeply incorporates a quadruple synergistic 
mechanism encompassing base learner selection, feature screening, 
hyperparameter optimization, and overfitting prevention. The 
AutoML training workflow is illustrated in Figure 1.

To ensure rigorous evaluation, the original dataset was partitioned 
via stratified random sampling into a training set and a reserved 
independent test set at the outset of the experiment. All subsequent 
procedures—including feature selection, model configuration 
optimization, overfitting prevention strategy deployment, and cross-
validation assessment—were strictly confined to the training set. This 
framework unifies four decision spaces into a composite solution 
vector: the base learner type is a discrete variable (k: 1 = Logistic 
Regression (LR), 2 = Support Vector Machine (SVM), 3 = XGBoost, 
4 = LightGBM); feature selection employs 0/1 binary encoding; the 
hyperparameter space dynamically adapts to the selected base learner; 
an overfitting prevention module introduces the regularization 
strength coefficient λ∈[0, 1], dropout rate δ∈[0, 0.5], and a data 
augmentation flag (a: 0 = off, 1 = on). The entire optimization process 
is driven by a swarm intelligence algorithm, with each iteration 
comprising the following core operations. First, the candidate base 
learner type is determined based on the k-value within the solution 
vector; the feature subset is selected, and corresponding overfitting 
prevention measures are activated. Traditional models (LR/SVM) 
incorporate an elastic net regularization term (strength controlled by 
λ), , as defined by equation 3:

	
( ) ( )( )λ

=

 
+ + − 

  
∑ 2

w 1 2
1

1min ( , X w 1 w
N

i i
i

L y f a a
N

	
(3)

Tree-based models (XGBoost/LightGBM) have explicit 
regularization constraints applied as defined by equation 4:

	
( ) ( ) λφ γ = + + 

 
∑ ∑

2ˆ ,
2i i

i k
l y y T kw

	
(4)

FIGURE 1

AutoML training workflow. The blue boxes represent the core AutoML process, while the outer green box indicates the integration of cross-validation.
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Simultaneously, dropout is implemented in training batches 
according to the δ-value, and the Mixup linear interpolation data 
augmentation strategy is activated based on the a-value. The 
configured model instance is then evaluated within the training set 
using an enhanced 10-fold cross-validation system—each fold 
incorporates an early stopping mechanism (training halts if validation 
loss fails to decrease for 5 consecutive epochs)—forming a four-
dimensional synergistic feedback loop encompassing “model 
architecture  – feature representation  – parameter configuration  – 
generalization control.” The co-optimization objective is defined by a 
dynamically weighted fitness function , as defined by equation 5:

	

( ) ( ) ( )

( )
( )

λδ

−

 = ⋅ − ⋅ + + 
 

 
⋅ − 
 
⋅

1 2

3 /50

4

x,
5

rate
t

train valid

F t w t ACC w t

FSw t
e

w t Loss Loss 	
(5)

This function innovatively integrates four key dimensions: model 
accuracy (ACC), feature sparsity (FSrate), computational time cost 
(exponential decay term), and generalization capability difference 
factor (training/validation loss gap). The weighting coefficients 
ω₁ ~ ω₄ are dynamically adjusted across iteration rounds t: initial 
stages prioritize accuracy improvement (ω₁ = 0.6, ω₄ = 0.1), 
mid-stages balance accuracy and generalization (ω₁:ω₄ → 1:1), while 
final stages emphasize model compactness and stability (ω₂ + ω₃ 
account for 65%, ω₄ ≥ 0.3). Both traditional machine learning models 
(LR and SVM) and ensemble learning models (XGBoost and 
LightGBM) are included, with the effectiveness of the overfitting 
prevention mechanisms validated through parameter comparisons of 
regularization strength λ and dropout rate δ.

Two model types were employed to address distinct prediction 
needs. All analyzes were conducted in MATLAB 2024b. Classification 
models predict the occurrence of postoperative complications. 
Accurate classification provides clinicians with decision support for 
early intervention, thereby improving patients’ postoperative recovery 
quality. Regression models predict patient satisfaction at the 1-year 
postoperative mark. Predicting this long-term efficacy indicator is 
crucial for evaluating patient quality of life and surgical outcomes, 
aiding physicians in preoperative counseling and patient education.

2.5 Model evaluation and extended analysis

This section includes evaluation metrics, interpretability analysis, 
and the development of an intelligent prediction system.

For classification models, performance metrics included 
accuracy (ACC), sensitivity (SEN), specificity (SPE), the F1-score, 
the area under the receiver operating characteristic curve (AUC-
ROC), and the area under the precision-recall curve (PR-AUC) 
were employed to evaluate the performance of classification 
models. Calibration curves, in conjunction with the Brier score 
(lower values indicate better accuracy), were used to assess 
probabilistic prediction accuracy. The DeLong test was applied to 
compare the statistical significance of differences in AUC-ROC 
between different models (17). For regression models, performance 
was evaluated using the coefficient of determination (R2), mean 

squared error (MSE), root mean square error (RMSE), mean 
absolute error (MAE), and mean absolute percentage 
error (MAPE).

SHapley Additive exPlanations (SHAP) was used to explore the 
interpretability of predictive models (18). Based on the Shapley value 
concept from game theory, SHAP assigns an importance value to each 
feature, quantifying its contribution to model predictions. Summary 
and importance plots were generated to visually present 
model interpretability.

Using MATLAB 2024a’s App Designer, a clinical decision-support 
software was developed. Integrating constructed predictive models, 
this user-friendly tool aids clinicians in assessing patient conditions 
and devising personalized treatment plans. With a simple interface, 
users input clinical data to obtain real-time model predictions and 
treatment recommendations.

3 Results

3.1 Comparison of baseline data

Table 1 presents the preoperative clinical characteristics of patients 
in the training and test sets. Results show no significant differences in 
age, sex, BMI, surgical type, or flap type between the two groups 
(p > 0.05). This indicates good comparability in basic clinical features, 
providing a reliable foundation for subsequent model evaluation.

3.2 Assessment of optimization algorithms

The performance of our proposed ISBOA was compared with 
SBOA, GA, HHO, and WOA algorithms on CEC2022’s 12 benchmark 
functions to verify its optimization capability. Test functions had a 
variable dimension of 10, a population size of 30, and a maximum of 
500 iterations, with 30 independent runs for statistical reliability. Box 
plots of the 30 runs were drawn to assess the optimization stability of 
each algorithm. Results show that ISBOA outperformed the original 
SBOA and other algorithms in most test functions (Figure  2). 
Convergence curve analysis further indicates that ISBOA has faster 
convergence and a lower risk of falling into local optima during 
iteration (Figure 3). Thus, ISBOA shows significant advantages in 
global optimization and convergence efficiency, making it suitable for 
subsequent feature selection and model tuning.

3.3 Evaluation of classification model 
performance

This study enrolled a total of 451 cases, among which 150 
patients developed postoperative complications. In the training set 
comprising 361 patients, postoperative complications occurred in 
32.96% (119 cases), while in the test set of 90 patients, the 
incidence was 34.44% (31 cases). Consequently, no statistically 
significant difference in postoperative complications was observed 
between the training and test sets (p  > 0.05), indicating  
comparability.

Classification models were employed to predict complication 
occurrence. In the training set, 5-fold cross-validation revealed that 
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FIGURE 2

Comparison of optimization performance of swarm intelligence algorithms. Box plots of optimization results from 30 independent runs on CEC2022 
test functions, showing the stability and robustness of each algorithm. ISBOA, improved secretary bird optimization algorithm; SBOA, secretary bird 
optimization algorithm; GA, genetic algorithm; HHO, Harris hawks optimization; WOA, whale optimization algorithm. The horizontal axis shows the 
name of the optimization algorithm, and the vertical axis shows the function value. These test functions are used to test the performance of 
optimization algorithms in different situations.

AutoML achieved the optimal predictive performance, with 
ROC-AUC of 0.9667 and PR-AUC of 0.9393, significantly 
outperforming other models (DeLong test p  < 0.05 for all), as 

detailed in Table 2 and Figure 4. In the test set, AutoML consistently 
demonstrated superior predictive performance, yielding ROC-AUC 
of 0.9369 and PR-AUC of 0.8856, significantly exceeding other 

TABLE 1  Comparability analysis of training and test sets.

Variable Training set (n = 361) Test set (n = 90) Statistic p-value

Age (years, mean ± SD) 48.52 ± 9.36 47.83 ± 8.97 0.631 0.529

BMI (kg/m2, mean ± SD) 28.50 ± 5.02 28.24 ± 4.95 0.441 0.660

Unilateral/bilateral (bilateral, n, %) 289 (80.06%) 64 (71.11%) 3.389 0.066

Flap Type (n, %) 1.396 0.498

 � Superomedial pedicle (SMP) 222 (63.16%) 51 (56.67%)

 � Inferior pedicle (IP) 99 (27.42%) 30 (33.33%)

 � Superior pedicle (SP) 34 (9.42%) 9 (10.00%)

Unilateral resection weight ≥650 g (n, 

%)
139 (38.50%) 29 (32.22%) 1.216 0.270

N-SN (cm, mean ± SD) 32.12 ± 7.38 33.11 ± 8.65 1.099 0.273

Operation time (minutes, mean ± SD) 142.63 ± 32.74 140.85 ± 31.56 0.465 0.642

Postoperative hospital stay (days, 

mean ± SD)
2.81 ± 1.22 2.72 ± 1.16 0.632 0.528

Cardiovascular disease (n, %) 85 (23.55%) 16 (17.78%) 1.379 0.240

Diabetes (n, %) 21 (5.82%) 8 (8.89%) 1.130 0.288

Smoking (n, %) 23 (6.37%) 9 (10.00%) 1.439 0.230

Preoperative BRSQ score (points, 

mean ± SD)
57.38 ± 15.76 58.33 ± 16.29 0.508 0.612

BMI, body mass index; N-SN, nipple-to-sternum notch distance.
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models (DeLong test p < 0.05 for all), as presented in Table 3 and 
Figure  5. Key features identified by the classification models 
included: unilateral resection mass ≥ 650 g, BMI, bilateral surgery, 
age, and flap type.

Calibration curve analysis confirmed that the AutoML model 
exhibited significantly better calibration performance than 
other models, achieving the lowest Brier scores in both the 
training set (0.094) and the external test set (0.124), as illustrated in 
Figure 6.

3.4 Evaluation of regression model 
performance

The postoperative BRSQ score was 88.65 ± 18.43 in the training 
set and 89.63 ± 19.21 in the test set. Statistical analysis revealed no 
statistically significant differences (p > 0.05) between the training 
and test sets for these indicators, confirming their comparability.

Regression models were employed to predict improvements in 
quality of life. In the training set, five-fold cross-validation 
demonstrated that AutoML achieved optimal predictive 
performance, with an R2 of 0.9309, as detailed in Table  4 and 
Figure 7A. Similarly, on the test set, AutoML exhibited the best 
predictive performance, yielding an R2 of 0.9165, as presented in 
Table 5 and Figure 7B. Key features identified by the regression 
model included preoperative BRSQ score, unilateral resection tissue 
≥650 g, age, and flap type.

3.5 Interpretability analysis

Based on SHAP, interpretability analyzes were conducted for both 
classification and regression models. For the classification prediction 
model, the key features affecting complication occurrence, in order of 
importance, were: unilateral tissue excision volume (≥650 g), BMI, 
bilateral surgery, age, and flap type. For the regression prediction 

FIGURE 3

Comparison of convergence performance of swarm intelligence algorithms. Convergence curves of each algorithm during optimization, reflecting 
their convergence speed and ability to avoid local optima. ISBOA, improved secretary bird optimization algorithm; SBOA, secretary bird optimization 
algorithm; GA, genetic algorithm; HHO, Harris hawks optimization; WOA, whale optimization algorithm. In the 3D graph, the x-axis and y-axis stand for 
an input parameter, defining a variable dimension in the optimization problem. The z-axis shows the objective function’s output given the x and y 
variables, reflecting the function’s performance under different parameter combinations and serving as the optimization target. In the 2D convergence 
curve graph, the x-axis represents the number of iterations, and the y-axis represents the objective function value of the optimal solution found in each 
iteration.

TABLE 2  Evaluation of classification model performance-training set.

Model PRE SEN SPE ACC F1 ROC-AUC vs. AutoML 
DeLong test 

(Z/P)

PR-AUC

LR 0.5195 0.6723 0.6942 0.6870 0.5861 0.7181 9.232/<0.001 0.5870

SVM 0.6167 0.6218 0.8099 0.7479 0.6192 0.8232 6.415/<0.001 0.6774

XGBoost 0.6957 0.6723 0.8554 0.7950 0.6838 0.8287 6.183/<0.001 0.7453

LightGBM 0.7581 0.7899 0.8760 0.8476 0.7737 0.9202 3.024/0.003 0.8848

AutoML 0.7953 0.8487 0.8926 0.8781 0.8211 0.9667 – 0.9393
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model, the key features affecting quality of life, in order of importance, 
were: preoperative BRSQ score, unilateral tissue excision volume 
(≥650 g), age, and flap type, as shown in Figures 8, 9.

3.6 Decision curve and decision system

To better evaluate and compare the clinical utility of predictive 
models, decision curve analysis (DCA) was introduced for 
visualization. DCA focuses on the net benefit of models in clinical 
practice, i.e., the proportion of patients predicted to benefit from an 
intervention or diagnosis who truly do. DCA visually demonstrates the 
potential value of different models across decision thresholds, aiding 
clinicians in selecting the most suitable predictive tool, as shown in 
Figure 10. Results showed that the AutoML curve was relatively stable, 
maintaining high net benefit across most thresholds and consistently 
outperforming other models. Thus, the AutoML model demonstrated 

good stability and overall performance, providing reliable predictions 
across different thresholds and may be the optimal choice.

Using MATLAB 2024a’s App Designer, a clinical decision-support 
system was developed for breast reduction surgery patients. This 
system predicts complications within 30 days and BRSQ, requiring 
inputs of patient basics (e.g., BMI, age) and surgical parameters (e.g., 
tissue excision volume, bilateral surgery, flap type), and quickly 
outputs predictions. For instance, inputs of ≥650 g tissue excision, 
BMI 28, age 26, bilateral surgery, and inferior pedicle (IP) flap type 
indicate a high complication risk. The system is deployable on web or 
desktop, as shown in Figure 11.

4 Discussion

This study successfully developed an intelligent prognostic 
prediction system for reduction mammaplasty based on an improved 

FIGURE 4

Evaluation of classification model performance-training set. (A) ROC curve for training set; (B) PR curve for training set. The left subplot is the ROC 
curve. The horizontal axis represents the False Positive Rate (FPR), which is the ratio of negative instances incorrectly classified as positive to the total 
number of actual negative instances. The vertical axis represents the True Positive Rate (TPR), also known as recall, which is the ratio of positive 
instances correctly classified to the total number of actual positive instances. In the legend, LR stands for Logistic Regression, SVM for Support Vector 
Machine, XGBoost for eXtreme Gradient Boosting, LightGBM for Light Gradient Boosting Machine, and AutoML for Automated Machine Learning. The 
right subplot is the Precision-Recall Curve. The horizontal axis represents Recall (same definition as TPR in the ROC curve). The vertical axis represents 
Precision, which is the ratio of positive instances correctly classified to the total number of instances classified as positive. The legend includes the 
same algorithms as the ROC curve. PR-AUC stands for Precision-Recall Area Under the Curve.

TABLE 3  Evaluation of classification model performance-test set.

Model PRE SEN SPE ACC F1 ROC-AUC vs. AutoML 
DeLong test 

(Z/P)

PR-AUC

LR 0.5000 0.6452 0.6610 0.6556 0.5634 0.6851 4.324/<0.001 0.5358

SVM 0.5294 0.5806 0.7288 0.6778 0.5538 0.6856 4.310/<0.001 0.5548

XGBoost 0.6897 0.6452 0.8475 0.7778 0.6667 0.7545 3.158/0.002 0.6172

LightGBM 0.5625 0.5806 0.7627 0.7000 0.5714 0.7485 3.259/0.001 0.6458

AutoML 0.7576 0.8065 0.8644 0.8444 0.7813 0.9369 – 0.8856
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swarm-based optimization algorithm (ISBOA). The core innovation 
lies in integrating the powerful global optimization capability of 
ISBOA with an AutoML framework, achieving end-to-end automation 

from feature selection to model hyperparameter tuning, significantly 
enhancing prediction accuracy and clinical utility. The following 
delves into the core achievements and improvement strategies.

Compared to traditional optimization algorithms (e.g., Genetic 
Algorithm, Particle Swarm Optimization) and the basic SBOA, ISBOA 
demonstrated exceptional adaptability when handling high-dimensional, 
small-sample, and noise-prone medical data. Traditional algorithms 
often converge prematurely to local optima or suffer from inefficient 
search in high-dimensional feature spaces, struggling to reliably identify 
optimal feature subsets and hyperparameter combinations (19). 
Although the basic SBOA simulates the secretary bird’s predatory 
behavior (exploration-exploitation balance), it exhibited issues like 
fluctuating convergence speed and insufficient stability within the 
complex solution space of medical data (20). The ISBOA improvement 

FIGURE 5

Evaluation of classification model performance-test set. (A) ROC curve for internal test set; (B) PR curve for internal test set. The explanation of the 
coordinate axes and the full names of their abbreviations can be seen in Figure 4.

FIGURE 6

Calibration curve analysis of predictive models. (A) Training set; (B) External test set.

TABLE 4  Evaluation of regression model performance-training set.

Model MSE RMSE MAE R2 MAPE

LR 83.0952 9.1157 5.8192 0.5074 6.9510

SVM 64.4468 8.0279 5.1153 0.6180 6.3069

XGBoost 32.5514 5.7054 3.3691 0.8070 4.0889

LightGBM 17.6331 4.1992 2.7057 0.8955 3.3381

AutoML 11.6606 3.4148 2.1448 0.9309 2.6184
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strategies introduced in this study (e.g., adaptive step size control, 
population-based dynamic exploration mechanisms) effectively 
mitigated these limitations. Experimental results demonstrated that 
ISBOA significantly outperformed control algorithms in stability (≥35% 
reduction in iteration variance), convergence speed (40% reduction in 
average iterations), and avoidance of local optima (28% increase in global 
optimum discovery rate). Its core advantages are: during the exploration 
phase, it intelligently expands the search scope to effectively cover 
potential nonlinear relationships and interaction effects within medical 
data; during the exploitation phase, it dynamically adjusts search 

intensity based on solution quality, rapidly and precisely converging 
toward the global optimum region. This capability is crucial for efficiently 
screening the most predictive combinations from a vast array of clinical 
variables (e.g., anatomical parameters, surgical details), laying a solid 
algorithmic foundation for subsequent high-precision AutoML 
model construction.

Furthermore, the AutoML framework integrates diverse machine 
learning models, automating feature selection, model training, and 
hyperparameter tuning. This automation reduces human intervention, 
thereby enhancing model objectivity and stability. The AutoML 
framework automatically identifies features most critical for postoperative 
prognosis. During model training, optimization algorithms automatically 
tune model hyperparameters, ensuring each model operates at its optimal 
state. During model evaluation, trained models are applied to an 
independent test set to assess their performance in predicting 
postoperative complications and quality of life (QoL).

The feature system incorporated in this study has a solid 
clinicopathological and physiological basis. Key variables in the 
complication prediction model (unilateral resection volume ≥650 g, BMI, 
bilateral surgery, age, flap design pattern) are directly linked to surgical 
trauma load, patient metabolic reserve, and technical complexity. Large 

FIGURE 7

Evaluation of regression model performance. (A) Training set; (B) Test set.

TABLE 5  Evaluation of regression model performance-test set.

Model MSE RMSE MAE R2 MAPE

LR 93.2481 9.6565 5.8830 0.4009 6.6571

SVM 70.1329 8.3745 5.7312 0.5494 6.8891

XGBoost 41.7901 6.4645 4.3479 0.7315 5.0800

LightGBM 29.1282 5.3971 3.7015 0.8129 4.4497

AutoML 12.9947 3.6048 2.3402 0.9165 2.7349
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resection volume (≥650 g) significantly increases the risk of tissue 
ischemia and dead space formation, being key predisposing factors for 
seroma and necrosis; abnormal BMI (high or low) impacts the wound 
healing microenvironment and immune response; bilateral surgery 
systematically elevates complication probability due to doubled operative 
time and trauma; increasing age inversely correlates with tissue elasticity, 
vascularization, and comorbidity burden. Core features in the QoL 
prediction model (preoperative BRQS score, unilateral resection volume 
≥650 g, age, flap design pattern) focus on patient baseline status and 
surgical impact: preoperative BRQS score directly reflects symptom 
tolerance thresholds and psychological expectations, serving as the 
baseline for postoperative satisfaction changes; while large resection 
volume improves symptoms, it is associated with longer recovery and 

morphological adaptation periods; age influences rehabilitation resilience; 
flap design pattern (e.g., inverted-T vs. vertical scar) determines scar 
burden and sensory function preservation, profoundly shaping long-term 
experience. SHAP analysis further quantified the direction and magnitude 
of these features’ contributions. For instance, large resection volume 
showed a strong positive correlation (SHAP value >0.3) in the 
complication model but exhibited a complex nonlinear relationship 
(initially negative then positive) in the QoL model, confirming its “double-
edged sword” effect. This clinically mechanism-informed feature selection 
ensures model interpretability and clinical acceptability.

Model mispredictions can lead to distinct clinical risks, necessitating 
targeted mitigation strategies: (1) Complication false negatives (missed 
high-risk patients) pose greater harm. Underestimating actual risk may 

FIGURE 8

Interpretability analysis of classification model. (A) SHAP summary plot: this integrates feature importance and direction of impact on model output 
across all samples. Each point represents a feature’s SHAP value for a sample, with color indicating feature value (red for high, blue for low), visually 
showing positive or negative relationships between features and predictions. (B) SHAP importance plot: this summarizes global feature importance 
based on SHAP values, ranked from highest to lowest, to identify critical features for predictions.

FIGURE 9

Interpretability analysis of regression model. (A) SHAP summary plot: this integrates feature importance and direction of impact on model output 
across all samples. Each point represents a feature’s SHAP value for a sample, with color indicating feature value (red for high, blue for low), visually 
showing positive or negative relationships between features and predictions. (B) SHAP importance plot: this summarizes global feature importance 
based on SHAP values, ranked from highest to lowest, to identify critical features for predictions.
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lead to inadequate postoperative monitoring intensity (e.g., early 
discharge, extended follow-up intervals), delaying the identification and 
intervention of early complications (e.g., hematoma compression, wound 
dehiscence, infection spread) (21). Missing patients at risk of necrosis may 
preclude timely debridement, potentially requiring reoperation or even 
breast reconstruction, significantly increasing physical/psychological 
burden and healthcare costs (22). (2) Complication false positives 
(overestimation of risk), while relatively safer, can lead to overtreatment 
(23). For example, subjecting low-risk patients to intensive monitoring 
(prolonged hospitalization, frequent imaging) or prophylactic medication 
(antibiotics, anticoagulants) increases healthcare expenditure, risks of 
drug side effects, and causes unnecessary patient anxiety (24).

Compared to previous prediction studies for reduction 
mammaplasty, this system achieves multiple breakthroughs: (1) 
Algorithmic Level: Most studies rely on traditional logistic regression 
or single machine learning models (e.g., SVM, Random Forest), 

dependent on manual feature engineering and parameter tuning, 
limiting generalizability (25–27). The novel ISBOA-AutoML 
framework proposed here, through end-to-end automated 
optimization, achieved a complication prediction ROC-AUC of 
0.9369 and QoL prediction R2 of 0.9165 on an external test set, 
demonstrating significantly superior accuracy. (2) Data Level: Similar 
models are often based on single-center, small-sample data (n < 150), 
struggling to capture clinical heterogeneity (28–30). This study 
integrated multi-center data from Xijing Hospital (n  = 224) and 
Plastic Surgery Hospital (n  = 137 + 92), effectively incorporating 
regional and surgical preference differences, substantially enhancing 
model robustness. Decision Curve Analysis (DCA) showed that across 
a wide range of threshold probabilities, the net benefit of this model 
consistently surpassed both “treat-all” and “treat-none” strategies, 
validating its clinical generalizability. (3) System Integration: Existing 
research often stops at model development, lacking clinically 

FIGURE 10

Decision curve analysis of predictive models. (A) Training set; (B) Test set; Y-axis shows net benefit. Solid lines represent predictive models; red dashed 
lines assume all patients have complications; black dashed lines assume no patients have complications.

FIGURE 11

Demonstration of clinical decision support system for efficacy prediction. (A) Short-term efficacy prediction; (B) Long-term quality of life prediction.
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deployable tools (31, 32). The decision support system developed 
herein enables one-click input of patient parameters and visual risk 
output, reducing prediction time from “hours” to “seconds,” and 
supports personalized plan generation (e.g., enhanced drainage 
management or optimized flap design for high complication risk 
patients), effectively bridging the “last mile” from AI to bedside.

The core value of this system lies in translating predictions into 
actionable clinical decisions: (1) Preoperative Optimization: Identify 
high-risk patients (e.g., BMI > 30 planning large resection), enhance 
preoperative risk communication, optimize surgical technique 
selection (e.g., prioritizing flaps with more stable blood supply), or 
recommend preoperative weight loss to mitigate risks. (2) Resource 
Allocation: Predict patients at high risk for complications to prioritize 
surgery by experienced teams, allocate advanced monitoring 
equipment postoperatively, or extend observation time, improving 
healthcare resource utilization efficiency. (3) Personalized 
Rehabilitation: Tailor stepwise rehabilitation plans and psychological 
support timelines based on QoL predictions (e.g., anticipating slower 
recovery for elderly patients or those with large resections), improving 
long-term satisfaction. (4) Quality Control: Integrate the system into 
hospital quality control platforms to monitor real-time prognostic 
differences among surgeons/techniques, driving standardization and 
continuous improvement. An economic model indicates that 
implementing this system is expected to reduce severe complication 
rates and readmissions, saving patient healthcare costs, demonstrating 
significant health economic value.

This study has the following limitations: (1) Feature Breadth: 
Current models primarily rely on structured data. Future work could 
integrate imaging features (MRI glandular density distribution), 
multi-omics data (inflammatory cytokine profiles), and Patient-
Reported Outcomes (PROs) to build a multimodal prediction system. 
(2) Validation Depth: Although multi-center data was used, the test 
set still belonged to a later cohort within the participating institutions. 
Rigorous validation in prospective cohorts from independent 
institutions (e.g., provincial/international medical centers) is urgently 
needed to assess model adaptability to different surgical protocols and 
population characteristics. (3) Long-term Prognosis: Current QoL 
assessment is limited to 1-year postoperatively. Follow-up should 
be extended to 3–5 years to track long-term morphological changes 
(ptosis recurrence), sensory abnormalities, and psychological  
adaptation.

5 Conclusion

Based on multi-center clinical data from reduction mammaplasty 
patients, this study successfully constructed a high-precision intelligent 
prediction system for postoperative complications and quality of life by 
innovatively integrating an improved optimization algorithm with an 
AutoML framework. This achievement not only highlights the significant 
advantages of swarm intelligence optimization algorithms in enhancing 
prognostic assessment efficacy, paving a new path for machine learning 
applications in breast surgery, but also achieves breakthroughs over 
comparable studies in algorithmic performance, depth of multi-center 
data integration, and clinical deployability. The developed system assists 
surgeons in accurately predicting individualized postoperative recovery 
trajectories, enabling intensified perioperative monitoring and 
intervention for high-risk patients and optimized rehabilitation pathways 

for those with high expected QoL benefits. Consequently, it significantly 
improves surgical safety, patient satisfaction, and optimizes healthcare 
resource allocation. Future efforts should focus on independent external 
validation, feature dimension expansion, and dynamic model 
development to continuously advance this system toward precision, 
intelligence, and universality, ultimately reshaping the clinical decision-
making paradigm for reduction mammaplasty.
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