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Background: Several studies suggest that C-peptide (CP) is involved in regulating
lipolysis, adipokine release, and other functions in the adipose tissue. On the
other hand, organ-specific adipose tissues, such as the epicardial adipose
tissue (EAT), have been reported as an independent cardiovascular risk factor in
patients on dialysis. This study aimed to evaluate the association between CP,
EAT volume, and coronary artery calcification (CAC) as markers of cardiovascular
risk, on subjects with type 2 diabetes receiving insulin and dialysis.

Methods: This is a retrospective study on 62 patients with chronic kidney
disease (CKD) stage 5 on dialysis awaiting kidney transplantation and referred
for cardiovascular risk stratification at the Emory University Hospital. Computed
tomography (CT) was used to assess CAC and to measure EAT volume.
Demographic and anthropometric data were collected from all patients through
record review.

Results: The mean patient age was 43 + 11 and 55% were women. None of
the serum analytical parameters correlated with CP. Subjects with higher BMI
exhibited higher levels of CP. EAT volume strongly correlated with CP levels,
and it was significantly correlated with CAC. On the contrary, no correlation was
found between CP and CAC.

Conclusion: The significant association between EAT volume and CP suggests a
potential role of CP in the cardiovascular physiopathology of patients with ESKD
on dialysis. Insufficient statistical power was probably the cause of the lack of
association of CP with CAC. Observational prospective studies are required to
characterize CP as a cardiovascular risk marker in patients with ESKD.

KEYWORDS

C-peptide, epicardial adipose tissue, vascular calcification, chronic kidney disease,
dialysis, ESKD

Introduction

The deleterious effects of hyperinsulinemia, both endogenous and exogenous, manifest as
weight gain and several metabolic and neurohumoral alterations leading to cardiorenal
damage (1, 2).
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C-peptide (CP), a peptide composed of 31 amino acids released
by the pancreatic f-cells in the same equimolar ratio as insulin into
the blood, is clinically used in monitoring pancreatic p-cell function
and insulin needs in patients with diabetes (3). Recent studies
suggest that this peptide may exhibit hormonal properties targeting
various tissues (4), although there exists some controversy regarding
its actions in physiological and under diverse pathological
conditions. According to in vitro and in vivo studies, CP reduces
apoptosis in the heart, aorta, kidney and vascular endothelial cells
by downregulating the activation of transcription factor p53 (5, 6).
Under physiological conditions, CP is also reported to play an
antioxidant role by restoring the mitochondrial electron transport
chain activity and thereby reducing the generation of reactive
oxygen species (ROS) (7, 8). Additionally, CP seems to be involved
in the secretion of adipokines and adipose tissue functioning (9, 10).
However, CP oversecretion, as it occurs in pathological states such
as obesity, is linked to the production of pro-inflammatory factors
(IL-6, IL-1B), inhibition of lipolysis, increased secretion of the
pro-inflammatory adipokine leptin (11, 12) and mesenchymal stem-
cell dysfunction (13). In patients with diabetes, opposing effects
from CP have been described for type-1 (T1DM) and type-2
diabetes mellitus (T2DM). On the one hand, higher levels of CP
have been associated with a lower long-term complication rate in
T1DM (14), including less glomerular hypertrophy, hyperfiltration,
and proteinuria (15). On the other hand, CP has been reported to
have pro-inflammatory and pro-atherogenic effects in T2DM
patients by accumulating in the vessel wall (16-18) and inducing
microvascular damage. Clinical research has uncovered that in
obese patients suffering from T2DM, there exists a positive
correlation between CP concentrations and pro-inflammatory
chemokines (C-C chemokine ligand 2 (CCL2)), as well as E-selectin,
among others.

Visceral adipose tissues, including the epicardial adipose tissue
(EAT) located below the visceral pericardium, have been associated
with an increased risk of cardiovascular events both in the general and
dialysis-dependent populations (19-23). In patients with coronary
artery disease, the EAT is inflamed and releases a large quantity of
inflammatory cytokines and pro-atherogenic mediators (24). EAT has
been proposed to promote atherosclerosis via paracrine and autocrine
effects (25-27).

A positive correlation between CP and EAT in patients with
T2DM and obesity have been reported by prior studies (28, 29),
suggesting the potential involvement of CP in systemic inflammation
and cardiovascular events. We hypothesized that increased CP levels
in patients at high cardiovascular risk, such as those with end-stage
chronic kidney disease (ESKD), are associated with EAT volume and
coronary artery calcium (CAC), two known risk markers. If this were
demonstrated, CP may become a useful tool to gauge the undesirable
side effects of long-term insulin therapy.

Patients with ESKD undergoing dialysis represent a unique
clinical population in terms of insulin and CP metabolism. Given that
their renal function is markedly diminished, degradation and
clearance of insulin and CP are considerably decreased, leading to
their accumulation regardless of endogenous pancreatic secretion
(30). Consequently, the measurement and interpretation of CP in this
group require specific consideration, as standard reference ranges may
differ from the general population. Furthermore, most of the patients
with T2DM on dialysis receive exogenous insulin, which can further
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increase circulating insulin and CP levels, contributing to visceral
adiposity (EAT) and microvascular damage (CAC).

Our study aims to evaluate the relationship between CP, EAT and
CAC in patients with T2DM on dialysis to further understand the
potential involvement of CP in the common cardiovascular
complications occurring in this population.

Methods
Study population

This is a cross-sectional study on 62 patients with ESKD
undergoing renal replacement therapy (RRT) who were awaiting
kidney transplantation. All patients were referred for cardiovascular
risk stratification at Emory University Hospital (Atlanta, GA, USA),
between December 2009 and October 2012. The cohort included 43
patients receiving hemodialysis and 19 receiving peritoneal dialysis,
all of them with a previous diagnosis of T2DM and on treatment
with insulin.

This study received approval from the Emory University
Institutional Review Board (approval number: 23/424) and was
performed in accordance with the Declaration of Helsinki as revised
in 2013. Adult participant consent was waived given the retrospective
nature of the study. The study protocol has been already detailed in a
prior publication (19), and it is briefly summarized here.

Clinical data collection

Demographic, anthropometric and clinical data were collected from
the electronic medical records by LDM (further curated by OJO, AL and
IV). Patients who smoked regularly were classified as current smokers.
Hypertension was defined as a blood pressure >140/90 mmHg, or as the
current intake of antihypertensive medications. History of cardiovascular
disease included known coronary artery disease, heart failure, stroke, and
peripheral vascular disease.

Analytical data collection

Blood samples to measure glucose, lipid and mineral metabolism,
as well as renal function markers, were collected after 12 h of fasting
and a 15-min resting period, and stored at a temperature between 4°C
and 15°C. The samples were later centrifuged in cold and measured
using standard assays at the Emory University Hospital. CP levels were
determined on an advanced automated immunoassay analyzer
(ADVIA Centaur, Siemens, Forchheim, Germany: reference range
0.05-30 ng/mL; CV ~ 6%).

Imaging protocol

Cardiovascular risk assessment was performed using either
positron emission tomography with computer tomography
(PET-CT; Siemens Biograph, 40-slice CT, Siemens, Forchheim,
Germany), or single photon emission tomography with CT
(SPECT-CT; GE Discovery NM 530, GE Medical Systems,
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Milwaukee, WI, USA). Patients were instructed to fast and avoid
caffeinated beverages or theophylline-containing medications for a
minimum of 12 h prior to imaging. Initial scout and transmission
CT scans were obtained for orientation and attenuation correction
with patients breathing shallowly. A further non-contrast CT scan
was obtained during breath-hold for the evaluation of vascular
calcification and EAT volume analyses (as described below), using
prospective ECG triggering at 3-mm slice thickness to minimize
radiation exposure.

Laboratory and imaging assessments were carried out on the same
day. Measurements of vascular calcifications and EAT volume were
performed by experienced investigators (CK, PR) blinded to clinical
and analytical variables.

Coronary artery calcium scoring

Each area of calcification in the coronary arteries was scored using
a semiautomatic software available on the workstation (Leonardo,
Siemens Medical Solutions, Forchheim, Germany). CAC was
considered present if a minimum of three contiguous pixels with an
attenuation of >130 Hounsfield Units (HU) were detected along the
course of a coronary artery (Figure 1, arrows). The Agatston score was
used to quantify coronary artery calcium (CAC).

Epicardial adipose tissue measurement

EAT was identified as a hypodense region surrounding the
myocardium and bounded by the pericardium on CT, using the
Volume Software (Leonardo workstation, Siemens, Forchheim,
Germany). The pericardium was manually traced from the mid-left
atrium to the apex of the left ventricle, using a 10-mm thickness. By
applying an attenuation threshold between-250 and-30 HU, many
structures such as the myocardium, coronary arteries, coronary
calcium, aorta, and blood pool were effectively excluded, highlighting
only the EAT (Figure 1, blue area). Individual EAT volumes at each

FIGURE 1

Cardiac computer tomography imaging. The arrows show calcium
deposits in the coronary arteries. Blue-colored areas represent the
epicardial adipose tissue.
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level were summed to calculate the total EAT volume. The estimated
total radiation dose for the chest CT was 2.5 mSv.

Statistical analysis

Normally distributed continuous variables were reported as mean
+ standard deviation (SD). Categorical parameters were presented as
absolute or relative frequencies (percentages). The Students t-test was
used to compare normally distributed parameters. Categorical data
were compared using the Chi-square test. Spearman’s bivariate
correlations were conducted to test the strength of the association
between variables.

Statistical analyses (VB, LDM, ACR) were performed using the
statistical software package SPSS version 19 (SPSS Inc., IBM). A
two-tailed p-value <0.05 was considered statistically significant.

Results
Demographics and clinical characteristics

The demographic, clinical, anthropometric, and analytical
characteristics of the patients enrolled in this study are summarized
in Table 1. Mean age of patients was 43 + 11 years, with a slight female
predominance (55%). Over half of the participants (52%, n = 32) were
identified as African American, reflecting the demographic diversity
of the cohort. Diabetes mellitus was the leading cause of CKD, present
in 93% (n = 58) of patients, while hypertension accounted for only 3%
(n = 2). Other etiologies represented the remaining 3% of cases. The
majority of patients (69%, n = 43) were undergoing hemodialysis,
whereas 31% (1 = 19) were on peritoneal dialysis, with a mean dialysis
duration of 24 months. This distribution highlights the predominance
of diabetes-related CKD in this population and the varied dialysis
modalities employed.

CP levels and correlations

No significant difference in CP levels was observed between
hemodialysis and peritoneal dialysis patients, nor correlation with any
demographic or analytical parameters. However, a notable linear
relationship emerged between body mass index (BMI) and CP levels.
Patients with a higher BMI (mean 29 + 7 kg/m?) exhibited elevated
serum CP concentrations (mean 4 + 5 ng/mL), with a statistically
significant correlation (r = 0.30, p = 0.03). This suggests that adiposity
may influence CP metabolism in CKD patients, independent of
dialysis modality.

EAT volume and CAC

The average EAT volume was 96 + 67 mL, while CAC scores were
highly variable (369 + 997). A strong positive association was observed
between serum CP levels and EAT volume (r=0.51, p=0.03),
reinforcing the potential role of metabolic factors in ectopic fat deposition
(Figure 2). Stratification of EAT volume by CP quartiles showed a
progressive increase, further underscoring this relationship (Figure 3).
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TABLE 1 Demographic, clinical, and analytical characteristics of the
patients.

Variable Mean or SD | p-value
percentage *(vs CP)
% (vs
EAT)
Clinical characteristics
Age (years) 43.4 11 >0.05%
Gender:women (%) 55 - >0.05*
Smoking habit (%) 59 - >0.05%*
Body mass index (kg/m2) 29 7 <0.03*
Systolic blood pressure (mmHg) 149 26 >0.05%
Diastolic blood pressure (mmHg) 82 14 >0.05%
Dialysis Vintage (months) 24 24 >0.05%
Biochemical results
Hemoglobin (g/dL) 12 1 >0.05%
Hematocrit (%) 36 4 >0.05%
Fasting glucose (mg/dL) 183 96 >0.05%
Creatinine (mg/dL) 7 3 >0.05%
Total cholesterol (mg/dL) 163 34 >0.05%
HDL-C (mg/dL) 42 13 >0.05%
LDL-C (mg/dL) 95 37 >0.05%
Triglycerides (mg/dL) 151 110 >0.05%
Calcium (mg/dL) 9 1 >0.05%
Phosphate (mg/dL) 5 1 >0.05%
Ca x P product 47 13 >0.05%
Parathyroid hormone (pg/mL) 278 164 >0.05%
Alkaline phosphatase (mg/dL) 124 103 >0.05%
Albumin (mg/dL) 3 0.4 >0.05%
Uric acid (mg/dL) 5 1 >0.05%
CP (ng/mL) 4 5 >0.05%
Imaging
Epicardial adipose tissue (mL) 96 67 <0.03%*
Coronary artery calcium (HU) 369 997 <0.01%%*

Continuous variables were expressed as mean and standard deviation. Categorical variables were
expressed as percentages (%). HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; CP, C-peptide; EAT, epicardial adipose tissue; CAC, Coronary artery
calcium. Bold means statistically significant. Single asterisk * means 'Given variable vs CP
(C-Peptide). Double asterisk ** means 'Given variable vs EAT (Epicardial Adipose Tissue).

Additionally, EAT volume significantly correlated with CAC (p < 0.01),
suggesting a link between pericardial fat and vascular calcification.

CP and CAC relationship

Despite the association between EAT and CAC, no direct correlation
was found between serum CP levels and CAC scores. This indicates that,
although CP may contribute to EAT accumulation, its influence on
coronary calcification may be indirect or mediated by other metabolic
pathways. These results highlight the complex interplay between adiposity,
metabolic markers, and cardiovascular risk among patients with CKD.

Frontiers in Medicine

10.3389/fmed.2025.1650859

Discussion

Our main finding was a significant correlation between CP and
EAT volume in patients with T2DM receiving RRT. Additionally, as
shown previously, EAT and CAC were strongly correlated. However,
no association was found between CP serum level and CAC.

As expected due to decreased renal clearance, the mean circulating
CP value in our sample (4 + 5 ng/mL) was higher than the range of
values previously reported in healthy people (0.36-3.61 ng/mL) (31)
and in patients with T2DM at milder stages of CKD (~0.6-3 ng/mL)
(32). The CP concentrations in our study were also within the range
priorly reported by Guthoff et al. (33). In a population of 107 patients
with ESKD awaiting kidney transplantation (4.47-8.28 ng/mL), who
showed values significantly higher than a gender, age and
BMI-matched cohort of healthy controls.

CP is sometimes used as a marker of insulin reserve to evaluate
insulin needs in T2DM patients. Although insulin is routinely
indicated in many dialysis units for glycemic control in patients with
diabetes, CP is not included as part of their regular monitoring (33,
34). Despite its well-known hypoglycemic action, insulin has definite
lipogenic effects that may be counterproductive. Besides, management
of this drug in patients on dialysis is particularly challenging due to
the diverse alterations in glucose and insulin metabolism that go
beyond the reduced insulin clearance by the diseased kidneys (35).
These alterations include reduced insulin secretion and sensitivity, the
hypoglycemic effect of dialysis, decline in renal gluconeogenesis and
deficient catecholamine release (36-38). Thus, CP monitoring may
help gauge insulin needs and dosing in patients affected by ESKD.

Insulin promotes lipogenesis and suppresses hepatic gluconeogenesis.
This occurs via the increase of glucose uptake in the adipocyte and the
activation of lipogenic and glycolytic enzymes via covalent modification
(39). Paradoxically, the positive effect of insulin on lipid production in the
liver is maintained under conditions of insulin resistance, unlike its
defective action on gluconeogenesis. Hence, the deleterious effects of
hyperinsulinemia are related to increased cardiovascular risk, insulin
resistance, weight gain, and an increase in visceral adipose tissue (33, 34).

Thus, insulin dosage adjustments should be made to improve the
undesirable actions of this hormone. Dose reduction could be obtained
with the introduction of new hypoglycemic drugs, such as glucagon-like
peptide-1 receptor agonists (GLP1-RA) or dual GLP-1 and GIP (glucose-
dependent insulinotropic polypeptide) receptor agonists. Not only do these
drugs control glycemia in T2DM, but they also slow kidney dysfunction
progression in patients with CKD not on dialysis (40-45), besides inducing
significant weight loss without provoking episodes of hypoglycemia (46).
Additionally, elimination of GLP-1RA is not dependent on renal function,
representing an attractive option in dialysis (47).

As mentioned earlier, CP is a widely accepted biomarker of both
[-cell function and insulin resistance (48). Insulin resistance, measured as
the product of serum insulin by glucose level, has proven to be an adverse
prognostic indicator of cardiovascular mortality (49). However, there is
some evidence that CP levels are a better predictor of cardiovascular
disease and overall mortality than serum insulin levels, while also
supporting the increased mortality risk associated with an insulin-
resistant state (50). This could also be due to CP having certain influence
on the atherogenic process through the accumulation of oxidized LDL
and the proliferation of aortic smooth muscle cells (16, 18, 51).

The role of CP in diabetic vascular complications is contradictory; as
the progression of cardiovascular disease may be accelerated by insulin
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FIGURE 2
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resistance mechanisms or the pathological functions of CP previously
mentioned in the introduction. The statistically significant association
found between this peptide and EAT aligns with the results found by
Erman et al. (52). In people with metabolic syndrome, and may suggest a
potential involvement of CP in the cardiovascular complications frequently
present in patients with ESKD. Given that our study was a cross-sectional
analysis, we were unable to determine whether CP is associated with
further cardiovascular events or overall mortality in this population.
Prospective studies with long-term follow-up are required to clarify
whether CP is a predictor for cardiovascular endpoints in dialysis-
dependent populations. EAT has been associated with cardiovascular risk
and mortality in patients receiving dialysis (21, 23, 53, 54). In our prior
publication, we reported that EAT was an independent factor for the
prediction of inducible myocardial perfusion defects and higher CAC
scores in ESKD (19). The physiological role of EAT is multifaceted,
involving mechanical, metabolic, thermogenic, and endocrine/paracrine
functions (55). Direct interaction between the inflamed EAT and the
coronary arteries is believed to promote the development of atherosclerosis
via the action of adipocytokines with pro-inflammatory properties. This
process could be augmented by CP, which stimulates the release of
chemokines from the adipocytes in EAT (12).

The CAC scores showed a highly skewed distribution with large
variability (369 £997). Given our modest sample size, outlier
exclusion was not applied. Unlike previous authors who applied
logarithmic transformation of Agatston scores (56, 57), we opted to
use a non-parametric statistical test (Spearman’s correlation) to assess
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the strength of the relationship between CAC and CP, as this test does
not assume normality and is appropriate for skewed data. Nonetheless,
the lack of correlation between CP levels and the extent of CAC may
have been due to a power issue or the selection of relatively healthy
and younger subjects for kidney transplantation.

Our study presents a few limitations besides its small size: it was
a cross-sectional analysis; several patients were excluded due to
missing serum CP values; the lack of regression analyses and
adjustment for potential confounders (age, BMI, sex, diabetes
duration, dialysis vintage) limits the independence of the associations
found; no logarithmic transformation or sensitivity analysis was
performed on the highly variable CAC scores; finally, no information
on insulin type and dosage was obtained for most patients.

Conclusion

In patients with T2DM on dialysis, a significant association
between CP levels and EAT volume was found, highlighting a
potential role of CP in the increased cardiometabolic risk characteristic
of this population. Although a strong correlation between EAT and
CAC was shown, no association between CAC and CP was reported.
Longstanding observational prospective studies on larger samples and
broader dialysis populations are required to assess the specific
involvement of CP as a cardiovascular risk marker in patients with
ESKD and as a predictor of CAC changes over time.
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FIGURE 3
Box plot of EAT volume on cardiac CT and CP quartiles. Bars represent the minimum and maximum ranges of EAT volume values. The bottom and
upper box limits encompass the 25-75% interquartile ranges. The black crossbars within the boxes represent median values. EAT volume tends to
increase from lower to higher C-peptide quartiles, with the highest median values observed in quartile 4.
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