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Background: Postoperative atrial fibrillation (POAF) is a frequent complication 

following coronary artery bypass grafting (CABG), significantly impacting patient 

prognosis and healthcare costs. This study aimed to develop an integrated 

predictive model for POAF risk stratification to optimize clinical management. 

Methods: We retrospectively analyzed 2,528 patients undergoing 21-gene 

pharmacogenetic testing for cardiovascular therapy. After stringent data 

curation, 576 CABG patients were enrolled and randomly allocated into 

training and test sets. Eight machine learning algorithms were trained using 

clinical variables and genetic variants. An independent validation set was 

performed on 61 patients from a subsequent 1,075-patient cohort of 21-gene 

pharmacogenetic testing. 

Results: Eight machine learning algorithms were trained, tested, and validated, 

with the Gaussian Naive Bayes (GNB) model demonstrating robust performance 

(Accuracy: 0.81 in test set and 0.79 in independent validation set). SHapley 

Additive exPlanations analysis identified four key predictors: multivessel CABG 

(CABGVx ≥ 3), history of heart failure (HFHx), rs5219 (KCNJ11), and prolonged 

bypass duration (CABGTime). To facilitate clinical translation, we developed 

an accessible web-based tool (https://www.xingyeyard.site/cabg/) for real-time 

POAF risk stratification. 

Conclusion: This GNB-based classifier synergistically integrates 

Pharmacogenomic and clinical predictors to predict POAF risk following 

CABG. The combination of rigorous validation and user-centered design 

positions this model as a valuable clinical decision-support tool for optimizing 

personalized perioperative care. 

KEYWORDS 

coronary artery bypass grafting, postoperative atrial fibrillation, machine learning, 
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GRAPHICAL ABSTRACT 

GNB, gaussian naive bayes; KNN, K-Nearest Neighbors; LR, logistic regression; MLP, multilayer perceptron; RF, random forest; SVM, support vector 
machine; TabTF, TabTransformer; XGB, extreme gradient boosting. 

Background 

Postoperative atrial fibrillation (POAF) is a common 
complication following heart surgery, with an incidence of 
approximately 20% after coronary artery bypass grafting 
(CABG) (1). It typically occurs 2–4 days postoperatively, is 
often asymptomatic, and may resolve spontaneously. However, 
despite this, the complication still has a significant impact on 
the patient’s quality of life and can even be life-threatening. It 
also increases hospital stay and medical costs. Currently, the 
mechanisms underlying POAF are controversial, and eective 
preventive strategies are lacking. Therefore, predicting and treating 
POAF has become a hot topic in cardiovascular research. 

With the advancement of pharmacogenomics research, there 
is a growing recognition of the importance of genetic factors 
in cardiovascular diseases and their pharmacological treatment. 
Numerous studies have shown that polymorphisms in specific 
genes not only aect the eÿcacy of cardiovascular drugs but 
may also be closely associated with the occurrence of POAF after 
CABG. For example, genetic polymorphisms in platelet membrane 
glycoprotein IIb/IIIa complex, cytochrome P450 (CYP) enzyme 
system, and others may influence the eÿcacy of antiplatelet drugs 
such as aspirin and clopidogrel, thereby aecting the risk of POAF 
after CABG (2). Xue et al. suggested that polymorphisms in the 
apolipoprotein E (ApoE) gene are associated with POAF and 
cardiac injury following CABG (3). 

Additionally, eight machine learning (ML) models related 
to the prediction of POAF have been developed. Tan et al. 
combined gene expression information from 139 CABG patients 
and used LASSO regression to build a POAF prediction model 
(4). Although the sample size was relatively small, the study 
suggested that combining genetic and clinical information could 
be a promising approach for POAF prediction. ML has been 

applied across various medical fields, particularly in cardiovascular 
medicine, for tasks such as diagnosis, treatment optimization, 
and prognosis prediction. The research data encompasses diverse 
medical information, extending beyond textual data (5). The 
algorithms used often outperform traditional statistical methods. 
Some studies suggest that ML is more eective than standalone 
clinical or imaging methods in predicting cardiovascular mortality 
or all-cause mortality (6). 

In summary, regarding the prediction of the occurrence of 
POAF after CABG, most of the literature we reviewed had 
small sample sizes and single models. In particular, studies 
either considered only clinical factors or only genetic factors, 
and we have not come across any research that integrates both 
analyses. Therefore, in this study, we utilized eight ML-based 
algorithms and incorporated a relatively large sample size to 
combine cardiovascular gene variant loci with clinical data in 
order to construct a prediction model for POAF after CABG. 
Additionally, we developed a corresponding online prediction 
software to provide insights for potential complications in these 
patients and facilitate early decision-making interventions. 

Materials and methods 

Study subjects 

The study cohort comprised 576 patients who underwent 
21-gene cardiovascular pharmacogenomic testing at Zhengzhou 
Seventh People’s Hospital (07/2022-04/2024). Inclusion criteria: 
East Asian adults receiving first-time CABG. Exclusion criteria: age 
<18 or >100 years, non-CABG cases, repeat CABG, cancer, or 
cardiac structural abnormalities. These formed the training-test set 
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for ML development. An independent validation set included 61 
CABG patients (05-12/2024). 

POAF diagnosis criteria 

Post-cardiac surgery and before discharge, atrial fibrillation 
(AF) or atrial flutter (AFL) changes are identified in one or more 
electrocardiogram (ECG) leads, lasting at least 30 s. If the ECG 
recording duration is less than 30 s but shows continuous AF or 
AFL changes throughout the entire recording period, POAF can 
still be diagnosed. 

Clinical data collection 

The following patient data were collected: Sex, Age, Height, 
Weight, Blood type, Smoking, Drinking, Diabetes, Hypertension, 
history of kidney disease (RenalHx), history of liver disease 
(LiverHx), history of lung disease (LungHx), history of stroke 
(StrokeHx), history of valvular disease (ValveHx), history of 
myocardial infarction (MIHx), history of angina pectoris (APHx), 
history of coronary artery disease (CHDHx), history of heart 
failure (HFHx), history of AF (AFHx), history of thyroid disease 
(ThyroidHx), history of percutaneous coronary intervention 
(PCIHx), medication history (AnticoagulantHx, LipidMedHx, 
AntiDiabeticHx, and BPMedHx), multivessel CABG (CABGVx), 
and prolonged bypass duration (CABGTime). 

Cardiovascular and cerebrovascular 
personalized medication 21-gene testing 

A 5 mL venous blood sample was collected from each 
patient and subjected to multiple PCR reactions. For detailed 
operational steps, please refer to Supplementary Method 1. 
Afterward, gene genotyping data was obtained using a time-
of-flight mass spectrometer. The pharmacogenomic profiling 
encompassed twenty-one clinically actionable loci. More detailed 
information about these genes and variant sites is provided in 
Supplementary Table 1. 

Model construction and evaluation 

After data cleaning, eight ML models were constructed, 
including Tree Models: Random Forest (RF) and XGBoost 
(XGB), Deep Learning Models: Multilayer Perceptron (MLP) 
and TabTransformer (TabTF), Frequency Model: Gaussian Naive 
Bayes (GNB), Regression Model: Logistic Regression (LR), 
Kernel Model: Support Vector Machine (SVM), and Distance 
Voting Model: K-Nearest Neighbors (KNN). For more details, 
please refer to Data Cleaning, Clinical Data Cleaning and 
Feature Dimensionality Reduction, Variant Data Cleaning and 
Feature Dimensionality Reduction, and Model Construction and 
Evaluation in Supplementary Method 2. 

In this study, the training-test set was randomly split into 
training and test sets at a ratio of 0.25. Given that the target 

variable exhibits class imbalance, we performed oversampling of 
the minority class in the training set using the SMOTE algorithm. 
For non-tree models, we use the StandardScaler function to 
standardize the feature variable values. All model construction 
and hyperparameter optimization were performed using the 
GridSearchCV tuning function and a custom module, with 10-
fold cross-validation. For the GridSearchCV function from the 
sklearn package, the evaluation metric parameter (scoring) was set 
to “accuracy”. 

Notably, to enhance the representation capability for structured 
tabular data, this study incorporated the relatively recent TabTF 
model. The hyperparameter optimization process was customized 
into a dedicated code segment (detailed code is provided in 
Supplementary Code 1), with the accuracy metric of 10-fold cross-
validation designated as the optimization objective. Considering 
hardware constraints, we implemented performance optimization 
via the randomized parameter sampler (ParameterSampler), setting 
the primary iteration count parameter to 30. In total, the critical 
optimization parameters comprised 10 variables spanning 256 
combinatorial configurations, including: Embedding dimensions 
(8, 16), Attention head counts (2, 4), Transformer encoder 
depths (1, 2), Feedforward network hidden dimensions (64, 
128), Learning rates (0.001, 1e-4), Batch sizes (16, 32), Dropout 
rates (0.1, 0.2), Weight decay coeÿcients (1e-4, 1e-5), Training 
epochs (50), Random seed (377), with an early stopping patience 
parameter set to 5. 

The final generalization ability was verified using an 
independent validation set. The optimal model selection was 
primarily based on Accuracy and the area under the ROC curve 
(AUC) of the test set. 

The explanation method for the optimal model was based on 
the SHAP package. The best feature contributions of the model 
were determined using waterfall plots, force plots, decision plots, 
bar plots, and heatmaps following SHAP values. Based on the 
overall framework outlined above, we developed a program that can 
predict the risk of POAF occurrence in patients undergoing CABG 
surgery, which is accessible online via PC or mobile devices. 

Statistical 

Statistical analysis was performed using R. Non-normally 
distributed continuous variables were reported as median (Q1-Q3) 
and compared using Mann-Whitney U test. Categorical variables 
were presented as counts and analyzed by χ2 or Fisher’s exact test. 
Clinical variables with P < 0.05 were considered significant. For 
genetic variant screening in predictive modeling, we used P < 0.10 
threshold to include more polymorphic loci while maintaining 
model performance (7, 8), as individual feature-target associations 
showed limited impact on overall predictive accuracy. 

Results 

General characteristics of patients 

The final dataset comprised 576 CABG patients (478 SR, 
98 AF). Pre-imputation missing data (max = 30) are shown in 
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FIGURE 1 

The final distribution of missing data before imputation of 53 feature variables for 576 patients. (A) The bar chart displaying the number of missing 
values. The horizontal axis represents feature variables, and the vertical axis represents the number of missing values. (B) The heatmap displaying the 
missing values. Red cells represent the amount of missing data, corresponding to the scale values on the right vertical axis, while the horizontal axis 
represents feature variables. 

Figures 1A, B. After cleaning, we retained 26 clinical variables 
(Supplementary Table 2) and 25 genetic variants (Supplementary 
Tables 3, 4), excluding three biased SNPs (rs10306114, rs1799853, 
rs5918). HWE testing (P > 0.05) was performed only on non-
biased variants. The pre-imputation genotype frequency data for 
all variants are provided in Supplementary Table 5. 

After feature reduction, seven clinical characteristic variables 
were retained, including Age, RenalHx, ValveHx, HFHx, AFHx, 
CABGVx, and CABGTime, all of which showed statistical 
dierences (P < 0.05). Four genetic variants (rs4961, rs5219, 
rs776746, and rs4713518) showed statistically significant 
associations (P < 0.10) and exhibited minor allele frequencies 
ranging from 0.29 to 0.50, meeting the threshold for common 
polymorphisms in the study population. In addition, since the 
number of variables screened by the χ2 or non-parametric tests 
was exactly suitable for constructing learning models, we did not 
proceed with further screening using Lasso regression. 

Consequently, these 11 features were selected as predictive 
variables for ML model development. Their distributions are 
visualized in Figure 2, with Age and CABGTime being the sole 
continuous variables. As demonstrated in cell (2, 8) of the figure, 
Age exhibited negligible linear correlations with POAF across all 

cohort groups, as evidenced by Pearson’s r values of −0.074 in the 
AF cohort (positive cases), −0.210 in the SR cohort (negative cases), 
and −0.058 in the combined group (AF + SR). 

We assessed multicollinearity between continuous variables 
(Age and CABGTime) using VIF analysis, finding VIF = 1.00 
for both (VIF < 5 indicates acceptable collinearity). Categorical 
variables weren’t evaluated due to: (1) satisfactory model 
performance suggesting minimal collinearity impact; (2) VIF’s 
linear relationship assumption; and (3) ML algorithms’ inherent 
handling of categorical variable interactions. 

Prediction model construction 

The dataset used for model learning consisted of 478 SR and 
98 AF patients, respectively, indicating a biased target variable. 
After SMOTE oversampling, the training set contained 353 SR 
and 353 AF cases. The eight models were built using the balanced 
training set. The hyperparameter configurations for each model are 
provided in Supplementary Table 6, and their optimal parameter 
combinations are listed in Supplementary Table 7. 
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FIGURE 2 

Genotype-phenotype association matrix of genetic variants and clinical factors related to post-operative atrial fibrillation (POAF). The matrix displays 
pairwise associations between features. Each row and column represent a variable, with diagonal cells showing distribution patterns. Off-diagonal 
cells visualize relationships between variable pairs using distribution plots, box plots, scatter plots, and heat maps. Blue and red color coding 
distinguishes between case/control groups or “Yes/No” status. For instance, in matrix cell (1, 1), red indicates POAF patients with “Yes” status while 
blue represents “No” status POAF patients. Clinical variables include age and medical history factors (RenalHx, renal disease history; ValveHx, valve 
disease history; HFHx, heart failure history; AFHx, atrial fibrillation history; CABGVx, coronary artery bypass graft history; CABGTime, time-related 
CABG parameters). Genetic markers analyzed include rs4961, rs5219, rs776746, and rs4713518. Some cells annotate the Pearson correlation 
coefficients between two continuous variables. For instance, the three lines of text in matrix cell (2, 8) represent the correlation coefficients of Age 
with POAF across three scenarios: AF/positive cases, SR/negative cases, and AF + SR cases. Asterisks (*) denote statistically significant correlations. 

Evaluation of prediction models 

Supplementary Table 8 presents the accuracy and AUC 
values for all eight models on the test set, along with the 
optimal performance metrics on the independent validation set. 
Among these, the GNB model exhibited the strongest predictive 
performance, achieving an accuracy of 0.81 and an AUC of 0.81 
(95% CI: 0.70–0.91) in the test set. While the recently emerged deep 
learning algorithm TabTF demonstrated improved performance 
over MLP with an accuracy of 0.76 and an AUC of 0.79 (95% CI: 
0.69–0.88), it nonetheless remained inferior to GNB. In contrast, 
XGB–frequently recognized for its remarkable performance in 
Kaggle competitions–achieved only 0.71 accuracy and an AUC of 
0.68 (95% CI: 0.54–0.77). This performance gap may be attributable 
to the limited sample size. Consequently, it was selected as the 
optimal model for further validation on the independent validation 
set and for SHAP-based feature interpretation. The GNB model 
demonstrated robust generalization capability in the independent 

validation set, maintaining an accuracy of 0.79 and an AUC of 0.76 
(95% CI: 0.62–0.89). The receiver operating characteristic (ROC) 
curves for all eight models are illustrated in Figure 3, providing a 
comparative assessment of their binary classification performance. 

Interpretation of the optimal prediction 
model features 

Our SHAP analysis revealed strong consistency in feature 
importance rankings between the test set and independent 
validation set. The SHAP bar plot (Figures 4A, B) demonstrated 
that the top four predictive features maintained stable contribution 
weights: CABGVx ≥ 3 (Test: 0.14, Independent: 0.14), HFHx 
(Test: 0.1, Independent: 0.11), GAGGrs5219 (Test: 0.07, 
Independent: 0.07), and CABGTime (Test: 0.04, Independent: 
0.05). Complementing these findings, the SHAP heatmap 
(Figures 4C, D) visualized individual patient-level explanations, 
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FIGURE 3 

In the test set, the Receiver Operating Characteristic (ROC) curves for the results of eight machine learning algorithms are shown. The horizontal 
axis plots the False Positive Rate (FPR), while the vertical axis plots the True Positive Rate (TPR). An Area Under the Curve (AUC) of 0.5 indicates 
random classification performance, while values close to 1 indicate higher accuracy. An ROC curve that approaches the top-left corner suggests 
that the model achieves a good balance between high true positive rate and low false positive rate, indicating effective discrimination between 
positive and negative classes. 

where: Color intensity represents the magnitude of feature impact, 
Hue indicates directional eect (positive/negative prediction 
influence), the same four features consistently showed the 
strongest predictive weights. 

The remarkable agreement between the test and independent 
validation sets in bar plot and heatmap interpretation methods 
strongly supports the model’s robust generalization capability. This 
consistency across dierent explanation visualizations and datasets 
enhances our confidence in the model’s clinical applicability. 

In addition to the global interpretability visualizations, our 
online platform–MedicalAIStarry– provides patient-specific local 
interpretation diagrams (including waterfall plots, force plots, and 
decision plots) for each POAF case. It is currently accessible via PC 
or mobile devices at the website: https://www.xingyeyard.site/cabg/ 
(Figure 5). 

Discussion 

In this study, based on a cohort of CABG patients who 
underwent routine pharmacogenetic testing upon admission in 
our center, we utilized the data from existing clinical records and 

genetics test results to construct eight ML models, in which the 
optimal GNB robustly predicts the probability of POAF occurrence. 
The subsequent SHAP analysis results revealed the top four 
contributing feature variables: CABGVx ≥ 3, HFHx, GAGGrs5219, 
and CABGTime. Ultimately, an online risk prediction program for 
POAF after CABG surgery was developed. This program integrates 
both genetic and clinical features, requiring only 11 input variables 
to predict the risk of POAF occurrence in individual or multiple 
CABG patients, providing a personalized risk prediction interface 
for patients. The detailed research procedure is illustrated in 
Figure 6. 

It has been reported that after the age of 60, there is an increase 
in elastic and collagen tissues in the conduction system, along 
with fat accumulation around the sinoatrial node, leading to a 
significant reduction in the total number of pacemaker cells in 
the sinoatrial node. This may increase the susceptibility of elderly 
individuals to POAF (9). Renal dysfunction is a known risk factor 
for POAF after CABG (10). Rheumatic aortic valve disease and 
degenerative aortic valve lesions are independent risk factors for 
POAF development. The prolonged course of these conditions may 
increase the release of reactive oxygen species, which further induce 
myocardial electrical remodeling, manifesting as a shortening of 
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FIGURE 4 

SHAP visualizations for the optimal GNB model. (A,B) Bar plots showing mean absolute SHAP values (x-axis) for test (n = 144) and independent 
validation (n = 61) sets, where taller bars indicate greater feature importance. (C,D) Heatmaps displaying individual predictions (top curves) and 
feature impacts (bottom vertical axis) per sample (horizontal axis). Color intensity reflects effect magnitude (blue = positive, red = negative), with the 
gradient bar quantifying SHAP values. 

the action potential eective refractory period, thereby triggering 
POAF (11). 

In this study, a history of AF and heart failure were also 
found to be important variables in predicting the development 
of POAF. Previous studies have reported that AF is associated 
with pathological abnormalities in the left atrium, including 
atrial enlargement, fibrosis, impaired calcium handling, electrical 
remodeling, and decreased function, while heart failure is 
associated with myocardial damage, excessive cardiac load, 
arrhythmias, and other factors. Therefore, AF and heart failure 
can influence each other, leading to worsening of the condition 
(12). In addition, the occurrence of POAF after CABG is the result 
of multiple factors. Preoperative cardiac condition, postoperative 
cardiac function, and certain factors during the surgery may all 
contribute to the development of POAF (13). 

Studies have shown that POAF is associated with the number 
and duration of CABG (14). In our study, we found that the number 
of grafts (≥3) ranked first in the feature importance of the GNB 
model, and the surgery duration ranked fourth. This suggests that 
these factors involved in the surgical process may indeed be related 
to the occurrence of POAF and play an important role in predicting 
it. This may be linked to the following mechanism: the greater the 
number of vessels involved in the surgery, the higher the complexity 
of the operation, and the longer the surgery time and trauma, which 
could increase the risk of POAF. 

In recent years, AF has increasingly been recognized as a 
hereditary disease, and genome-wide association studies have 

identified several common variants associated with AF. Studies 
have shown that there are multiple single nucleotide polymorphism 
(SNP) sites on chromosome 4q25 associated with AF, among 
which rs2200733 and rs10033464 are two common loci (15). 
However, previous studies have suggested that predictive variables 
exhibiting strong univariate associations with the target outcome 
do not necessarily translate into enhanced predictive performance 
(8). Furthermore, our center routinely conducts pre-CABG 
pharmacogenomic profiling for hospitalized patients, which 
enabled the identification of candidate genetic variants informing 
this study design. 

Based on four genetic models, four loci (rs5219, rs776746, 
and rs4713518, and rs4961) were incorporated into the ultimately 
predictive model of GNB. Notably, rs5219 demonstrated the 
highest interpretative weight in the four variants, whereas 
rs4713518–despite demonstrating the most significant association 
(P = 0.034)–exhibited the third-highest explanatory weight. This 
observation corroborates existing literature demonstrating that 
features lacking statistical significance in univariate analyses may 
still contribute substantially to predictive models, a phenomenon 
further validated by recent reports highlighting the discordance 
between statistical significance and predictive utility (7). 

Rs5219 is located in the KCNJ11 gene, which resides on 
chromosome 11. This gene contains one exon and encodes the 
Kir6.2 subunit of the ATP-sensitive potassium channel (KATP). 
The SNP database from NCBI shows that the variant frequency of 
rs5219 does not dier significantly across dierent ethnic groups, 
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FIGURE 5 

Risk prediction program for POAF occurrence in patients after CABG surgery. Website: https://www.xingyeyard.site/cabg/ 

with the minor allele frequency being 0.36 in Europeans, 0.37 in 

Asians. In this study, the variant frequency at this site was 0.42, 
which slightly deviates from the aforementioned results, suggesting 

heterogeneity between the disease and healthy populations. Studies 
have reported that rs5219 is associated with susceptibility to 

ischemic heart disease, with the G/A genotype being more common 

in patients with coronary artery disease, while the G/G genotype 

is more prevalent in patients with coronary microvascular disease 

(16). Strutynskyi et al. (17) found that rs5219 is one of the 

risk factors for heart failure (17). Although there is no direct 
evidence to suggest that the rs5219 polymorphism is the primary 

pathogenic factor for POAF, we observed that the rs5219 site has 
a significant predictive weight in the GNB model. The potential 
mechanism may involve the eect of this polymorphism on cardiac 

electrical activity or myocardial cell function. Furthermore, Yi et al. 
found that rs776746 increased susceptibility to ischemic stroke and 
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FIGURE 6 

The flowchart of this study. GNB, gaussian naive bayes; KNN, K-Nearest Neighbors; LR, logistic regression; MLP, multilayer perceptron; RF, random 
forest; SVM, support vector machine; TabTF, TabTransformer; XGB, extreme gradient boosting. 

was associated with arterial thrombotic events in stroke patients 
(18). Studies have shown that in Taiwanese adults, for individuals 
carrying the rs4713518 AA genotype, the interaction between 
hyperlipidemia and gender aects the risk of gout (19). Rs4961 is 
an SNP located on the α-adducin (ADD1) gene. Dysfunction of 
ADD1 can lead to hypertension by enhancing sodium reabsorption 
in renal tubular epithelial cells, while pharmacological inhibition of 
ADD1 can significantly lower blood pressure (20). Therefore, the 
functional ADD1 polymorphism is considered a potential genetic 
marker for hypertension. 

These advantages are achieved without relying on strong 
assumptions, making ML a valuable tool in clinical practice. 
Roshan et al. compared the performance of ML and established 
gold standard scoring tools (POAF score) in predicting POAF 
during ICU admission after cardiac surgery. The results showed 
that the ML model outperformed the clinical scoring tools in 
predicting POAF (21). Parise et al. (22) used four ML algorithms 
to analyze 394 patients who underwent CABG surgery and 
compared their performance. They also conducted traditional 
logistic regression analysis for comparison with the ML models 
(22). This study identified the GNB model as the optimal predictive 
tool through a comparative analysis of multiple ML algorithms 
using a relatively large cohort. The incorporation of genomic data 
aligned with the individualized stratification principles of precision 
medicine, providing robust evidence for early-stage, risk-stratified 
interventions in high-risk populations. 

Limitations 

This study has several limitations. First, while genomic 
analyses have identified genetic variants associated with POAF, the 
heterogeneity of these variants complicates the predictive utility 

of single-marker approaches. Second, although our case collection 
encompassed all patients from our institution, the sample sizes for 
training, testing, and independent validation sets remain relatively 
limited. Additionally, the datasets exhibited class imbalance in label 
variables. To address this, we employed upsampling via the SMOTE 
algorithm to enhance model robustness and generalizability. Third, 
as a single-center study focused on East Asian populations, 
the model’s cross-ethnic and multi-center applicability remains 
inadequately validated. Key factors contributing to this limitation 
include: ethnic variations in the distribution of cardiac-specific 
genetic polymorphisms (e.g., dierential expression of POAF-
associated risk loci); disparities in surgical techniques (e.g., CABG 
procedural choices) and postoperative management strategies (e.g., 
anticoagulation protocols, arrhythmia prevention measures) across 
healthcare systems. Lastly, although a visualization web-based tool 
was developed and passed preliminary technical tests, its clinical 
implementation remains far from realization. 

In summary, to address these limitations, our research team 
has initiated a multi-faceted improvement strategy: expand the 
testing of disease-associated genetic variants linked to CABG 
outcomes, leveraging GWAS to identify population-specific 
(beyond East Asian cohorts) risk loci, thereby refining the genetic 
underpinnings of the predictive model. Continuously expand our 
institution’s sample size and collaborate with multiple (tertiary) 
hospitals nationwide to transition to multi-center research, 
thereby overcoming single-center limitations and improving 
clinical applicability of the model. Clinical Implementation of 
the Web Tool: progress will be advanced in three sequential 
phases: Technical Validation: Implement rigorous stress testing 
and other robustness assessments. Clinical Usability Evaluation: 
Engage cardiac surgeons and nursing sta in standardized tasks 
(e.g., quantify usability via the System Usability Scale [SUS] 
questionnaire). Retrospective Clinical Validation: Evaluate the 
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alignment between the tool’s predictive outputs and clinical 
decision-making using historical CABG case data (e.g., assess 
consistency via Cohen’s Kappa coeÿcient). 

Conclusions 

This study combines clinical indicators with 21 
pharmacogenomic genes to develop a GNB-based predictive model 
for post-CABG POAF risk. We created an online tool using 
11 key indicators to enable personalized risk assessment, aiding 
preoperative evaluation and treatment planning to reduce AF 
incidence and complications. 
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