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Comprehensive proteome
profiling of molecular endotypes
in Japanese adults with
moderate-to-severe atopic
dermatitis
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Jonathan T. Sims?

LELli Lilly Japan K.K., Kobe, Japan, 2Eli Lilly and Company, Indianapolis, IN, United States

Introduction: Atopic dermatitis (AD) is an inflammatory skin disease that is
heterogeneous in clinical presentation and biological mechanisms. Several
studies have suggested biomarker-defined molecular endotypes in AD. This
study aimed to characterize potential endotypes in Japanese patients with
moderate-to-severe AD and comprehensively evaluate their circulating protein
profiles to better understand disease etiology.

Methods: Serum samples from Japanese patients with moderate-to-severe AD
(n = 73) enrolled in a phase 3 study of baricitinib (BREEZE-AD2; NCT03334422)
and samples from healthy controls (n = 15) were analyzed using the Olink
Explore 1536 assay. Patient clusters were identified through k-means clustering.
Differential expression analysis and weighted gene co-expression network
analysis were performed for in-depth examination of proteomic profiles.
Results: Two patient clusters, characterized by high (AD_HI) and low (AD_LO)
inflammatory profiles, were found to be stable and reproducible. Canonical
AD inflammatory mediators—including interleukin (IL)-13, IL-19, pulmonary
and activation-regulated chemokine (PARC), thymus and activation-regulated
chemokine (TARC), chemokine (C-C motif) ligand (CCL)22, CCL26, and
CCL27—were upregulated in both clusters, with greater upregulation in the
AD_HI cluster. Additionally, proteins not typically associated with AD-related
infammation were upregulated in AD_HI patients. The AD_HI cluster was
associated with protein networks representing a range of immune and non-
immune pathways. Dysregulated protein signatures associated with the AD_HI
cluster were also correlated with skin-based disease severity scores.
Conclusion: This study characterizes the circulating proteome and clinical
characteristics across putative molecular endotypes in AD. The findings
corroborate current knowledge on AD pathophysiology and suggest other axes
of dysregulation in a subset of patients with AD. These results may support the
development of personalized therapeutic approaches.
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1 Introduction

Atopic dermatitis (AD) is a common inflammatory skin disease
worldwide, characterized by heterogeneity in clinical presentation
and underlying biological mechanisms (1, 2). Despite this, patients
are often managed using a generalized treatment approach (3).
Although significant progress has been made in understanding AD
immunopathology, further insight into the molecular mechanisms
underlying its varied phenotypes is an important step toward
personalized medicine.

AD is mediated by T-helper (Th) cell responses (4). The
interleukin (IL)-13/Th2 axis is a key pathway in AD pathogenesis,
although Th1 and Th17 pathways have also been implicated (1, 2,
5). In Japan, approved targeted therapeutics for AD include
monoclonal antibodies targeting the IL-4/IL-13 pathway, broad-
acting small-molecule Janus kinase (JAK) inhibitors, and IL-31-
targeting therapy, which is approved for the treatment of
AD-associated itching (6, 7).
lymphopoietin (TSLP)-targeting therapies are in advanced stages

Several thymic stromal
of clinical development. While these treatments can temporarily
alleviate AD symptoms, their efficacy and long-term safety remain
limited (8).

AD can be classified into endotypes based on the
immunopathologic disease mechanism. Although still limited, a
growing number of studies have characterized biomarker-defined
AD endotypes using blood or skin samples and have identified
regional and ethnic differences in disease mechanisms and
phenotypes (1, 9-14). Upregulation of the Th2/Th17 axes has
been observed in Asian patients with AD, potentially indicating a
blended molecular phenotype of disease axes previously
considered mutually exclusive to AD and psoriasis, respectively
(9, 15). A recent analysis of skin and peripheral blood
mononuclear cell samples from Japanese patients with AD
demonstrated phenotype-endotype associations and variability in
immune cell profiles within individuals over time (10). Factors
correlating with disease severity in these patients included the
serum thymus and activation-regulated chemokine (TARC),
lactate dehydrogenase, and eosinophil counts—all established AD
biomarkers (10). In this same study, network analysis also
identified two novel transcriptome modules associated with
disease progression (10).

We have previously published data describing endotypes
characterized by their level of inflammation, as measured by
circulating protein biomarkers (11). While there is no current
consensus on which of the identified biomarker-defined
endotypes is most biologically or clinically significant, these
findings indicate that a systemic inflammatory state accompanies
the physical inflammation observed in adult patients with AD
(11). The degree of inflammation was found to correlate with
disease severity to varying extents among different ethnic groups
(11). Building on these data, we aimed to perform a similar study
focusing on a single ethnic population.

Using computational methods, including clustering and
network analysis, this study aimed to identify disease endotypes
in Japanese patients with moderate-to-severe AD. Additionally,
we sought to characterize clinical features associated with each
identified endotype.
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2 Methods
2.1 Participants and clinical data

This study included 73 Japanese patients with moderate-to-
severe AD enrolled in the global phase 3 study of baricitinib
(BREEZE-AD2; ClinicalTrials.gov: NCT03334422). Included
patients were aged >18 years; had an AD diagnosis according to
the American Academy of Dermatology criteria for at least
12 months prior to screening; and had moderate-to-severe AD
indicated by a baseline Eczema Area and Severity Index (EASI)
score >16, an Investigator’s Global Assessment for AD score >3,
and body surface area involvement >10%. Patients also had a
documented history of inadequate response or intolerance to
existing topical medications. Key exclusion criteria included
concomitant skin conditions such as psoriasis, eczema
herpeticum, or skin infections requiring treatment with systemic
or topical antibiotics or corticosteroids. Full details of the
inclusion and exclusion criteria can be found on
ClinicalTrials.gov.

Patient demographics and baseline clinical trial data—
including age, sex, body mass index (BMI), AD clinical scores,
prior therapy use, and routine safety clinical laboratory test results
obtained at the same visit as the serum samples—were used in this
analysis. These data are collectively referred to as clinical and
laboratory data in subsequent sections. A total of 15 age- and
sex-matched healthy control (HC) subjects with no allergic
conditions were recruited separately, and serum samples were
collected using the same procedures as for the patient cohort. The
inclusion criteria for HC subjects are outlined in the
Supplementary methods.

The study was conducted in accordance with the Declaration
of Helsinki and Good Clinical Practice guidelines. All participants
provided written informed consent before any study-related

procedures and consented to biomarker testing.

2.2 Serum proteomic assay and data

Patients underwent a 4-week systemic and 2-week topical
AD therapy washout period before clinical trial enrollment. To
ensure an accurate reflection of basal biological profiles, serum
samples analyzed in this study were collected after the washout
period and before administration of the first trial drug, in
accordance with the clinical trial protocol. Blood was collected
in tubes containing a clotting agent (Becton, Dickinson and
Company, Serum Separator Tube 5 mL). The tube was allowed
to stand for 30 min before being centrifuged at 1,500 g for
15 min. The supernatant was obtained and stored at —70 °C until
the assay was performed.

Circulating proteins were assayed using the Olink Explore
1536 panel (Olink® Proteomics, Sweden, catalog #97000), a
proteomics platform that combines an antibody-based
immunoassay with a proximity oligonucleotide extension assay
and signal detection with next-generation sequencing on the
NovaSeq6000 (Illumina Inc., San Diego, United States). The
panel includes four subpanels, as defined by the manufacturer:
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inflammation, oncology, neurology, and cardiometabolic.
Sample preparation and assay procedures were performed
according to the manufacturer’s specifications. The measured
protein expression levels in each sample were adjusted relative
to a plate control sample to yield a normalized protein
expression (NPX) value. Details on protein expression
normalization, data quality control (QC) procedures, and
criteria are provided in the Supplementary methods. Following
QC filtering, which included the selection of markers with a
CoV >20%, 1,248 protein analytes were available for all
downstream analysis. Olink data are referred to as proteomic or
biomarker data in subsequent sections.

10.3389/fmed.2025.1649918

2.3 Cluster stability and reproducibility
analysis

Patient clusters were generated using the k-means clustering
algorithm applied to serum proteomic data, as we had previously
validated the accuracy of this algorithm using a bootstrapping method
(11). To visualize cluster behavior, the within-cluster sum of squares
(WCSS) for 1 to 10 clusters (k = 1 through 10) was first obtained using
the k-means function in the R package: stats (16). Based on this, an
optimal number of clusters was selected and assessed for stability and
reproducibility. Refer to the flowchart shown in Figure 1 for a
schematic representation of the overall cluster determination strategy.

Patient Data

AD patients only (AD1,
AD2, ...AD73)
n=73

3

All Data
AD patients (AD1, AD2, ...AD73) &
HCs (HC1, HC2,... HC15)
n=88

k means clustering

Plot within cluster
sum of squares for

I
k=2 kl= 3
1) K2_patientdata  2) K3_patientdata

Cluster2. .. |

Clusterz.’_’ 1

Cluster3”

k=1to 10

| l

k=3 k=4
3) K3_alldata 4)K4_alldata
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FIGURE 1
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Methodology for assessing cluster stability and reproducibility. Flowchart outlining the steps undertaken to assess cluster stability and reproducibility.
AD, atopic dermatitis; HC, healthy control.
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2.3.1 Cluster stability

Stability of clusters was assessed by including or excluding HC
data from the clustering analysis to perturb the dataset. K-means
clustering was performed separately for patient data only (n = 73) and
for the combined patient and HC dataset (n = 88). Based on scree
plots of the WCSS on patient data, we postulated that either k = 2 or
k = 3 could represent a plausible number of patient clusters. Since HCs
were expected to form a separate cluster, we assessed clustering
outcomes using k = 3 (two patient clusters + one HC cluster) or k = 4
(three patient clusters + one HC cluster) for all data (n = 88). For
cluster numbers greater than three (in patient data) or greater than
four (in all data), the reduction in WCSS became less significant and
stabilized with each additional cluster. Based on this, k-means
clustering was performed using the following parameters and
data input:

10.3389/fmed.2025.1649918

1 K2_patientdata: k = 2, all patient data only (n = 73).
2 K3_patientdata: k = 3, all patient data only (n = 73).
3 K3_alldata: k = 3, all patient and HC data (n = 88).
4 K4_alldata: k = 4, all patient and HC data (n = 88).

The outcomes of K2_patientdata were compared to K3_alldata,
and the results are shown in Figure 2. The assignment of each patient
into one of the two clusters in K2_patientdata was compared to that
in K3_alldata using a confusion matrix (R package: caret). The same
comparison was performed between K3_patientdata and K4_alldata
(Supplementary Figure S1).

2.3.2 Cluster reproducibility
To assess the reproducibility of the two patient clusters, we used a
method previously published by our group. First, the samples were split

(A) Patients and HCs

70000

60000

WCSS

50000

40000

©

Patient data only

45000

20

{ W "
NG
Himy |
. -40 —
80 _4; 5 o -50 25 0 25
k=3, all data
Confusion matrix
Cluster 1 Cluster 2 Cluster HC
k=2, patient Cluster 1 31 0 0
data
Cluster 2 0 40 2

FIGURE 2

Evaluation of the optimal number of clusters. WCSS for k = 1 to k = 10 was assessed for k-means clustering on (A) all patients including HCs (K3_
alldata) or on (B) patient data only (K2_patientdata). (C) t-SNE projection of the high-dimensional proteomic data into a two-dimensional space for
clusters derived using K3_alldata. (D) t-SNE projections for clusters derived using K2_patientdata. Orange = cluster 1; blue = cluster 2; black = cluster 3.
AD, atopic dermatitis; HC, healthy control; t-SNE, t-distributed stochastic neighbor embedding; WCSS, within-cluster sum of squares.
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into training and testing sets. Second, the same training and testing sets
were subjected to k-means clustering with k =2. Third, a cluster
prediction rule was established using a random forest model (R
package: randomForest), and the percent accuracy for the training set
was calculated. This prediction rule was then applied to predict
membership for each sample in the testing set, and the percent
accuracy was calculated. Finally, the entire procedure was repeated 100
times for each scenario, and percent accuracy values for all 100
iterations were calculated for both the training and testing sets.

2.3.3 Cluster visualization

To visualize the clusters, data dimensionality was first reduced by
t-distributed stochastic neighbor embedding (#-SNE) analysis using
the R package: t-SNE (17). The t-SNE projections were then used to
visualize the clusters and evaluate their distinctiveness. The 95%
confidence intervals for each cluster were drawn using the R package:
ggplot2 (18).

2.4 Proteomic data visualization and
differential expression analysis

Scaled proteomic data were visualized using a heatmap to evaluate
overall protein expression in patients with AD and HCs (R package:
ComplexHeatmap). Differential protein expression was performed
using linear models for microarray data (R package: limma) (19),
accounting for age and sex as covariates. An empirical Bayes step was
applied to moderate the residual variances by borrowing strength
between features in high-dimensional data (19). After fitting the
model, a mean-variance plot for the full dataset was evaluated to
determine whether assumptions were appropriate. Adjusted p-values
were calculated using the Benjamini and Hochberg (BH) method to
control the false discovery rate across markers (20). A fold-change
threshold of >1.2 or <—1.2 (log, scale) and an adjusted p-value of
<0.05 were applied to identify meaningful changes in expression
levels. A volcano plot was generated to visualize log, fold change for
each protein, including negative log,,-transformed adjusted p-values
(R package: EnhancedVolcano) (21).

2.5 Predictive model generation using
clinical data

All clinical data (described in Methods Section 2.1) were used as
input into a random forest algorithm to generate a model that can best
predict the proteomic data-derived clusters (R package: randomForest)
(22). The top clinical data predictors of cluster membership were
evaluated by mean decreases in accuracy and the Gini index, both
used as measures of variable importance.

2.6 Weighted gene co-expression network
analysis and hub network visualization

Weighted gene co-expression network analysis (WGCNA) was
used to identify biologically functional modules of co-expressed
proteins, as previously described (23) (R package: WGCNA) (24). To
generate modules, a scale-free, weighted, signed network was
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assumed, and a soft adjacency matrix was computed using a threshold
of 9—selected as the lowest power at which the scale-free topology
model fit reached an R? of 0.9. Refer to the Supplementary methods
for module detection steps and specific parameters.

Within each module, all proteins are highly correlated; thus,
modules are numerically represented by their first principal
component, defined as the module eigenprotein (ME). The Pearson
correlation between the ME and clinical and laboratory data was
calculated and visualized as a heatmap. Adjusted p-values were
calculated using the BH method to control the false discovery rate. A
hub protein—defined as the protein with the highest intramodular
connectivity (kME) for each module—was identified using the
chooseTopHubInEachModule function.

Hub protein network graphs for the three largest modules—
MEturquoise, MEbrown, and MEblue—were generated using the
following steps: (1) all differentially expressed (DE) proteins (from
Results Section 3.3) were identified within each of the three modules;
(2) the top 30 most strongly correlated proteins in each module hub
were identified, regardless of whether they were detected as a DE
protein; and (3) these proteins were overlaid to construct each module’s
network graph. Edge lengths between nodes were determined using
values from the adjacency matrix generated earlier in this section.
Network graphs were plotted using the R package: igraph (25).

2.7 Pathway analysis

To characterize protein modules identified by WGCNA, two
methods were used to perform pathway analyses: (1) gene set enrichment
analysis (GSEA) and (2) overrepresentation analysis using a
hypergeometric test (R package: org.Hs.eg.db and clusterProfiler) (26,
27). For GSEA, the Pearson correlation between each protein NPX value
and ME was calculated and used as a rank score for each protein. For the
overrepresentation analysis, all proteins assigned to each module were
used as input to the hypergeometric test. The “universe” for the
hypergeometric test was defined as all 1,248 proteins analyzed for this
study. The Gene Ontology (GO) “biological process” class of terms was
used as a reference for both pathway analysis methods. Adjusted p-values
for pathway analyses were calculated using the BH method (20).

2.8 Other statistical tests

The Wilcoxon rank-sum test was used to compare continuous
variables (such as disease scores, clinical laboratory measures, and
demographic background information) between the identified
clusters. Categorical variables were compared using the chi-squared
test. In all analyses, p < 0.05 was considered statistically significant. All
analyses were performed using R software (version 4.3.2).

3 Results

3.1 Patient demographics and clinical
characteristics

This study analyzed serum samples from 73 Japanese patients with
moderate-to-severe AD from the BREEZE-AD2 study, with a mean
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[standard deviation (SD)] age of 36.3 (10.8) years and a mean (SD) BMI
0f 24.0 (4.4) kg/m’. The mean (SD) EASI score in this cohort was 31.5
(12.1). Patient demographics and clinical characteristics are summarized
in Table 1. The AD clinical scores used in this analysis are outlined in
Supplementary Table S1. Age- and sex-matched HC subjects had a mean
(SD) age of 36.2 (12.2) years and BMI of 22.9 (2.6) kg/m”.

3.2 Cluster analysis suggests two stable
and reproducible clusters

We had previously reported that k-means clustering could define
two reproducible clusters within AD patients based on their
circulatory protein profile—the “high inflammatory” cluster and the
“low inflammatory” cluster (11). Building on this, we utilized the
WCSS approach to visualize the optimal number of clusters within our
current dataset (Figures 2A,B). We then assessed the stability of
patient clusters by comparing clustering results with and without HC
data. Based on prior knowledge, we expected two patient clusters.

10.3389/fmed.2025.1649918

We therefore hypothesized that K3_alldata would produce the same
patient clusters as K2_patientdata, with HC samples in the K3_alldata
set segregating into a third cluster separate from the two patient
clusters. When clusters for K2_patientdata and K3_alldata were
compared, the two patient clusters derived from both analyses were
largely similar, with only two “outlier” patients from cluster 2
clustering with the HC cluster in K3_alldata (labeled AD32 and
ADG65) (Figures 2C,D). Therefore, clustering based on the assumption
of two patient clusters and the addition/removal of the HC data from
the dataset did not lead to significant changes in patient cluster
assignment, suggesting stable clusters.

K3_patientdata (three hypothetical patient clusters) and K4_
alldata (three hypothetical patient clusters + one HC cluster) were
similarly evaluated. One patient cluster appeared stable in this
comparison, but clusters 2 and 3 contained different assignments
when HC data
(Supplementary Figure S1). Based on these observations, we deemed

were excluded from the dataset

K2_patientdata to produce the most stable patient clusters and used
these for conducting further downstream analyses.

TABLE 1 Demographic and clinical characteristics of Japanese patients with AD.

Total (N = 73)

AD_HI (N = 31) AD_LO (N = 42)

Age, years, mean (SD) 36.3 (10.8) 36.3 (11.3) 36.3 (10.5)
Sex, 1 (%)

Male 39 (53.4) 21(67.7) 18 (42.9)

Female 34 (46.6) 10 (32.3) 24 (57.1)
Age at diagnosis, years

Mean (SD) 9.9 (11.2) 13.4 (11.8) 7.3 (10.1)%

<18, 1 (%) 55 (75.3) 17 (54.8) 38 (90.5)%*

>18 to <50, 1 (%) 18 (24.7) 14 (45.2) 4 (9.5)%*
BMI, kg/m? mean (SD) 24.0 (4.4) 23.6 (3.9) 24.4 (4.8)
EASI score, mean (SD) 31.5(12.1) 37.7 (12.2) 26.9 (9.8)%*
SCORAD score, mean (SD) 67.3 (11.6) 74.2 (12.2) 62.2 (8.2)%**
BSA, %, mean (SD) 58.0 (20.8) 68.9 (19.0) 50.0 (18.5)%*#*
Prior therapies, n (%)

Systemic 31 (42.5) 14 (45.2) 17 (40.5)

Topical only 42 (57.5) 17 (54.8) 25 (59.5)

Topical calcineurin inhibitors 50 (68.5) 24 (77.4) 26 (61.9)

Cyclosporin 13 (17.8) 7 (22.6) 6(14.3)
IgE, IU/mL, mean (SD) 5,530 (7,090) 7,760 (8,190) 3,890 (5,720)*
Aspartate aminotransferase, IU/L, mean (SD) 23.9(8.4) 27.2(7.4) 21.4 (8.3)%*
Cystatin C, mg/L, mean (SD) 0.9 (0.1) 0.9 (0.1) 0.8 (0.1)%:*
eGFR, mL/min/1.73m? mean (SD) 110 (13.4) 109 (12.3) 111 (14.3)
Itch NRS, mean (SD) 6.6 (2.0) 7.3(2.0) 6.1 (1.8)%*
Triglycerides, mg/dL, mean (SD) 114 (61.1) 115 (55.7) 114 (65.5)

N=70 N=30 N=40

Eosinophil count, X 10°/L, mean (SD) 0.7 (0.6) 1.1 (0.8) 0.4 (0.2)%**
Neutrophil count, x 10°/L, mean (SD) 4.2 (1.4) 4.7 (1.4) 3.8 (1.3)%:*

*p < 0.05, #*p < 0.01, and **¥p < 0.001 for the AD_HI versus AD_LO cluster.

AD, atopic dermatitis; BMI, body mass index; BSA, body surface area; EASI, Eczema Area and Severity Index; eGFR, estimated glomerular filtration rate; HI, high; Ig, immunoglobulin; LO,

low; NRS, Numeric Rating Scale; SCORAD, SCORing Atopic Dermatitis; SD, standard deviation.
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FIGURE 3

Heatmap of protein expression stratified by cluster. Cluster 1 (orange) and cluster 2 (blue). HCs are represented in gray. Within each subgroup, rows
(samples) on the heatmap are sorted based on the x-value on the t-SNE plot (Figure 2C). Columns (proteins) are sorted using the default hierarchical
clustering function in ComplexHeatmap. The color scheme is based on scaled and centralized protein expression data per marker across samples:
red = higher expression; blue = lower expression. Differentially expressed proteins between the clusters are detailed in Supplementary Table S3. HC,

healthy control; t-SNE, t-distributed stochastic neighbor embedding.

Next, the reproducibility of clusters was evaluated for K2_
patientdata in 100 iterations using our proposed method. The median
percent accuracy was 92% for the training set and 86% for the testing
set, suggesting that the clusters were highly reproducible.

3.3 Two clusters have distinct protein
expression profiles

Protein expression profiles were evaluated from patient serum
samples after a medication washout period, as specified in the clinical
trial protocol. This controlled for the effects of prior medication, such
as topical or oral steroid use, on protein expression, ensuring that
heterogeneity observed in the profiles closely reflects actual biological
differences in disease states. Based on these proteomic profiles, the
K2_patientdata combination generated two clusters: cluster 1 [n = 31
(42%)] and cluster 2 [n = 42 (58%)]. The proteomic profile of both
clusters and HCs was visualized using a heatmap to evaluate relative
protein expression levels across the entire protein panel (Figure 3).
HC:s had visibly lower expression across much of the proteomic panel
compared to the two patient clusters (Figure 3).

3.4 DE proteins in the two AD clusters

To further characterize differences in the protein expression
profiles between the two patient clusters, a linear mixed model
was used to evaluate differential protein expression, adjusting for
age and sex as covariates. Two comparisons were made: (1) all
patients versus HCs and (2) cluster 1 versus cluster 2. In these
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comparisons, 169 and 56 DE proteins (log, fold change >1.2) were
detected in all patients versus HCs and in cluster 1 versus cluster
2, respectively (Figure 4A). There were no differentially
downregulated proteins that reached the fold-change cutoff and
statistical significance in both comparisons.

The DE proteins could be categorized into three groups: (1)
“Upregulated AD”—proteins upregulated in all AD patients; (2)
“Stepwise”—proteins with the lowest expression in HCs, higher
expression in cluster 2, and highest expression in cluster 1; and (3)
“Unique”—proteins upregulated in cluster 1 but not cluster 2.
Representative proteins with the largest fold change from each of the
three groups are shown in Figures 4B-D.

The proteins with the largest fold change in the “Upregulated AD”
group included epidermal growth factor (EGF), followed by epiregulin
(EREQG) and cluster of differentiation 40 ligand (CD40LG) (Figure 4E).
Notably, CD40LG and CD69 are markers of activated T cells. The 40
“Stepwise” proteins represent the quantitative difference between
clusters 1 and 2, as illustrated by the overlap in the Venn diagram in
Figure 4A. The top proteins with the largest log, fold change in this
group included IL-19, STAT5B, CCL17, S100A12, and CCL22—
inflammatory mediators known to be associated with AD
inflammation and eosinophilia (Figure 4F). Other cytokines and
chemokines characteristic of AD pathology, such as pulmonary and
activation-regulated chemokine (PARC/CCL18), eotaxin-3/CCL26,
macrophage-derived chemokine (MDC/CCL22), cutaneous T-cell-
attracting chemokine (CTACK/CCL27), and IL-13, were also among
the 40 “Stepwise” proteins.

The 16 “Unique” proteins upregulated only in cluster 1 may
represent biological features specific to this subgroup (Figure 4F).
These included proteins involved in cell proliferation and
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FIGURE 4

Differential expression analysis of proteins in clusters and HCs derives three groups of proteins with distinct trends in expression. (A) Description of
comparison groups in two differential expression analyses performed. Respective results are shown in a Venn diagram illustrating the number and
overlap of DE proteins detected. The large circle represents the 169 proteins upregulated in all AD versus HCs. The smaller circle represents the 56
proteins upregulated in cluster 1 over cluster 2. The three Venn diagram sections represent the three groups of DE proteins: Unique, Stepwise, and
Upregulated AD. The 40 stepwise proteins represent the quantitative difference between clusters 1 and 2. (B) Expression patterns of representative
proteins (largest fold change selected) in the (C) "Upregulated AD" group, (D) “Stepwise” group, and (E) "Unique” group. *p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001. (E) Volcano plot shows upregulated proteins in ALL_AD (all patients with AD) over HCs. Only proteins associated with
AD pathophysiology and all other proteins with log,FC >2 were labeled. (F) Volcano plot shows upregulated proteins in cluster 1 over cluster 2. The
analyte log, fold change is plotted on the x-axis, and the negative log10-transformed adjusted p-value is plotted on the y-axis. AD, atopic dermatitis;
ANOVA, analysis of variance; DE, differentially expressed; EGF, epidermal growth factor; HC, healthy control; HI, high; IL, interleukin; LO, low; NPX,

migration (PXN, PTPN6, CDH3, FMNLI, and HDGF), cell stress
(NCF2, EGLN1, and NDRG1), cellular metabolism (HNRNPK,
NMNATI, and SRP14), and DNA repair (MGMT, APEXI, and
NBN). A full list of the three groups of DE proteins and their fold-
change values is available in Supplementary Tables 52, S3. Based
on these DE protein profiles, cluster 1 was labeled the high-
inflammatory cluster (AD_HI), and cluster 2 was labeled the
low-inflammatory cluster (AD_LO).
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3.5 Characterization of protein modules
associated with clusters, markers of disease
severity, and metabolic function

To further characterize differences in protein expression profiles
between the two clusters and how these differences correlate with
disease measures, we used WGCNA—an unsupervised algorithm
that identifies networks (modules) of highly correlated genes or
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WGCNA derivation of protein modules and their association with endotypes and clinical measures. (A) Cluster dendrogram illustrates 1,248 protein
analytes clustered into 12 initial modules (represented in “Dynamic Tree Cut”) and 11 final modules (represented in “Merged Dynamic”) identified via a
WGCNA algorithm. The row “Merged Dynamic” shows the 10 modules of interest used in subsequent analyses, plus one module (MEgrey) comprising
only one protein (FCRL3). (B) Heatmap shows the correlation between the ME of each of the final 10 modules of interest and a clinical trait. The color
scheme is based on the Pearson correlation value between the ME and the clinical trait value: red = positive correlation; blue = negative correlation.
AD, atopic dermatitis; ADSS, Atopic Dermatitis Symptom Score; AGEDiag, age at diagnosis; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BSA, body surface area; BUN, blood urea nitrogen; CHOL, cholesterol;
CholtoHDL, cholesterol-to-HDL ratio; Creat, creatinine; CysC, cystatin C; DLQI, Dermatology Life Quality Index; DurDiag, duration since first diagnosis;
EASI, Eczema Area and Severity Index; eGFR, estimated glomerular filtration rate; Eos, eosinophils; FCRL3, fragment crystallizable receptor-like protein
3; Flarelyr, flare in the past year; HADSANx, Hospital Anxiety and Depression Scale—Anxiety; HADSDpr, Hospital Anxiety and Depression Scale—
Depression; HDL, high-density lipoprotein; HGB, hemoglobin; HI, high; Ig, immunoglobulin; IGA, Investigator Global Assessment; LDL, low-density
lipoprotein; LYM, lymphocytes; ME, module eigenprotein; NEUT, neutrophils; NRS, Numeric Rating Scale; PGL.S, Patient Global Impression of Severity;
POEM, Patient-Oriented Eczema Measure; PreBio, prior biologic; PreCyc, prior cyclosporin; PreSys, prior systemic therapy; PreSysCS, prior systemic
corticosteroid; PreSysimSu, prior systemic immune suppressant; PreTCNI, prior topical calcineurin inhibitor; PROT, protein; SCORAD, SCORing Atopic
Dermatitis; TRIG, triglycerides; WBC, white blood cell; WGCNA, weighted gene co-expression network analysis.
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TABLE 2 Summary characteristics of WGCNA-derived protein modules, including the hub protein, protein biomarker most correlated with the
eigenprotein, module size, and clinical data most correlated with the eigenprotein.

Protein module Hub protein Size Clinical parameter

Turquoise DPY30 536 Disease severity (WBC count, neutrophils, eosinophils, EASI score, BSA, SCORAD score,
Brown CC2D1A 290 and cystatin C)

Blue PXN 178

Green ADH4 58 AST, ALT, body weight, cholesterol, triglycerides, and hemoglobin
Black CNTN1 37 Sex, WBC count, and neutrophils

Red BCAN 37 BMI and body weight

Pink VEGFC 34 Platelet count

Magenta DNPH1 28 Hemoglobin, urate, and WBC count

Purple CD93 27 Cystatin C

Green-yellow NBL1 22 Cystatin C and body weight

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BSA, body surface area; EASI, Eczema Area and Severity Index; SCORAD, SCORing Atopic

Dermatitis; WBC, white blood cell; WGCNA, weighted gene co-expression network analysis.

proteins and reduces dimensionality in the proteomic data. The
WGCNA algorithm clustered 1,248 protein analytes into 10 final
modules of interest (Figure 5A). The number of proteins comprising
each module ranged from 22 to 536 (Table 2). The hub protein for
each module (the protein most strongly correlated to all other
proteins within that module) is shown in Table 2. Each module’s
correlation to clinical data and cluster assignment was also evaluated,
and the correlation coefficient was visualized on a heatmap
(Figure 5B). Coefficients and adjusted p-values for all correlations
can be found in the source data. The modules—MEturquoise,
MEbrown, and MEblue—were most strongly correlated with AD
disease scores, such as SCORing Atopic Dermatitis (SCORAD),
body surface area (BSA), and EAS], indicating that the biological
pathways represented by these modules are associated with disease
severity (Figure 5B). Notably, these three disease modules were also
found be the largest. In addition to these, five more modules
(MEgreen, MEmagenta, MEpink, MEpurple, and MEgreenyellow)
were most strongly and significantly associated with the AD_HI
cluster (Pearson coefficient >0.3, adj. p < 0.05) (source data file).
These five modules were strongly correlated with liver enzyme levels
[aspartate aminotransferase (AST), alanine aminotransferase
(ALT)], white cell counts, triglycerides, BMI, and weight, indicating
heterogeneity in the biology observed in the AD_HI cluster. This
observation is also consistent with previous findings showing that
upregulated proteins in the AD_HI cluster comprise both canonical
and non-canonical AD protein biomarkers (11). This cluster-
module-clinical trait correlation approach further characterized the
difference in molecular profile between the AD_HI and AD_LO
clusters. Subsequent analysis focused on the relationship between
the three disease-associated modules and the DE proteins described
in Section 3.4.

All DE proteins described in Section 3.4 were grouped within the
three disease modules, MEturquoise (46 proteins), MEbrown (94
proteins), and MEblue (41 proteins), as well as MEpink (4 proteins).
The WGCNA protein module makeup of the three groups of DE
proteins is shown in Figure 6A. DE proteins within the disease
modules and their connectivity to the hub protein were visualized on
a network graph for each hub. Known inflammatory mediators of AD
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inflammation in the “Stepwise” group—CCL17, CCL18, CCL26,
CCL22, CCL27,IL-19, and IL-13—are closely connected to the dpy-30
histone methyltransferase complex regulatory subunit (DPY30;
MEturquoise) hub, as shown in red in Figure 6B. Other
pro-inflammatory mediators, such as IL-6 and IL2RA, were also
located in this hub, suggesting that this module represents an
AD-specific inflammatory module correlated with the AD_HI and
AD_LO clusters, but to a larger extent with the AD_HI cluster
(“Stepwise” trend).

MEbrown contains the hub protein CC2D1A (coiled-coil and C2
domain containing 1A). The majority of the “Upregulated AD”
proteins (green nodes) are grouped in this module (Figure 6A). Of the
16 total “Unique” proteins (blue nodes) from the differential
expression analysis, 13 were in the MEblue module connected to
paxillin (PXN)—the hub protein for this module (Figure 6B).

Pathway analysis was performed to understand the protein
makeup and biological function of each protein module. The full
results of the two analyses are available in the source data, and a
summary is provided in Table 3. Overall, the results suggest that the
three major modules (MEturquoise, MEblue, and MEbrown) were
enriched for pathways in cytokine signaling; adaptive immune
response; protein, nucleotide, and cellular metabolism; and cell cycle
regulation (Table 3). MEgreen, which was strongly correlated with
liver enzymes and body weight, was enriched in proteins involved in
organic and amino acid metabolism.

3.6 Association of the AD_HI endotype
with disease severity scores and routine
laboratory measures

Finally, we evaluated all clinical (non-proteomic) data in a
predictive model to objectively identify any potential clinical
predictors for the two clusters. Eosinophil count was the strongest
predictor for the clusters in this study, with all patients in AD_LO
having a circulating eosinophil blood cell count <1.15 x 10° cells/L
(Figure 7). Eosinophil count was followed by EASI score, cystatin C
level, age at AD diagnosis, and baseline Itch Numeric Rating Scale
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Hub network visualization of disease module proteins. (A) Bar graph shows the three groups of DE proteins and the WGCNA protein module they map
to. Bar colors correspond to the WGCNA protein module colors. All DE proteins belonged to one of four main WGCNA protein modules: turquoise,
pink, brown, and blue. (B) Network graphs for the three largest WGCNA protein modules. A graph was generated for each hub protein. Nodes
represent the most correlated proteins within each module. Edge length reflects connectivity strength between nodes—shorter edges indicate
stronger connectivity. Nodes are color-coded by the protein group assigned in the differential expression analysis: “Upregulated AD" (green), “Stepwise”
(red), or “Unique” (blue). Gray nodes represent proteins that were not DE but were strongly connected components in the protein hubs. DE proteins
were typically closely connected to the hub, resulting in few gray nodes. AD, atopic dermatitis; DE, differentially expressed; HC, healthy control; HI,
high; LO, low; ME, module eigenprotein; WGCNA, weighted gene co-expression network analysis.
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(NRS) score as the most predictive parameters (Supplementary
Figure S2).

Based on the ranking of importance within the predictive
model, selected clinical and laboratory measures representative of
a range of physiological functions were assessed to confirm any
statistically significant differences in mean values between the AD_
HI and AD_LO clusters. The AD_HI cluster was associated with a
higher mean (SD) eosinophil count [1.1 (0.8) vs. 0.4 (0.2) x 10°/L;
p <0.001], neutrophil count [4.7 (1.4) vs. 3.8 (1.3) x 10°/L;
p <0.01], and immunoglobulin E level [7,760 (8,190) vs. 3,890
(5,720) IU/mL; p < 0.05] compared with the AD_LO endotype
(Table 1). The AD_HI cluster was also associated with higher levels
of AST and cystatin C, suggesting a general hepatic burden and
possible subclinical renal dysfunction. No significant differences
were observed in estimated glomerular filtration rate (eGFR;
calculated using serum creatinine) or triglycerides between AD_HI
and AD_LO clusters; however, AD_HI was associated with a
significantly lower mean eGFR when calculated using cystatin C
values as previously described (28) [87.6 (12.7) vs. 99.9 (15.5) mL/
min/1.73 m% p < 0.001]. The AD_HI cluster was associated with a
higher mean (SD) EASI score [37.7 (12.2) vs. 26.9 (9.8); p < 0.001],
SCORAD score [74.2 (12.2) vs. 62.2 (8.2); p < 0.001], and Itch NRS
score [7.3 (2.0) vs. 6.1 (1.8); p = 0.01], while the AD_LO cluster was
associated with an earlier AD diagnosis (p = 0.02) (Table 1). Box
plots showing data by cluster for each of the above parameters are
provided in Figure 7; Supplementary Figure S3.
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4 Discussion

To the best of our knowledge, this is the first comprehensive
molecular endotyping study of AD in a Japanese-only patient
population using clinical trial data and a broad panel of immune- and
non-immune-related protein analytes. Although biomarker-defined
AD endotypes have been increasingly reported, the majority of studies
focus on European populations, with limited representation of Asian
cohorts. Expanding research to include diverse ethnic groups is
warranted to advance knowledge in this field (29).

We previously established that k-means clustering with k=2
yielded reproducible clusters in a mixed cohort of AD patients,
including Caucasian, African American, and Asian individuals (11).
These two clusters differed in their inflammatory profiles, with one
cluster exhibiting elevated inflammation levels and increased disease
severity. In the current Japanese cohort, we identified two stable and
reproducible clusters representing putative molecular endotypes of
AD, distinguished by inflammatory profile. We designated these as
AD_HI (high inflammatory) and AD_LO (low inflammatory)
clusters.

We conducted DE analysis followed by WGCNA to investigate
protein signatures associated with the defined clusters. The DE
analysis revealed a quantitative difference between the two patient
clusters, highlighted by a group of “Stepwise” proteins. This difference
is characterized by cytokines and chemokines commonly associated
with AD, including IL-13, IL-19, TARC (CCL17), PARC (CCL18),
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TABLE 3 Summary of pathway enrichment analysis (GOBP) results for each protein module as evaluated by GSEA or overrepresentation by

hypergeometric analysis.

Protein module Hypergeometric analysis GSEA

Turquoise Adaptive immune response, regulation of development, and | NA
T-cell differentiation

Brown Intracellular transport, organelle organization, and protein Cell adhesion, system development, and neurogenesis
catabolic process

Blue Regulation of nucleotide metabolism and cellular Organic cyclic compound, nitrogen compound metabolism, intracellular
metabolism receptor signaling, and cell cycle

Green Carboxylic acid, oxoacid, organic acid, and amino acid Carboxylic acid, organic acid, metabolism, and catabolism
metabolism

Black Axonal and neuronal guidance, cell morphogenesis, and cell | Organic cyclic compound, nitrogen compound, cellular aromatic
adhesion compound metabolism, and cell cycle

Red NA Cell adhesion

Pink Cell surface receptor signaling and cell motility and Multicellular organismal process, system development, cell adhesion,
migration and organism development

Magenta NA Nucleic acid and RNA metabolism

Purple NA Immune system process, positive regulation of cellular process,

locomotion, and taxis

Green-yellow Negative regulation of signal transduction and serine/ NA

threonine kinase pathway

A textual summary of the top GOBP pathway hits, with BH-adjusted p < 0.05 shown.

BH, Benjamin and Hochberg; GOBP, gene ontology biological processes; GSEA, gene set enrichment analysis; NA, not available (no result obtained from analysis); RNA, ribonucleic acid.

eotaxin-3 (CCL26), CCL22, and CCL27. Previous studies have shown
that these biomarkers correlate with disease severity in pediatric and
adult AD cases (30-35).

Notably, STAT5B over-expression was evident in all AD patients
and the AD_HI cluster. STAT5B acts downstream of JAK1, a gene in
which gain-of-function mutations reportedly cause hypereosinophilic
syndrome (36), and it is the target of the approved AD therapeutic
agent baricitinib. High STAT5B expression in the AD_HI cluster
aligns with the elevated eosinophil counts characteristic of this
phenotype. Our analysis suggests that the level of inflammation, as
reflected by these “Stepwise” circulating proteins, varies quantitatively
within the AD patient population, and the magnitude of this variation
may have clinical implications.

In Japan, TARC is an approved clinical biomarker for monitoring
disease activity in AD patients, with a reference value of <450 pg/mL
considered normal in healthy adults. Our results suggest that elevated
TARC levels may mark a distinct disease state, potentially offering
additional diagnostic or prognostic value. Further validation analyses are
needed to understand the clinical utility of our identified clusters and,
subsequently, to define higher TARC (and possibly a combination of other
inflammatory mediators) concentrations that may have clinical utility.

In addition to quantitative differences seen in the canonical
inflammatory mediators, qualitative differences were observed,
represented by the “Upregulated AD” and “Unique” proteins. These
proteins are involved in diverse biological processes, including skin
barrier function, cell proliferation and migration, metabolism, and
DNA repair. The selective upregulation of the “Unique” proteins in the
AD_HI cluster suggests there may be a distinct biological component
in this subgroup that is absent in AD_LO, indicating that these clusters
may reflect different disease states. This finding also suggests that
dysregulation of pathways other than cytokine-mediated inflammation
could contribute to disease severity.
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To further elucidate the protein signatures associated with the
clusters, we performed WGCNA. This analysis identified three protein
networks (modules) that were strongly correlated with the AD_HI
cluster and with measures of disease severity, including EASI, SCORAD,
and eosinophil count. Notably, all “Stepwise” canonical AD
inflammatory mediators were closely connected to the largest module,
reinforcing their key role in AD pathophysiology. The hub protein of
this module, DPY30, is an integral core component of the SET1/MLL
family of H3K4 methyltransferases. This complex regulates the cell cycle
and plays an important role in the proliferation and differentiation of
human hematopoietic progenitor cells (37). DPY30 itself was also
identified as one of the “Stepwise” proteins. While its role in AD has not
been directly studied, DPY30’s function in epigenetic regulation,
particularly histone H3K4 methylation, suggests it may influence
immune cell differentiation and cytokine expression relevant to AD
pathogenesis and other inflammatory disorders. DPY30 has been
implicated in tumor-associated inflammation and showed correlations
with tumor grade and immune-related gene activation in colorectal
cancer, as well as immune cell infiltration in esophageal cancer (38, 39).

Although not significantly upregulated in our DE analyses, other
pro-inflammatory cytokines such as IL2RA and IL-6 were also closely
connected within the DPY30 hub. This indicates that the upregulation
of type 2 inflammation in AD may be accompanied by other
inflammatory axes. CC2D1A, another hub protein identified in a
disease-associated module, functions as a transcriptional repressor
in neuronal cells and has been linked to autism spectrum disorder,
intellectual disability, and depression (40-42). While the significance
of CC2D1A upregulation in AD is unclear, pathway analyses of the
module proteins revealed involvement in processes including
intracellular signaling, protein and nucleotide metabolism and
transport, and cell adhesion. These pathways may be activated in
response to external insults through the skin barrier, leading to
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Evaluation of clinical and laboratory measures for the AD_HI and AD_LO endotypes. (A) EASI score, (B) Itch NRS score, (C) duration of disease,

(D) eosinophil count, (E) IgE levels, (F) AST levels, (G) cystatin C levels, and (H) eGFR calculated using cystatin C. p-values were calculated using the
Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, and ***p < 0.001. AD, atopic dermatitis; AST, aspartate aminotransferase; EASI, Eczema Area and Severity
Index; eGFR, estimated glomerular filtration rate; HI, high; Ig, immunoglobulin; LO, low; NRS, Numeric Rating Scale.
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enhanced innate cell activation and increased signaling at the innate-
adaptive cell interface. PXN, the hub gene of the third disease
module, is a focal adhesion protein involved in mediating intracellular
signaling. Interactions between alpha-4 integrin and PXN have been
used as targets to inhibit T-cell homing to sites of inflammation (43).
The upregulation of PXN—along with other T-cell markers such as
CD40LG and CD69—is particularly relevant given that AD is a
T-cell-driven disease. PXN has also been implicated in several
inflammatory and immune-related diseases, including rheumatoid
arthritis and inflammatory bowel disease, as well as tumor-associated
inflammation (44).

Aside from the three main disease modules, a broad evaluation of
clusters to module to clinical trait correlations shows that the AD_HI
cluster is most strongly correlated with many protein modules that are
also linked to clinical traits (liver enzymes, weight, and BMI) beyond
AD disease severity. These non-disease modules contained cell adhesion
and carboxylic and organic acid metabolism processes. The specific role
of these pathways in AD disease etiology remains to be elucidated.

We found key differences in clinical characteristics between the two
clusters that may have direct implications for clinical practice. For
instance, all patients in the AD_LO cluster had eosinophil counts below
1.15 x 10°/L. Given the normal adult reference range for circulating
absolute eosinophil counts is 0.03-0.35 x 10°/L, our results indicate that
eosinophilia is evident in a subset of the AD_LO cluster and is even more
pronounced in the AD_HI cluster. Additionally, significantly higher
EASI and SCORAD scores were seen in AD_HI compared to AD_LO,
with mean differences of 10.8 and 12.0, respectively. Notably, 29 of the
31 patients in the AD_HI cluster were classified as having severe to very
severe disease based on clinical definitions, with the remaining two
patients classified as having moderate disease (EASI score <21). Finally,
approximately 90% of patients in the AD_LO cluster were diagnosed
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before 18 years of age. Age of onset is an important clinical characteristic
in AD, and a recent study showed that pediatric- and adult-onset AD
exhibit distinct inflammatory profiles in skin and blood (45). Taken
together, these findings suggest that a patient’s molecular endotype may
be predicted using a combination of AD biomarkers (e.g., TARC),
eosinophil count, EASI and SCORAD scores, and age of disease onset.
This cross-validation of skin and blood measures also reinforces the
clustering outcome and increases the relevance of the biology observed
in our proposed endotypes. This further highlights the systemic nature
of AD, where skin inflammation is reflected in the circulation.

Unexpectedly, we found that patients in the AD_HI cluster
tended to have higher circulating cystatin C levels, which
corresponded to significantly lower cystatin C-derived eGFR values.
Circulating cystatin C is commonly used as a clinical measure of
kidney function, with elevated levels potentially indicating
subclinical renal impairment (46). Although research is limited, the
severity of several inflammatory skin diseases, including atopic
eczema, is weakly associated with chronic kidney disease (47).
Elevated cystatin C in AD_HI could be attributed to the prolonged
use of medication or the chronic inflammatory burden associated
with AD; however, we were not able to draw such conclusions from
our dataset. Cystatin C is a marker of inflammation in various
disease states (48, 49), and elevated cystatin C is observed in
patients with asthma, where it may act as an inflammatory mediator
in the lungs (50). Future research examining the relationship
between the duration of AD medication use and the inflammatory
profile of the disease may provide new insights into the potential
role of cystatin C as a biomarker of inflammation.

Our study differs from previous molecular endotyping research in
that this cohort of patients underwent a strict topical and systemic AD
treatment washout period prior to blood sample collection. As such, the
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circulating profile described in our cohort is not confounded by the
immediate immunosuppressive effects of medication and could more
closely reflect ongoing disease pathophysiology. However, prolonged
use of immunosuppressive therapies is common in this patient
population, and lasting effects on protein expression cannot
be precluded. Circulating protein expression may also be influenced by
external factors, such as skin infection with microbial pathogens and
environmental irritants, given that a compromised skin barrier is a
clinical feature of AD. Colonization with Staphylococcus aureus
(S. aureus) is common in AD and is associated with a distinct phenotype
marked by severe disease and impaired skin barrier function (51). In
response to S. aureus, epithelial cell-derived cytokines such as TSLP and
IL-33 further drive Th2 responses common in AD immunopathology
(52). Environmental irritants, including detergents and pollutants, can
also penetrate the compromised epidermal barrier in AD, leading to
keratinocyte injury and localized inflammation. Together, external
stimuli and compromised skin barrier function could affect the
circulating protein profile observed in individuals with AD.

This study has limitations that should be considered when
interpreting the findings. It included a relatively small sample size and
captured only a single pre-treatment data point from Japanese patients
enrolled in a clinical trial, which may limit the generalizability to the
broader Japanese AD population. Additionally, our analysis was based
on a manufacturer-defined limited protein panel comprising 1,248
protein analytes. Future studies using larger or unbiased proteomic
approaches, such as mass spectrometry, may be well-suited to
understanding non-canonical biological mechanisms contributing to
AD heterogeneity. Despite these limitations, our findings support the
reproducibility of the proposed high- and low-inflammatory
endotypes described previously, which we characterize in this study.
Further validation in larger training and validation cohorts is needed
to confirm these findings. Moreover, future studies should utilize
larger cohorts and aim to link molecular endotypes with treatment
efficacy outcomes to evaluate their true clinical utility. Additionally,
because this study did not assess longitudinally collected samples, it
could only characterize an individual’s disease state at a single time
point. Given that AD is characterized by periods of flares and
remission, future studies tracking biomarker profiles over time may
provide more insight into the potential dynamism of AD endotypes.

Overall, our study may contribute to understanding the
heterogeneity among patients with AD. It makes preliminary and
exploratory connections between the molecular mechanisms
underlying AD endotypes and clinical measures such as EASI,
eosinophil count, and cystatin C levels—parameters that, pending
further functional validation, could be readily incorporated into
clinical practice. Defining biomarker-based endotypes and their
associations with clinical phenotypes represents an important starting
point. Building on this research will help clinicians make more
informed, personalized treatment decisions—particularly in the
current landscape of increasingly targeted therapies for AD.
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