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Background: Cardiogenic shock is associated with high mortality. Prognostic 
scales, such as Sequential Organ Failure Assessment (SOFA), Acute Physiology 
and Chronic Health Evaluation II (APACHE II), and Survival After Venoarterial 
ECMO (SAVE), have been used to estimate mortality risk or survival probability. 
However, their performance remains limited in the context of Venoarterial 
Extracorporeal Membrane Oxygenation (VA-ECMO) therapy. This study aimed 
to validate oxygen debt (DEOx) as a predictor of 28-day mortality in critically ill 
patients receiving VA-ECMO and to compare its prognostic accuracy with that 
of the SAVE, SOFA, and APACHE II scores.
Methods: This retrospective cohort study included patients with cardiogenic 
shock admitted to the intensive care unit. All patients were prescribed VA-
ECMO therapy in accordance with criteria by the Extracorporeal Life Support 
Organization. Upon initiation of ECMO, the APACHE II, SOFA, and SAVE scores, 
calculated 6 h prior to cannulation, and the DEOx score were compared for 
their predictive ability for 28-day mortality.
Results: A total of 157 patients were included, with a mortality of 40% (63/157). 
Of these, 56.7% (89/157) were male. Mean DEOx was 11.4 mL O₂/kg. Mean 
age was 46.6 years (standard deviation 13.8). In multivariate analysis, variables 
independently associated with 28-day mortality included DEOx (odds ratio [OR]: 
1.04; 95% confidence interval [CI]: 1.01–1.06; p = 0.001), pre-ECMO infection 
(OR: 2.86; 95% CI: 1.20–6.80; p = 0.018), hypertension (OR: 2.66; 95% CI: 
1.22–5.78; p = 0.014), and APACHE II (OR: 1.08; 95% CI: 1.01–1.16; p = 0.018). 
Area under the curve (AUC) analysis revealed weak discrimination and similar 
performance regarding the primary outcome. DEOx showed the highest 
discrimination (AUC 0.663, 95% CI 0.49–0.77), followed by SAVE transformed to 
mortality (0.625), APACHE II (0.611), and SOFA (0.595).
Conclusion: In adults receiving VA-ECMO for refractory cardiogenic shock, 
DEOx measured 6 h before ECMO cannulation showed modest discrimination 
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for 28-day mortality and higher specificity than SOFA and SAVE at pre-specified 
thresholds. These findings support DEOx as a potential complementary early 
risk indicator; however, we  did not evaluate integrated models with existing 
scores. Prospective, multicentre studies should evaluate whether adding DEOx 
to APACHE II/SOFA/SAVE improves prognostic performance and supports 
earlier intervention.
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Introduction

The management of critically ill patients in an intensive care unit 
(ICU) focuses on ensuring adequate oxygen delivery (DO₂) to 
maintain a balance between oxygen delivery and consumption (VO₂). 
Failure to sustain this balance leads to oxygen debt (DEOx), which 
reflects a shift from aerobic to anaerobic metabolism and is associated 
with organ dysfunction and increased mortality (1, 2). Although its 
definition may vary, DEOx is commonly understood as the difference 
between expected and measured VO₂ during states of shock, 
representing the amount of oxygen not delivered due critically 
reduced DO₂ (3). Despite its strong pathophysiological basis, its 
clinical application remains limited. However, it offers an objective 
measurement that is independent of variables such as age, body 
surface area, or temperature, and it can be calculated using base excess 
(BE) and lactate levels obtained through arterial blood gas analysis (1, 
4). Numerous studies have linked these parameters to adverse 
outcomes in conditions such as hemorrhagic shock, postoperative 
states, and, more recently, severe SARS-CoV-2 infection (3, 5–9).

Cardiogenic shock is a critical condition characterized by 
impaired DO₂ secondary to myocardial dysfunction. The 
estimated incidence of 408 cases per 100,000 individuals and 
mortality rate of approximately 37%, even with the use of 
circulatory support strategies (10–12). Venoarterial extracorporeal 
membrane oxygenation (VA-ECMO), as recommended by the 
Extracorporeal Life Support Organization (ELSO®), is employed 
in patients with refractory cardiogenic shock as a bridge to 
decision-making, recovery, heart transplantation, or the use of 
ventricular assist devices (10–12) according to the Society for 
Cardiovascular Angiography and Interventions (SCAI), 
mechanical support is required in 30% of patients classified as 
stage D or E, with mortality rates ranging from 68 to 77%, 
respectively. Survival in patients with VA-ECMO ranges from 29 
to 63.1%, and early initiation remains a significant clinical 
challenge (12–16).

Several prognostic tools are currently available for assessing 
multiorgan dysfunction syndrome, including the Sequential Organ 
Failure Assessment (SOFA) (17), the Acute Physiology and Chronic 
Health Evaluation II (APACHE II), and Simplified Acute 
Physiology Score II (SAPS II) (18, 19). In addition, the Survival 
After Venoarterial ECMO (SAVE) score can predict in-hospital 
survival in patients with VA-ECMO support (20). However, each 
of these tools has intrinsic limitations, such as overestimating the 
risk in patients with multiple comorbidities or advanced age, 
underestimation in those with extracorporeal support, and relying 
on laboratory data that may not be immediately available upon 
ICU admission (21, 22). Furthermore, none of these scoring 

systems incorporates the variables used to calculate DEOx, 
suggesting that DEOx may provide complementary 
prognostic information.

Although interest in the prognostic role of DEOx is increasing, no 
studies to date have evaluated its predictive value in patients receiving 
VA-ECMO support. Therefore, this study aimed to assess the 
performance of DEOx—using an indirect quantitative calculation—as 
a predictor of 28-day mortality in ICU patients undergoing VA-ECMO 
therapy, and to compare its prognostic utility against the SAVE, SOFA, 
and APACHE II scores.

Materials and methods

Study type

This retrospective cohort study included patients admitted to ICU 
with a diagnosis of cardiogenic shock SCAI D and E (14, 23) of our 
facility with indications for VA-ECMO support as ascertained using 
the ELSO® criteria (12). The participant sample was drawn from 
patients meeting the study criteria who were treated at the Fundación 
Clínica Shaio in Bogotá DC, Colombia, between 8th August, 2019 and 
31st October, 2024.

Study population

Subjects aged ≥18 years with a diagnosis of cardiogenic shock 
according to Ponikowski et  al. and indications for VA-ECMO 
therapy based on the ELSO® criteria were determined (12, 23). To 
minimize transcription bias from the clinical records, the data 
were reviewed by at least two different evaluators and verified at 
the time of transcription. Each investigator provided a personal 
username and password and entered the data into a specifically 
designed online data acquisition system. Subjects with complete 
clinical information in the REDCap (24) information system 
during the entire period of care and for whom SAVE (20), 
APACHE II (19), SOFA (17) and DEOx scores (1, 25) could 
be calculated were included. Mortality data were extracted from 
notifications in death records and data provided in the medical 
history. Patients who died within the first 6 h of VA-ECMO 
admission, those with unreliable arterial or venous blood gas data, 
terminal chronic liver or kidney failure upon admission, status 
epilepticus, salicylate or alcohol intoxication, diabetic ketoacidosis, 
pediatric populations, and pregnant women were excluded, as were 
patients cannulated in VV mode or those requiring a change to 
VAV mode.
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Study variables

Data were abstracted from admission and progress notes in the 
electronic medical record by ICU-trained physicians following a 
previously standardized protocol, and included sociodemographic 
characteristics, comorbidities (Charlson Index) (26), admission 
clinical variables, laboratory and blood gas results and APACHE II 
(19), SOFA (17) and SAVE (20) scores. The scores were calculated 6 h 
before VA-ECMO cannulation, using the worst recorded physiological 
values available at that time. Specifically: (1) SOFA followed the 
original six-organ system described by Vincent et al. (17) (respiratory, 
coagulation, liver, cardiovascular, central nervous system, and renal 
domains; PaO₂/FiO₂, platelets, bilirubin, vasopressor/MAP criteria, 
GCS, and creatinine/urine output); (2) APACHE II followed Knaus 
et al. (19), comprising 12 acute physiologic variables, age, and chronic 
health points; and (3) SAVE followed Schmidt et al. (20) (Survival 
After Veno-Arterial ECMO score; integer point system per original 
coefficients). Full item lists, thresholds, and scoring ranges for each 
system, along with the DEOx calculation (DEOx = 6.322 × lactate − 
2.311 × base excess − 9.013), are provided in Supplementary Table S3.

The data used for analyses and score computation, including 
arterial blood gas (ABG) measurements (pH, PaO₂, and PaCO₂), 
lactate, and base excess (BE), were abstracted from the 6 h prior to 
VA-ECMO cannulation. When multiple measurements were available 
within this window, we used the worst value for analysis (peak lactate, 
most negative BE, lowest PaO₂/FiO₂, highest PaCO₂). Patients without 
at least one ABG in this window were excluded from analyses that 
required these variables.

We also recorded ICU length of stay, days on VA-ECMO, and days 
of invasive mechanical ventilation and vasopressor support. All 
abstractions were reviewed by the research team to ensure that 
inclusion criteria were met and to prevent inconsistencies or 
scoring errors.

This report adheres to the STROBE statement for cohort 
studies; the completed STROBE checklist is provided as 
Supplementary Checklist S1.

Sample size

The sample size required was calculated using the equation 
proposed by Obuchowski (27) for determining the confidence 
intervals (CIs) in diagnostic tests, along with the validity data from the 
original studies of SOFA (17), APACHE II (19) and SAVE (20), which 
report sensitivities between 65 and 92% and specificities between 62 
and 90% for predicting mortality outcomes. For a 95% CI, 90% power, 
mortality proportion of 40%, alpha error of 0.05 and precision of 10% 
with Yates correction. This resulted in a minimum requirement of 
135 participants.

Statistical analysis

Quantitative variables were summarized as mean ± standard 
deviation (SD) when approximately normally distributed and as 
median (interquartile range, IQR) when skewed or non-normal; 
categorical variables as counts (percentages). Distributional 
assumptions were evaluated using Shapiro–Wilk tests and Q–Q plots. 

All tests were two-sided with α = 0.05. A bivariate analysis compared 
survivors and non-survivors at 28 days. Quantitative variables were 
compared using Student’s t-test or the Mann–Whitney U test for 
variables with normal or skewed distributions, respectively. Qualitative 
variables were compared using the chi-square test or Fisher’s exact test 
as appropriate.

We performed a multivariable logistic regression of 28-day 
mortality, excluding subjects with missing data. Variables with 
p-values <0.20 in the bivariate analysis and those judged biologically 
plausible were considered (28). The strength of the correlation 
between each variable and the proposed outcomes was estimated as 
an odds ratio (OR) and adjusted OR using a logistic 
regression model.

In multivariable logistic regression, DEOx, APACHE II, SOFA, 
and SAVE were entered as continuous variables and standardized (z-
scores); ORs reflect the change in odds of 28-day mortality per 1 SD 
increase. Linearity with the log-odds was evaluated using restricted 
cubic splines (3 knots) and the Box–Tidwell approach; no material 
non-linearities were detected.

Sensitivity analyses. For clinical interpretability, we  also 
evaluated pre-specified binary thresholds (DEOx ≥3.78 mL O₂/
kg; SOFA ≥6; APACHE II ≥ 12; SAVE <−2 after transforming 
survival to mortality). Physiologic and ABG variables were 
analyzed using the 24 h post-cannulation window defined in 
Study variables.

Using the scores obtained from APACHE II, SOFA, SAVE and 
DEOx corrected for different confounding variables, we calculated 
sensitivity, specificity, positive likelihood ratio (LR+) and negative 
likelihood ratio (LR−), along with the areas under the curve (AUCs) 
and 95% CIs, at the pre-specified thresholds as detailed in the methods 
(DEOx 3.78 mL O₂/kg anchored to human cohorts; SOFA, APACHE 
II, and SAVE per their original descriptions/validations). AUROCs 
were compared with the DeLong test (Bonferroni-adjusted). Analyses 
were performed in Stata 17.0 (StataCorp, College Station, TX, 
United States).

Discrimination was compared using AUROC (primary, 
threshold-independent). For DEOx, because no VA-ECMO–specific 
cut-off is standardized, we pre-specified a threshold of 3.78 mL O₂/
kg, anchored to human cohorts in severe COVID-19 that linked 
higher oxygen debt with worse outcomes (3, 9). For comparator 
scores, thresholds were pre-specified from the literature: SOFA [17; 
VA-ECMO validation (29)], APACHE II (19), and SAVE (20; 
survival transformed to mortality and anchored to original risk 
classes). Full item definitions and sources are summarized in 
Supplementary Table S3.

Cut-off points used for descriptive operating characteristics in 
Table 1 followed the thresholds reported or implied by the original 
studies (APACHE II ≥ 12; SOFA ≥6; SAVE <−2 when transformed 
from survival to mortality) and are detailed in Supplementary Table S3.

Results

A total of 420 patients were admitted to the ICU for ECMO 
therapy during the study period, of which 263 patients did not meet 
the inclusion criteria, leaving 157 subjects for the final analysis, where 
63/157 (40%) died, showing an average DEOx value of 11.4 mL O2/kg. 
Figure 1 illustrates the flow of subjects into the study.
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TABLE 1  Patients’ baseline characteristics.

Characteristics Population
n = 157

Mortality = 63 Survival = 94 p-value

Age in years, mean (SD) 46.6 (13.8) 49.3 (13.7) 44.7 (13.6) 0.978

Male, n (%) 89 (56.7) 41 (65.1) 48 (51.1) 0.082

Body mass index, mean (SD) 25.9 (4.3) 26.4 (4.4) 25.7 (4.2) 0.821

Outpatient days – Median (IQR) 4.8 (3.8–5.9) 4.4 (3.1–5.7) 5.1 (3.6–6.6) 0.865

Pre-ECMO MV days – Median (IQR) 1.8 (1.5–2.1) 2.3 (1.6–2.9) 1.5 (1.3–1.7) 0.314

Days from admission to ECMO initiation – Median (IQR) 1.7 (1.1–2.3) 2.2 (0.9–3.4) 1.4 (0.7–2.1) 0.768

Heparin days – Median (IQR) 5.6 (4.7–6.5) 5.2 (4.2–6.1) 5.8 (4.5–7.1) 0.526

ICU days – Median (IQR) 25.8 (17.9–33.7) 14.8 (10.7–19.1) 33.5 (20.5–46.4) 0.003*

MV days – Median (IQR) 11.9 (10.2–13.6) 11.6 (8.4–14.8) 12.1 (10.3–13.9) 0.400

LVEF – Median (IQR) 33.4 (29.2–37.6) 32.4 (25.7–39.2) 34.1 (28.5–39.7) 0.349

Referral, n (%) 91 (57.9) 36 (57.1) 55 (58.5) 0.865

IABP counterpulsation support, n (%) 61 (38.8) 26 (41.3) 35 (37.2) 0.611

Pre-ECMO infection, n (%) 26 (16.6) 16 (25.4) 10 (10.6) 0.015*

Comorbidities, n (%)

High blood pressure 34 (21.6) 20 (31.7) 14 (14.9) 0.012*

Pulmonary hypertension 14 (8.9) 7 (11.1) 7 (7.4) 0.430

Dyslipidaemia 17 (10.8) 5 (7.9) 12 (12.8) 0.340

Heart failure 21 (13.4) 6 (9.5) 15 (15.9) 0.246

Hypothyroidism 16 (10.2) 7 (11.1) 9 (9.6) 0.755

Diabetes mellitus 2 24 (15.3) 13 (20.6) 11 (11.7) 0.127

Atrial fibrillation 11 (7.1) 6 (9.5) 5 (5.3) 0.312

Pulmonary thromboembolism 11 (7.1) 3 (4.8) 8 (8.5) 0.367

Coronary heart disease 10 (6.4) 5 (7.9) 5 (5.3) 0.876

Smoking 12 (7.6) 6 (9.5) 6 (6.4) 0.468

Valvular heart disease 24 (15.3) 12 (19.1) 12 (12.8) 0.284

Pre-ECMO laboratory parameters, mean (SD)

D-dimer 4637.4 (7772.2) 4485.9 (6590.9) 4749.1 (8716.9) 0.461

Lactate dehydrogenase 595.8 (408.3) 829 (557.5) 421 (176.6) 0.834

Leucocytes ×103/μL 13.1 (6.7) 13 (6.8) 13.2 (6.7) 0.405

Hemoglobin g/dL 12.9 (2.7) 12.6 (2.7) 13.2 (2.6) 0.079

Platelets ×103/μL 204.2 (116.5) 198.1 (133.8) 208.5 (103.3) 0.309

Thromboplastine time 36.8 (16.5) 39.3 (17.8) 35.1 (15.4) 0.905

Sodium mEq/L 138.2 (4.8) 137.8 (5.1) 138.6 (4.6) 0.181

Potassium mEq/L 4.4 (0.8) 4.3(0.8) 4.5 (0.8) 0.255

Creatinine mg/dL 1.83 (1.56) 2.15 (2.01) 1.62 (1.13) 0.966

Fibrinogen 259.2 (120.6) 244.1 (92.1) 268.7 (137.5) 0.295

Blood gasses upon admission, mean (SD)

pH 7.30 (0.2) 7.27 (0.2) 7.31 (0.1) 0.080

HCO3 meq/L 19.1 (5.3) 19.4 (5.1) 18.9 (5.5) 0.721

Arterial CO₂ partial pressure (PaCO₂), mmHg 39.9 (14.8) 43.4 (15.2) 37.4 (14.1) 0.989

Arterial O2 saturation % 91.5 (7.7) 89.8 (9.1) 92.5 (6.5) 0.064

Venous O2 saturation % 65.6 (13.6) 64.3 (13.4) 66.6 (13.8) 0.218

Base excess −6.2 (7.5) −7.4 (7.2) −5.3 (7.7) 0.061

(Continued)
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Study population characteristics

The mean age of the patients was 46.6 years (SD: 13.8), with 56.7% 
(89/157) being male. Time from admission to ECMO initiation: 
1.7 days (IQR 1.1–2.3); duration of mechanical ventilation: 11.9 days 
(IQR 10.2–13.6) and left ventricle ejection fraction 33.4% (IQR: 29.2–
37.6). The most prevalent comorbidities were arterial hypertension 
(21.6%), diabetes mellitus (15.3%) and valvulopathy (15.3%). A 
significant relationship was found between mortality and ICU length, 
infection before ECMO and hypertension. Table 2 summarizes the 
baseline characteristics of the population and their relationship with 
mortality. Unless otherwise specified, quantitative variables are 
presented as mean ± SD (normal distributions) or median (IQR) 
(skewed distributions).

Regarding pre-cannulation cardiovascular conditions, no 
statistically significant differences were found between patients who 
survived and those who died. Although cardiac arrest before ECMO 
and cardiopulmonary bypass use before ECMO were slightly more 
frequent in non-survivors, these differences did not reach statistical 
significance. Similarly, the use of vasoactive/inotropic support was 
high, with no relevant differences between groups. Norepinephrine 
was the most frequently used drug (94.9%), followed by vasopressin 

(83.4%) and adrenaline (31.2%), with no significant differences in 
administered doses. Table  3 summarizes the pre-cannulation 
cardiovascular conditions, and the Supplementary Tables S1, S2 
describes the causes of cardiogenic shock and those related to 
surgical events.

The prognostic scores showed statistically significant differences 
between patients who died and those who survived for APACHE II, 
SAVE score and DEOx. Additionally, red blood cell (RBC) transfusions 
were significantly more frequent in non-survivors (84.1% vs. 68.1% in 
survivors, p = 0.024), the use of fresh frozen plasma was higher among 
patients who died (65.1% vs. 45.7%, p = 0.017) and heparin use was 
significantly higher among survivors (67.1%) than among 
non-survivors (47.6%) (p = 0.015). Table 4 summarizes the additional 
clinical conditions associated with mortality.

Multivariate analysis

DEOx demonstrated a statistically significant association as an 
independent variable for 28-day mortality. The variables with the 
highest OR were infection before ECMO with an OR of 2.86 (95% CI: 
1.20–6.80; p = 0.018), hypertension with an OR of 2.66 (95% CI: 

FIGURE 1

Study subject admission flowchart.

TABLE 1  (Continued)

Characteristics Population
n = 157

Mortality = 63 Survival = 94 p-value

Lactate mmol/L 4.3 (3.3) 4.0 (2.9) 4.5 (3.6) 0.221

Severity score, Median (IQR)

SOFA Score 7 (5–8) 7 (5–9) 7 (5–8) 0.157

APACHE II Score 11 (8–14) 12 (9–16) 11 (7–14) 0.022*

DEOx, mean (SD) 11.4 (27.9) 23.6 (40.7) 4.3 (12) 0.001*

SAVE Score 1 (−2 to 3) 0 (−2 to 2) 1 (−2 to 3) 0.032*

SD, standard deviation; M, median; IQR, interquartile range; ECMO, extracorporeal membrane oxygenation; SOFA, sequential organ failure assessment; APACHE, acute physiology and 
chronic health disease classification system; DEOx, oxygen debt; MV, mechanical ventilation; LVEF, left ventricular ejection fraction; IABP counterpulsation, intra-aortic balloon 
counterpulsation; HCO3, bicarbonate; *p < 0.05.
Data are reported as mean ± SD or median (IQR), and n (%) for categorical variables.
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1.22–5.78; p = 0.014), APACHE II score with an OR of 1.08 (95% CI: 
1.01–1.16; p = 0.018) and DEOx with an OR of 1.04 (95% CI: 1.01–
1.06, p = 0.001). In the multivariate analysis, the variables 
independently associated with the studied outcomes are presented in 
Tables 5, 6.

28-day mortality performance of APACHE 
II, SOFA, SAVE, and DEOx

For 28-day mortality, the AUROC values were 0.663 for DEOx 
(95% CI 0.49–0.77), 0.611 for APACHE II (95% CI 0.51–0.71), 
0.595 for SOFA (95% CI 0.49–0.69), and 0.625 for SAVE after 
reversing its orientation from survival to mortality calculated as 
1-survival (untransformed AUROC for survival 0.375, 95% CI 
0.27–0.47). Pairwise DeLong comparisons showed overall 
differences across curves (p < 0.001; Bonferroni-adjusted p < 0.001). 
AUROC estimates for all four tools are summarized in Table 1 and 
displayed in Figure 2.

At the pre-specified cut-offs, SAVE had the highest sensitivity 
(75.4%; cut-off < −2), whereas DEOx provided the highest specificity 
(56.3% at 3.78 mL O₂/kg). Operating characteristics for DEOx in 
Table 1 were computed at the pre-specified threshold of 3.78 mL O₂/
kg (anchored to human cohorts), while thresholds for SOFA, APACHE 
II, and SAVE were pre-specified from their original descriptions/
validations. Threshold-based operating characteristics (sensitivity, 
specificity, LR+, LR−) for each score are reported in Table 1; for item-
level composition and operational definitions of each score (see 
Supplementary Table S3).

Discussion

This study is the first to evaluate DEOx as a predictor of 28-day 
mortality among patients undergoing VA-ECMO support. Although 
the predictive capacity of DEOx as a single variable was limited, it 
outperformed the SOFA score and was comparable to established tools 
such as APACHE II and SAVE, all of which were calculated 6 h prior 
to ECMO cannulation, with higher specificity for mortality prediction. 
Several reports have described higher AUROC values for the SAVE 
(20), SOFA (29), and APACHE II scores (30) —frequently exceeding 
0.8—when predicting mortality in VA-ECMO patients. In contrast, all 
scores in our study exhibited lower discrimination. This discrepancy 
may be attributed to differences in patient characteristics and timing 
of score assessment. In our cohort, pre-ECMO infection was present 
in 16.6% of patients and hypertension in 21.6%, both independently 
associated with increased mortality. To assess a pre-cannulation state, 
all scores were calculated 6 h prior to ECMO cannulation, a period 
that still reflects the patient’s condition before the pronounced 
hemodynamic and metabolic instability of the initial post-cannulation 
phase (20, 29). Finally, as a single-center retrospective study, site-
specific practices, including center volume, may have influenced 
observed performance (31, 32). These considerations underscore the 
need to contextualize prognostic score performance and support the 
complementary value of DEOx, particularly for early (<24 h) risk 
stratification. A modified version of the SAVE score, proposed by 
Santore et al. (59) integrates pre-ECMO lactate and bicarbonate values 
to improve predictive accuracy for in-hospital mortality. Although not 
included in our comparative analysis due to limited access to the exact 
scoring algorithm, this approach conceptually supports the inclusion 

TABLE 2  Pre-ECMO cardiovascular conditions.

Characteristics Population n = 157 Mortality = 63 Survival = 94 p-value

Pre-ECMO, n (%) 40 (25.5) 20 (31.7) 20 (21.3) 0.140

Pre-ECMO surgery, n (%) 63 (40.4) 22 (35.5) 41 (43.6) 0.311

Pre-ECMO ECC, n (%) 47 (29.9) 18 (81.8) 29 (78.4) 0.751

Pump time (min), median (IQR) 183.7 (156.4–210.9) 175.2 (125.9–224.5) 188.9 (154.7–223.1) 0.318

Ischaemia time – min, median (IQR) 107.7 (91.9–123.5) 103.3 (75.4–131.3) 110.4 (90.3–130.6) 0.334

Pre-ECMO support, n(%)

Noradrenaline 149 (94.9) 62 (98.4) 87 (92.5) 0.102

Vasopressin 131 (83.4) 55 (87.3) 76 (80.8) 0.287

Adrenaline 49 (31.2) 23 (36.5) 26 (27.7) 0.241

Dobutamine 77 (49.1) 31 (49.2) 46 (48.9) 0.974

Levosimendan 53 (33.8) 21 (33.3) 32 (34.1) 0.927

Milrinone 34 (21.7) 14 (22.2) 20 (21.3) 0.888

No vasopressors 26 (16.6) 12 (19.1) 14 (14.9) 0.493

Pre-ECMO support dose, mean (SD)

Noradrenaline, mcg/kg/min 0.58 (0.52) 0.63 (0.60) 0.54 (0.45) 0.824

Vasopressin, U/h 3.71 (1.59) 3.88 (1.71) 3.59 (1.50) 0.833

Adrenaline, mcg/kg/min 0.28 (0.28) 0.28 (0.31) 0.28 (0.25) 0.489

Dobutamine, mcg/kg/min 8.4 (5.1) 8.7 (5.3) 8.2 (5.1) 0.631

Milrinone, mcg/kg/min 0.42 (0.11) 0.41 (0.07) 0.42 (0.13) 0.386

SD, standard deviation; M, median; IQR, interquartile range; ECMO, extracorporeal membrane oxygenation; ECC, extracorporeal circulation; Min, minutes; *p < 0.05.
Data are reported as mean ± SD or median (IQR), and n (%) for categorical variables.
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of metabolic parameters, such as those used in the DEOx calculation 
as prognostic indicators. Given that DEOx incorporates both lactate 
and base excess, our findings align with the physiological rationale 
underpinning this modified score. Future studies should compare 
DEOx directly against this and other metabolically enriched 
prognostic models to assess incremental predictive value (59).

In our cohort, discrimination for 28-day mortality was modest 
across all four tools—AUROC 0.663 for DEOx (95% CI 0.49–0.77), 
0.611 for APACHE II (95% CI 0.51–0.71), 0.595 for SOFA (95% CI 
0.49–0.69), and 0.625 for SAVE after transforming survival to 
mortality; pairwise comparison with the DeLong test (Bonferroni-
adjusted) indicated overall differences across curves (p < 0.001). 
Operating characteristics diverged: DEOx provided the highest 
specificity (56.3%) and the most favorable LR + 1.48 and LR − 0.63, 
whereas SAVE yielded the highest sensitivity (75.4%) but very low 
specificity (20.2%) and suboptimal likelihood ratios at the predefined 
threshold; SOFA and APACHE II showed intermediate, more 

balanced profiles. These operating points correspond to the values 
reported in Table 1. These findings are consistent with the constructs 
each score captures: DEOx reflects early metabolic debt (lactate and 
base excess), SOFA concurrent organ dysfunction, APACHE II acute 
physiologic derangement plus chronic health status, and SAVE 
modeled survival probability (transformed here to mortality). All 
scores were calculated within the first 24 h post-cannulation, a phase 
of hemodynamic instability that may attenuate discrimination relative 
to later assessments. Clinically, this pattern supports a complementary 
strategy: DEOx as a rule-in aid for high-risk identification, with 
APACHE II/SOFA providing broader physiologic context, and SAVE 
offering sensitivity but limited specificity; thus, DEOx should 
complement rather than replace established scores.

Perez-Garzon et al. (3) reported a difference of 3.37 mL O2/kg 
DEOx between survivors and non-survivors in patients with SARS-
CoV-2 infection, suggesting that higher DEOx values suggest a higher 
risk of mortality, while in our cohort this difference was higher, 

TABLE 3  Additional characteristics related to VA-ECMO use.

Characteristics Population n = 157 Mortality = 63 Survival = 94 p-value

Heparin use, n (%) 93 (59.2) 30 (47.6) 63 (67.1) 0.015*

Maximum heparin dose, mean (SD) 736.5 (310.8) 713.3 (266.2) 747.6 (331.3) 0.297

Minimum heparin dose, mean (SD) 276.3 (97.4) 283.3 (111.7) 273.1 (90.6) 0.669

ECMO flow rate at 4 h, L/min, mean (SD) 3.3 (0.9) 3.3 (0.9) 3.4 (0.8) 0.304

ECMO flow at 24 h L/min, mean (SD) 3.6 (0.9) 3.6 (0.8) 3.5 (1.0) 0.738

ECMO RPM 3,512 (923.7) 3504.6 (918.7) 3517.8 (931.9) 0.465

Transfusions, n (%)

Packaged red blood cells 117 (74.5) 53 (84.1) 64 (68.1) 0.024*

Fresh frozen plasma 84 (53.5) 41 (65.1) 43 (45.7) 0.017*

Platelets 122 (77.7) 50 (79.4) 72 (76.6) 0.683

Cryoprecipitates 50 (31.8) 23 (36.5) 27 (28.7) 0.305

No transfusion 11 (7.1) 2 (3.2) 9 (9.6) 0.124

Transfusion volume mL, mean (SD)

Packaged red blood cells 2597.5 (2395.4) 2673.7 (2085.9) 2534.5 (2639.1) 0.624

Fresh frozen plasma 1839.7 (1187) 1974.1 (1350.4) 1711.6 (1006.6) 0.841

Platelets 1908.2 (1525.1) 2187.3 (1792.1) 1714.3 (1286.2) 0.943

Cryoprecipitates 298.6 (180.7) 277.5 (146.8) 316.6 (206.3) 0.219

SD, standard deviation; ECMO, extracorporeal membrane oxygenation; RPM, revolutions per minute; *p < 0.05.
Data are reported as mean ± SD or median (IQR), and n (%) for categorical variables.

TABLE 4  Factors associated with mortality in VA-ECMO.

Outcome OR (95% CI) p-value aOR (95% CI) p-value

Age 1.03 (0.99–1.06) 0.053* 1.02 (1.01–1.04) 0.044*

Arterial hypertension 2.43 (0.86–6.82) 0.093 2.66 (1.22–5.78) 0.014*

Pre-ECMO haemoglobin 0.88 (0.74–1,03) 0.118 0.91 (0.79–1.03) 0.154

Pre-ECMO noradrenaline 2.48 (0.20–30.6) 0.477 4.9 (0.59–41.57) 0.137

Pre-ECMO Infection 3.35 (1.03–10.87) 0.043* 2.86 (1.20–6.80) 0.018*

DEOx score 1.06 (1.02–1.09) 0.001* 1.04 (1.01–1.06) 0.001*

APACHE II Score 1.08 (0.98–1.18) 0.110 1.08 (1.01–1.16) 0.018*

OR, odds ratio; aOR, adjusted odds ratio; CI, confidence interval; ECMO, extracorporeal membrane oxygenation; APACHE, acute physiology and chronic health disease classification system; 
DEOx, oxygen debt; *p < 0.05.
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TABLE 5  Factors associated with 28-day mortality in VA-ECMO (multivariable logistic regression; predictors entered as standardized z-scores).

Outcome OR (95% CI) p-value aOR (95% CI) p-value

SOFA Score 1.09 (0.97–1.22) 0.136 1.04 (0.90–1.20) 0.563

APACHE II score 1.08 (1.01–1.16) 0.018* 1.04 (0.96–1.13) 0.121

SAVE score 0.90 (0.82–0.99) 0.040* 0.91 (0.82–1.02) 0.125

High DEOx 2.52 (1.28–4.94) 0.007* 2.53 (1.20–5.32) 0.014*

OR, odds ratio; aOR, adjusted odds ratio; CI, confidence interval; SOFA, sequential organ failure assessment; DEOx, oxygen debt; ECMO, extracorporeal membrane oxygenation; APACHE, 
acute physiology and chronic health disease classification system; SAVE, survival after venoarterial ECMO; *p < 0.05.
ORs represent the change in odds of 28-day mortality per 1 SD increase in each continuous predictor.

FIGURE 2

DEOx vs. 28-day mortality in VA-ECMO.

reaching 19.3 mL O2/kg. Similarly, in human cohorts with severe 
COVID-19, DEOx values around 3.78 mL O₂/kg have been reported 
in association with metabolic derangement and worse outcomes (3, 9), 
processes that are central to the pathophysiology of cardiogenic shock 
(33–35) Shoemaker et al. (6) measured DEOx in 100 high-risk post-
surgical patients and found that non-survivors had a cumulative deficit 
of 26.8 ± 32.1 L/m2 compared with survivors (8.0 ± 10.9 L/m2). Beyond 

its role in mortality prediction, DEOx has been proposed as a predictor 
of the need for orotracheal intubation in patients treated with high-
flow nasal cannulas and as a marker of acute intestinal injury in SARS-
CoV-2 (8, 9). The study by Kurniawati et al. (36) found that correction 
of DEOx within the first 24 h after ECMO support initiation was 
positively correlated with survival. These findings underscore that not 
only the magnitude of accumulated DEOx is clinically relevant but also 

TABLE 6  Prediction of mortality by prognostic scores for VA-ECMO.

Score Cut-off point Se Sp LR+ LR− AUROC (95%CI)

APACHE II 12 54.1% 55.2% 1.21 0.83 0.611 (0.51–0.71)

SOFA 6 63.9% 38.6% 1.04 0.93 0.595 (0.49–0.69)

SAVE score <−2 75.4% 20.2% 0.94 1.21 0.375 (0.27–0.47)

DEOx 3.78 64.7% 56.3% 1.48 0.63 0.663 (0.49–0.77)

Lactate >2 75.9% 31.5% 1.11 0.76 0.501 (0.41–0.593)

Base excess
<−2 26.9% 72.6% 0.98 1.01 0.447 (0.36–0.54)

<−5 42.3% 57.5% 0.99 1.01 0.447 (0.36–0.54)

Se, sensitivity; Sp, specificity; LR+, positive likelihood ratio; LR−, negative likelihood ratio; AUROC, area under the receiver operating characteristic curve; CI, confidence interval. DEOx 
metrics were calculated at a pre-specified threshold of 3.78 mL O₂/kg (anchored to human cohorts), whereas thresholds for SOFA, APACHE II, and SAVE were pre-specified from their 
original descriptions/validations (see Methods and Supplementary Table S3).
SAVE AUROC corresponds to survival; for mortality orientation AUROC = 0.625.
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the capacity to rapidly restore efficient aerobic metabolism—
highlighting the importance of minimizing the duration of oxygen debt 
to improve patient outcomes (37); in the present VA-ECMO cohort this 
value is considered only as a sensitivity benchmark, whereas our 
primary analysis relies on threshold-independent discrimination and 
a cohort-optimized Youden cut-off.

The prognostic value of lactate and BE have been recognized as 
marker of severity, clinical progression and mortality in critically ill 
patients (36–39). In cardiogenic shock requiring mechanical 
circulatory support, higher admission lactate and lower 24-h lactate 
clearance were independently associated with increased mortality 
in external cohorts (40). Consistently, higher lactate at 24 h has also 
been linked to worse outcomes (41). By integrating lactate and 
BE into a single construct, DEOx may better reflect the transition 
to anaerobic metabolism and its impact on survival (36). In 
addition, Smuszkiewicz et al. (42) reported that BE <−9.5 mmol/L 
was associated with a four-fold increase in mortality risk (adjusted 
hazard ratio: 4.22; 95% CI: 2.21–8.05; p < 0.0001). Rajsic et al. (43) 
conducted a meta-analysis of 32 studies involving 12,756 adults on 
VA-ECMO, and identified infection (including sepsis and 
ICU-acquired pneumonia) as associated with higher in-hospital 
mortality (p = 0.017). Similarly, Vogel et  al. (44) reported that 
patients with pre-ECMO bacteremia were at greater risk of 
infectious complications (OR: 2.12; 95% CI: 1.92–2.34; p < 0.001), 
contributing to worse clinical outcomes. Fernando et al. (45), in 
their retrospective cohort study of 15,172 patients on VA-ECMO, 
reported age >40 years (OR: 1.26, 95% CI: 1.08–1.47) as an 
independent mortality factor and Hashem et al. (46) showed in a 
meta-analysis of 931 patients that age >65 years predicted increased 
mortality (OR: 4.61, 95% CI: 1.63–13.03, p < 0.01). In a cohort of 
312 patients who were weaned from support, they found that, 
compared to survivors, non-survivors were older (66.6 ± 14.0 vs. 
58.7 ± 13.8 years; p < 0.001) and had a higher prevalence of 
comorbidities, including hypertension (62.5% vs. 40.2%; p = 0.005), 
diabetes mellitus (56.3% vs. 33.6%; p = 0.006), dyslipidaemia (41.7% 
vs. 18.2%, p = 0.003) and chronic kidney disease (14.5% vs. 3.7%; 
p < 0.001) (8). In the logistic regression analysis, systemic arterial 
hypertension was independently associated with in-hospital 
mortality (inverse association; OR: 0.40; 95% CI: 0.211–0.768; 
p < 0.006) (47). Similarly, Vigneshwar et  al. (39) found higher 
in-hospital mortality in VA-ECMO patients with systemic arterial 
hypertension (41.6% vs. 33.4%; p = 0.02).

Regarding transfusions, Deatrick et  al. (38) reported a 3% 
increase in mortality per unit of RBCs transfused in adults on 
ECMO after multivariable adjustment (OR of 1.03, 95% CI: 1.00–
1.06, p = 0.04). Quin et al. (48) documented transfusion of blood 
products as an independent risk factor for mortality (adjusted OR: 
1.09; 95% CI: 1.01–1.18; p = 0.035), and Guimbretière et al. (49) 
observed a mortality > 80% in patients with high transfusion 
requirements (≥19 units of RBCs, ≥5 units of platelets, or ≥12 units 
of FFP). Similarly, Li et al. (50), confirmed in a meta-analysis of 8 
studies (n = 794) that higher total RBC volumes were significantly 
associated with increased mortality (Standardized weighted 
difference 0.62; 95% CI: 1.06–0.18; p = 0.006; I2 = 79.7%; 
p-heterogeneity = 0.001), supporting a restrictive transfusion 
strategy in critically ill patients without an optimal threshold, 
especially VA-ECMO (51, 52). Luo et  al. (53) reported FFP 

transfusion as an independent factor for in-hospital ECMO 
mortality (OR 1.09, 95% CI: 1.01–1.18; p = 0.035). These findings 
are consistent with ours, in which a higher transfusion rate were 
documented in non-survivors, aligning with recommendations 
against prophylactic hemocomponent use (54).

The ELSO® 2022 registry reported a higher incidence of 
thrombotic and hemorrhagic complications in VA-ECMO compared 
with VV-ECMO. The rate of circuit thrombosis was 0.225 per 1,000 h 
of support, whereas the rate of major thrombotic events, such as 
cerebral infarction, was 0.208/1,000 h. Hemorrhagic complications 
were more frequent (0.871/1,000 h), highlighting the need for 
anticoagulation with strict monitoring (43). Lv et al. (55) showed in a 
meta-analysis (7 studies, n = 553) that low-dose unfractionated 
heparin (aPTT 40–60 s) was associated with a significant reduction in 
bleeding—especially gastrointestinal (OR 0.36, 95% CI 0.20–0.64)—
and surgical-site bleeding (OR 0.43, 95% CI 0.20–0.94), without 
increasing thrombotic complications, ECMO withdrawal, or mortality 
(OR 0.81, 95% CI 0.42–1.56). Garzón-Ruiz et al. (56) reported that 
targeting PTT < 60 s was protective, with a 30% reduction in bleeding 
for PTT 50–60 s, 22% for PTT 40–50 s, and 47% for PTT ≤ 40 s, 
without differences in thrombotic events. These observations are 
consistent with our data, which showed improved survival associated 
with heparin use.

We did not derive or validate a composite model integrating 
DEOx with established scores; therefore, any potential gain from 
combining DEOx with APACHE II, SOFA, or SAVE remains to 
be tested in prospective, multicentre cohorts.

Our study has limitations inherent in its retrospective design. 
First, there is a risk of information bias, as the analysis depends on the 
quality of clinical records. However, the institution has a concurrent 
data-collection system staffed by clinicians trained by the research 
group (57). Second, being a single-center study, extrapolation of 
results may be limited, although internal validity is supported by the 
standardized methodology, data cross-verification, multiple analysis 
approaches, and ELSO® Gold-Center certification. Third, DEOx 
estimation depends on the quality and timing of arterial blood gas 
factors we  addressed through predefined exclusion criteria and 
standardized timing. Moreover, we analyzed a single DEOx value 
without incorporating temporal trajectories, which may offer 
additional prognostic insight in future studies. Lastly, while DEOx was 
compared with validated systems such as APACHE II and SOFA, these 
scores also have known limitations in ECMO populations, and the 
lack of an external validation cohort restricts generalizability. Future 
multicenter prospective studies are essential to establish DEOx as a 
validated prognostic tool in VA-ECMO therapy.

Conclusion

The DEOx as a predictor of 28-day mortality in critically ill 
patients with cardiogenic shock indicated for VA-ECMO therapy was 
similar to APACHE II and SAVE, and superior to the SOFA scores. 
The correlation of DEOx with these scales may be useful for making 
early interventions in critically ill patients, with easy clinical 
applicability at the patient’s bedside. Prospective studies are needed to 
evaluate its usefulness for continuous monitoring and decision-
making during VA-ECMO support.
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Glossary

DEOx - Oxygen Debt

ECLSU - Extracorporeal Life Support Unit

ICU - Intensive Care Unit

DO2 - Oxygen Delivery

VO2 - Oxygen Consumption

VA-ECMO - Extracorporeal Venoarterial Membrane Oxygenation

ELSO® - Extracorporeal Life Support Organization

SCAI - Society for Cardiovascular Angiography and Intervention

SOFA - Sequential Organ Failure Assessment

APACHE II - Acute Physiology and Chronic Health Evaluation II

SAVE - Survival After Venoarterial ECMO

VV - Venovenous

VAV - Venoarteriovenous

BMI - Body Mass Index

BE - Base Excess

AUC - Area Under the Curve

IQR - Interquartile Ranges

SD - Standard Deviation

OR - Odds Ratio

AUROC - Area Under Receiver Operating Characteristic

CI - Confidence Interval

RBCs - Red Blood Cells

FFP - Fresh Frozen Plasma
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