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Objective: To develop and validate model based on clinical, imaging, and
Radiomics features for predicting disease severity and delayed recovery in
Mycoplasma pneumoniae pneumonia (MPP).

Methods: This multicenter retrospective study enrolled 238 patients (training
cohort), 60 (testing cohort), and 278 (validation cohort). Patients were classified
into non-severe MPP (NSMPP) and severe MPP (SMPP) groups based on guideline,
and further stratified post-treatment into recovery or delayed recovery groups.
Radiomics features were extracted from chest CT using PyRadiomics, with
Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature
selection. Three random forest-based predictive models were developed,
including Clinical-Image, Radiomics, and Integrated. Predictive performance
was evaluated via by the area under the receiver operating characteristic curve
(AUC), calibration, and clinical utility.

Results: The Integrated model demonstrated superior discrimination for
severity prediction (validation AUC: 0.784, 95% CIl: 0.722-0.845) and delayed
recovery (validation AUC: 0.865, 95% Cl: 0.770-0.960), outperforming
Clinical-lmage (severity AUC: 0.771, 95% CIl: 0.695-0.847; delayed recovery
AUC: 0.807, 95% CI: 0.724-0.950) and Radiomics model (severity AUC: 0.710,
95% Cl: 0.643-0.776; delayed recovery AUC: 0.837, 95% Cl: 0.724-0.950).
Integrated Discrimination Improvement (IDI) analysis demonstrated significant
enhancements in the Integrated model compared to both the Clinical-Image
and Radiomics models for predicting both disease severity and delayed recovery
(all p < 0.05). Key predictors comprised D-dimer (severity OR = 1.371; delayed
recovery OR = 4.061), systemic immune-inflammation index (delayed recovery
OR = 6.607), and consolidation patterns (delayed recovery OR = 2.820).
Conclusion: The Integrated model combining clinical, imaging, and Radiomics
features enhances risk stratification for MPP severity and delayed recovery.

KEYWORDS

patient outcome assessment, Mycoplasma pneumonia, Radiomics, X-ray computed
tomography, machine learning

01 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1652653&domain=pdf&date_stamp=2025-11-05
https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/full
mailto:liqian202505@163.com
https://doi.org/10.3389/fmed.2025.1652653
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1652653

Lietal.

Introduction

Mycoplasma pneumoniae (MP) is a significant cause of respiratory
infections in both children and adults, accounting for 10-40% of
community-acquired pneumonia cases develop into Mycoplasma
pneumoniae pneumonia (MPP) (1, 2). School-aged children are most
frequently affected, but adults and the elderly are also susceptible (3).
In recent years, the global incidence of MPP and severe Mycoplasma
pneumoniae pneumonia (SMPP) has increased, often leading to
complications such as pleural effusion, atelectasis, and even life-
threatening extrapulmonary conditions (4, 5). SMPP can involve
multiple organ systems and result in long-term sequelae (6, 7), posing
major challenges for clinical management and increasing the
healthcare burden (8, 9).

SMPP may develop diffuse alveolar hemorrhage, pulmonary
embolism, or acute respiratory distress syndrome, resulting in
reduced survival rates and long-term morbidity (10, 11). However,
current pathogen detection methods suffer from long turnaround
times and limited reliability due to false positives or negatives (12—
14). Moreover, conventional clinical indicators such as interleukin-6
levels are difficult to obtain rapidly, leaving clinicians with limited
tools for early risk stratification. Therefore, timely identification of
patients at risk for severe disease and delayed radiological recovery
is crucial to improving outcomes and guiding therapy.

Computed tomography (CT) plays a central role in diagnosing
MPP, typically typically manifesting as ground-glass opacities, lobar
consolidations with air bronchograms, and interlobular septal
thickening (15). Yet conventional CT assessments lack reproducibility
and are highly operator dependent. Radiomics—an advanced
computational technique extracting high-dimensional quantitative
features from medical images—has emerged as a powerful tool for
uncovering imaging biomarkers not visible to the human eye (16-18).
It allows quantitative analysis of shape, texture, and intensity, enabling
objective evaluation of disease burden (16). Radiomics has shown
promise in assessing disease severity in conditions like COVID-19 (19)
and may offer similar benefits in MPP, particularly for distinguishing
SMPP and predicting delayed radiographic resolution (20).

This study aims to develop and validate CT-based Radiomics
model to stratify SMPP risk and predict delayed recovery. By
integrating Radiomics with clinical and conventional imaging data,
we seek to establish robust prediction models to support early risk
identification and individualized clinical decision-making.

Materials and methods
Patient population

This study follows the Declaration of Helsinki and was approved
by the Ethics Committee of the Baoding First Central Hospital (grant
no. HDFYLL-KY-2024-002) and also waived informed consent. A
retrospective collection of cases was conducted at a single medical
center between July 2024 and March 2025. These cases were randomly
assigned to a training cohort and a testing cohort in an 8:2 ratio.
Concurrently, cases from the same period were obtained from two
additional medical centers to constitute an external validation cohort.

Inclusion criteria were as follows: (1) patients diagnosed with
MPP, regardless of age; and (2) availability of chest CT images and
corresponding clinical data. Exclusion criteria included: (1) presence
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of immunodeficiency disorders, chronic pulmonary diseases, cardiac

conditions, chronic glomerulonephritis, rheumatic diseases,
malnutrition, diabetes, or other genetic/metabolic disorders; (2)
co-infection with other respiratory pathogens; (3) incomplete clinical

data; and (4) prior pulmonary surgery.

Patient grouping

Based on clinical severity at presentation, patients were classified
into two groups: NSMPP and SMPP, following national diagnostic
criteria (21). NSMPP was defined by typical symptoms of community-
acquired pneumonia (CAP)—fever, cough, and abnormal lung
auscultation—along with laboratory confirmation of MP infection via
elevated MP-specific IgM titers (>1:160 or a fourfold rise over two
weeks) or positive MP specific polymerase chain reaction from
nasopharyngeal secretions.

SMPP was diagnosed when patients met any of the severity
criteria (21), including persistent high fever (>39 °C for >5 days or
>7 days without improvement), respiratory distress (e.g., dyspnea,
wheezing, hemoptysis), or complications such as plastic bronchitis,
pleural effusion, asthma exacerbation, or extrapulmonary
involvement. Additional criteria included oxygen saturation <93% on
room air, or radiographic evidence of extensive lung involvement—e.g.,
consolidation in > two-thirds of a lobe, high-density lesions in > two
lobes, or diffuse bilateral infiltrates. Rapid radiologic progression
(>50% within 24-48 h) or significantly elevated inflammatory markers
such as C-reactive protein (CRP), lactate dehydrogenase (LDH), or
D-dimer, were also supported SMPP classification.

Treatment was severity-based: NSMPP patients received
symptomatic care and anti-MP therapy, while SMPP cases received
comprehensive management, including broad-spectrum antibiotics,
corticosteroids, bronchoscopy, and anticoagulation when indicated.

Recovery outcomes were assessed at 14 days post-treatment
initiation, a timepoint supported by prior studies indicating that most
non-severe MPP cases achieve clinical and radiological resolution
within 10-14 days of appropriate therapy (22). Persistent symptoms
or imaging abnormalities beyond this window may indicate treatment
resistance, delayed immune recovery, or early fibrosis (23).

Based on this, patients were stratified into recovery or delayed
recovery groups. Recovery was defined as the complete resolution of
respiratory symptoms and normalization of follow-up chest
CT. Delayed recovery was defined by the persistence of any clinical
symptoms (e.g., cough, dyspnea, chest discomfort) and/or
radiographic abnormalities, including: (1) persistent lobar
consolidation, atelectasis, or pleural effusion with no significant
resolution compared to baseline; and/or (2) residual lung involvement
exceeding 30% of the initially affected lung fields. All follow-up CT
images were independently reviewed by two radiologists blinded to
clinical outcomes, with disagreements resolved via consensus with a

senior thoracic radiologist. A schematic overview is shown in Figure 1.

Clinical data collection and imaging
analysis

Patient data were retrospectively collected and included
demographic information, clinical presentation, laboratory findings,

and imaging characteristics. General demographic variables
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Flow chart of the study. CT, Computed Tomography; VOI, Volume of Interest; ML, Machine Learning; LASSO, Least Absolute Shrinkage and Selection
Operator; MPP, Mycoplasma pneumoniae Pneumonia; NSMPP, Non-Severe Mycoplasma pneumoniae Pneumonia; SMPP, Severe Mycoplasma

encompassed sex, age, and fever classification (low-grade, moderate,
or high-grade). Laboratory parameters included white blood cell
(WBC) count, fibrinogen (FIB), D-dimer, and the systemic immune-
inflammation index (SII). SII was calculated using the following
formula: platelet count x neutrophil count/lymphocyte count.

All patients underwent chest CT examinations during their
illness. Two radiologists (Radiologist A with 6 years and Radiologist
B with 8 years of diagnostic experience) independently reviewed
and interpreted the CT images. In cases of disagreement regarding
image interpretation, a third senior radiologist (Radiologist C, with
12 years of experience) was consulted to resolve discrepancies and
reach a consensus. Throughout the image evaluation process, all
radiologists were blinded to clinical data and patient identifiers to

Frontiers in Medicine

minimize bias. The radiological assessment focused on three
specific CT features: lobar atelectasis (classified as absent or
present), consolidation pattern (categorized as absent, patchy,
segmental, or wedge-shaped), and pleural effusion (classified as
absent or present).

Image acquisition and preprocessing

Chest CT scans were performed using various CT scanners, with
details of the scanner specifications and scanning parameters provided
in Supplementary information and summarized in Supplementary
Table S1. All examinations were conducted with patients in the supine
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position during breath-hold following deep inspiration. Prior to
scanning, standardized breath-holding training was provided to
ensure image quality. The scan range extended from the thoracic inlet
to the costophrenic angles.

Image preprocessing involved resampling to isotropic voxels of
1 mm3 using B-spline interpolation and histogram standardization of
intensity values in the CT scans.

Radiomics feature extraction and selection

Image segmentation, Radiomics feature extraction, feature
selection, and machine learning model development were conducted
using the uAl Research Portal V1.1 (Shanghai United Imaging
Intelligence, Co., Ltd.) (24). An automated segmentation algorithm
(25), was employed to delineate the lesion volumes within each
pulmonary lobe. The initial automated segmentation outputs
underwent rigorous refinement through independent manual
annotation by two board-certified radiologists (Radiologist A: 6 years
of thoracic imaging experience; Radiologist B: 8 years). To quantify
interobserver agreement, intraclass correlation coefficients (ICC,
two-way random-effects model for absolute agreement) were
calculated across all segmented lesions, with ICC values interpreted
as: <0.40 poor; 0.40-0.59 fair; 0.60-0.74 good; >0.75 excellent.
Discrepancies exceeding 5% volumetric difference were resolved
through consensus review with a senior radiologist (15 years
experience).

Radiomics feature extraction was performed using the
PyRadiomics V3.0 (26) toolkit integrated within the uAI Research
Portal V1.1. A total of 1,904 features were automatically extracted
from both the original and filtered CT images by applying 15 image
filters. These features comprised seven major categories: first-order
statistical features (n = 378), shape-based (morphological) features
(n = 14), gray-level co-occurrence matrix (GLCM) features (n = 441),
gray-level run length matrix (GLRLM) features (n = 336), gray-level
size zone matrix (GLSZM) features (n = 336), gray-level dependence
matrix (GLDM) features (n=294), and neighboring gray-tone
difference matrix (NGTDM) features (n = 105). A detailed description
of the applied filters and corresponding feature sets is provided in
Supplementary information 2.

After applying Z-score normalization and Spearman correlation
analysis, the least absolute shrinkage and selection operator (LASSO)
regression addressed feature collinearity.

Model development

Univariable logistic regression was performed to evaluate the
association between clinical and imaging variables with MPP severity
and recovery status. Variables with a p-value < 0.05 were considered
statistically significant and subsequently included in model
construction. For Radiomics features, Z-score normalization followed
by LASSO regression was applied for feature selection, with features
yielding p-values < 0.05 retained for model development.

Three random forest models were developed: A Clinical-Image
Model incorporating clinical and imaging variables, a Radiomics
Model based solely on selected Radiomics features, and an Integrated
Model combining clinical, imaging, and Radiomics features.
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Statistical analysis

Continuous variables were reported as median (IQR), while
categorical variables were expressed as frequencies and percentages.
Comparisons of patient characteristics across the training, testing, and
validation cohorts were conducted using the Fisher’s exact test,
Pearson’s x2 test, or the Mann-Whitney U test, as appropriate based
on variable type and distribution. Univariable and multivariable
logistic regression analyses were also performed to identify potential
differences among cohorts.

The predictive performance of the models in assessing the severity
and delayed recovery of MPP was evaluated using the Receiver
Operating Characteristic curves (ROC) and area under the ROC
(AUC) with corresponding 95% confidence intervals. Additional
performance metrics including sensitivity, specificity, accuracy, F1
score and precision were calculated to provide a comprehensive
assessment of model effectiveness. Pairwise comparisons of model
performance were conducted using the DeLong test and integrated
(IDI)
interpretability of the Integrated models, we performed SHAP

discrimination  improvement analysis. To enhance
(SHapley Additive Explanations) analysis to evaluate the relative
contribution of each feature to the model’s output.

All statistical analyses were performed using R software (version
3.6.0; The R Foundation for Statistical Computing). A two-sided

p-value < 0.05 was considered statistically significant.

Results
Patient characteristics

A total of 238 patients were included in the training cohort, while
60 patients comprised the testing cohort. Additionally, 278 patients
from external centers were enrolled in the validation cohort. The
detailed inclusion and exclusion process is depicted in Figure 2.

Significant inter-cohort differences (all P-inter <0.05) were
observed in age, type of fever, fibrinogen (FIB), D-dimer, systemic
immune inflammation index (SII), lobar atelectasis, consolidation
pattern, and pleural effusion between NSMPP and SMPP groups
(Table 1). Marked inter-cohort differences (all P-inter <0.05) were
observed in age, type of fever, FIB, SII, lobar atelectasis, consolidation
pattern, and pleural effusion between recovery and delayed recovery
groups (Table 2).

Variables associated with MPP severity and
delayed recovery in the training dataset

For severity stratification, white blood cell (WBC; OR = 1.672,
p=0.001), D-dimer (OR = 1.659, p = 0.007), and SII (OR = 2.125,
P <0.001) showed significant associations. Multivariate analysis
retained only D-dimer as an independent predictor (OR = 1.371,
p=0.050).

In contrast, delayed recovery demonstrated stronger associations
with D-dimer (OR = 3.869, p < 0.001), SII (OR = 4.734, p = 0.001),
fibrinogen (FIB, OR = 2.024, p = 0.047), lobar atelectasis (OR = 1.676,
p=0.010), and consolidation pattern (OR=2.850, p <0.001) in
univariate analysis. The multivariate model identified three robust
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FIGURE 2
Flowchart of participant selection: adherence to inclusion and exclusion criteria in a multicenter cohort study. NSMPP, Non-Severe Mycoplasma
pneumoniae Pneumonia; SMPP, Severe Mycoplasma pneumoniae Pneumonia.

predictors: D-dimer (OR=4.061, p<0.001), SII (OR=6.607,
p =0.001), and consolidation pattern (OR = 2.820, p = 0.001) (Table 3).

Diagnostic performance of different
models for predicting severity in MPP

Figure 3 demonstrates the ROC curves, calibration curves, and
decision curves of the three predictive models for severity
stratification. For severity prediction, the Clinical-Image model
incorporated 1 feature (D-diamer), the Radiomics model included 13
Radiomics features, and the Integrated model combined both (total
14 features). The Clinical-Image model achieved an AUC of 0.771
(95% CI: 0.695-0.847) with 69.0% accuracy in the validation cohort.
The Radiomics model showed slightly lower performance
(AUC =0.710, 95% CI: 0.643-0.776; accuracy =52.7%). In the
validation cohort, the Clinical-Image model (incorporating 1 clinical
feature) achieved an AUC of 0.771 (95% CI: 0.695-0.847). The
Radiomics model (13 Radiomics features) demonstrated an AUC of
0.710 (95% CI: 0.643-0.776). The Integrated model (combining 14
features) yielded an AUC of 0.784 (95% CI: 0.722-0.845) (Table 4).

In the validation cohort, the Integrated Discrimination
Improvement (IDI) analysis demonstrated significant improvements
for the Integrated model compared to the Clinical-Image model
(p=0.010) and the Radiomics model (p <0.001). However, the
Delong test for AUC differences found no statistically significant
superiority of the Integrated model over the Clinical-Image model
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(p =0.765) or the Radiomics model (p = 0.072). Direct comparisons
between the Clinical-Image and Radiomics models revealed no
significant differences in either AUC (p = 0.235) or IDI (p = 0.100)
(Table 5).

Diagnostic performance of different
models for delayed recovery prediction in
MPP

Figure 4 displays the comparative performance of three delayed
recovery prediction models through ROC analysis, calibration plots,
and decision curve evaluation. The Clinical-Image model,
incorporating D-dimer, SII, and consolidation pattern, achieved an
AUC of 0.807 (95% CI: 0.724-0.950) with 84.1% accuracy, 85.7%
sensitivity, and 68.0% specificity in the validation cohort. The
Radiomics model (13 Radiomics features) demonstrated an AUC of
0.837 (95% CI: 0.724-0.950), an accuracy of 87.7%, sensitivity of
89.3%, and specificity of 72.0%. The Integrated model (combining 16
features) yielded an AUC of 0.865 (95% CI: 0.770-0.960), with an
accuracy of 91.3%, sensitivity of 93.3%, and specificity of 72.0%
(Table 4).

In the validation cohort, while IDI analysis showed the Integrated
model’s significant improvement over both Clinical-Image (p < 0.001)
and Radiomics models (p <0.001), Delong tests revealed
non-significant advantage over Clinical-Image (p =0.052) and
Radiomics (p = 0.520). Direct comparisons between Clinical-Image
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TABLE 1 Comparison of clinical and radiological characteristics between NSMPP and SMPP groups in training, testing and validation cohorts.

Characteristics

Training cohort (n = 238)

Testing cohort (n = 60)

Validation cohort (n = 277)

NSMPP SMPP (n = 118) P-Intra NSMPP SMPP (n = 34) P-Intra NSMPP SMPP (n = 54) Pintra
(n = 120) value (n = 26) value (n = 223) value
Male, 1 (%) 59 (49.167) 69 (58.475) 0.150 9 (34.615) 23 (67.647) 0.011 101 (45.291) 24 (44.444) 0.911 0.121
Age, M (IQR), years 34.000 40.000 [6.250,68.750] 0.747 47.000 [9.500,57.000] 33.000 [8.000,66.000] 0.988 33.000 [8.000,66.000] | 48.000 [10.000,58.000] 0.082 <0.001
[10.000,65.000]
Type of fever, n (%) 0.061 0.629 <0.001 <0.001
Absent 58 (48.333) 44 (37.288) 24 (40.000) 13 (50.000) 23(10.314) 2(3.704)
Low-grade 7 (5.833) 17 (14.407) 5(8.333) 2(7.692) 23(10.314) 1(1.852)
Mid-grade 26 (21.667) 21 (17.797) 14 (23.333) 6(23.077) 104 (46.637) 17 (31.481)
Hyperpyrexia 29 (24.167) 36 (30.508) 17 (28.334) 5(19.231) 73 (32.735) 34 (62.963)
WBC, M (IQR), 109/L 6.555 [4.683,8.807] 8.035 [5.955,10.555] 0.001 7.455 [6.357,9.300] 9.265 [6.747,11.890] 0.182 7.270 [5.930,9.290] 9.460 [6.710,11.630] 0.001 0.068
FIB, M (IQR), 109/L 3.845 [3.080,4.615] 4.190 [3.655,4.850] 0.017 3.705 [3.093,4.333] 4.485 [3.660,5.692] 0.015 3.670 [3.010,4.235] 3.785 [3.370,4.357] 0.144 <0.001
D-dimer, n (%) 0.003 0.916 0.049 <0.001
0-500 ug/L 34 (14.286) 15 (12.712) 15(57.692) 18(52.941) 40 (17.937) 10 (18.519)
>500 ug/L 204 (85.714) 103 (87.288) 11(42.308) 16(47.059) 183 (82.063) 44 (81.481)
SII, M (IQR) 567.798 871.539 <0.001 820.135 1011.183 0.230 582.950 883.830 <0.001 0.004
[355.964,917.839] [523.636,1672.732] [470.647,1284.275] [508.730,2182.868] [374.220,895.845] [595.239,1569.793]
Lobar atelectasis 0.819 1.000 0.127 0.001
Absent 99 (82.500) 96 (81.356) 25 (96.154) 33 (97.059) 205 (91.928) 46 (85.185)
Present 21 (17.500) 22 (18.644) 1(3.846) 1(2.941) 18 (8.072) 8(14.815)
Consolidation pattern 0.104 0.526 <0.001 0.025
Absent 21 (17.500) 31(26.271) 3(11.538) 5(14.706) 46 (20.628) 4(7.407)
Patchy 38 (31.667) 28 (23.729) 2(7.692) 5(14.706) 69 (30.942) 11 (20.370)
Segmental 26 (21.667) 34 (28.814) 14 (53.846) 12 (35.294) 67 (30.045) 14 (25.926)
Wedge-shaped 35(29.167) 25(21.186) 7 (26.923) 12 (35.294) 41 (18.386) 25 (46.296)
Pleural effusion 0.638 0.597 0.003 <0.001
Absent 85 (70.833) 89 (75.424) 24 (92.308) 30 (88.235) 213 (95.516) 45 (83.333)
Present 35(29.167) 29 (24.576) 2(7.692) 4 (11.765) 10 (4.485) 9 (16.667)

P-intra value is the result of univariate analyses between the NSMPP and SMPP groups; P-inter value represents the comparisons of characteristics between training testing and validation cohorts. NSMPP, Non Severe Mycoplasma pneumoniae Pneumonia; SMPP,

Severe Mycoplasma pneumoniae Pneumonia; Interquartile range (IQR); WBC, white blood cell; FIB, Fibrinogen; SII, Systemic immune inflammation index.
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TABLE 2 Comparison of clinical and radiological characteristics between recovery and delayed recovery groups in training, testing and validation cohorts.

Characteristics Training cohort (n = 238) Testing cohort (n = 60) Validation cohort (n = 277) Overall
(n = 575)
Recovery Delayed Recovery Delayed Recovery Delayed P-intra P-inter
(n = 217) recovery (n = 55) recovery (n = 252) recovery value value
(n=21) (n=5) (n = 25)
Male, 1 (%) 112 (51.613) 13 (61.905) 0.367 28 (50.909) 2 (40.000) 1.000 118 (46.825) 12 (48.000) 0.911 0.448
Age, M (IQR), years 38.000 52.000 0.910 30.000 13.000 0.297 26.000 [6.000,46.250] 32.000 0.282 <0.001
[8.000,66.000] [8.000,68.000] [9.000,69.500] [3.000,57.000] [12.000,48.000]
Type of fever, n (%) 0.410 0.826 0.081 <0.001
Absent 106 (48.848) 11 (52.381) 24 (43.636) 2 (40.000) 21(8.333) 4(16.000)
Low-grade 22 (10.138) 4(19.048) 6 (10.909) 0 (0.000) 19 (7.540) 5 (20.000)
Mid-grade 41 (18.894) 4(19.048) 11 (20.000) 2 (40.000) 113 (44.841) 8 (32.000)
Hyperpyrexia 48 (22.120) 2(9.524) 14 (25.455) 1 (20.000) 99 (39.286) 8 (32.000)
WBC, M (IQR), 109/L 7.500 [5.790,10.130]  5.560 [4.360,8.120] 0.044 6.800 [5.035,9.400]  4.490 [4.280,13.930] 0.593 7.475[6.018,9.752]  8.260 [6.470,10.330] 0.232 0.591
FIB, M (IQR), 109/L 4.080 [3.310,4.890] 3.760 [3.030,4.480] 0.079 3.930 [3.470,4.675] = 4.760 [4.100,7.240] 0.204 3.370 [0.548,3.960] 3.620 [0.550,4.360] 0.153 <0.001
D-dimer, 1 (%) <0.001 0.015 <0.001 0.208
0-500 ug/L 20 (9.217) 17 (80.952) 11 (20.000) 4(80.000) 36 (14.286) 17 (68.000)
>500 ug/L 197 (90.783) 4(19.048) 44 (80.000) 1(20.000) 216 (85.714) 8 (32.000)
SIT, M (IQR) 521.150 181.000 <0.001 286.000 406.590 0.487 408.146 619.183 0.003 0.001
[251.830,875.400] [127.000,243.000] [80.000,635.350] [201.520,426.040] [381.993,511.541] [374.268,828.072]
Lobar atelectasis <0.001 0.308 0.799 <0.001
Absent 46 (21.198) 11 (52.381) 40 (72.727) 2 (40.000) 166 (65.873) 17 (68.000)
Prsent 171 (78.802) 10 (47.619) 15 (27.273) 3 (60.000) 86 (34.127) 8 (32.000)
Consolidation pattern <0.001 0.008 <0.001 <0.001
Absent 29 (13.364) 8 (38.095) 10 (18.182) 4(80.000) 21(8.333) 11 (44.000)
Patchy 39 (17.972) 10 (47.619) 4(7.273) 1 (20.000) 89 (35.317) 11 (44.000)
Segmental 112 (51.613) 3(14.286) 36 (65.455) 0 (0.000) 82 (32.540) 2 (8.000)
Wedge-shaped 37 (17.051) 0 (0.000) 5(9.091) 0 (0.000) 60 (23.810) 1 (4.000)
Pleural effusion 0.813 1.000 <0.001
Absent 167 (76.959) 17 (80.952) 40 (72.727) 4(80.000) 233 (92.460) 25 (100.000)
Prsent 50 (23.041) 4(19.048) 15 (27.273) 1 (20.000) 19 (7.540) 0 (0.000)

RCEETN
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P-intra is the result of univariate analyses between the recovery and delayed recovery groups; P-inter value represents the comparisons of characteristics between training testing and validation cohorts. NSMPP, Non Severe Mycoplasma pneumoniae Pneumonia; SMPP,
Severe Mycoplasma pneumoniae Pneumonia; Interquartile range (IQR); WBC, white blood cell; FIB, Fibrinogen; SII, Systemic immune inflammation index.

£G92591°'5202' PaW4/682¢ 0T


https://doi.org/10.3389/fmed.2025.1652653
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Lietal

10.3389/fmed.2025.1652653

TABLE 3 Univariate and multivariable logistic regression analyses for selecting clinical and radiological features in the training cohort.

Predictor Univariate logistic regression Multivariate logistic regression
Coefficient OR (95% Cl) P-value coefficient OR (95% Cl) P-value
Severity
1.007 (0.781,
Male 0.007 0.955
1.299)
1.030 (0.799,
Age 0.030 0.819
1.328)
1.169 (0.906,
Type of fever 0.156 0.229
1.509)
1.672 (1.240,
WBC 0.514 0.001
2.253)
1.297 (0.989,
FIB 0.260 0.060
1.700)
1.659 (1.147, 1.371 (1.001,
D-dimer 0.506 0.007 0.316 0.050
2.400) 1.879)
2.125 (1.478,
SII 0.754 <0.001
3.057)
1.030 (0.799,
Lobar atelectasis 0.030 0.819
1.328)
0.851 (0.659,
Consolidation pattern —0.162 0.215
1.098)
0.944 (0.731,
Pleural effusion —0.058 0.655
1.218)
Delayed recovery
1.230 (0.786,
Male 0.211 0.370
1.953)
0.991 (0.632,
Age —-0.013 0.965
1.554)
1.280 (0.793,
Type of fever 0.247 0.312
2.066)
1.263 (0.754,
WBC 0.234 0.374
2.114)
2.024 (1.011,
FIB 0.705 0.047
4.055)
3.869 (2.521, 4.061 (2.518,
D-dimer 1.353 <0.001 1.401 <0.001
5.939) 6.547)
4.734 (1.909, 6.607 (2.078,
SII 1.555 0.001 1.888 0.001
11.740) 21.005)
1.676 (1.129,
Lobar atelectasis 0.517 0.010
2.490)
2.850 (1.740, 2.820 (1.517,
Consolidation pattern 1.047 <0.001 1.037 0.001
4.667) 5.243)
1.340 (0.737,
Pleural effusion 0.293 0.338
2.440)

WBC, white blood cell; FIB, Fibrinogen; SII, Systemic immune inflammation index; OR, odds ratio; CI, Confidence Interval.

and Radiomics models showed no significant differences in either
AUC (p = 0.638) or IDI (p = 0.224) (Table 5).

As shown in Figure 5, for the severity prediction model (panels
a-c), the most influential features included clinical variables
(D-dimer), alongside radiomics features in validation cohorts.

Frontiers in Medicine

Similarly, for the delayed recovery prediction model (panels d-f), top
contributors included D-dimer, SII, consolidation pattern and
radiomic texture features. Notably, clinical biomarkers and radiomics
variables appeared synergistic rather than redundant, suggesting that
integrating both data types offers complementary predictive value.
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FIGURE 3

Predictive performance of Clinical-Image, Radiomics, and Integrated models across training, testing, and validation cohorts for severity stratification.
(a—c) ROC curves, (d—f) Calibration curves, (g—i) Decision curves for training (left), testing (middle), and validation (right) cohorts. AUC, area under the

receiver operating curve.

Discussion

This study demonstrates that integrating clinical-radiological
features with Radiomics signatures significantly improves prediction
of both MPP severity and delayed recovery. The combined model
showed strong generalizability in external validation, with an AUC of
0.865 (95% CI: 0.770-0.960) for delayed recovery prediction,
underscoring its potential to guide risk-adapted interventions.

Elevated D-dimer levels were identified as an independent
predictor of MPP severity (p = 0.050), reflecting its pivotal role in
hypercoagulability and endothelial dysfunction during disease
progression (27). In SMPP, systemic inflammation triggers a
prothrombotic state through cytokine-mediated activation of the
coagulation cascade, leading to fibrin deposition and microvascular
thrombosis (28). D-dimer, as a degradation product of cross-linked
fibrin, serves as a biomarker of this pathological process (29). Our
findings align with evidence linking hypercoagulability to alveolar

Frontiers in Medicine 09

damage and hypoxemia in severe pneumonia (30), suggesting that
D-dimer elevation may exacerbate tissue hypoxia by impairing
pulmonary perfusion, thereby worsening clinical outcomes.

The strong association of D-dimer (OR = 4.06, p < 0.001) and SIT
(OR=6.61, p=0.001) with delayed recovery underscores the
interplay between coagulation abnormalities and sustained
inflammation in prolonging disease resolution. Persistently elevated
D-dimer levels likely indicate unresolved microthrombosis and
endothelial injury, which impair tissue repair and perpetuate hypoxia-
driven damage (28). Concurrently, SII—a composite marker
integrating neutrophils, platelets, and lymphocytes—reflects a
dysregulated immune response characterized by neutrophil-
dominated inflammation and insufficient lymphocyte-mediated
resolution (31). Notably, the synergy between D-dimer and SII in the
integrated model highlights their complementary roles: while
D-dimer marks ongoing vascular injury, SII quantifies the
inflammatory burden that sustains tissue damage (32, 33). Our data
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TABLE 4 Diagnostic performance of different models for predicting severity and delayed recovery in MPP.

10.3389/fmed.2025.1652653

AUC (95% CI) = Accuracy F1 Score Precision Sensitivity Specificity
Severity
Training cohort
Clinical-image model 0.778 (0.720, 0.836) 0.693 0.640 0.765 0.551 0.833
Radiomics model 0.846 (0.799, 0.894) 0.744 0.745 0.712 0.781 0.710
Integrated model 0.889 (0.848, 0.930) 0.803 0.800 0.803 0.797 0.808
Testing cohort
Clinical-image model 0.751 (0.629,0.874) 0.667 0.615 0.889 0.471 0.923
Radiomics model 0.818 (0.706, 0.930) 0.767 0.788 0.813 0.765 0.769
Integrated model 0.831 (0.725, 0.938) 0.783 0.794 0.862 0.735 0.846
Validation cohort
Clinical-image model 0.771 (0.695, 0.847) 0.690 0.463 0.349 0.685 0.691
Radiomics model 0.710 (0.643, 0.776) 0.527 0.438 0.285 0.944 0.426
Integrated model 0.784 (0.722, 0.845) 0.480 0.419 0.268 0.963 0.363
Delayed recovery
Training cohort
Clinical-image model 0.894 (0.791, 0.996) 0.832 0.900 0.984 0.829 0.857
Radiomics model 0.872 (0.798, 0.947) 0.807 0.885 0.967 0.816 0.714
Integrated model 0.982 (0.961, 1.000) 0.924 0.957 0.990 0.926 0.905
Testing cohort
Clinical-image model 0.865 (0.737, 0.994) 0.733 0.833 0.976 0.727 0.800
Radiomics model 0.865 (0.707, 1.000) 0.767 0.860 0.956 0.782 0.600
Integrated model 0.978 (0.939, 1.000) 0.917 0.953 0.981 0.927 0.800
Validation cohort
Clinical-image model 0.807 (0.724, 0.950) 0.841 0.908 0.964 0.857 0.680
Radiomics model 0.837 (0.724, 0.950) 0.877 0.930 0.970 0.893 0.720
Integrated model 0.865 (0.770, 0.960) 0913 0.951 0.971 0.933 0.720

MPP, Mycoplasma pneumoniae Pneumonia; AUC, area under the receiver operating characteristic curve; CI, Confidence Interval.

suggest that high SII values may drive delayed recovery by maintaining
a pro-inflammatory milieu that inhibits epithelial regeneration and
promotes fibrosis.

Consolidation pattern independently predicted delayed recovery
in MPP (p = 0.001). Radiologically, consolidation represents dense
inflammatory exudates within alveolar spaces, leading to impaired gas
exchange, reduced mucociliary clearance, and a local environment
that favors secondary infections and hypoxia-induced injury (34). This
imaging feature aligns with the established pathophysiological
understanding that alveolar inflammation and structural lung damage
are key contributors to prolonged disease resolution (20, 35). The
coexistence of consolidation with elevated D-dimer and SII in our
cohort further underscores this mechanistic triad: vascular injury
(reflected by D-dimer), neutrophil-dominated hyperinflammation
(SII), and structural lung damage (consolidation) collectively
perpetuate tissue hypoxia and repair delays. Clinically, these findings
advocate for early stratification of patients with consolidation patterns
to guide targeted interventions (36), such as adjunctive corticosteroids
to mitigate inflammation or proactive pulmonary rehabilitation to
prevent fibrotic sequelae.
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Age differed significantly between NSMPP and SMPP groups and
between recovery subgroups (p < 0.001 in all comparisons). This may
reflect demographic bias in external cohorts, as children were more
likely to seek care at pediatric hospitals, affecting the age distribution.

The Radiomics model demonstrated robust performance in
predicting both severity (AUC = 0.710 in validation cohort) and
delayed recovery (AUC = 0.837 in validation cohort), underscoring its
unique ability to quantify subvisual heterogeneity in lung lesions that
conventional clinical metrics may overlook. Radiomics features, such
as texture irregularity, spatial gray-level co-occurrence, and volumetric
asymmetry, likely reflect microscale pathological processes including
alveolar inflammation, microvascular thrombosis, and early fibrosis
that drive disease progression. Prior studies in COVID-19 (37) and
bacterial pneumonia (38) have shown that Radiomics signatures
correlate with hallmarks of prolonged recovery.

The incorporation of SHAP analysis offers valuable insight into
the internal decision-making process of the random forest models,
addressing the common concern of “black box” limitations in AI
applications. In both severity and recovery prediction models, clinical
indicators such as D-dimer, SII, and consolidation pattern emerged as
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TABLE 5 Comparison of different models in predicting severity and delayed recovery in MPP.

Method Delong test
Z value p value Z value
Severity
Training cohort
Clinical-image vs. Radiomics 2.261 0.024 0.952 0.341
Clinical-image vs. Intergrated 4.236 <0.001 9.326 <0.001
Radiomics vs. Intergrated 1.719 0.086 8.629 <0.001
Testing cohort
Clinical-image vs. Radiomics 0.838 0.402 0.079 0.937
Clinical-image vs. Intergrated 1.412 0.158 3.110 0.002
Radiomics vs. Intergrated 0.256 0.798 3.408 0.001
Validation cohort
Clinical-image vs. Radiomics 1.189 0.235 —1.646 0.100
Clinical-image vs. Intergrated 0.299 0.765 2.566 0.010
Radiomics vs. Intergrated 1.798 0.072 5.192 <0.001
Delayed recovery
Training cohort
Clinical-image vs. Radiomics 0.311 0.756 —1.522 0.128
Clinical-image vs. Intergrated 1.782 0.075 3.110 0.002
Radiomics vs. Intergrated 3.185 0.001 4.923 0.000
Testing cohort
Clinical-image vs. Radiomics 0.000 1.000 1.565 0.118
Clinical-image vs. Intergrated 1.952 0.051 3.677 <0.001
Radiomics vs. Intergrated 1.673 0.094 2.305 0.021
Validation cohort
Clinical-image vs. Radiomics 0.471 0.638 -1.216 0.224
Clinical-image vs. Intergrated 1.947 0.052 4.327 <0.001
Radiomics vs. Intergrated 0.644 0.520 4.316 <0.001

MPP, Mycoplasma pneumoniae Pneumonia; IDI, Integrated Discrimination Improvement.

dominant contributors—reinforcing their established prognostic
relevance in MPP.

Notably, SHAP analysis also highlighted radiomics features that
captured subtle intralesional patterns often invisible to visual assessment.
In the severity model (Figure 5c¢), features such as normalize_first
order_Minimum and laplacian sharpening glszm_Low Gray Level
Zone Emphasis were among the most influential. These features reflect
texture complexity and intra-lesional heterogeneity (39), consistent with
severe parenchymal damage and multi-lobar consolidation.

In the delayed recovery model (Figure 5f), the top-ranked features
included

wavelet_glem_wavelet-LLH-Imc1. The former quantifies local texture

log_glszm_log-sigma-2-0-mm-3D-SmallAreaEmphasis

uniformity after wavelet decomposition, with lower values suggesting
heterogeneous tissue repair or uneven lesion resolution, which may
delay clinical recovery. The latter measures entropy of intensity
differences across pixel pairs, with higher values reflecting spatial
irregularity and lingering microstructural disorganization—hallmarks
of ongoing inflammation or evolving fibrosis (40). These findings
underscore the complementary value of radiomics in quantifying
microstructural complexity and disease heterogeneity. When

Frontiers in Medicine

integrated with clinical biomarkers, these features enhance the model’s
ability to provide pathophysiologic grounded and interpretable
predictions, thereby increasing transparency and clinical trust.
Additionally, we observed that the Radiomics model for severity
prediction in the validation cohort demonstrated a moderate AUC
(0.710) but relatively low accuracy (52.7%), which may appear
discordant. This discrepancy can be attributed to several factors. First,
the validation cohort exhibited class imbalance (223 NSMPP vs. 54
SMPP), which can skew accuracy metrics while having less impact on
AUG, a threshold-independent measure. Second, the model used a
default probability threshold for classification; this may not be optimal
in an imbalanced dataset and could lead to suboptimal accuracy
despite fair discrimination (41). Third, inter-center variations in CT
acquisition protocols and scanner types may have reduced the stability
of radiomics features across institutions, compromising model
the subtle
manifestations in NSMPP cases may reduce feature contrast,

generalizability. ~ Finally, relatively radiographic
particularly affecting Radiomics-only models. These factors collectively
contribute to the observed accuracy-AUC discrepancy, which is

commonly reported in radiomics studies under similar constraints (42).
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FIGURE 4
Comparative analysis of Clinical-lImage, Radiomics, and Integrated models across training, testing, and validation cohorts for delayed recovery. (a—c)
ROC curves, (d—f) Calibration curves, (g—i) Decision curves for training (left), testing (middle), and validation (right) cohorts. AUC, area under the
receiver operating curve.

Our findings demonstrate that the Integrated model
significantly outperformed single modality approaches in both
severity stratification and delayed recovery prediction, as
evidenced by its superior IDI in validation cohorts. This may
be attributed to the ability of Radiomics to augment clinical data
by capturing orthogonal biological information (43). For instance,
the
consolidation pattern may act synergistically with elevated SII to

Radiomics features characterizing heterogeneity of
predict delayed recovery, as both are indicative of neutrophil-
driven inflammation and ongoing tissue remodeling (44).
Additionally, enhancement in discriminative performance of
Integrated model underscores the synergistic value of combining
pathophysiological biomarkers (D-dimer, SII), quantitative
imaging signatures (consolidation patterns), and Radiomics
features enabling a more granular risk assessment that aligns with

the multifactorial nature of pneumonia progression. Consequently,
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the Integrated model’s risk assessment capability facilitates
decision-making and therapeutic adjustment.

Limitations

While this study highlights the clinical potential of the Integrated
model, several limitations merit consideration. First, the retrospective
design may introduce selection bias and overestimate model
performance relative to prospective applications. Second, the absence
of longitudinal imaging and biomarker data restricts our ability to
assess evolving processes such as macrolide resistance or delayed
fibrosis. Third, although an external validation cohort was included,
all centers shared similar infrastructure, potentially limiting
generalizability to low-resource settings. Additionally, the model’s
reliance on high-resolution CT and application of pediatric-based
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severity criteria to adults may reduce applicability and introduce
classification bias. Lastly, treatment regimens were heterogeneous and
incompletely documented, limiting our ability to control for
therapeutic effects on recovery outcomes. Future studies should
incorporate standardized imaging protocols, age-adapted severity
frameworks, and detailed treatment data to enhance model robustness
and clinical relevance.

Conclusion

This study demonstrates that the Integrated model, combining
clinical imaging and Radiomics features, significantly improves
predictive accuracy for both MPP severity and delayed recovery. The
identification of D-dimer, SII, and consolidation patterns as robust
independent predictors underscores their critical roles in disease
progression. By stratifying patients into distinct risk categories based
on these biomarkers, the model facilitates targeted clinical decision-
making and therapeutic adjustments, aligning with precision medicine
principles to optimize individualized management strategies.

Data availability statement

The datasets presented in this article are not readily available because
the datasets generated during the current study are not publicly available

Frontiers in Medicine

due to hospital regulations and confidentiality agreements, but they are
available from the corresponding author upon reasonable request and
with necessary ethical approvals. Requests to access the datasets should
be directed to liqian202505@163.com.

Ethics statement

This study was approved by the Ethics Committees of the
participating hospitals (Approval No. HDFYLL-KY-2024-002)
and conducted in accordance with local regulations and
institutional requirements, as well as the Declaration of Helsinki.
Given the retrospective nature of the study, the requirement for
written informed consent was waived by the respective ethics
committees. Therefore, no written informed consent was
obtained from the participants or their legal guardians/next of
kin, including for the publication of any potentially identifiable
images or data.

Author contributions

QL: Writing - review & editing, Writing - original draft. Z-JS:
Writing - original draft, Conceptualization. WC: Methodology,
Writing - original draft. WY: Data curation, Writing — original
draft.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1652653
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
mailto:liqian202505@163.com

Lietal.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

WC was employed by United Imaging Intelligence (Beijing) Co., Ltd.

The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure

References

1. Kutty PK, Jain S, Taylor TH, Bramley AM, Diaz MH, Ampofo K, et al. Mycoplasma
pneumoniae among children hospitalized with community-acquired pneumonia. Clin
Infect Dis. (2019) 68:5-12. doi: 10.1093/cid/ciy419

2. Choi Y], Jeon JH, Oh JW. Critical combination of initial markers for predicting
refractory Mycoplasma Pneumoniae pneumonia in children: a case control study. Respir
Res. (2019) 20:193. doi: 10.1186/s12931-019-1152-5

3. Gadsby NJ, Reynolds AJ, McMenamin J, Gunson RN, McDonagh S, Molyneaux PJ,
et al. Increased reports of Mycoplasma pneumoniae from laboratories in Scotland in 2010
and 2011—impact of the epidemic in infants. Euro Surveill. (2012) 17:20110.

4. Yan C, Xue G, Zhao H, Feng Y, Li S, Cui J, et al. Molecular and clinical characteristics
of severe Mycoplasma Pneumoniae pneumonia in children. Pediatr Pulmonol. (2019)
54:1012-21. doi: 10.1002/ppul.24327

5. Liu J, He R, Wu R, Wang B, Xu H, Zhang Y, et al. Mycoplasma Pneumoniae
pneumonia associated thrombosis at Beijing children's hospital. BMC Infect Dis. (2020)
20:51. Epub 2020/01/18. doi: 10.1186/s12879-020-4774-9

6. Narita M. Classification of Extrapulmonary manifestations due to Mycoplasma
Pneumoniae infection on the basis of possible pathogenesis. Front Microbiol. (2016) 7:23.
doi: 10.3389/fmicb.2016.00023

7. Meyer Sauteur PM, Theiler M, Buettcher M, Seiler M, Weibel L, Berger C.
Frequency and clinical presentation of Mucocutaneous disease due to Mycoplasma
Pneumoniae infection in children with community-acquired pneumonia. JAMA
Dermatol. (2020) 156:144-50. doi: 10.1001/jamadermatol.2019.3602

8. Kassisse E, Garcia H, Prada L, Salazar I, Kassisse J. Prevalence of Mycoplasma
Pneumoniae infection in pediatric patients with acute asthma exacerbation. Arch Argent
Pediatr. (2018) 116:179-85. doi: 10.5546/aap.2018.eng.179

9. Waites KB, Xiao L, Liu Y, Balish MFE, Atkinson TP. Mycoplasma Pneumoniae from
the respiratory tract and beyond. Clin Microbiol Rev. (2017) 30:747-809. doi:
10.1128/cmr.00114-16

10. Wang X, Zhong LJ, Chen ZM, Zhou YL, Ye B, Zhang YY. Necrotizing pneumonia
caused by refractory Mycoplasma pneumonia pneumonia in children. World J Pediatr.
(2018) 14:344-9. doi: 10.1007/s12519-018-0162-6

11.San Martin I, Zarikian SE, Herranz M, Moreno-Galarraga L. Necrotizing
pneumonia due to Mycoplasma in children: An uncommon presentation of a common
disease. Adv Respir Med. (2018) 86:305-9. doi: 10.5603/ARM.a2018.0049

12. Totten AH, Xiao L, Luo D, Briles D, Hale JY, Crabb DM, et al. Allergic airway
sensitization impairs antibacterial igg antibody responses during bacterial respiratory tract
infections. J Allergy Clin Immunol. (2019) 143:1183-97.€7. doi: 10.1016/j.jaci.2018.07.021

13.Bénet T, Sanchez Picot V, Messaoudi M, Chou M, Eap T, Wang J, et al.
Microorganisms associated with pneumonia in children <5 years of age in developing
and emerging countries: the Gabriel pneumonia multicenter, prospective, case-control
study. Clin Infect Dis. (2017) 65:604-12. doi: 10.1093/cid/cix378

14. Wang L, Feng Z, Zhao M, Yang S, Yan X, Guo W, et al. A comparison study
between Gexp-based multiplex-Pcr and serology assay for Mycoplasma Pneumoniae

Frontiers in Medicine

10.3389/fmed.2025.1652653

accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any
product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/
full#supplementary-material

detection in children with community acquired pneumonia. BMC Infect Dis. (2017)
17:518. doi: 10.1186/s12879-017-2614-3

15.Shen C, Yu N, Cai S, Zhou J, Sheng J, Liu K, et al. Quantitative computed
tomography analysis for stratifying the severity of coronavirus disease 2019. ] Pharm
Anal. (2020) 10:123-9. doi: 10.1016/j.jpha.2020.03.004

16. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics:
the facts and the challenges of image analysis. Eur Radiol Exp. (2018) 2:36. doi:
10.1186/s41747-018-0068-z

17.Li G, Li L, Li Y, Qian Z, Wu E He Y, et al. An Mri Radiomics approach to predict
survival and tumour-infiltrating macrophages in gliomas. Brain. (2022) 145:1151-61.
doi: 10.1093/brain/awab340

18. Chen Q, Zhang L, Liu S, You J, Chen L, Jin Z, et al. Radiomics in precision
medicine for gastric Cancer: opportunities and challenges. Eur Radiol. (2022)
32:5852-68. doi: 10.1007/s00330-022-08704-8

19. Zysman M, Asselineau J, Saut O, Frison E, Oranger M, Maurac A, et al.
Development and external validation of a prediction model for the transition from mild
to moderate or severe form of Covid-19. Eur Radiol. (2023) 33:9262-74. doi:
10.1007/s00330-023-09759-x

20.Luo Y, Dai J, Tang G, He S, Fu W. Development and validation of a simple-to-use
nomogram for predicting the delayed radiographic recovery in children with
Mycoplasma Pneumoniae pneumonia complicated with atelectasis. J Investig Med. (2023)
71:722-9. doi: 10.1177/10815589231169686

21. National Health Commission of the People’s Republic of China. Guidelines for the
Diagnosis and Treatment of Mycoplasma Pneumoniae Pneumonia in Children (2023
Edition). Chinese Journal of Rational Drug Use Exploration, (2023) 20:16-24.

22. Yan Q, Niu W, Jiang W, Hao C, Chen M, Hua J. Risk factors for delayed radiographic
resolution in children with refractory Mycoplasma Pneumoniae pneumonia. J Int Med Res.
(2021) 49:3000605211015579. doi: 10.1177/03000605211015579

23. Zheng Y, Mao G, Dai H, Li G, Liu L, Chen X, et al. Early predictors of delayed
radiographic resolution of lobar pneumonia caused by Mycoplasma Pneumoniae in children:
aretrospective study in China. BMC Infect Dis. (2024) 24. doi: 10.1186/5s12879-024-09289-x

24. Wu J, Xia Y, Wang X, Wei Y, Liu A, Innanje A, et al. Urp: An integrated research
platform for one-stop analysis of medical images. Front Radiol. (2023) 3:1153784. doi:
10.3389/fradi.2023.1153784

25. Shan E, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Abnormal lung quantification
in chest Ct images of Covid-19 patients with deep learning and its application to severity
prediction. Med Phys. (2021) 48:1633-45. doi: 10.1002/mp.14609

26. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al.
Computational Radiomics system to decode the radiographic phenotype. Cancer Res.
(2017) 77:€104-7. doi: 10.1158/0008-5472.Can-17-0339

27.Lee YC, Chang CH, Lee W], Liu TY, Tsai CM, Tsai TA, et al. Altered chemokine
profile in refractory Mycoplasma Pneumoniae pneumonia infected children. J Microbiol
Immunol Infect. (2021) 54:673-9. doi: 10.1016/j.jmii.2020.03.030

frontiersin.org


https://doi.org/10.3389/fmed.2025.1652653
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2025.1652653/full#supplementary-material
https://doi.org/10.1093/cid/ciy419
https://doi.org/10.1186/s12931-019-1152-5
https://doi.org/10.1002/ppul.24327
https://doi.org/10.1186/s12879-020-4774-9
https://doi.org/10.3389/fmicb.2016.00023
https://doi.org/10.1001/jamadermatol.2019.3602
https://doi.org/10.5546/aap.2018.eng.179
https://doi.org/10.1128/cmr.00114-16
https://doi.org/10.1007/s12519-018-0162-6
https://doi.org/10.5603/ARM.a2018.0049
https://doi.org/10.1016/j.jaci.2018.07.021
https://doi.org/10.1093/cid/cix378
https://doi.org/10.1186/s12879-017-2614-3
https://doi.org/10.1016/j.jpha.2020.03.004
https://doi.org/10.1186/s41747-018-0068-z
https://doi.org/10.1093/brain/awab340
https://doi.org/10.1007/s00330-022-08704-8
https://doi.org/10.1007/s00330-023-09759-x
https://doi.org/10.1177/10815589231169686
https://doi.org/10.1177/03000605211015579
https://doi.org/10.1186/s12879-024-09289-x
https://doi.org/10.3389/fradi.2023.1153784
https://doi.org/10.1002/mp.14609
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1016/j.jmii.2020.03.030

Lietal.

28.Guo L, Liu F, Lu MP, Zheng Q, Chen ZM. Increased T cell activation in Balf from
children with Mycoplasma Pneumoniae pneumonia. Pediatr Pulmonol. (2015) 50:814-9.
Epub 2014/08/27. doi: 10.1002/ppul.23095

29. Franchini M, Focosi D, Pezzo MP, Mannucci PM. How we manage a high D-dimer.
Haematologica. (2024) 109:1035-45. doi: 10.3324/haematol.2023.283966

30. Bassatne A, Basbous M, Chakhtoura M, El Zein O, Rahme M, El-Hajj Fuleihan G.
The link between Covid-19 and vitamin D (vivid): a systematic review and meta-
analysis. Metabolism. (2021) 119:154753. doi: 10.1016/j.metabol.2021.154753

31.Liu K, Yang L, Liu Y, Zhang Y, Zhu J, Zhang H, et al. Systemic immune-
inflammation index (Sii) and neutrophil-to-lymphocyte ratio (Nlr): a strong predictor
of disease severity in large-artery atherosclerosis (Laa) stroke patients. J Inflamm Res.
(2025) 18:195-202. doi: 10.2147/jir.S500474

32. ShiJ, Shao MJ, Yu M, Tang BP. The inflammation-fibrosis combined index: a novel
marker for predicting left ventricular reverse remodeling and prognosis in patients with
Hifref. ] Inflamm Res. (2024) 17:3967-82. doi: 10.2147/jir.S460641

33. Molinos M, Almeida CR, Caldeira J, Cunha C, Gongalves RM, Barbosa MA.

Inflammation in Intervertebral Disc Degeneration and Regeneration. J R Soc Interface.
(2015) 12:20150429. doi: 10.1098/rsif.2015.0429

34. Corcoran TE. New path for understanding Mucociliary clearance. Thorax. (2024)
79:597-8. doi: 10.1136/thorax-2024-221551

35. Chu C, Wang L, Wu Y, Li H, Xu S, Zhang L, et al. Multidimensional analysis using low-
dose computed tomography to evaluate the severity of Mycoplasma Pneumoniae pneumonia
in children. Quant Imaging Med Surg. (2023) 13:1874-86. doi: 10.21037/qims-22-508

36. Abbasian Ardakani A, Acharya UR, Habibollahi S, Mohammadi A. Covidiag: a
clinical cad system to diagnose Covid-19 pneumonia based on Ct findings. Eur Radiol.
(2021) 31:121-30. doi: 10.1007/s00330-020-07087-y

Frontiers in Medicine

15

10.3389/fmed.2025.1652653

37.Liu H, Ren H, Wu Z, Xu H, Zhang S, Li J, et al. Ct Radiomics facilitates more
accurate diagnosis of Covid-19 pneumonia: compared with co-Rads. J Transl Med.
(2021) 19:29. doi: 10.1186/s12967-020-02692-3

38.Gao L, Li Y, Zhai Z, Liang T, Zhang Q, Xie S, et al. Radiomics study on pulmonary
infarction mimicking community-acquired pneumonia. Clin Respir J. (2021) 15:661-9.
doi: 10.1111/crj.13341

39. Adelsmayr G, Janisch M, Kaufmann-Biihler AK, Holter M, Talakic E, Janek E, et al.
Ct texture analysis reliability in pulmonary lesions: the influence of 3d vs. 2d lesion
segmentation and volume definition by a Hounsfield-unit threshold. Eur Radiol. (2023)
33:3064-71. doi: 10.1007/s00330-023-09500-8

40. Adelsmayr G, Janisch M, Miiller H, Holzinger A, Talakic E, Janek E, et al. Three
dimensional computed tomography texture analysis of pulmonary lesions: does
Radiomics allow differentiation between carcinoma, neuroendocrine tumor and
organizing pneumonia? Eur ] Radiol. (2023) 165:110931. doi: 10.1016/j.ejrad.2023.
110931

41. Demircioglu A. Applying oversampling before cross-validation will Lead to high
Bias in Radiomics. Sci Rep. (2024) 14:11563. doi: 10.1038/s41598-024-
62585-2

42. An C, Park YW, Ahn SS, Han K, Kim H, Lee SK. Radiomics machine learning
study with a small sample size: single random training-test set Split may Lead to
unreliable results. PLoS One. (2021) 16:¢0256152. doi: 10.1371/journal.pone.0256152

43. Castiglioni I, Gilardi MC. Radiomics: is it time to compose the puzzle? Clin
Translat Imaging. (2018) 6:411-3. doi: 10.1007/540336-018-0302-y

44.Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues:
implications for the resolution of inflammation. Am ] Physiol Cell Physiol. (2020)
319:C510-32. doi: 10.1152/ajpcell.00181.2020

frontiersin.org


https://doi.org/10.3389/fmed.2025.1652653
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1002/ppul.23095
https://doi.org/10.3324/haematol.2023.283966
https://doi.org/10.1016/j.metabol.2021.154753
https://doi.org/10.2147/jir.S500474
https://doi.org/10.2147/jir.S460641
https://doi.org/10.1098/rsif.2015.0429
https://doi.org/10.1136/thorax-2024-221551
https://doi.org/10.21037/qims-22-508
https://doi.org/10.1007/s00330-020-07087-y
https://doi.org/10.1186/s12967-020-02692-3
https://doi.org/10.1111/crj.13341
https://doi.org/10.1007/s00330-023-09500-8
https://doi.org/10.1016/j.ejrad.2023.110931
https://doi.org/10.1016/j.ejrad.2023.110931
https://doi.org/10.1038/s41598-024-62585-z
https://doi.org/10.1038/s41598-024-62585-z
https://doi.org/10.1371/journal.pone.0256152
https://doi.org/10.1007/s40336-018-0302-y
https://doi.org/10.1152/ajpcell.00181.2020

	Multicenter study on CT-based Radiomics for predicting severity and delayed recovery in Mycoplasma pneumoniae pneumonia
	Introduction
	Materials and methods
	Patient population
	Patient grouping
	Clinical data collection and imaging analysis
	Image acquisition and preprocessing
	Radiomics feature extraction and selection
	Model development
	Statistical analysis

	Results
	Patient characteristics
	Variables associated with MPP severity and delayed recovery in the training dataset
	Diagnostic performance of different models for predicting severity in MPP
	Diagnostic performance of different models for delayed recovery prediction in MPP

	Discussion
	Limitations

	Conclusion

	References

