
Frontiers in Medicine 01 frontiersin.org

Multicenter study on CT-based 
Radiomics for predicting severity 
and delayed recovery in 
Mycoplasma pneumoniae 
pneumonia
Qian Li 1*, Zi-Jun Song 1†, Wenjing Chen 2† and Wenwen Yan 1

1 Department of Critical Care Medicine, Baoding First Central Hospital, Baoding, China, 2 Department 
of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd., Beijing, China

Objective: To develop and validate model based on clinical, imaging, and 
Radiomics features for predicting disease severity and delayed recovery in 
Mycoplasma pneumoniae pneumonia (MPP).
Methods: This multicenter retrospective study enrolled 238 patients (training 
cohort), 60 (testing cohort), and 278 (validation cohort). Patients were classified 
into non-severe MPP (NSMPP) and severe MPP (SMPP) groups based on guideline, 
and further stratified post-treatment into recovery or delayed recovery groups. 
Radiomics features were extracted from chest CT using PyRadiomics, with 
Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature 
selection. Three random forest-based predictive models were developed, 
including Clinical-Image, Radiomics, and Integrated. Predictive performance 
was evaluated via by the area under the receiver operating characteristic curve 
(AUC), calibration, and clinical utility.
Results: The Integrated model demonstrated superior discrimination for 
severity prediction (validation AUC: 0.784, 95% CI: 0.722–0.845) and delayed 
recovery (validation AUC: 0.865, 95% CI: 0.770–0.960), outperforming 
Clinical-Image (severity AUC: 0.771, 95% CI: 0.695–0.847; delayed recovery 
AUC: 0.807, 95% CI: 0.724–0.950) and Radiomics model (severity AUC: 0.710, 
95% CI: 0.643–0.776; delayed recovery AUC: 0.837, 95% CI: 0.724–0.950). 
Integrated Discrimination Improvement (IDI) analysis demonstrated significant 
enhancements in the Integrated model compared to both the Clinical-Image 
and Radiomics models for predicting both disease severity and delayed recovery 
(all p < 0.05). Key predictors comprised D-dimer (severity OR = 1.371; delayed 
recovery OR = 4.061), systemic immune-inflammation index (delayed recovery 
OR = 6.607), and consolidation patterns (delayed recovery OR = 2.820).
Conclusion: The Integrated model combining clinical, imaging, and Radiomics 
features enhances risk stratification for MPP severity and delayed recovery.
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Introduction

Mycoplasma pneumoniae (MP) is a significant cause of respiratory 
infections in both children and adults, accounting for 10–40% of 
community-acquired pneumonia cases develop into Mycoplasma 
pneumoniae pneumonia (MPP) (1, 2). School-aged children are most 
frequently affected, but adults and the elderly are also susceptible (3). 
In recent years, the global incidence of MPP and severe Mycoplasma 
pneumoniae pneumonia (SMPP) has increased, often leading to 
complications such as pleural effusion, atelectasis, and even life-
threatening extrapulmonary conditions (4, 5). SMPP can involve 
multiple organ systems and result in long-term sequelae (6, 7), posing 
major challenges for clinical management and increasing the 
healthcare burden (8, 9).

SMPP may develop diffuse alveolar hemorrhage, pulmonary 
embolism, or acute respiratory distress syndrome, resulting in 
reduced survival rates and long-term morbidity (10, 11). However, 
current pathogen detection methods suffer from long turnaround 
times and limited reliability due to false positives or negatives (12–
14). Moreover, conventional clinical indicators such as interleukin-6 
levels are difficult to obtain rapidly, leaving clinicians with limited 
tools for early risk stratification. Therefore, timely identification of 
patients at risk for severe disease and delayed radiological recovery 
is crucial to improving outcomes and guiding therapy.

Computed tomography (CT) plays a central role in diagnosing 
MPP, typically typically manifesting as ground-glass opacities, lobar 
consolidations with air bronchograms, and interlobular septal 
thickening (15). Yet conventional CT assessments lack reproducibility 
and are highly operator dependent. Radiomics—an advanced 
computational technique extracting high-dimensional quantitative 
features from medical images—has emerged as a powerful tool for 
uncovering imaging biomarkers not visible to the human eye (16–18). 
It allows quantitative analysis of shape, texture, and intensity, enabling 
objective evaluation of disease burden (16). Radiomics has shown 
promise in assessing disease severity in conditions like COVID-19 (19) 
and may offer similar benefits in MPP, particularly for distinguishing 
SMPP and predicting delayed radiographic resolution (20).

This study aims to develop and validate CT-based Radiomics 
model to stratify SMPP risk and predict delayed recovery. By 
integrating Radiomics with clinical and conventional imaging data, 
we seek to establish robust prediction models to support early risk 
identification and individualized clinical decision-making.

Materials and methods

Patient population

This study follows the Declaration of Helsinki and was approved 
by the Ethics Committee of the Baoding First Central Hospital (grant 
no. HDFYLL-KY-2024-002) and also waived informed consent. A 
retrospective collection of cases was conducted at a single medical 
center between July 2024 and March 2025. These cases were randomly 
assigned to a training cohort and a testing cohort in an 8:2 ratio. 
Concurrently, cases from the same period were obtained from two 
additional medical centers to constitute an external validation cohort.

Inclusion criteria were as follows: (1) patients diagnosed with 
MPP, regardless of age; and (2) availability of chest CT images and 
corresponding clinical data. Exclusion criteria included: (1) presence 

of immunodeficiency disorders, chronic pulmonary diseases, cardiac 
conditions, chronic glomerulonephritis, rheumatic diseases, 
malnutrition, diabetes, or other genetic/metabolic disorders; (2) 
co-infection with other respiratory pathogens; (3) incomplete clinical 
data; and (4) prior pulmonary surgery.

Patient grouping

Based on clinical severity at presentation, patients were classified 
into two groups: NSMPP and SMPP, following national diagnostic 
criteria (21). NSMPP was defined by typical symptoms of community-
acquired pneumonia (CAP)—fever, cough, and abnormal lung 
auscultation—along with laboratory confirmation of MP infection via 
elevated MP-specific IgM titers (≥1:160 or a fourfold rise over two 
weeks) or positive MP specific polymerase chain reaction from 
nasopharyngeal secretions.

SMPP was diagnosed when patients met any of the severity 
criteria (21), including persistent high fever (≥39 °C for ≥5 days or 
≥7 days without improvement), respiratory distress (e.g., dyspnea, 
wheezing, hemoptysis), or complications such as plastic bronchitis, 
pleural effusion, asthma exacerbation, or extrapulmonary 
involvement. Additional criteria included oxygen saturation ≤93% on 
room air, or radiographic evidence of extensive lung involvement—e.g., 
consolidation in ≥ two-thirds of a lobe, high-density lesions in ≥ two 
lobes, or diffuse bilateral infiltrates. Rapid radiologic progression 
(>50% within 24–48 h) or significantly elevated inflammatory markers 
such as C-reactive protein (CRP), lactate dehydrogenase (LDH), or 
D-dimer, were also supported SMPP classification.

Treatment was severity-based: NSMPP patients received 
symptomatic care and anti-MP therapy, while SMPP cases received 
comprehensive management, including broad-spectrum antibiotics, 
corticosteroids, bronchoscopy, and anticoagulation when indicated.

Recovery outcomes were assessed at 14 days post-treatment 
initiation, a timepoint supported by prior studies indicating that most 
non-severe MPP cases achieve clinical and radiological resolution 
within 10–14 days of appropriate therapy (22). Persistent symptoms 
or imaging abnormalities beyond this window may indicate treatment 
resistance, delayed immune recovery, or early fibrosis (23).

Based on this, patients were stratified into recovery or delayed 
recovery groups. Recovery was defined as the complete resolution of 
respiratory symptoms and normalization of follow-up chest 
CT. Delayed recovery was defined by the persistence of any clinical 
symptoms (e.g., cough, dyspnea, chest discomfort) and/or 
radiographic abnormalities, including: (1) persistent lobar 
consolidation, atelectasis, or pleural effusion with no significant 
resolution compared to baseline; and/or (2) residual lung involvement 
exceeding 30% of the initially affected lung fields. All follow-up CT 
images were independently reviewed by two radiologists blinded to 
clinical outcomes, with disagreements resolved via consensus with a 
senior thoracic radiologist. A schematic overview is shown in Figure 1.

Clinical data collection and imaging 
analysis

Patient data were retrospectively collected and included 
demographic information, clinical presentation, laboratory findings, 
and imaging characteristics. General demographic variables 
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encompassed sex, age, and fever classification (low-grade, moderate, 
or high-grade). Laboratory parameters included white blood cell 
(WBC) count, fibrinogen (FIB), D-dimer, and the systemic immune-
inflammation index (SII). SII was calculated using the following 
formula: platelet count × neutrophil count/lymphocyte count.

All patients underwent chest CT examinations during their 
illness. Two radiologists (Radiologist A with 6 years and Radiologist 
B with 8 years of diagnostic experience) independently reviewed 
and interpreted the CT images. In cases of disagreement regarding 
image interpretation, a third senior radiologist (Radiologist C, with 
12 years of experience) was consulted to resolve discrepancies and 
reach a consensus. Throughout the image evaluation process, all 
radiologists were blinded to clinical data and patient identifiers to 

minimize bias. The radiological assessment focused on three 
specific CT features: lobar atelectasis (classified as absent or 
present), consolidation pattern (categorized as absent, patchy, 
segmental, or wedge-shaped), and pleural effusion (classified as 
absent or present).

Image acquisition and preprocessing

Chest CT scans were performed using various CT scanners, with 
details of the scanner specifications and scanning parameters provided 
in Supplementary information and summarized in Supplementary  
Table S1. All examinations were conducted with patients in the supine 

FIGURE 1

Flow chart of the study. CT, Computed Tomography; VOI, Volume of Interest; ML, Machine Learning; LASSO, Least Absolute Shrinkage and Selection 
Operator; MPP, Mycoplasma pneumoniae Pneumonia; NSMPP, Non-Severe Mycoplasma pneumoniae Pneumonia; SMPP, Severe Mycoplasma 
pneumoniae Pneumonia.
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position during breath-hold following deep inspiration. Prior to 
scanning, standardized breath-holding training was provided to 
ensure image quality. The scan range extended from the thoracic inlet 
to the costophrenic angles.

Image preprocessing involved resampling to isotropic voxels of 
1 mm3 using B-spline interpolation and histogram standardization of 
intensity values in the CT scans.

Radiomics feature extraction and selection

Image segmentation, Radiomics feature extraction, feature 
selection, and machine learning model development were conducted 
using the uAI Research Portal V1.1 (Shanghai United Imaging 
Intelligence, Co., Ltd.) (24). An automated segmentation algorithm 
(25), was employed to delineate the lesion volumes within each 
pulmonary lobe. The initial automated segmentation outputs 
underwent rigorous refinement through independent manual 
annotation by two board-certified radiologists (Radiologist A: 6 years 
of thoracic imaging experience; Radiologist B: 8 years). To quantify 
interobserver agreement, intraclass correlation coefficients (ICC, 
two-way random-effects model for absolute agreement) were 
calculated across all segmented lesions, with ICC values interpreted 
as: <0.40 poor; 0.40–0.59 fair; 0.60–0.74 good; >0.75 excellent. 
Discrepancies exceeding 5% volumetric difference were resolved 
through consensus review with a senior radiologist (15 years’ 
experience).

Radiomics feature extraction was performed using the 
PyRadiomics V3.0 (26) toolkit integrated within the uAI Research 
Portal V1.1. A total of 1,904 features were automatically extracted 
from both the original and filtered CT images by applying 15 image 
filters. These features comprised seven major categories: first-order 
statistical features (n = 378), shape-based (morphological) features 
(n = 14), gray-level co-occurrence matrix (GLCM) features (n = 441), 
gray-level run length matrix (GLRLM) features (n = 336), gray-level 
size zone matrix (GLSZM) features (n = 336), gray-level dependence 
matrix (GLDM) features (n = 294), and neighboring gray-tone 
difference matrix (NGTDM) features (n = 105). A detailed description 
of the applied filters and corresponding feature sets is provided in 
Supplementary information 2.

After applying Z-score normalization and Spearman correlation 
analysis, the least absolute shrinkage and selection operator (LASSO) 
regression addressed feature collinearity.

Model development

Univariable logistic regression was performed to evaluate the 
association between clinical and imaging variables with MPP severity 
and recovery status. Variables with a p-value < 0.05 were considered 
statistically significant and subsequently included in model 
construction. For Radiomics features, Z-score normalization followed 
by LASSO regression was applied for feature selection, with features 
yielding p-values < 0.05 retained for model development.

Three random forest models were developed: A Clinical-Image 
Model incorporating clinical and imaging variables, a Radiomics 
Model based solely on selected Radiomics features, and an Integrated 
Model combining clinical, imaging, and Radiomics features.

Statistical analysis

Continuous variables were reported as median (IQR), while 
categorical variables were expressed as frequencies and percentages. 
Comparisons of patient characteristics across the training, testing, and 
validation cohorts were conducted using the Fisher’s exact test, 
Pearson’s χ2 test, or the Mann–Whitney U test, as appropriate based 
on variable type and distribution. Univariable and multivariable 
logistic regression analyses were also performed to identify potential 
differences among cohorts.

The predictive performance of the models in assessing the severity 
and delayed recovery of MPP was evaluated using the Receiver 
Operating Characteristic curves (ROC) and area under the ROC 
(AUC) with corresponding 95% confidence intervals. Additional 
performance metrics including sensitivity, specificity, accuracy, F1 
score and precision were calculated to provide a comprehensive 
assessment of model effectiveness. Pairwise comparisons of model 
performance were conducted using the DeLong test and integrated 
discrimination improvement (IDI) analysis. To enhance 
interpretability of the Integrated models, we  performed SHAP 
(SHapley Additive Explanations) analysis to evaluate the relative 
contribution of each feature to the model’s output.

All statistical analyses were performed using R software (version 
3.6.0; The R Foundation for Statistical Computing). A two-sided 
p-value < 0.05 was considered statistically significant.

Results

Patient characteristics

A total of 238 patients were included in the training cohort, while 
60 patients comprised the testing cohort. Additionally, 278 patients 
from external centers were enrolled in the validation cohort. The 
detailed inclusion and exclusion process is depicted in Figure 2.

Significant inter-cohort differences (all P-inter <0.05) were 
observed in age, type of fever, fibrinogen (FIB), D-dimer, systemic 
immune inflammation index (SII), lobar atelectasis, consolidation 
pattern, and pleural effusion between NSMPP and SMPP groups 
(Table 1). Marked inter-cohort differences (all P-inter <0.05) were 
observed in age, type of fever, FIB, SII, lobar atelectasis, consolidation 
pattern, and pleural effusion between recovery and delayed recovery 
groups (Table 2).

Variables associated with MPP severity and 
delayed recovery in the training dataset

For severity stratification, white blood cell (WBC; OR = 1.672, 
p = 0.001), D-dimer (OR = 1.659, p = 0.007), and SII (OR = 2.125, 
p < 0.001) showed significant associations. Multivariate analysis 
retained only D-dimer as an independent predictor (OR = 1.371, 
p = 0.050).

In contrast, delayed recovery demonstrated stronger associations 
with D-dimer (OR = 3.869, p < 0.001), SII (OR = 4.734, p = 0.001), 
fibrinogen (FIB, OR = 2.024, p = 0.047), lobar atelectasis (OR = 1.676, 
p = 0.010), and consolidation pattern (OR = 2.850, p < 0.001) in 
univariate analysis. The multivariate model identified three robust 
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predictors: D-dimer (OR = 4.061, p < 0.001), SII (OR = 6.607, 
p = 0.001), and consolidation pattern (OR = 2.820, p = 0.001) (Table 3).

Diagnostic performance of different 
models for predicting severity in MPP

Figure 3 demonstrates the ROC curves, calibration curves, and 
decision curves of the three predictive models for severity 
stratification. For severity prediction, the Clinical-Image model 
incorporated 1 feature (D-diamer), the Radiomics model included 13 
Radiomics features, and the Integrated model combined both (total 
14 features). The Clinical-Image model achieved an AUC of 0.771 
(95% CI: 0.695–0.847) with 69.0% accuracy in the validation cohort. 
The Radiomics model showed slightly lower performance 
(AUC = 0.710, 95% CI: 0.643–0.776; accuracy = 52.7%). In the 
validation cohort, the Clinical-Image model (incorporating 1 clinical 
feature) achieved an AUC of 0.771 (95% CI: 0.695–0.847). The 
Radiomics model (13 Radiomics features) demonstrated an AUC of 
0.710 (95% CI: 0.643–0.776). The Integrated model (combining 14 
features) yielded an AUC of 0.784 (95% CI: 0.722–0.845) (Table 4).

In the validation cohort, the Integrated Discrimination 
Improvement (IDI) analysis demonstrated significant improvements 
for the Integrated model compared to the Clinical-Image model 
(p = 0.010) and the Radiomics model (p < 0.001). However, the 
Delong test for AUC differences found no statistically significant 
superiority of the Integrated model over the Clinical-Image model 

(p = 0.765) or the Radiomics model (p = 0.072). Direct comparisons 
between the Clinical-Image and Radiomics models revealed no 
significant differences in either AUC (p = 0.235) or IDI (p = 0.100) 
(Table 5).

Diagnostic performance of different 
models for delayed recovery prediction in 
MPP

Figure 4 displays the comparative performance of three delayed 
recovery prediction models through ROC analysis, calibration plots, 
and decision curve evaluation. The Clinical-Image model, 
incorporating D-dimer, SII, and consolidation pattern, achieved an 
AUC of 0.807 (95% CI: 0.724–0.950) with 84.1% accuracy, 85.7% 
sensitivity, and 68.0% specificity in the validation cohort. The 
Radiomics model (13 Radiomics features) demonstrated an AUC of 
0.837 (95% CI: 0.724–0.950), an accuracy of 87.7%, sensitivity of 
89.3%, and specificity of 72.0%. The Integrated model (combining 16 
features) yielded an AUC of 0.865 (95% CI: 0.770–0.960), with an 
accuracy of 91.3%, sensitivity of 93.3%, and specificity of 72.0% 
(Table 4).

In the validation cohort, while IDI analysis showed the Integrated 
model’s significant improvement over both Clinical-Image (p < 0.001) 
and Radiomics models (p  < 0.001), Delong tests revealed 
non-significant advantage over Clinical-Image (p  = 0.052) and 
Radiomics (p = 0.520). Direct comparisons between Clinical-Image 

FIGURE 2

Flowchart of participant selection: adherence to inclusion and exclusion criteria in a multicenter cohort study. NSMPP, Non-Severe Mycoplasma 
pneumoniae Pneumonia; SMPP, Severe Mycoplasma pneumoniae Pneumonia.
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TABLE 1  Comparison of clinical and radiological characteristics between NSMPP and SMPP groups in training, testing and validation cohorts.

Characteristics Training cohort (n = 238) Testing cohort (n = 60) Validation cohort (n = 277) Overall 
(n = 575)

NSMPP 
(n = 120)

SMPP (n = 118) P-Intra 
value

NSMPP 
(n = 26)

SMPP (n = 34) P-Intra 
value

NSMPP 
(n = 223)

SMPP (n = 54) P intra 
value

P-inter 
value

Male, n (%) 59 (49.167) 69 (58.475) 0.150 9 (34.615) 23 (67.647) 0.011 101 (45.291) 24 (44.444) 0.911 0.121

Age, M (IQR), years 34.000 

[10.000,65.000]

40.000 [6.250,68.750] 0.747 47.000 [9.500,57.000] 33.000 [8.000,66.000] 0.988 33.000 [8.000,66.000] 48.000 [10.000,58.000] 0.082 <0.001

Type of fever, n (%) 0.061 0.629 <0.001 <0.001

  Absent 58 (48.333) 44 (37.288) 24 (40.000) 13 (50.000) 23 (10.314) 2 (3.704)

  Low-grade 7 (5.833) 17 (14.407) 5 (8.333) 2 (7.692) 23 (10.314) 1 (1.852)

  Mid-grade 26 (21.667) 21 (17.797) 14 (23.333) 6 (23.077) 104 (46.637) 17 (31.481)

  Hyperpyrexia 29 (24.167) 36 (30.508) 17 (28.334) 5 (19.231) 73 (32.735) 34 (62.963)

WBC, M (IQR), 109/L 6.555 [4.683,8.807] 8.035 [5.955,10.555] 0.001 7.455 [6.357,9.300] 9.265 [6.747,11.890] 0.182 7.270 [5.930,9.290] 9.460 [6.710,11.630] 0.001 0.068

FIB, M (IQR), 109/L 3.845 [3.080,4.615] 4.190 [3.655,4.850] 0.017 3.705 [3.093,4.333] 4.485 [3.660,5.692] 0.015 3.670 [3.010,4.235] 3.785 [3.370,4.357] 0.144 <0.001

D-dimer, n (%) 0.003 0.916 0.049 <0.001

  0–500 ug/L 34 (14.286) 15 (12.712) 15(57.692) 18(52.941) 40 (17.937) 10 (18.519)

  >500 ug/L 204 (85.714) 103 (87.288) 11(42.308) 16(47.059) 183 (82.063) 44 (81.481)

SII, M (IQR) 567.798 

[355.964,917.839]

871.539 

[523.636,1672.732]

<0.001 820.135 

[470.647,1284.275]

1011.183 

[508.730,2182.868]

0.230 582.950 

[374.220,895.845]

883.830 

[595.239,1569.793]

<0.001 0.004

Lobar atelectasis 0.819 1.000 0.127 0.001

  Absent 99 (82.500) 96 (81.356) 25 (96.154) 33 (97.059) 205 (91.928) 46 (85.185)

  Present 21 (17.500) 22 (18.644) 1 (3.846) 1 (2.941) 18 (8.072) 8 (14.815)

Consolidation pattern 0.104 0.526 <0.001 0.025

  Absent 21 (17.500) 31 (26.271) 3 (11.538) 5 (14.706) 46 (20.628) 4 (7.407)

  Patchy 38 (31.667) 28 (23.729) 2 (7.692) 5 (14.706) 69 (30.942) 11 (20.370)

  Segmental 26 (21.667) 34 (28.814) 14 (53.846) 12 (35.294) 67 (30.045) 14 (25.926)

  Wedge-shaped 35 (29.167) 25 (21.186) 7 (26.923) 12 (35.294) 41 (18.386) 25 (46.296)

Pleural effusion 0.638 0.597 0.003 <0.001

  Absent 85 (70.833) 89 (75.424) 24 (92.308) 30 (88.235) 213 (95.516) 45 (83.333)

  Present 35 (29.167) 29 (24.576) 2 (7.692) 4 (11.765) 10 (4.485) 9 (16.667)

P-intra value is the result of univariate analyses between the NSMPP and SMPP groups; P-inter value represents the comparisons of characteristics between training testing and validation cohorts. NSMPP, Non Severe Mycoplasma pneumoniae Pneumonia; SMPP, 
Severe Mycoplasma pneumoniae Pneumonia; Interquartile range (IQR); WBC, white blood cell; FIB, Fibrinogen; SII, Systemic immune inflammation index.
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TABLE 2  Comparison of clinical and radiological characteristics between recovery and delayed recovery groups in training, testing and validation cohorts.

Characteristics Training cohort (n = 238) Testing cohort (n = 60) Validation cohort (n = 277) Overall 
(n = 575)

Recovery 
(n = 217)

Delayed 
recovery 
(n = 21)

P-intra 
value

Recovery 
(n = 55)

Delayed 
recovery 

(n = 5)

P-intra 
value

Recovery 
(n = 252)

Delayed 
recovery 
(n = 25)

P-intra 
value

P-inter 
value

Male, n (%) 112 (51.613) 13 (61.905) 0.367 28 (50.909) 2 (40.000) 1.000 118 (46.825) 12 (48.000) 0.911 0.448

Age, M (IQR), years 38.000 

[8.000,66.000]

52.000 

[8.000,68.000]

0.910 30.000 

[9.000,69.500]

13.000 

[3.000,57.000]

0.297 26.000 [6.000,46.250] 32.000 

[12.000,48.000]

0.282 <0.001

Type of fever, n (%) 0.410 0.826 0.081 <0.001

  Absent 106 (48.848) 11 (52.381) 24 (43.636) 2 (40.000) 21 (8.333) 4 (16.000)

  Low-grade 22 (10.138) 4 (19.048) 6 (10.909) 0 (0.000) 19 (7.540) 5 (20.000)

  Mid-grade 41 (18.894) 4 (19.048) 11 (20.000) 2 (40.000) 113 (44.841) 8 (32.000)

  Hyperpyrexia 48 (22.120) 2 (9.524) 14 (25.455) 1 (20.000) 99 (39.286) 8 (32.000)

WBC, M (IQR), 109/L 7.500 [5.790,10.130] 5.560 [4.360,8.120] 0.044 6.800 [5.035,9.400] 4.490 [4.280,13.930] 0.593 7.475 [6.018,9.752] 8.260 [6.470,10.330] 0.232 0.591

FIB, M (IQR), 109/L 4.080 [3.310,4.890] 3.760 [3.030,4.480] 0.079 3.930 [3.470,4.675] 4.760 [4.100,7.240] 0.204 3.370 [0.548,3.960] 3.620 [0.550,4.360] 0.153 <0.001

D-dimer, n (%) <0.001 0.015 <0.001 0.208

  0–500 ug/L 20 (9.217) 17 (80.952) 11 (20.000) 4 (80.000) 36 (14.286) 17 (68.000)

  >500 ug/L 197 (90.783) 4 (19.048) 44 (80.000) 1 (20.000) 216 (85.714) 8 (32.000)

SII, M (IQR) 521.150 

[251.830,875.400]

181.000 

[127.000,243.000]

<0.001 286.000 

[80.000,635.350]

406.590 

[201.520,426.040]

0.487 408.146 

[381.993,511.541]

619.183 

[374.268,828.072]

0.003 0.001

Lobar atelectasis <0.001 0.308 0.799 <0.001

  Absent 46 (21.198) 11 (52.381) 40 (72.727) 2 (40.000) 166 (65.873) 17 (68.000)

  Prsent 171 (78.802) 10 (47.619) 15 (27.273) 3 (60.000) 86 (34.127) 8 (32.000)

Consolidation pattern <0.001 0.008 <0.001 <0.001

  Absent 29 (13.364) 8 (38.095) 10 (18.182) 4 (80.000) 21 (8.333) 11 (44.000)

  Patchy 39 (17.972) 10 (47.619) 4 (7.273) 1 (20.000) 89 (35.317) 11 (44.000)

  Segmental 112 (51.613) 3 (14.286) 36 (65.455) 0 (0.000) 82 (32.540) 2 (8.000)

  Wedge-shaped 37 (17.051) 0 (0.000) 5 (9.091) 0 (0.000) 60 (23.810) 1 (4.000)

Pleural effusion 0.813 1.000 <0.001

  Absent 167 (76.959) 17 (80.952) 40 (72.727) 4 (80.000) 233 (92.460) 25 (100.000)

  Prsent 50 (23.041) 4 (19.048) 15 (27.273) 1 (20.000) 19 (7.540) 0 (0.000)

P-intra is the result of univariate analyses between the recovery and delayed recovery groups; P-inter value represents the comparisons of characteristics between training testing and validation cohorts. NSMPP, Non Severe Mycoplasma pneumoniae Pneumonia; SMPP, 
Severe Mycoplasma pneumoniae Pneumonia; Interquartile range (IQR); WBC, white blood cell; FIB, Fibrinogen; SII, Systemic immune inflammation index.
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and Radiomics models showed no significant differences in either 
AUC (p = 0.638) or IDI (p = 0.224) (Table 5).

As shown in Figure 5, for the severity prediction model (panels 
a–c), the most influential features included clinical variables 
(D-dimer), alongside radiomics features in validation cohorts. 

Similarly, for the delayed recovery prediction model (panels d–f), top 
contributors included D-dimer, SII, consolidation pattern and 
radiomic texture features. Notably, clinical biomarkers and radiomics 
variables appeared synergistic rather than redundant, suggesting that 
integrating both data types offers complementary predictive value.

TABLE 3  Univariate and multivariable logistic regression analyses for selecting clinical and radiological features in the training cohort.

Predictor Univariate logistic regression Multivariate logistic regression

Coefficient OR (95% CI) P-value coefficient OR (95% CI) P-value

Severity

Male 0.007
1.007 (0.781, 

1.299)
0.955

Age 0.030
1.030 (0.799, 

1.328)
0.819

Type of fever 0.156
1.169 (0.906, 

1.509)
0.229

WBC 0.514
1.672 (1.240, 

2.253)
0.001

FIB 0.260
1.297 (0.989, 

1.700)
0.060

D-dimer 0.506
1.659 (1.147, 

2.400)
0.007 0.316

1.371 (1.001, 

1.879)
0.050

SII 0.754
2.125 (1.478, 

3.057)
<0.001

Lobar atelectasis 0.030
1.030 (0.799, 

1.328)
0.819

Consolidation pattern −0.162
0.851 (0.659, 

1.098)
0.215

Pleural effusion −0.058
0.944 (0.731, 

1.218)
0.655

Delayed recovery

Male 0.211
1.230 (0.786, 

1.953)
0.370

Age −0.013
0.991 (0.632, 

1.554)
0.965

Type of fever 0.247
1.280 (0.793, 

2.066)
0.312

WBC 0.234
1.263 (0.754, 

2.114)
0.374

FIB 0.705
2.024 (1.011, 

4.055)
0.047

D-dimer 1.353
3.869 (2.521, 

5.939)
<0.001 1.401

4.061 (2.518, 

6.547)
<0.001

SII 1.555
4.734 (1.909, 

11.740)
0.001 1.888

6.607 (2.078, 

21.005)
0.001

Lobar atelectasis 0.517
1.676 (1.129, 

2.490)
0.010

Consolidation pattern 1.047
2.850 (1.740, 

4.667)
<0.001 1.037

2.820 (1.517, 

5.243)
0.001

Pleural effusion 0.293
1.340 (0.737, 

2.440)
0.338

WBC, white blood cell; FIB, Fibrinogen; SII, Systemic immune inflammation index; OR, odds ratio; CI, Confidence Interval.
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Discussion

This study demonstrates that integrating clinical-radiological 
features with Radiomics signatures significantly improves prediction 
of both MPP severity and delayed recovery. The combined model 
showed strong generalizability in external validation, with an AUC of 
0.865 (95% CI: 0.770–0.960) for delayed recovery prediction, 
underscoring its potential to guide risk-adapted interventions.

Elevated D-dimer levels were identified as an independent 
predictor of MPP severity (p = 0.050), reflecting its pivotal role in 
hypercoagulability and endothelial dysfunction during disease 
progression (27). In SMPP, systemic inflammation triggers a 
prothrombotic state through cytokine-mediated activation of the 
coagulation cascade, leading to fibrin deposition and microvascular 
thrombosis (28). D-dimer, as a degradation product of cross-linked 
fibrin, serves as a biomarker of this pathological process (29). Our 
findings align with evidence linking hypercoagulability to alveolar 

damage and hypoxemia in severe pneumonia (30), suggesting that 
D-dimer elevation may exacerbate tissue hypoxia by impairing 
pulmonary perfusion, thereby worsening clinical outcomes.

The strong association of D-dimer (OR = 4.06, p < 0.001) and SII 
(OR = 6.61, p = 0.001) with delayed recovery underscores the 
interplay between coagulation abnormalities and sustained 
inflammation in prolonging disease resolution. Persistently elevated 
D-dimer levels likely indicate unresolved microthrombosis and 
endothelial injury, which impair tissue repair and perpetuate hypoxia-
driven damage (28). Concurrently, SII—a composite marker 
integrating neutrophils, platelets, and lymphocytes—reflects a 
dysregulated immune response characterized by neutrophil-
dominated inflammation and insufficient lymphocyte-mediated 
resolution (31). Notably, the synergy between D-dimer and SII in the 
integrated model highlights their complementary roles: while 
D-dimer marks ongoing vascular injury, SII quantifies the 
inflammatory burden that sustains tissue damage (32, 33). Our data 

FIGURE 3

Predictive performance of Clinical-Image, Radiomics, and Integrated models across training, testing, and validation cohorts for severity stratification. 
(a–c) ROC curves, (d–f) Calibration curves, (g–i) Decision curves for training (left), testing (middle), and validation (right) cohorts. AUC, area under the 
receiver operating curve.
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suggest that high SII values may drive delayed recovery by maintaining 
a pro-inflammatory milieu that inhibits epithelial regeneration and 
promotes fibrosis.

Consolidation pattern independently predicted delayed recovery 
in MPP (p = 0.001). Radiologically, consolidation represents dense 
inflammatory exudates within alveolar spaces, leading to impaired gas 
exchange, reduced mucociliary clearance, and a local environment 
that favors secondary infections and hypoxia-induced injury (34). This 
imaging feature aligns with the established pathophysiological 
understanding that alveolar inflammation and structural lung damage 
are key contributors to prolonged disease resolution (20, 35). The 
coexistence of consolidation with elevated D-dimer and SII in our 
cohort further underscores this mechanistic triad: vascular injury 
(reflected by D-dimer), neutrophil-dominated hyperinflammation 
(SII), and structural lung damage (consolidation) collectively 
perpetuate tissue hypoxia and repair delays. Clinically, these findings 
advocate for early stratification of patients with consolidation patterns 
to guide targeted interventions (36), such as adjunctive corticosteroids 
to mitigate inflammation or proactive pulmonary rehabilitation to 
prevent fibrotic sequelae.

Age differed significantly between NSMPP and SMPP groups and 
between recovery subgroups (p < 0.001 in all comparisons). This may 
reflect demographic bias in external cohorts, as children were more 
likely to seek care at pediatric hospitals, affecting the age distribution.

The Radiomics model demonstrated robust performance in 
predicting both severity (AUC = 0.710  in validation cohort) and 
delayed recovery (AUC = 0.837 in validation cohort), underscoring its 
unique ability to quantify subvisual heterogeneity in lung lesions that 
conventional clinical metrics may overlook. Radiomics features, such 
as texture irregularity, spatial gray-level co-occurrence, and volumetric 
asymmetry, likely reflect microscale pathological processes including 
alveolar inflammation, microvascular thrombosis, and early fibrosis 
that drive disease progression. Prior studies in COVID-19 (37) and 
bacterial pneumonia (38) have shown that Radiomics signatures 
correlate with hallmarks of prolonged recovery.

The incorporation of SHAP analysis offers valuable insight into 
the internal decision-making process of the random forest models, 
addressing the common concern of “black box” limitations in AI 
applications. In both severity and recovery prediction models, clinical 
indicators such as D-dimer, SII, and consolidation pattern emerged as 

TABLE 4  Diagnostic performance of different models for predicting severity and delayed recovery in MPP.

Model AUC (95% CI) Accuracy F1 Score Precision Sensitivity Specificity

Severity

Training cohort

 � Clinical-image model 0.778 (0.720, 0.836) 0.693 0.640 0.765 0.551 0.833

 � Radiomics model 0.846 (0.799, 0.894) 0.744 0.745 0.712 0.781 0.710

 � Integrated model 0.889 (0.848, 0.930) 0.803 0.800 0.803 0.797 0.808

Testing cohort

 � Clinical-image model 0.751 (0.629,0.874) 0.667 0.615 0.889 0.471 0.923

 � Radiomics model 0.818 (0.706, 0.930) 0.767 0.788 0.813 0.765 0.769

 � Integrated model 0.831 (0.725, 0.938) 0.783 0.794 0.862 0.735 0.846

Validation cohort

 � Clinical-image model 0.771 (0.695, 0.847) 0.690 0.463 0.349 0.685 0.691

 � Radiomics model 0.710 (0.643, 0.776) 0.527 0.438 0.285 0.944 0.426

 � Integrated model 0.784 (0.722, 0.845) 0.480 0.419 0.268 0.963 0.363

Delayed recovery

Training cohort

 � Clinical-image model 0.894 (0.791, 0.996) 0.832 0.900 0.984 0.829 0.857

 � Radiomics model 0.872 (0.798, 0.947) 0.807 0.885 0.967 0.816 0.714

 � Integrated model 0.982 (0.961, 1.000) 0.924 0.957 0.990 0.926 0.905

Testing cohort

 � Clinical-image model 0.865 (0.737, 0.994) 0.733 0.833 0.976 0.727 0.800

 � Radiomics model 0.865 (0.707, 1.000) 0.767 0.860 0.956 0.782 0.600

 � Integrated model 0.978 (0.939, 1.000) 0.917 0.953 0.981 0.927 0.800

Validation cohort

 � Clinical-image model 0.807 (0.724, 0.950) 0.841 0.908 0.964 0.857 0.680

 � Radiomics model 0.837 (0.724, 0.950) 0.877 0.930 0.970 0.893 0.720

 � Integrated model 0.865 (0.770, 0.960) 0.913 0.951 0.971 0.933 0.720

MPP, Mycoplasma pneumoniae Pneumonia; AUC, area under the receiver operating characteristic curve; CI, Confidence Interval.
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dominant contributors—reinforcing their established prognostic 
relevance in MPP.

Notably, SHAP analysis also highlighted radiomics features that 
captured subtle intralesional patterns often invisible to visual assessment. 
In the severity model (Figure  5c), features such as normalize_first 
order_Minimum and laplacian sharpening_glszm_Low Gray Level 
Zone Emphasis were among the most influential. These features reflect 
texture complexity and intra-lesional heterogeneity (39), consistent with 
severe parenchymal damage and multi-lobar consolidation.

In the delayed recovery model (Figure 5f), the top-ranked features 
included log_glszm_log-sigma-2-0-mm-3D-SmallAreaEmphasis 
wavelet_glcm_wavelet-LLH-Imc1. The former quantifies local texture 
uniformity after wavelet decomposition, with lower values suggesting 
heterogeneous tissue repair or uneven lesion resolution, which may 
delay clinical recovery. The latter measures entropy of intensity 
differences across pixel pairs, with higher values reflecting spatial 
irregularity and lingering microstructural disorganization—hallmarks 
of ongoing inflammation or evolving fibrosis (40). These findings 
underscore the complementary value of radiomics in quantifying 
microstructural complexity and disease heterogeneity. When 

integrated with clinical biomarkers, these features enhance the model’s 
ability to provide pathophysiologic grounded and interpretable 
predictions, thereby increasing transparency and clinical trust.

Additionally, we observed that the Radiomics model for severity 
prediction in the validation cohort demonstrated a moderate AUC 
(0.710) but relatively low accuracy (52.7%), which may appear 
discordant. This discrepancy can be attributed to several factors. First, 
the validation cohort exhibited class imbalance (223 NSMPP vs. 54 
SMPP), which can skew accuracy metrics while having less impact on 
AUC, a threshold-independent measure. Second, the model used a 
default probability threshold for classification; this may not be optimal 
in an imbalanced dataset and could lead to suboptimal accuracy 
despite fair discrimination (41). Third, inter-center variations in CT 
acquisition protocols and scanner types may have reduced the stability 
of radiomics features across institutions, compromising model 
generalizability. Finally, the relatively subtle radiographic 
manifestations in NSMPP cases may reduce feature contrast, 
particularly affecting Radiomics-only models. These factors collectively 
contribute to the observed accuracy-AUC discrepancy, which is 
commonly reported in radiomics studies under similar constraints (42).

TABLE 5  Comparison of different models in predicting severity and delayed recovery in MPP.

Method Delong test IDI

Z value p value Z value p value

Severity

Training cohort

 � Clinical-image vs. Radiomics 2.261 0.024 0.952 0.341

 � Clinical-image vs. Intergrated 4.236 <0.001 9.326 <0.001

 � Radiomics vs. Intergrated 1.719 0.086 8.629 <0.001

Testing cohort

 � Clinical-image vs. Radiomics 0.838 0.402 0.079 0.937

 � Clinical-image vs. Intergrated 1.412 0.158 3.110 0.002

 � Radiomics vs. Intergrated 0.256 0.798 3.408 0.001

Validation cohort

 � Clinical-image vs. Radiomics 1.189 0.235 −1.646 0.100

 � Clinical-image vs. Intergrated 0.299 0.765 2.566 0.010

 � Radiomics vs. Intergrated 1.798 0.072 5.192 <0.001

Delayed recovery

Training cohort

 � Clinical-image vs. Radiomics 0.311 0.756 −1.522 0.128

 � Clinical-image vs. Intergrated 1.782 0.075 3.110 0.002

 � Radiomics vs. Intergrated 3.185 0.001 4.923 0.000

Testing cohort

 � Clinical-image vs. Radiomics 0.000 1.000 1.565 0.118

 � Clinical-image vs. Intergrated 1.952 0.051 3.677 <0.001

 � Radiomics vs. Intergrated 1.673 0.094 2.305 0.021

Validation cohort

 � Clinical-image vs. Radiomics 0.471 0.638 −1.216 0.224

 � Clinical-image vs. Intergrated 1.947 0.052 4.327 <0.001

 � Radiomics vs. Intergrated 0.644 0.520 4.316 <0.001

MPP, Mycoplasma pneumoniae Pneumonia; IDI, Integrated Discrimination Improvement.
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Our findings demonstrate that the Integrated model 
significantly outperformed single modality approaches in both 
severity stratification and delayed recovery prediction, as 
evidenced by its superior IDI in validation cohorts. This may 
be attributed to the ability of Radiomics to augment clinical data 
by capturing orthogonal biological information (43). For instance, 
Radiomics features characterizing the heterogeneity of 
consolidation pattern may act synergistically with elevated SII to 
predict delayed recovery, as both are indicative of neutrophil-
driven inflammation and ongoing tissue remodeling (44). 
Additionally, enhancement in discriminative performance of 
Integrated model underscores the synergistic value of combining 
pathophysiological biomarkers (D-dimer, SII), quantitative 
imaging signatures (consolidation patterns), and Radiomics 
features enabling a more granular risk assessment that aligns with 
the multifactorial nature of pneumonia progression. Consequently, 

the Integrated model’s risk assessment capability facilitates 
decision-making and therapeutic adjustment.

Limitations

While this study highlights the clinical potential of the Integrated 
model, several limitations merit consideration. First, the retrospective 
design may introduce selection bias and overestimate model 
performance relative to prospective applications. Second, the absence 
of longitudinal imaging and biomarker data restricts our ability to 
assess evolving processes such as macrolide resistance or delayed 
fibrosis. Third, although an external validation cohort was included, 
all centers shared similar infrastructure, potentially limiting 
generalizability to low-resource settings. Additionally, the model’s 
reliance on high-resolution CT and application of pediatric-based 

FIGURE 4

Comparative analysis of Clinical-Image, Radiomics, and Integrated models across training, testing, and validation cohorts for delayed recovery. (a–c) 
ROC curves, (d–f) Calibration curves, (g–i) Decision curves for training (left), testing (middle), and validation (right) cohorts. AUC, area under the 
receiver operating curve.
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severity criteria to adults may reduce applicability and introduce 
classification bias. Lastly, treatment regimens were heterogeneous and 
incompletely documented, limiting our ability to control for 
therapeutic effects on recovery outcomes. Future studies should 
incorporate standardized imaging protocols, age-adapted severity 
frameworks, and detailed treatment data to enhance model robustness 
and clinical relevance.

Conclusion

This study demonstrates that the Integrated model, combining 
clinical imaging and Radiomics features, significantly improves 
predictive accuracy for both MPP severity and delayed recovery. The 
identification of D-dimer, SII, and consolidation patterns as robust 
independent predictors underscores their critical roles in disease 
progression. By stratifying patients into distinct risk categories based 
on these biomarkers, the model facilitates targeted clinical decision-
making and therapeutic adjustments, aligning with precision medicine 
principles to optimize individualized management strategies.
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