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Background: Postoperative atrial fibrillation (POAF) is a frequent complication
following coronary artery bypass grafting (CABG), significantly impacting patient
prognosis and healthcare costs. This study aimed to develop an integrated
predictive model for POAF risk stratification to optimize clinical management.

Methods: We retrospectively analyzed 2,528 patients undergoing 21-gene
pharmacogenetic testing for cardiovascular therapy. After stringent data
curation, 576 CABG patients were enrolled and randomly allocated into
training and test sets. Eight machine learning algorithms were trained using
clinical variables and genetic variants. An independent validation set was
performed on 61 patients from a subsequent 1,075-patient cohort of 21-gene
pharmacogenetic testing.

Results: Eight machine learning algorithms were trained, tested, and validated,
with the Gaussian Naive Bayes (GNB) model demonstrating robust performance
(Accuracy: 0.81 in test set and 0.79 in independent validation set). SHapley
Additive exPlanations analysis identified four key predictors: multivessel CABG
(CABGVx > 3), history of heart failure (HFHx), rs5219 (KCNJ11), and prolonged
bypass duration (CABGTime). To facilitate clinical translation, we developed
an accessible web-based tool (https://www.xingyeyard.site/cabg/) for real-time
POAF risk stratification.

Conclusion:  This  GNB-based  classifier  synergistically  integrates
Pharmacogenomic and clinical predictors to predict POAF risk following
CABG. The combination of rigorous validation and user-centered design
positions this model as a valuable clinical decision-support tool for optimizing
personalized perioperative care.

KEYWORDS

coronary artery bypass grafting, postoperative atrial fibrillation, machine learning,
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Developing an integrated predictive model for POAF risk stratification to optimize clinical management
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Background

(POAF) is a common
complication following heart surgery, with an incidence of

after

Postoperative atrial fibrillation
approximately 20% coronary artery bypass
(CABG) (1). It typically occurs 2-4 days postoperatively, is
often asymptomatic, and may resolve spontaneously. However,

grafting

despite this, the complication still has a significant impact on
the patient’s quality of life and can even be life-threatening. It
also increases hospital stay and medical costs. Currently, the
mechanisms underlying POAF are controversial, and effective
preventive strategies are lacking. Therefore, predicting and treating
POAF has become a hot topic in cardiovascular research.

With the advancement of pharmacogenomics research, there
is a growing recognition of the importance of genetic factors
in cardiovascular diseases and their pharmacological treatment.
Numerous studies have shown that polymorphisms in specific
genes not only affect the efficacy of cardiovascular drugs but
may also be closely associated with the occurrence of POAF after
CABG. For example, genetic polymorphisms in platelet membrane
glycoprotein IIb/IIIa complex, cytochrome P450 (CYP) enzyme
system, and others may influence the efficacy of antiplatelet drugs
such as aspirin and clopidogrel, thereby affecting the risk of POAF
after CABG (2). Xue et al. suggested that polymorphisms in the
apolipoprotein E (ApoE) gene are associated with POAF and
cardiac injury following CABG (3).

Additionally, eight machine learning (ML) models related
to the prediction of POAF have been developed. Tan et al.
combined gene expression information from 139 CABG patients
and used LASSO regression to build a POAF prediction model
(4). Although the sample size was relatively small, the study
suggested that combining genetic and clinical information could
be a promising approach for POAF prediction. ML has been
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Frontiers in Medicine

applied across various medical fields, particularly in cardiovascular
medicine, for tasks such as diagnosis, treatment optimization,
and prognosis prediction. The research data encompasses diverse
medical information, extending beyond textual data (5). The
algorithms used often outperform traditional statistical methods.
Some studies suggest that ML is more effective than standalone
clinical or imaging methods in predicting cardiovascular mortality
or all-cause mortality (6).

In summary, regarding the prediction of the occurrence of
POAF after CABG, most of the literature we reviewed had
small sample sizes and single models. In particular, studies
either considered only clinical factors or only genetic factors,
and we have not come across any research that integrates both
analyses. Therefore, in this study, we utilized eight ML-based
algorithms and incorporated a relatively large sample size to
combine cardiovascular gene variant loci with clinical data in
order to construct a prediction model for POAF after CABG.
Additionally, we developed a corresponding online prediction
software to provide insights for potential complications in these
patients and facilitate early decision-making interventions.

Materials and methods

Study subjects

The study cohort comprised 576 patients who underwent
21-gene cardiovascular pharmacogenomic testing at Zhengzhou
Seventh People’s Hospital (07/2022-04/2024). Inclusion criteria:
East Asian adults receiving first-time CABG. Exclusion criteria: age
<18 or >100 years, non-CABG cases, repeat CABG, cancer, or
cardiac structural abnormalities. These formed the training-test set
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for ML development. An independent validation set included 61
CABG patients (05-12/2024).

POAF diagnosis criteria

Post-cardiac surgery and before discharge, atrial fibrillation
(AF) or atrial flutter (AFL) changes are identified in one or more
electrocardiogram (ECG) leads, lasting at least 30 s. If the ECG
recording duration is less than 30 s but shows continuous AF or
AFL changes throughout the entire recording period, POAF can
still be diagnosed.

Clinical data collection

The following patient data were collected: Sex, Age, Height,
Weight, Blood type, Smoking, Drinking, Diabetes, Hypertension,
history of kidney disease (RenalHx), history of liver disease
(LiverHx), history of lung disease (LungHx), history of stroke
(StrokeHx), history of valvular disease (ValveHx), history of
myocardial infarction (MIHx), history of angina pectoris (APHXx),
history of coronary artery disease (CHDHXx), history of heart
failure (HFHx), history of AF (AFHXx), history of thyroid disease
(ThyroidHx), history of percutaneous coronary intervention
(PCIHx), medication history (AnticoagulantHx, LipidMedHx,
AntiDiabeticHx, and BPMedHx), multivessel CABG (CABGVx),
and prolonged bypass duration (CABGTime).

Cardiovascular and cerebrovascular
personalized medication 21-gene testing

A 5 mL venous blood sample was collected from each
patient and subjected to multiple PCR reactions. For detailed
operational steps, please refer to Supplementary Method 1.
Afterward, gene genotyping data was obtained using a time-
of-flight mass spectrometer. The pharmacogenomic profiling
encompassed twenty-one clinically actionable loci. More detailed
information about these genes and variant sites is provided in
Supplementary Table 1.

Model construction and evaluation

After data cleaning, eight ML models were constructed,
including Tree Models: Random Forest (RF) and XGBoost
(XGB), Deep Learning Models: Multilayer Perceptron (MLP)
and TabTransformer (TabTF), Frequency Model: Gaussian Naive
Bayes (GNB), Regression Model: Logistic Regression (LR),
Kernel Model: Support Vector Machine (SVM), and Distance
Voting Model: K-Nearest Neighbors (KNN). For more details,
please refer to Data Cleaning, Clinical Data Cleaning and
Feature Dimensionality Reduction, Variant Data Cleaning and
Feature Dimensionality Reduction, and Model Construction and
Evaluation in Supplementary Method 2.

In this study, the training-test set was randomly split into
training and test sets at a ratio of 0.25. Given that the target
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variable exhibits class imbalance, we performed oversampling of
the minority class in the training set using the SMOTE algorithm.
For non-tree models, we use the StandardScaler function to
standardize the feature variable values. All model construction
and hyperparameter optimization were performed using the
GridSearchCV tuning function and a custom module, with 10-
fold cross-validation. For the GridSearchCV function from the
sklearn package, the evaluation metric parameter (scoring) was set
to “accuracy”.

Notably, to enhance the representation capability for structured
tabular data, this study incorporated the relatively recent TabTF
model. The hyperparameter optimization process was customized
into a dedicated code segment (detailed code is provided in
Supplementary Code 1), with the accuracy metric of 10-fold cross-
validation designated as the optimization objective. Considering
hardware constraints, we implemented performance optimization
via the randomized parameter sampler (ParameterSampler), setting
the primary iteration count parameter to 30. In total, the critical
optimization parameters comprised 10 variables spanning 256
combinatorial configurations, including: Embedding dimensions
(8, 16), Attention head counts (2, 4), Transformer encoder
depths (1, 2), Feedforward network hidden dimensions (64,
128), Learning rates (0.001, le-4), Batch sizes (16, 32), Dropout
rates (0.1, 0.2), Weight decay coeflicients (le-4, 1le-5), Training
epochs (50), Random seed (377), with an early stopping patience
parameter set to 5.

The final generalization ability was verified using an
independent validation set. The optimal model selection was
primarily based on Accuracy and the area under the ROC curve
(AUCQ) of the test set.

The explanation method for the optimal model was based on
the SHAP package. The best feature contributions of the model
were determined using waterfall plots, force plots, decision plots,
bar plots, and heatmaps following SHAP values. Based on the
overall framework outlined above, we developed a program that can
predict the risk of POAF occurrence in patients undergoing CABG
surgery, which is accessible online via PC or mobile devices.

Statistical

Statistical analysis was performed using R. Non-normally
distributed continuous variables were reported as median (Q1-Q3)
and compared using Mann-Whitney U test. Categorical variables
were presented as counts and analyzed by x? or Fisher’s exact test.
Clinical variables with P < 0.05 were considered significant. For
genetic variant screening in predictive modeling, we used P < 0.10
threshold to include more polymorphic loci while maintaining
model performance (7, 8), as individual feature-target associations
showed limited impact on overall predictive accuracy.

Results

General characteristics of patients

The final dataset comprised 576 CABG patients (478 SR,
98 AF). Pre-imputation missing data (max = 30) are shown in
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FIGURE 1

The final distribution of missing data before imputation of 53 feature variables for 576 patients. (A) The bar chart displaying the number of missing
values. The horizontal axis represents feature variables, and the vertical axis represents the number of missing values. (B) The heatmap displaying the
missing values. Red cells represent the amount of missing data, corresponding to the scale values on the right vertical axis, while the horizontal axis

represents feature variables.

Figures 1A, B. After cleaning, we retained 26 clinical variables
(Supplementary Table 2) and 25 genetic variants (Supplementary
Tables 3, 4), excluding three biased SNPs (rs10306114, rs1799853,
rs5918). HWE testing (P > 0.05) was performed only on non-
biased variants. The pre-imputation genotype frequency data for
all variants are provided in Supplementary Table 5.

After feature reduction, seven clinical characteristic variables
were retained, including Age, RenalHx, ValveHx, HFHx, AFHx,
CABGVx, and CABGTime, all of which showed statistical
differences (P < 0.05). Four genetic variants (rs4961, rs5219,
rs776746, rs4713518) showed
associations (P < 0.10) and exhibited minor allele frequencies
ranging from 0.29 to 0.50, meeting the threshold for common
polymorphisms in the study population. In addition, since the
number of variables screened by the x? or non-parametric tests
was exactly suitable for constructing learning models, we did not

and statistically  significant

proceed with further screening using Lasso regression.
Consequently, these 11 features were selected as predictive
variables for ML model development. Their distributions are
visualized in Figure 2, with Age and CABGTime being the sole
continuous variables. As demonstrated in cell (2, 8) of the figure,
Age exhibited negligible linear correlations with POAF across all
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cohort groups, as evidenced by Pearson’s r values of —0.074 in the
AF cohort (positive cases), —0.210 in the SR cohort (negative cases),
and —0.058 in the combined group (AF + SR).

We assessed multicollinearity between continuous variables
(Age and CABGTime) using VIF analysis, finding VIF = 1.00
for both (VIF < 5 indicates acceptable collinearity). Categorical
variables weren’t evaluated due to: (1) satisfactory model
performance suggesting minimal collinearity impact; (2) VIFs
linear relationship assumption; and (3) ML algorithms’ inherent
handling of categorical variable interactions.

Prediction model construction

The dataset used for model learning consisted of 478 SR and
98 AF patients, respectively, indicating a biased target variable.
After SMOTE oversampling, the training set contained 353 SR
and 353 AF cases. The eight models were built using the balanced
training set. The hyperparameter configurations for each model are
provided in Supplementary Table 6, and their optimal parameter
combinations are listed in Supplementary Table 7.
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Genotype-phenotype association matrix of genetic variants and clinical factors related to post-operative atrial fibrillation (POAF). The matrix displays
pairwise associations between features. Each row and column represent a variable, with diagonal cells showing distribution patterns. Off-diagonal
cells visualize relationships between variable pairs using distribution plots, box plots, scatter plots, and heat maps. Blue and red color coding
distinguishes between case/control groups or “Yes/No" status. For instance, in matrix cell (1, 1), red indicates POAF patients with "Yes" status while
blue represents "No” status POAF patients. Clinical variables include age and medical history factors (RenalHx, renal disease history; ValveHx, valve
disease history; HFHXx, heart failure history; AFHXx, atrial fibrillation history; CABGVx, coronary artery bypass graft history; CABGTime, time-related
CABG parameters). Genetic markers analyzed include rs4961, rs5219, rs776746, and rs4713518. Some cells annotate the Pearson correlation
coefficients between two continuous variables. For instance, the three lines of text in matrix cell (2, 8) represent the correlation coefficients of Age
with POAF across three scenarios: AF/positive cases, SR/negative cases, and AF + SR cases. Asterisks (*) denote statistically significant correlations.

Evaluation of prediction models

Supplementary Table 8 presents the accuracy and AUC
values for all eight models on the test set, along with the
optimal performance metrics on the independent validation set.
Among these, the GNB model exhibited the strongest predictive
performance, achieving an accuracy of 0.81 and an AUC of 0.81
(95% CI: 0.70-0.91) in the test set. While the recently emerged deep
learning algorithm TabTF demonstrated improved performance
over MLP with an accuracy of 0.76 and an AUC of 0.79 (95% CI:
0.69-0.88), it nonetheless remained inferior to GNB. In contrast,
XGB-frequently recognized for its remarkable performance in
Kaggle competitions—achieved only 0.71 accuracy and an AUC of
0.68 (95% CI: 0.54-0.77). This performance gap may be attributable
to the limited sample size. Consequently, it was selected as the
optimal model for further validation on the independent validation
set and for SHAP-based feature interpretation. The GNB model
demonstrated robust generalization capability in the independent
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validation set, maintaining an accuracy of 0.79 and an AUC of 0.76
(95% CI: 0.62-0.89). The receiver operating characteristic (ROC)
curves for all eight models are illustrated in Figure 3, providing a
comparative assessment of their binary classification performance.

Interpretation of the optimal prediction
model features

Our SHAP analysis revealed strong consistency in feature
importance rankings between the test set and independent
validation set. The SHAP bar plot (Figures 4A, B) demonstrated
that the top four predictive features maintained stable contribution
weights: CABGVx > 3 (Test: 0.14, Independent: 0.14), HFHx
(Test: 0.1, Independent: 0.11), GAGGrs5219 (Test: 0.07,
Independent: 0.07), and CABGTime (Test: 0.04, Independent:
0.05).
(Figures 4C, D) visualized individual patient-level explanations,

Complementing these findings, the SHAP heatmap
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FIGURE 3

In the test set, the Receiver Operating Characteristic (ROC) curves for the results of eight machine learning algorithms are shown. The horizontal
axis plots the False Positive Rate (FPR), while the vertical axis plots the True Positive Rate (TPR). An Area Under the Curve (AUC) of 0.5 indicates
random classification performance, while values close to 1 indicate higher accuracy. An ROC curve that approaches the top-left corner suggests
that the model achieves a good balance between high true positive rate and low false positive rate, indicating effective discrimination between

positive and negative classes.

where: Color intensity represents the magnitude of feature impact,
Hue indicates directional effect (positive/negative prediction
influence), the same four features consistently showed the
strongest predictive weights.

The remarkable agreement between the test and independent
validation sets in bar plot and heatmap interpretation methods
strongly supports the model’s robust generalization capability. This
consistency across different explanation visualizations and datasets
enhances our confidence in the model’s clinical applicability.

In addition to the global interpretability visualizations, our
online platform-MedicalAlStarry- provides patient-specific local
interpretation diagrams (including waterfall plots, force plots, and
decision plots) for each POAF case. It is currently accessible via PC
or mobile devices at the website: https://www.xingyeyard.site/cabg/
(Figure 5).

Discussion

In this study, based on a cohort of CABG patients who
underwent routine pharmacogenetic testing upon admission in
our center, we utilized the data from existing clinical records and
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genetics test results to construct eight ML models, in which the
optimal GNB robustly predicts the probability of POAF occurrence.
The subsequent SHAP analysis results revealed the top four
contributing feature variables: CABGVx > 3, HFHx, GAGGrs5219,
and CABGTime. Ultimately, an online risk prediction program for
POATF after CABG surgery was developed. This program integrates
both genetic and clinical features, requiring only 11 input variables
to predict the risk of POAF occurrence in individual or multiple
CABG patients, providing a personalized risk prediction interface
for patients. The detailed research procedure is illustrated in
Figure 6.

It has been reported that after the age of 60, there is an increase
in elastic and collagen tissues in the conduction system, along
with fat accumulation around the sinoatrial node, leading to a
significant reduction in the total number of pacemaker cells in
the sinoatrial node. This may increase the susceptibility of elderly
individuals to POAF (9). Renal dysfunction is a known risk factor
for POAF after CABG (10). Rheumatic aortic valve disease and
degenerative aortic valve lesions are independent risk factors for
POAF development. The prolonged course of these conditions may
increase the release of reactive oxygen species, which further induce
myocardial electrical remodeling, manifesting as a shortening of

frontiersin.org


https://doi.org/10.3389/fmed.2025.1650700
https://www.xingyeyard.site/cabg/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Hua et al. 10.3389/fmed.2025.1650700
A B
The shap bar plot of test set The shap bar plot of independent validation set
CABGVx>3 +0.14 CABGVX=>3 +0.14
HFHx HFHx
GAGGr 5219 GAGGr 5219
CABGT ime CABGT ime
AFHx Age
Age TTrs776746
ValveHx ValveHx
TTrs776746 RenalHx
RenalHx AFHx
GAGGrs4713518 G6AGGr s4713518
GTTTrs4961 6TTTrs4961
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
The mean of the absolute value of SHAP The mean of the absolute value of SHAP
¢ The shap heatmap of test set P D The shap heatmap of independent validation set .50
fix) = fix) ~
5 H]
CABGVx >3 Ef CABGVx>3 E
HFHx ° HFHx 2
3 s
GAGGrs5219 3 GAGGrs5219 3
GABGT ime 5 CABGT ime 5
AFHx “g Age b | *g
Age 2 mramerac il M £
ValveHx ) ValveHx ]
TTrs776746 E RenalHx [l | | H
RenalHx I I S AFHx S
% &
6AGGr s4713518 GAGGrs4713518
6TTTrs4961 GTTTrs4961
' ' ' ' ' =0.2175 | ' ' ' ' ' | -0.2043
0 25 50 75 100 125 0 10 20 30 40 50 60
Observation instance Observation instance
FIGURE 4
SHAP visualizations for the optimal GNB model. (A,B) Bar plots showing mean absolute SHAP values (x-axis) for test (n = 144) and independent
validation (n = 61) sets, where taller bars indicate greater feature importance. (C,D) Heatmaps displaying individual predictions (top curves) and
feature impacts (bottom vertical axis) per sample (horizontal axis). Color intensity reflects effect magnitude (blue = positive, red = negative), with the
gradient bar quantifying SHAP values.

the action potential effective refractory period, thereby triggering
POAF (11).

In this study, a history of AF and heart failure were also
found to be important variables in predicting the development
of POAF. Previous studies have reported that AF is associated
with pathological abnormalities in the left atrium, including
atrial enlargement, fibrosis, impaired calcium handling, electrical
remodeling, and decreased function, while heart failure is
associated with myocardial damage, excessive cardiac load,
arrhythmias, and other factors. Therefore, AF and heart failure
can influence each other, leading to worsening of the condition
(12). In addition, the occurrence of POAF after CABG is the result
of multiple factors. Preoperative cardiac condition, postoperative
cardiac function, and certain factors during the surgery may all
contribute to the development of POAF (13).

Studies have shown that POAF is associated with the number
and duration of CABG (14). In our study, we found that the number
of grafts (>3) ranked first in the feature importance of the GNB
model, and the surgery duration ranked fourth. This suggests that
these factors involved in the surgical process may indeed be related
to the occurrence of POAF and play an important role in predicting
it. This may be linked to the following mechanism: the greater the
number of vessels involved in the surgery, the higher the complexity
of the operation, and the longer the surgery time and trauma, which
could increase the risk of POAF.

In recent years, AF has increasingly been recognized as a
hereditary disease, and genome-wide association studies have
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identified several common variants associated with AF. Studies
have shown that there are multiple single nucleotide polymorphism
(SNP) sites on chromosome 4q25 associated with AE among
which rs2200733 and rs10033464 are two common loci (15).
However, previous studies have suggested that predictive variables
exhibiting strong univariate associations with the target outcome
do not necessarily translate into enhanced predictive performance
(8). Furthermore, our center routinely conducts pre-CABG
pharmacogenomic profiling for hospitalized patients, which
enabled the identification of candidate genetic variants informing
this study design.

Based on four genetic models, four loci (rs5219, rs776746,
and rs4713518, and rs4961) were incorporated into the ultimately
predictive model of GNB. Notably, rs5219 demonstrated the
highest interpretative weight in the four variants, whereas
rs4713518-despite demonstrating the most significant association
(P = 0.034)-exhibited the third-highest explanatory weight. This
observation corroborates existing literature demonstrating that
features lacking statistical significance in univariate analyses may
still contribute substantially to predictive models, a phenomenon
further validated by recent reports highlighting the discordance
between statistical significance and predictive utility (7).

Rs5219 is located in the KCNJII gene, which resides on
chromosome 11. This gene contains one exon and encodes the
Kir6.2 subunit of the ATP-sensitive potassium channel (KATP).
The SNP database from NCBI shows that the variant frequency of
rs5219 does not differ significantly across different ethnic groups,
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with the minor allele frequency being 0.36 in Europeans, 0.37 in
Asians. In this study, the variant frequency at this site was 0.42,
which slightly deviates from the aforementioned results, suggesting
heterogeneity between the disease and healthy populations. Studies
have reported that rs5219 is associated with susceptibility to
ischemic heart disease, with the G/A genotype being more common
in patients with coronary artery disease, while the G/G genotype
is more prevalent in patients with coronary microvascular disease
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(16). Strutynskyi et al. (17) found that rs5219 is one of the
risk factors for heart failure (17). Although there is no direct
evidence to suggest that the rs5219 polymorphism is the primary
pathogenic factor for POAF, we observed that the rs5219 site has
a significant predictive weight in the GNB model. The potential
mechanism may involve the effect of this polymorphism on cardiac
electrical activity or myocardial cell function. Furthermore, Yi et al.
found that rs776746 increased susceptibility to ischemic stroke and
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was associated with arterial thrombotic events in stroke patients
(18). Studies have shown that in Taiwanese adults, for individuals
carrying the rs4713518 AA genotype, the interaction between
hyperlipidemia and gender affects the risk of gout (19). Rs4961 is
an SNP located on the a-adducin (ADDI) gene. Dysfunction of
ADDI] can lead to hypertension by enhancing sodium reabsorption
in renal tubular epithelial cells, while pharmacological inhibition of
ADDI can significantly lower blood pressure (20). Therefore, the
functional ADDI polymorphism is considered a potential genetic
marker for hypertension.

These advantages are achieved without relying on strong
assumptions, making ML a valuable tool in clinical practice.
Roshan et al. compared the performance of ML and established
gold standard scoring tools (POAF score) in predicting POAF
during ICU admission after cardiac surgery. The results showed
that the ML model outperformed the clinical scoring tools in
predicting POAF (21). Parise et al. (22) used four ML algorithms
to analyze 394 patients who underwent CABG surgery and
compared their performance. They also conducted traditional
logistic regression analysis for comparison with the ML models
(22). This study identified the GNB model as the optimal predictive
tool through a comparative analysis of multiple ML algorithms
using a relatively large cohort. The incorporation of genomic data
aligned with the individualized stratification principles of precision
medicine, providing robust evidence for early-stage, risk-stratified
interventions in high-risk populations.

Limitations

This study has several limitations. First, while genomic
analyses have identified genetic variants associated with POAE, the

heterogeneity of these variants complicates the predictive utility

Frontiers in Medicine

of single-marker approaches. Second, although our case collection
encompassed all patients from our institution, the sample sizes for
training, testing, and independent validation sets remain relatively
limited. Additionally, the datasets exhibited class imbalance in label
variables. To address this, we employed upsampling via the SMOTE
algorithm to enhance model robustness and generalizability. Third,
as a single-center study focused on East Asian populations,
the model’s cross-ethnic and multi-center applicability remains
inadequately validated. Key factors contributing to this limitation
include: ethnic variations in the distribution of cardiac-specific
genetic polymorphisms (e.g., differential expression of POAF-
associated risk loci); disparities in surgical techniques (e.g., CABG
procedural choices) and postoperative management strategies (e.g.,
anticoagulation protocols, arrhythmia prevention measures) across
healthcare systems. Lastly, although a visualization web-based tool
was developed and passed preliminary technical tests, its clinical
implementation remains far from realization.

In summary, to address these limitations, our research team
has initiated a multi-faceted improvement strategy: expand the
testing of disease-associated genetic variants linked to CABG
outcomes, leveraging GWAS to identify population-specific
(beyond East Asian cohorts) risk loci, thereby refining the genetic
underpinnings of the predictive model. Continuously expand our
institution’s sample size and collaborate with multiple (tertiary)
hospitals nationwide to transition to multi-center research,
thereby overcoming single-center limitations and improving
clinical applicability of the model. Clinical Implementation of
the Web Tool: progress will be advanced in three sequential
phases: Technical Validation: Implement rigorous stress testing
and other robustness assessments. Clinical Usability Evaluation:
Engage cardiac surgeons and nursing staff in standardized tasks
(e.g., quantify usability via the System Usability Scale [SUS]
questionnaire). Retrospective Clinical Validation: Evaluate the
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alignment between the tool’s predictive outputs and clinical
decision-making using historical CABG case data (e.g., assess
consistency via Cohen’s Kappa coefficient).

Conclusions

This study combines clinical indicators with 21
pharmacogenomic genes to develop a GNB-based predictive model
for post-CABG POAF risk. We created an online tool using
11 key indicators to enable personalized risk assessment, aiding
preoperative evaluation and treatment planning to reduce AF

incidence and complications.
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