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Introduction: Atopic dermatitis (AD) is an inflammatory skin disease that is 
heterogeneous in clinical presentation and biological mechanisms. Several 
studies have suggested biomarker-defined molecular endotypes in AD. This 
study aimed to characterize potential endotypes in Japanese patients with 
moderate-to-severe AD and comprehensively evaluate their circulating protein 
profiles to better understand disease etiology.
Methods: Serum samples from Japanese patients with moderate-to-severe AD 
(n = 73) enrolled in a phase 3 study of baricitinib (BREEZE-AD2; NCT03334422) 
and samples from healthy controls (n = 15) were analyzed using the Olink 
Explore 1536 assay. Patient clusters were identified through k-means clustering. 
Differential expression analysis and weighted gene co-expression network 
analysis were performed for in-depth examination of proteomic profiles.
Results: Two patient clusters, characterized by high (AD_HI) and low (AD_LO) 
inflammatory profiles, were found to be  stable and reproducible. Canonical 
AD inflammatory mediators—including interleukin (IL)-13, IL-19, pulmonary 
and activation-regulated chemokine (PARC), thymus and activation-regulated 
chemokine (TARC), chemokine (C-C motif) ligand (CCL)22, CCL26, and 
CCL27—were upregulated in both clusters, with greater upregulation in the 
AD_HI cluster. Additionally, proteins not typically associated with AD-related 
inflammation were upregulated in AD_HI patients. The AD_HI cluster was 
associated with protein networks representing a range of immune and non-
immune pathways. Dysregulated protein signatures associated with the AD_HI 
cluster were also correlated with skin-based disease severity scores.
Conclusion: This study characterizes the circulating proteome and clinical 
characteristics across putative molecular endotypes in AD. The findings 
corroborate current knowledge on AD pathophysiology and suggest other axes 
of dysregulation in a subset of patients with AD. These results may support the 
development of personalized therapeutic approaches.
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1 Introduction

Atopic dermatitis (AD) is a common inflammatory skin disease 
worldwide, characterized by heterogeneity in clinical presentation 
and underlying biological mechanisms (1, 2). Despite this, patients 
are often managed using a generalized treatment approach (3). 
Although significant progress has been made in understanding AD 
immunopathology, further insight into the molecular mechanisms 
underlying its varied phenotypes is an important step toward 
personalized medicine.

AD is mediated by T-helper (Th) cell responses (4). The 
interleukin (IL)-13/Th2 axis is a key pathway in AD pathogenesis, 
although Th1 and Th17 pathways have also been implicated (1, 2, 
5). In Japan, approved targeted therapeutics for AD include 
monoclonal antibodies targeting the IL-4/IL-13 pathway, broad-
acting small-molecule Janus kinase (JAK) inhibitors, and IL-31-
targeting therapy, which is approved for the treatment of 
AD-associated itching (6, 7). Several thymic stromal 
lymphopoietin (TSLP)-targeting therapies are in advanced stages 
of clinical development. While these treatments can temporarily 
alleviate AD symptoms, their efficacy and long-term safety remain 
limited (8).

AD can be  classified into endotypes based on the 
immunopathologic disease mechanism. Although still limited, a 
growing number of studies have characterized biomarker-defined 
AD endotypes using blood or skin samples and have identified 
regional and ethnic differences in disease mechanisms and 
phenotypes (1, 9–14). Upregulation of the Th2/Th17 axes has 
been observed in Asian patients with AD, potentially indicating a 
blended molecular phenotype of disease axes previously 
considered mutually exclusive to AD and psoriasis, respectively 
(9, 15). A recent analysis of skin and peripheral blood 
mononuclear cell samples from Japanese patients with AD 
demonstrated phenotype–endotype associations and variability in 
immune cell profiles within individuals over time (10). Factors 
correlating with disease severity in these patients included the 
serum thymus and activation-regulated chemokine (TARC), 
lactate dehydrogenase, and eosinophil counts—all established AD 
biomarkers (10). In this same study, network analysis also 
identified two novel transcriptome modules associated with 
disease progression (10).

We have previously published data describing endotypes 
characterized by their level of inflammation, as measured by 
circulating protein biomarkers (11). While there is no current 
consensus on which of the identified biomarker-defined 
endotypes is most biologically or clinically significant, these 
findings indicate that a systemic inflammatory state accompanies 
the physical inflammation observed in adult patients with AD 
(11). The degree of inflammation was found to correlate with 
disease severity to varying extents among different ethnic groups 
(11). Building on these data, we aimed to perform a similar study 
focusing on a single ethnic population.

Using computational methods, including clustering and 
network analysis, this study aimed to identify disease endotypes 
in Japanese patients with moderate-to-severe AD. Additionally, 
we sought to characterize clinical features associated with each 
identified endotype.

2 Methods

2.1 Participants and clinical data

This study included 73 Japanese patients with moderate-to-
severe AD enrolled in the global phase 3 study of baricitinib 
(BREEZE-AD2; ClinicalTrials.gov: NCT03334422). Included 
patients were aged ≥18 years; had an AD diagnosis according to 
the American Academy of Dermatology criteria for at least 
12 months prior to screening; and had moderate-to-severe AD 
indicated by a baseline Eczema Area and Severity Index (EASI) 
score ≥16, an Investigator’s Global Assessment for AD score ≥3, 
and body surface area involvement ≥10%. Patients also had a 
documented history of inadequate response or intolerance to 
existing topical medications. Key exclusion criteria included 
concomitant skin conditions such as psoriasis, eczema 
herpeticum, or skin infections requiring treatment with systemic 
or topical antibiotics or corticosteroids. Full details of the 
inclusion and exclusion criteria can be  found on 
ClinicalTrials.gov.

Patient demographics and baseline clinical trial data—
including age, sex, body mass index (BMI), AD clinical scores, 
prior therapy use, and routine safety clinical laboratory test results 
obtained at the same visit as the serum samples—were used in this 
analysis. These data are collectively referred to as clinical and 
laboratory data in subsequent sections. A total of 15 age- and 
sex-matched healthy control (HC) subjects with no allergic 
conditions were recruited separately, and serum samples were 
collected using the same procedures as for the patient cohort. The 
inclusion criteria for HC subjects are outlined in the 
Supplementary methods.

The study was conducted in accordance with the Declaration 
of Helsinki and Good Clinical Practice guidelines. All participants 
provided written informed consent before any study-related 
procedures and consented to biomarker testing.

2.2 Serum proteomic assay and data

Patients underwent a 4-week systemic and 2-week topical 
AD therapy washout period before clinical trial enrollment. To 
ensure an accurate reflection of basal biological profiles, serum 
samples analyzed in this study were collected after the washout 
period and before administration of the first trial drug, in 
accordance with the clinical trial protocol. Blood was collected 
in tubes containing a clotting agent (Becton, Dickinson and 
Company, Serum Separator Tube 5 mL). The tube was allowed 
to stand for 30 min before being centrifuged at 1,500 g for 
15 min. The supernatant was obtained and stored at −70 °C until 
the assay was performed.

Circulating proteins were assayed using the Olink Explore 
1536 panel (Olink® Proteomics, Sweden, catalog #97000), a 
proteomics platform that combines an antibody-based 
immunoassay with a proximity oligonucleotide extension assay 
and signal detection with next-generation sequencing on the 
NovaSeq6000 (Illumina Inc., San Diego, United  States). The 
panel includes four subpanels, as defined by the manufacturer: 
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inflammation, oncology, neurology, and cardiometabolic. 
Sample preparation and assay procedures were performed 
according to the manufacturer’s specifications. The measured 
protein expression levels in each sample were adjusted relative 
to a plate control sample to yield a normalized protein 
expression (NPX) value. Details on protein expression 
normalization, data quality control (QC) procedures, and 
criteria are provided in the Supplementary methods. Following 
QC filtering, which included the selection of markers with a 
CoV >20%, 1,248 protein analytes were available for all 
downstream analysis. Olink data are referred to as proteomic or 
biomarker data in subsequent sections.

2.3 Cluster stability and reproducibility 
analysis

Patient clusters were generated using the k-means clustering 
algorithm applied to serum proteomic data, as we had previously 
validated the accuracy of this algorithm using a bootstrapping method 
(11). To visualize cluster behavior, the within-cluster sum of squares 
(WCSS) for 1 to 10 clusters (k = 1 through 10) was first obtained using 
the k-means function in the R package: stats (16). Based on this, an 
optimal number of clusters was selected and assessed for stability and 
reproducibility. Refer to the flowchart shown in Figure  1 for a 
schematic representation of the overall cluster determination strategy.

FIGURE 1

Methodology for assessing cluster stability and reproducibility. Flowchart outlining the steps undertaken to assess cluster stability and reproducibility. 
AD, atopic dermatitis; HC, healthy control.
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2.3.1 Cluster stability
Stability of clusters was assessed by including or excluding HC 

data from the clustering analysis to perturb the dataset. K-means 
clustering was performed separately for patient data only (n = 73) and 
for the combined patient and HC dataset (n = 88). Based on scree 
plots of the WCSS on patient data, we postulated that either k = 2 or 
k = 3 could represent a plausible number of patient clusters. Since HCs 
were expected to form a separate cluster, we  assessed clustering 
outcomes using k = 3 (two patient clusters + one HC cluster) or k = 4 
(three patient clusters + one HC cluster) for all data (n = 88). For 
cluster numbers greater than three (in patient data) or greater than 
four (in all data), the reduction in WCSS became less significant and 
stabilized with each additional cluster. Based on this, k-means 
clustering was performed using the following parameters and 
data input:

	 1	 K2_patientdata: k = 2, all patient data only (n = 73).
	 2	 K3_patientdata: k = 3, all patient data only (n = 73).
	 3	 K3_alldata: k = 3, all patient and HC data (n = 88).
	 4	 K4_alldata: k = 4, all patient and HC data (n = 88).

The outcomes of K2_patientdata were compared to K3_alldata, 
and the results are shown in Figure 2. The assignment of each patient 
into one of the two clusters in K2_patientdata was compared to that 
in K3_alldata using a confusion matrix (R package: caret). The same 
comparison was performed between K3_patientdata and K4_alldata 
(Supplementary Figure S1).

2.3.2 Cluster reproducibility
To assess the reproducibility of the two patient clusters, we used a 

method previously published by our group. First, the samples were split 

FIGURE 2

Evaluation of the optimal number of clusters. WCSS for k = 1 to k = 10 was assessed for k-means clustering on (A) all patients including HCs (K3_
alldata) or on (B) patient data only (K2_patientdata). (C) t-SNE projection of the high-dimensional proteomic data into a two-dimensional space for 
clusters derived using K3_alldata. (D) t-SNE projections for clusters derived using K2_patientdata. Orange = cluster 1; blue = cluster 2; black = cluster 3. 
AD, atopic dermatitis; HC, healthy control; t-SNE, t-distributed stochastic neighbor embedding; WCSS, within-cluster sum of squares.
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into training and testing sets. Second, the same training and testing sets 
were subjected to k-means clustering with k = 2. Third, a cluster 
prediction rule was established using a random forest model (R 
package: randomForest), and the percent accuracy for the training set 
was calculated. This prediction rule was then applied to predict 
membership for each sample in the testing set, and the percent 
accuracy was calculated. Finally, the entire procedure was repeated 100 
times for each scenario, and percent accuracy values for all 100 
iterations were calculated for both the training and testing sets.

2.3.3 Cluster visualization
To visualize the clusters, data dimensionality was first reduced by 

t-distributed stochastic neighbor embedding (t-SNE) analysis using 
the R package: t-SNE (17). The t-SNE projections were then used to 
visualize the clusters and evaluate their distinctiveness. The 95% 
confidence intervals for each cluster were drawn using the R package: 
ggplot2 (18).

2.4 Proteomic data visualization and 
differential expression analysis

Scaled proteomic data were visualized using a heatmap to evaluate 
overall protein expression in patients with AD and HCs (R package: 
ComplexHeatmap). Differential protein expression was performed 
using linear models for microarray data (R package: limma) (19), 
accounting for age and sex as covariates. An empirical Bayes step was 
applied to moderate the residual variances by borrowing strength 
between features in high-dimensional data (19). After fitting the 
model, a mean–variance plot for the full dataset was evaluated to 
determine whether assumptions were appropriate. Adjusted p-values 
were calculated using the Benjamini and Hochberg (BH) method to 
control the false discovery rate across markers (20). A fold-change 
threshold of >1.2 or <−1.2 (log₂ scale) and an adjusted p-value of 
<0.05 were applied to identify meaningful changes in expression 
levels. A volcano plot was generated to visualize log2 fold change for 
each protein, including negative log10-transformed adjusted p-values 
(R package: EnhancedVolcano) (21).

2.5 Predictive model generation using 
clinical data

All clinical data (described in Methods Section 2.1) were used as 
input into a random forest algorithm to generate a model that can best 
predict the proteomic data-derived clusters (R package: randomForest) 
(22). The top clinical data predictors of cluster membership were 
evaluated by mean decreases in accuracy and the Gini index, both 
used as measures of variable importance.

2.6 Weighted gene co-expression network 
analysis and hub network visualization

Weighted gene co-expression network analysis (WGCNA) was 
used to identify biologically functional modules of co-expressed 
proteins, as previously described (23) (R package: WGCNA) (24). To 
generate modules, a scale-free, weighted, signed network was 

assumed, and a soft adjacency matrix was computed using a threshold 
of 9—selected as the lowest power at which the scale-free topology 
model fit reached an R2 of 0.9. Refer to the Supplementary methods 
for module detection steps and specific parameters.

Within each module, all proteins are highly correlated; thus, 
modules are numerically represented by their first principal 
component, defined as the module eigenprotein (ME). The Pearson 
correlation between the ME and clinical and laboratory data was 
calculated and visualized as a heatmap. Adjusted p-values were 
calculated using the BH method to control the false discovery rate. A 
hub protein—defined as the protein with the highest intramodular 
connectivity (kME) for each module—was identified using the 
chooseTopHubInEachModule function.

Hub protein network graphs for the three largest modules—
MEturquoise, MEbrown, and MEblue—were generated using the 
following steps: (1) all differentially expressed (DE) proteins (from 
Results Section 3.3) were identified within each of the three modules; 
(2) the top 30 most strongly correlated proteins in each module hub 
were identified, regardless of whether they were detected as a DE 
protein; and (3) these proteins were overlaid to construct each module’s 
network graph. Edge lengths between nodes were determined using 
values from the adjacency matrix generated earlier in this section. 
Network graphs were plotted using the R package: igraph (25).

2.7 Pathway analysis

To characterize protein modules identified by WGCNA, two 
methods were used to perform pathway analyses: (1) gene set enrichment 
analysis (GSEA) and (2) overrepresentation analysis using a 
hypergeometric test (R package: org.Hs.eg.db and clusterProfiler) (26, 
27). For GSEA, the Pearson correlation between each protein NPX value 
and ME was calculated and used as a rank score for each protein. For the 
overrepresentation analysis, all proteins assigned to each module were 
used as input to the hypergeometric test. The “universe” for the 
hypergeometric test was defined as all 1,248 proteins analyzed for this 
study. The Gene Ontology (GO) “biological process” class of terms was 
used as a reference for both pathway analysis methods. Adjusted p-values 
for pathway analyses were calculated using the BH method (20).

2.8 Other statistical tests

The Wilcoxon rank-sum test was used to compare continuous 
variables (such as disease scores, clinical laboratory measures, and 
demographic background information) between the identified 
clusters. Categorical variables were compared using the chi-squared 
test. In all analyses, p < 0.05 was considered statistically significant. All 
analyses were performed using R software (version 4.3.2).

3 Results

3.1 Patient demographics and clinical 
characteristics

This study analyzed serum samples from 73 Japanese patients with 
moderate-to-severe AD from the BREEZE-AD2 study, with a mean 
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[standard deviation (SD)] age of 36.3 (10.8) years and a mean (SD) BMI 
of 24.0 (4.4) kg/m2. The mean (SD) EASI score in this cohort was 31.5 
(12.1). Patient demographics and clinical characteristics are summarized 
in Table 1. The AD clinical scores used in this analysis are outlined in 
Supplementary Table S1. Age- and sex-matched HC subjects had a mean 
(SD) age of 36.2 (12.2) years and BMI of 22.9 (2.6) kg/m2.

3.2 Cluster analysis suggests two stable 
and reproducible clusters

We had previously reported that k-means clustering could define 
two reproducible clusters within AD patients based on their 
circulatory protein profile—the “high inflammatory” cluster and the 
“low inflammatory” cluster (11). Building on this, we utilized the 
WCSS approach to visualize the optimal number of clusters within our 
current dataset (Figures  2A,B). We  then assessed the stability of 
patient clusters by comparing clustering results with and without HC 
data. Based on prior knowledge, we expected two patient clusters. 

We therefore hypothesized that K3_alldata would produce the same 
patient clusters as K2_patientdata, with HC samples in the K3_alldata 
set segregating into a third cluster separate from the two patient 
clusters. When clusters for K2_patientdata and K3_alldata were 
compared, the two patient clusters derived from both analyses were 
largely similar, with only two “outlier” patients from cluster 2 
clustering with the HC cluster in K3_alldata (labeled AD32 and 
AD65) (Figures 2C,D). Therefore, clustering based on the assumption 
of two patient clusters and the addition/removal of the HC data from 
the dataset did not lead to significant changes in patient cluster 
assignment, suggesting stable clusters.

K3_patientdata (three hypothetical patient clusters) and K4_
alldata (three hypothetical patient clusters + one HC cluster) were 
similarly evaluated. One patient cluster appeared stable in this 
comparison, but clusters 2 and 3 contained different assignments 
when HC data were excluded from the dataset 
(Supplementary Figure S1). Based on these observations, we deemed 
K2_patientdata to produce the most stable patient clusters and used 
these for conducting further downstream analyses.

TABLE 1  Demographic and clinical characteristics of Japanese patients with AD.

Total (N = 73) AD_HI (N = 31) AD_LO (N = 42)

Age, years, mean (SD) 36.3 (10.8) 36.3 (11.3) 36.3 (10.5)

Sex, n (%)

 � Male 39 (53.4) 21 (67.7) 18 (42.9)

 � Female 34 (46.6) 10 (32.3) 24 (57.1)

Age at diagnosis, years

 � Mean (SD) 9.9 (11.2) 13.4 (11.8) 7.3 (10.1)*

 � <18, n (%) 55 (75.3) 17 (54.8) 38 (90.5)**

 � ≥18 to <50, n (%) 18 (24.7) 14 (45.2) 4 (9.5)**

BMI, kg/m2, mean (SD) 24.0 (4.4) 23.6 (3.9) 24.4 (4.8)

EASI score, mean (SD) 31.5 (12.1) 37.7 (12.2) 26.9 (9.8)***

SCORAD score, mean (SD) 67.3 (11.6) 74.2 (12.2) 62.2 (8.2)***

BSA, %, mean (SD) 58.0 (20.8) 68.9 (19.0) 50.0 (18.5)***

Prior therapies, n (%)

 � Systemic 31 (42.5) 14 (45.2) 17 (40.5)

 � Topical only 42 (57.5) 17 (54.8) 25 (59.5)

 � Topical calcineurin inhibitors 50 (68.5) 24 (77.4) 26 (61.9)

 � Cyclosporin 13 (17.8) 7 (22.6) 6 (14.3)

IgE, IU/mL, mean (SD) 5,530 (7,090) 7,760 (8,190) 3,890 (5,720)*

Aspartate aminotransferase, IU/L, mean (SD) 23.9 (8.4) 27.2 (7.4) 21.4 (8.3)**

Cystatin C, mg/L, mean (SD) 0.9 (0.1) 0.9 (0.1) 0.8 (0.1)***

eGFR, mL/min/1.73m2, mean (SD) 110 (13.4) 109 (12.3) 111 (14.3)

Itch NRS, mean (SD) 6.6 (2.0) 7.3 (2.0) 6.1 (1.8)**

Triglycerides, mg/dL, mean (SD) 114 (61.1) 115 (55.7) 114 (65.5)

N = 70 N = 30 N = 40

Eosinophil count, × 109/L, mean (SD) 0.7 (0.6) 1.1 (0.8) 0.4 (0.2)***

Neutrophil count, × 109/L, mean (SD) 4.2 (1.4) 4.7 (1.4) 3.8 (1.3)**

*p < 0.05, **p ≤ 0.01, and ***p < 0.001 for the AD_HI versus AD_LO cluster.
AD, atopic dermatitis; BMI, body mass index; BSA, body surface area; EASI, Eczema Area and Severity Index; eGFR, estimated glomerular filtration rate; HI, high; Ig, immunoglobulin; LO, 
low; NRS, Numeric Rating Scale; SCORAD, SCORing Atopic Dermatitis; SD, standard deviation.
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Next, the reproducibility of clusters was evaluated for K2_
patientdata in 100 iterations using our proposed method. The median 
percent accuracy was 92% for the training set and 86% for the testing 
set, suggesting that the clusters were highly reproducible.

3.3 Two clusters have distinct protein 
expression profiles

Protein expression profiles were evaluated from patient serum 
samples after a medication washout period, as specified in the clinical 
trial protocol. This controlled for the effects of prior medication, such 
as topical or oral steroid use, on protein expression, ensuring that 
heterogeneity observed in the profiles closely reflects actual biological 
differences in disease states. Based on these proteomic profiles, the 
K2_patientdata combination generated two clusters: cluster 1 [n = 31 
(42%)] and cluster 2 [n = 42 (58%)]. The proteomic profile of both 
clusters and HCs was visualized using a heatmap to evaluate relative 
protein expression levels across the entire protein panel (Figure 3). 
HCs had visibly lower expression across much of the proteomic panel 
compared to the two patient clusters (Figure 3).

3.4 DE proteins in the two AD clusters

To further characterize differences in the protein expression 
profiles between the two patient clusters, a linear mixed model 
was used to evaluate differential protein expression, adjusting for 
age and sex as covariates. Two comparisons were made: (1) all 
patients versus HCs and (2) cluster 1 versus cluster 2. In these 

comparisons, 169 and 56 DE proteins (log2 fold change >1.2) were 
detected in all patients versus HCs and in cluster 1 versus cluster 
2, respectively (Figure  4A). There were no differentially 
downregulated proteins that reached the fold-change cutoff and 
statistical significance in both comparisons.

The DE proteins could be  categorized into three groups: (1) 
“Upregulated AD”—proteins upregulated in all AD patients; (2) 
“Stepwise”—proteins with the lowest expression in HCs, higher 
expression in cluster 2, and highest expression in cluster 1; and (3) 
“Unique”—proteins upregulated in cluster 1 but not cluster 2. 
Representative proteins with the largest fold change from each of the 
three groups are shown in Figures 4B–D.

The proteins with the largest fold change in the “Upregulated AD” 
group included epidermal growth factor (EGF), followed by epiregulin 
(EREG) and cluster of differentiation 40 ligand (CD40LG) (Figure 4E). 
Notably, CD40LG and CD69 are markers of activated T cells. The 40 
“Stepwise” proteins represent the quantitative difference between 
clusters 1 and 2, as illustrated by the overlap in the Venn diagram in 
Figure 4A. The top proteins with the largest log2 fold change in this 
group included IL-19, STAT5B, CCL17, S100A12, and CCL22—
inflammatory mediators known to be  associated with AD 
inflammation and eosinophilia (Figure  4F). Other cytokines and 
chemokines characteristic of AD pathology, such as pulmonary and 
activation-regulated chemokine (PARC/CCL18), eotaxin-3/CCL26, 
macrophage-derived chemokine (MDC/CCL22), cutaneous T-cell-
attracting chemokine (CTACK/CCL27), and IL-13, were also among 
the 40 “Stepwise” proteins.

The 16 “Unique” proteins upregulated only in cluster 1 may 
represent biological features specific to this subgroup (Figure 4F). 
These included proteins involved in cell proliferation and 

FIGURE 3

Heatmap of protein expression stratified by cluster. Cluster 1 (orange) and cluster 2 (blue). HCs are represented in gray. Within each subgroup, rows 
(samples) on the heatmap are sorted based on the x-value on the t-SNE plot (Figure 2C). Columns (proteins) are sorted using the default hierarchical 
clustering function in ComplexHeatmap. The color scheme is based on scaled and centralized protein expression data per marker across samples: 
red = higher expression; blue = lower expression. Differentially expressed proteins between the clusters are detailed in Supplementary Table S3. HC, 
healthy control; t-SNE, t-distributed stochastic neighbor embedding.
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migration (PXN, PTPN6, CDH3, FMNL1, and HDGF), cell stress 
(NCF2, EGLN1, and NDRG1), cellular metabolism (HNRNPK, 
NMNAT1, and SRP14), and DNA repair (MGMT, APEX1, and 
NBN). A full list of the three groups of DE proteins and their fold-
change values is available in Supplementary Tables S2, S3. Based 
on these DE protein profiles, cluster 1 was labeled the high-
inflammatory cluster (AD_HI), and cluster 2 was labeled the 
low-inflammatory cluster (AD_LO).

3.5 Characterization of protein modules 
associated with clusters, markers of disease 
severity, and metabolic function

To further characterize differences in protein expression profiles 
between the two clusters and how these differences correlate with 
disease measures, we used WGCNA—an unsupervised algorithm 
that identifies networks (modules) of highly correlated genes or 

FIGURE 4

Differential expression analysis of proteins in clusters and HCs derives three groups of proteins with distinct trends in expression. (A) Description of 
comparison groups in two differential expression analyses performed. Respective results are shown in a Venn diagram illustrating the number and 
overlap of DE proteins detected. The large circle represents the 169 proteins upregulated in all AD versus HCs. The smaller circle represents the 56 
proteins upregulated in cluster 1 over cluster 2. The three Venn diagram sections represent the three groups of DE proteins: Unique, Stepwise, and 
Upregulated AD. The 40 stepwise proteins represent the quantitative difference between clusters 1 and 2. (B) Expression patterns of representative 
proteins (largest fold change selected) in the (C) “Upregulated AD” group, (D) “Stepwise” group, and (E) “Unique” group. *p < 0.05, **p < 0.01, 
***p < 0.001, and ****p < 0.0001. (E) Volcano plot shows upregulated proteins in ALL_AD (all patients with AD) over HCs. Only proteins associated with 
AD pathophysiology and all other proteins with log2FC >2 were labeled. (F) Volcano plot shows upregulated proteins in cluster 1 over cluster 2. The 
analyte log2 fold change is plotted on the x-axis, and the negative log10-transformed adjusted p-value is plotted on the y-axis. AD, atopic dermatitis; 
ANOVA, analysis of variance; DE, differentially expressed; EGF, epidermal growth factor; HC, healthy control; HI, high; IL, interleukin; LO, low; NPX, 
normalized protein expression; ns, not significant; PXN, paxillin.
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FIGURE 5

WGCNA derivation of protein modules and their association with endotypes and clinical measures. (A) Cluster dendrogram illustrates 1,248 protein 
analytes clustered into 12 initial modules (represented in “Dynamic Tree Cut”) and 11 final modules (represented in “Merged Dynamic”) identified via a 
WGCNA algorithm. The row “Merged Dynamic” shows the 10 modules of interest used in subsequent analyses, plus one module (MEgrey) comprising 
only one protein (FCRL3). (B) Heatmap shows the correlation between the ME of each of the final 10 modules of interest and a clinical trait. The color 
scheme is based on the Pearson correlation value between the ME and the clinical trait value: red = positive correlation; blue = negative correlation. 
AD, atopic dermatitis; ADSS, Atopic Dermatitis Symptom Score; AGEDiag, age at diagnosis; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BSA, body surface area; BUN, blood urea nitrogen; CHOL, cholesterol; 
CholtoHDL, cholesterol-to-HDL ratio; Creat, creatinine; CysC, cystatin C; DLQI, Dermatology Life Quality Index; DurDiag, duration since first diagnosis; 
EASI, Eczema Area and Severity Index; eGFR, estimated glomerular filtration rate; Eos, eosinophils; FCRL3, fragment crystallizable receptor-like protein 
3; Flare1yr, flare in the past year; HADSAnx, Hospital Anxiety and Depression Scale—Anxiety; HADSDpr, Hospital Anxiety and Depression Scale—
Depression; HDL, high-density lipoprotein; HGB, hemoglobin; HI, high; Ig, immunoglobulin; IGA, Investigator Global Assessment; LDL, low-density 
lipoprotein; LYM, lymphocytes; ME, module eigenprotein; NEUT, neutrophils; NRS, Numeric Rating Scale; PGI.S, Patient Global Impression of Severity; 
POEM, Patient-Oriented Eczema Measure; PreBio, prior biologic; PreCyc, prior cyclosporin; PreSys, prior systemic therapy; PreSysCS, prior systemic 
corticosteroid; PreSysImSu, prior systemic immune suppressant; PreTCNI, prior topical calcineurin inhibitor; PROT, protein; SCORAD, SCORing Atopic 
Dermatitis; TRIG, triglycerides; WBC, white blood cell; WGCNA, weighted gene co-expression network analysis.
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proteins and reduces dimensionality in the proteomic data. The 
WGCNA algorithm clustered 1,248 protein analytes into 10 final 
modules of interest (Figure 5A). The number of proteins comprising 
each module ranged from 22 to 536 (Table 2). The hub protein for 
each module (the protein most strongly correlated to all other 
proteins within that module) is shown in Table 2. Each module’s 
correlation to clinical data and cluster assignment was also evaluated, 
and the correlation coefficient was visualized on a heatmap 
(Figure 5B). Coefficients and adjusted p-values for all correlations 
can be  found in the source data. The modules—MEturquoise, 
MEbrown, and MEblue—were most strongly correlated with AD 
disease scores, such as SCORing Atopic Dermatitis (SCORAD), 
body surface area (BSA), and EASI, indicating that the biological 
pathways represented by these modules are associated with disease 
severity (Figure 5B). Notably, these three disease modules were also 
found be  the largest. In addition to these, five more modules 
(MEgreen, MEmagenta, MEpink, MEpurple, and MEgreenyellow) 
were most strongly and significantly associated with the AD_HI 
cluster (Pearson coefficient >0.3, adj. p < 0.05) (source data file). 
These five modules were strongly correlated with liver enzyme levels 
[aspartate aminotransferase (AST), alanine aminotransferase 
(ALT)], white cell counts, triglycerides, BMI, and weight, indicating 
heterogeneity in the biology observed in the AD_HI cluster. This 
observation is also consistent with previous findings showing that 
upregulated proteins in the AD_HI cluster comprise both canonical 
and non-canonical AD protein biomarkers (11). This cluster-
module-clinical trait correlation approach further characterized the 
difference in molecular profile between the AD_HI and AD_LO 
clusters. Subsequent analysis focused on the relationship between 
the three disease-associated modules and the DE proteins described 
in Section 3.4.

All DE proteins described in Section 3.4 were grouped within the 
three disease modules, MEturquoise (46 proteins), MEbrown (94 
proteins), and MEblue (41 proteins), as well as MEpink (4 proteins). 
The WGCNA protein module makeup of the three groups of DE 
proteins is shown in Figure  6A. DE proteins within the disease 
modules and their connectivity to the hub protein were visualized on 
a network graph for each hub. Known inflammatory mediators of AD 

inflammation in the “Stepwise” group—CCL17, CCL18, CCL26, 
CCL22, CCL27, IL-19, and IL-13—are closely connected to the dpy-30 
histone methyltransferase complex regulatory subunit (DPY30; 
MEturquoise) hub, as shown in red in Figure  6B. Other 
pro-inflammatory mediators, such as IL-6 and IL2RA, were also 
located in this hub, suggesting that this module represents an 
AD-specific inflammatory module correlated with the AD_HI and 
AD_LO clusters, but to a larger extent with the AD_HI cluster 
(“Stepwise” trend).

MEbrown contains the hub protein CC2D1A (coiled-coil and C2 
domain containing 1A). The majority of the “Upregulated AD” 
proteins (green nodes) are grouped in this module (Figure 6A). Of the 
16 total “Unique” proteins (blue nodes) from the differential 
expression analysis, 13 were in the MEblue module connected to 
paxillin (PXN)—the hub protein for this module (Figure 6B).

Pathway analysis was performed to understand the protein 
makeup and biological function of each protein module. The full 
results of the two analyses are available in the source data, and a 
summary is provided in Table 3. Overall, the results suggest that the 
three major modules (MEturquoise, MEblue, and MEbrown) were 
enriched for pathways in cytokine signaling; adaptive immune 
response; protein, nucleotide, and cellular metabolism; and cell cycle 
regulation (Table 3). MEgreen, which was strongly correlated with 
liver enzymes and body weight, was enriched in proteins involved in 
organic and amino acid metabolism.

3.6 Association of the AD_HI endotype 
with disease severity scores and routine 
laboratory measures

Finally, we  evaluated all clinical (non-proteomic) data in a 
predictive model to objectively identify any potential clinical 
predictors for the two clusters. Eosinophil count was the strongest 
predictor for the clusters in this study, with all patients in AD_LO 
having a circulating eosinophil blood cell count ≤1.15 × 109 cells/L 
(Figure 7). Eosinophil count was followed by EASI score, cystatin C 
level, age at AD diagnosis, and baseline Itch Numeric Rating Scale 

TABLE 2  Summary characteristics of WGCNA-derived protein modules, including the hub protein, protein biomarker most correlated with the 
eigenprotein, module size, and clinical data most correlated with the eigenprotein.

Protein module Hub protein Size Clinical parameter

Turquoise DPY30 536 Disease severity (WBC count, neutrophils, eosinophils, EASI score, BSA, SCORAD score, 

and cystatin C)Brown CC2D1A 290

Blue PXN 178

Green ADH4 58 AST, ALT, body weight, cholesterol, triglycerides, and hemoglobin

Black CNTN1 37 Sex, WBC count, and neutrophils

Red BCAN 37 BMI and body weight

Pink VEGFC 34 Platelet count

Magenta DNPH1 28 Hemoglobin, urate, and WBC count

Purple CD93 27 Cystatin C

Green-yellow NBL1 22 Cystatin C and body weight

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BSA, body surface area; EASI, Eczema Area and Severity Index; SCORAD, SCORing Atopic 
Dermatitis; WBC, white blood cell; WGCNA, weighted gene co-expression network analysis.
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(NRS) score as the most predictive parameters (Supplementary  
Figure S2).

Based on the ranking of importance within the predictive 
model, selected clinical and laboratory measures representative of 
a range of physiological functions were assessed to confirm any 
statistically significant differences in mean values between the AD_
HI and AD_LO clusters. The AD_HI cluster was associated with a 
higher mean (SD) eosinophil count [1.1 (0.8) vs. 0.4 (0.2) × 109/L; 
p < 0.001], neutrophil count [4.7 (1.4) vs. 3.8 (1.3) × 109/L; 
p < 0.01], and immunoglobulin E level [7,760 (8,190) vs. 3,890 
(5,720) IU/mL; p < 0.05] compared with the AD_LO endotype 
(Table 1). The AD_HI cluster was also associated with higher levels 
of AST and cystatin C, suggesting a general hepatic burden and 
possible subclinical renal dysfunction. No significant differences 
were observed in estimated glomerular filtration rate (eGFR; 
calculated using serum creatinine) or triglycerides between AD_HI 
and AD_LO clusters; however, AD_HI was associated with a 
significantly lower mean eGFR when calculated using cystatin C 
values as previously described (28) [87.6 (12.7) vs. 99.9 (15.5) mL/
min/1.73 m2; p < 0.001]. The AD_HI cluster was associated with a 
higher mean (SD) EASI score [37.7 (12.2) vs. 26.9 (9.8); p < 0.001], 
SCORAD score [74.2 (12.2) vs. 62.2 (8.2); p < 0.001], and Itch NRS 
score [7.3 (2.0) vs. 6.1 (1.8); p = 0.01], while the AD_LO cluster was 
associated with an earlier AD diagnosis (p = 0.02) (Table 1). Box 
plots showing data by cluster for each of the above parameters are 
provided in Figure 7; Supplementary Figure S3.

4 Discussion

To the best of our knowledge, this is the first comprehensive 
molecular endotyping study of AD in a Japanese-only patient 
population using clinical trial data and a broad panel of immune- and 
non-immune-related protein analytes. Although biomarker-defined 
AD endotypes have been increasingly reported, the majority of studies 
focus on European populations, with limited representation of Asian 
cohorts. Expanding research to include diverse ethnic groups is 
warranted to advance knowledge in this field (29).

We previously established that k-means clustering with k = 2 
yielded reproducible clusters in a mixed cohort of AD patients, 
including Caucasian, African American, and Asian individuals (11). 
These two clusters differed in their inflammatory profiles, with one 
cluster exhibiting elevated inflammation levels and increased disease 
severity. In the current Japanese cohort, we identified two stable and 
reproducible clusters representing putative molecular endotypes of 
AD, distinguished by inflammatory profile. We designated these as 
AD_HI (high inflammatory) and AD_LO (low inflammatory) 
clusters.

We conducted DE analysis followed by WGCNA to investigate 
protein signatures associated with the defined clusters. The DE 
analysis revealed a quantitative difference between the two patient 
clusters, highlighted by a group of “Stepwise” proteins. This difference 
is characterized by cytokines and chemokines commonly associated 
with AD, including IL-13, IL-19, TARC (CCL17), PARC (CCL18), 

FIGURE 6

Hub network visualization of disease module proteins. (A) Bar graph shows the three groups of DE proteins and the WGCNA protein module they map 
to. Bar colors correspond to the WGCNA protein module colors. All DE proteins belonged to one of four main WGCNA protein modules: turquoise, 
pink, brown, and blue. (B) Network graphs for the three largest WGCNA protein modules. A graph was generated for each hub protein. Nodes 
represent the most correlated proteins within each module. Edge length reflects connectivity strength between nodes—shorter edges indicate 
stronger connectivity. Nodes are color-coded by the protein group assigned in the differential expression analysis: “Upregulated AD” (green), “Stepwise” 
(red), or “Unique” (blue). Gray nodes represent proteins that were not DE but were strongly connected components in the protein hubs. DE proteins 
were typically closely connected to the hub, resulting in few gray nodes. AD, atopic dermatitis; DE, differentially expressed; HC, healthy control; HI, 
high; LO, low; ME, module eigenprotein; WGCNA, weighted gene co-expression network analysis.
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eotaxin-3 (CCL26), CCL22, and CCL27. Previous studies have shown 
that these biomarkers correlate with disease severity in pediatric and 
adult AD cases (30–35).

Notably, STAT5B over-expression was evident in all AD patients 
and the AD_HI cluster. STAT5B acts downstream of JAK1, a gene in 
which gain-of-function mutations reportedly cause hypereosinophilic 
syndrome (36), and it is the target of the approved AD therapeutic 
agent baricitinib. High STAT5B expression in the AD_HI cluster 
aligns with the elevated eosinophil counts characteristic of this 
phenotype. Our analysis suggests that the level of inflammation, as 
reflected by these “Stepwise” circulating proteins, varies quantitatively 
within the AD patient population, and the magnitude of this variation 
may have clinical implications.

In Japan, TARC is an approved clinical biomarker for monitoring 
disease activity in AD patients, with a reference value of <450 pg/mL 
considered normal in healthy adults. Our results suggest that elevated 
TARC levels may mark a distinct disease state, potentially offering 
additional diagnostic or prognostic value. Further validation analyses are 
needed to understand the clinical utility of our identified clusters and, 
subsequently, to define higher TARC (and possibly a combination of other 
inflammatory mediators) concentrations that may have clinical utility.

In addition to quantitative differences seen in the canonical 
inflammatory mediators, qualitative differences were observed, 
represented by the “Upregulated AD” and “Unique” proteins. These 
proteins are involved in diverse biological processes, including skin 
barrier function, cell proliferation and migration, metabolism, and 
DNA repair. The selective upregulation of the “Unique” proteins in the 
AD_HI cluster suggests there may be a distinct biological component 
in this subgroup that is absent in AD_LO, indicating that these clusters 
may reflect different disease states. This finding also suggests that 
dysregulation of pathways other than cytokine-mediated inflammation 
could contribute to disease severity.

To further elucidate the protein signatures associated with the 
clusters, we performed WGCNA. This analysis identified three protein 
networks (modules) that were strongly correlated with the AD_HI 
cluster and with measures of disease severity, including EASI, SCORAD, 
and eosinophil count. Notably, all “Stepwise” canonical AD 
inflammatory mediators were closely connected to the largest module, 
reinforcing their key role in AD pathophysiology. The hub protein of 
this module, DPY30, is an integral core component of the SET1/MLL 
family of H3K4 methyltransferases. This complex regulates the cell cycle 
and plays an important role in the proliferation and differentiation of 
human hematopoietic progenitor cells (37). DPY30 itself was also 
identified as one of the “Stepwise” proteins. While its role in AD has not 
been directly studied, DPY30’s function in epigenetic regulation, 
particularly histone H3K4 methylation, suggests it may influence 
immune cell differentiation and cytokine expression relevant to AD 
pathogenesis and other inflammatory disorders. DPY30 has been 
implicated in tumor-associated inflammation and showed correlations 
with tumor grade and immune-related gene activation in colorectal 
cancer, as well as immune cell infiltration in esophageal cancer (38, 39).

Although not significantly upregulated in our DE analyses, other 
pro-inflammatory cytokines such as IL2RA and IL-6 were also closely 
connected within the DPY30 hub. This indicates that the upregulation 
of type 2 inflammation in AD may be  accompanied by other 
inflammatory axes. CC2D1A, another hub protein identified in a 
disease-associated module, functions as a transcriptional repressor 
in neuronal cells and has been linked to autism spectrum disorder, 
intellectual disability, and depression (40–42). While the significance 
of CC2D1A upregulation in AD is unclear, pathway analyses of the 
module proteins revealed involvement in processes including 
intracellular signaling, protein and nucleotide metabolism and 
transport, and cell adhesion. These pathways may be activated in 
response to external insults through the skin barrier, leading to 

TABLE 3  Summary of pathway enrichment analysis (GOBP) results for each protein module as evaluated by GSEA or overrepresentation by 
hypergeometric analysis.

Protein module Hypergeometric analysis GSEA

Turquoise Adaptive immune response, regulation of development, and 

T-cell differentiation

NA

Brown Intracellular transport, organelle organization, and protein 

catabolic process

Cell adhesion, system development, and neurogenesis

Blue Regulation of nucleotide metabolism and cellular 

metabolism

Organic cyclic compound, nitrogen compound metabolism, intracellular 

receptor signaling, and cell cycle

Green Carboxylic acid, oxoacid, organic acid, and amino acid 

metabolism

Carboxylic acid, organic acid, metabolism, and catabolism

Black Axonal and neuronal guidance, cell morphogenesis, and cell 

adhesion

Organic cyclic compound, nitrogen compound, cellular aromatic 

compound metabolism, and cell cycle

Red NA Cell adhesion

Pink Cell surface receptor signaling and cell motility and 

migration

Multicellular organismal process, system development, cell adhesion, 

and organism development

Magenta NA Nucleic acid and RNA metabolism

Purple NA Immune system process, positive regulation of cellular process, 

locomotion, and taxis

Green–yellow Negative regulation of signal transduction and serine/

threonine kinase pathway

NA

A textual summary of the top GOBP pathway hits, with BH-adjusted p < 0.05 shown.
BH, Benjamin and Hochberg; GOBP, gene ontology biological processes; GSEA, gene set enrichment analysis; NA, not available (no result obtained from analysis); RNA, ribonucleic acid.
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enhanced innate cell activation and increased signaling at the innate-
adaptive cell interface. PXN, the hub gene of the third disease 
module, is a focal adhesion protein involved in mediating intracellular 
signaling. Interactions between alpha-4 integrin and PXN have been 
used as targets to inhibit T-cell homing to sites of inflammation (43). 
The upregulation of PXN—along with other T-cell markers such as 
CD40LG and CD69—is particularly relevant given that AD is a 
T-cell-driven disease. PXN has also been implicated in several 
inflammatory and immune-related diseases, including rheumatoid 
arthritis and inflammatory bowel disease, as well as tumor-associated 
inflammation (44).

Aside from the three main disease modules, a broad evaluation of 
clusters to module to clinical trait correlations shows that the AD_HI 
cluster is most strongly correlated with many protein modules that are 
also linked to clinical traits (liver enzymes, weight, and BMI) beyond 
AD disease severity. These non-disease modules contained cell adhesion 
and carboxylic and organic acid metabolism processes. The specific role 
of these pathways in AD disease etiology remains to be elucidated.

We found key differences in clinical characteristics between the two 
clusters that may have direct implications for clinical practice. For 
instance, all patients in the AD_LO cluster had eosinophil counts below 
1.15 × 109/L. Given the normal adult reference range for circulating 
absolute eosinophil counts is 0.03–0.35 × 109/L, our results indicate that 
eosinophilia is evident in a subset of the AD_LO cluster and is even more 
pronounced in the AD_HI cluster. Additionally, significantly higher 
EASI and SCORAD scores were seen in AD_HI compared to AD_LO, 
with mean differences of 10.8 and 12.0, respectively. Notably, 29 of the 
31 patients in the AD_HI cluster were classified as having severe to very 
severe disease based on clinical definitions, with the remaining two 
patients classified as having moderate disease (EASI score ≤21). Finally, 
approximately 90% of patients in the AD_LO cluster were diagnosed 

before 18 years of age. Age of onset is an important clinical characteristic 
in AD, and a recent study showed that pediatric- and adult-onset AD 
exhibit distinct inflammatory profiles in skin and blood (45). Taken 
together, these findings suggest that a patient’s molecular endotype may 
be  predicted using a combination of AD biomarkers (e.g., TARC), 
eosinophil count, EASI and SCORAD scores, and age of disease onset. 
This cross-validation of skin and blood measures also reinforces the 
clustering outcome and increases the relevance of the biology observed 
in our proposed endotypes. This further highlights the systemic nature 
of AD, where skin inflammation is reflected in the circulation.

Unexpectedly, we  found that patients in the AD_HI cluster 
tended to have higher circulating cystatin C levels, which 
corresponded to significantly lower cystatin C-derived eGFR values. 
Circulating cystatin C is commonly used as a clinical measure of 
kidney function, with elevated levels potentially indicating 
subclinical renal impairment (46). Although research is limited, the 
severity of several inflammatory skin diseases, including atopic 
eczema, is weakly associated with chronic kidney disease (47). 
Elevated cystatin C in AD_HI could be attributed to the prolonged 
use of medication or the chronic inflammatory burden associated 
with AD; however, we were not able to draw such conclusions from 
our dataset. Cystatin C is a marker of inflammation in various 
disease states (48, 49), and elevated cystatin C is observed in 
patients with asthma, where it may act as an inflammatory mediator 
in the lungs (50). Future research examining the relationship 
between the duration of AD medication use and the inflammatory 
profile of the disease may provide new insights into the potential 
role of cystatin C as a biomarker of inflammation.

Our study differs from previous molecular endotyping research in 
that this cohort of patients underwent a strict topical and systemic AD 
treatment washout period prior to blood sample collection. As such, the 

FIGURE 7

Evaluation of clinical and laboratory measures for the AD_HI and AD_LO endotypes. (A) EASI score, (B) Itch NRS score, (C) duration of disease, 
(D) eosinophil count, (E) IgE levels, (F) AST levels, (G) cystatin C levels, and (H) eGFR calculated using cystatin C. p-values were calculated using the 
Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, and ***p < 0.001. AD, atopic dermatitis; AST, aspartate aminotransferase; EASI, Eczema Area and Severity 
Index; eGFR, estimated glomerular filtration rate; HI, high; Ig, immunoglobulin; LO, low; NRS, Numeric Rating Scale.
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circulating profile described in our cohort is not confounded by the 
immediate immunosuppressive effects of medication and could more 
closely reflect ongoing disease pathophysiology. However, prolonged 
use of immunosuppressive therapies is common in this patient 
population, and lasting effects on protein expression cannot 
be precluded. Circulating protein expression may also be influenced by 
external factors, such as skin infection with microbial pathogens and 
environmental irritants, given that a compromised skin barrier is a 
clinical feature of AD. Colonization with Staphylococcus aureus 
(S. aureus) is common in AD and is associated with a distinct phenotype 
marked by severe disease and impaired skin barrier function (51). In 
response to S. aureus, epithelial cell-derived cytokines such as TSLP and 
IL-33 further drive Th2 responses common in AD immunopathology 
(52). Environmental irritants, including detergents and pollutants, can 
also penetrate the compromised epidermal barrier in AD, leading to 
keratinocyte injury and localized inflammation. Together, external 
stimuli and compromised skin barrier function could affect the 
circulating protein profile observed in individuals with AD.

This study has limitations that should be  considered when 
interpreting the findings. It included a relatively small sample size and 
captured only a single pre-treatment data point from Japanese patients 
enrolled in a clinical trial, which may limit the generalizability to the 
broader Japanese AD population. Additionally, our analysis was based 
on a manufacturer-defined limited protein panel comprising 1,248 
protein analytes. Future studies using larger or unbiased proteomic 
approaches, such as mass spectrometry, may be  well-suited to 
understanding non-canonical biological mechanisms contributing to 
AD heterogeneity. Despite these limitations, our findings support the 
reproducibility of the proposed high- and low-inflammatory 
endotypes described previously, which we characterize in this study. 
Further validation in larger training and validation cohorts is needed 
to confirm these findings. Moreover, future studies should utilize 
larger cohorts and aim to link molecular endotypes with treatment 
efficacy outcomes to evaluate their true clinical utility. Additionally, 
because this study did not assess longitudinally collected samples, it 
could only characterize an individual’s disease state at a single time 
point. Given that AD is characterized by periods of flares and 
remission, future studies tracking biomarker profiles over time may 
provide more insight into the potential dynamism of AD endotypes.

Overall, our study may contribute to understanding the 
heterogeneity among patients with AD. It makes preliminary and 
exploratory connections between the molecular mechanisms 
underlying AD endotypes and clinical measures such as EASI, 
eosinophil count, and cystatin C levels—parameters that, pending 
further functional validation, could be  readily incorporated into 
clinical practice. Defining biomarker-based endotypes and their 
associations with clinical phenotypes represents an important starting 
point. Building on this research will help clinicians make more 
informed, personalized treatment decisions—particularly in the 
current landscape of increasingly targeted therapies for AD.
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