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Background: Fractures are increasing due to ageing populations. Physical agent
modalities, a non-invasive treatment, enhances healing and reduces non-
union risk.

Objective: This meta-analysis evaluates the effectiveness of physical agent
modalities in patients with fractures and compares the outcomes of different
interventions on healing and pain relief.

Methods: Articles published up to April 2025 were retrieved from PubMed,
Embase, and Web of Science. Two authors independently reviewed and
extracted data from randomized controlled trials assessing seven types of
physical agent modalities: Electrical Stimulation (ES), Pulsed Electromagnetic
Fields Stimulation (PEMFS), Ultrasound Therapy (UST), Low-Level Laser Therapy
(LLLT), Magnetic Stimulation (MS), Extracorporeal Shock Wave Therapy (ESWT),
and Capacitively Coupled Electric Field Stimulation (CCEFS). Standard meta-
analysis and network meta-analysis (NMA) were performed for three outcomes:
Pain Relief Difference, Time to Complete Fracture Healing (days), and Number
of Cases Achieving Complete Fracture Healing. Cumulative ranking curves
(SUCRA) scores were calculated for each therapy, with data presented as mean
differences (MD) and 95% confidence intervals (Cl).

Results: This meta-analysis includes 39 studies with 2,379 participants. The
standard meta-analysis results show that physical agent modalities can markedly
enhance fracture healing, with significant pain relief (MD = 1.30, 95% CI:
0.61, 199), P = 0.0002, shorter time to complete fracture healing (days)
(MD = —21.58, 95% Cl: —31.05, —12.11), P < 0.0001, and more number of cases
achieving complete fracture healing (RR = 1.37, 95% CI: 1.17, 1.60), P < 0.0001.
However, the NMA findings indicate that most direct or indirect comparisons
between different physical agent therapies yield pooled effect sizes whose 95%
confidence intervals include the null value (0 or 1), showing no significant
differences between groups. SUCRA rankings revealed that LLLT (87.5%) and ES
(80.8%) were more effective in pain relief, while UST (82.9%) and CCEFS (99.9%)
excelled in promoting fracture healing.

01 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1646903
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1646903&domain=pdf&date_stamp=2025-10-29
mailto:jianxiongwang_swmu@126.com
mailto:sunfuhua330@163.com
https://doi.org/10.3389/fmed.2025.1646903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1646903/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Lietal.

10.3389/fmed.2025.1646903

Conclusion: LLLT, ES, UST, and CCEFS may yield improved outcomes for fracture
patients; however, further high-quality, large-scale randomized controlled trials
are required to validate these findings.

KEYWORDS

physical agent modalities, fracture, bone healing, pain relief, network meta-analysis

1 Introduction

Bone fractures, a prevalent condition, are currently witnessing
an upward trend in global incidence (1), predominantly linked
to population ageing and increased life expectancy. According to
United Nations research, the global population aged >65 years is
projected to reach 1.5 billion by 2050 (2, 3). As the ageing process
accelerates, the incidence of fractures continues to rise, imposing
substantial socioeconomic burdens on individuals, families, and
societies (4). Fracture patients often experience major symptoms
such as restricted mobility and acute pain (5), which typically
ease over a two-month period, with most individuals reaching
optimal recovery within 3-6 months (6). Depending on the
severity of the fracture, treatment may involve either conservative
management or surgery. For non-displaced fractures, conservative
treatment generally leads to good outcomes; according to the BMJ
Clinical Practice Guidelines!, recovery usually takes 3-4 weeks
with relatively rapid pain relief. Displaced fractures, on the other
hand, often require surgical intervention, which can support earlier
functional recovery (around 10-14 weeks) (7), but may also carry
about a 20% risk of non-union and persistent pain, potentially
affecting quality of life (8-11). It is important to note that the
duration of pain relief following surgery varies considerably among
individuals (12).

Bone healing following a fracture is a complex physiological
process that is typically divided into four stages: the fracture
and inflammatory phase, the angio-mesenchymal phase, the bone
formation phase, and the bone remodeling phase. Although each
phase possesses distinct characteristics, they often occur alternately
and exhibit a degree of overlap (13). The process of bone healing
is influenced by a variety of factors, including the nature and
extent of the injury, the damage to the surrounding soft tissues,
blood supply, the differentiation capacity of osteoblasts, and
the cellular microenvironment as internal factors. Additionally,
external factors such as the stability of fracture fixation, the
gap between fracture ends, the inflammatory response, and
external physical stimuli also play a significant role in the

1 http://www.njbinbin.net/topics/ZH_CN/392/references/

Abbreviations: RCTs, randomized controlled trials; NMA, network meta-
analysis; ES, electrical stimulation; PEMFS, pulsed electromagnetic fields
stimulation; UST, ultrasound therapy; LLLT, low-level Laser therapy; MS,
magnetic stimulation; ESWT, extracorporeal shock wave therapy; CCEFS,
capacitively coupled electric field stimulation; TENS, transcutaneous
electrical nerve stimulation; NIN, non-invasive interactive neurostimulation;
LIPUS, low-intensity pulsed ultrasound; RR, risk ratios; MD, mean
differences; Cls, confidence intervals; MCMC, Markov Chain Monte Carlo;
DIC, deviance information criterion; SUCRA, surface under the cumulative
ranking curve; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; PIGF,
placental growth factor; BDNF, brain-derived neurotrophic factor; VEGF,
vascular endothelial growth factor; PLA2, phospholipase A2; FGF, fibroblast
growth factor; OCN, osteocalcin; ALP, alkaline phosphatase.
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healing process (14). In the final stage of bone healing, known
as the bone remodeling phase, approximately 5-10% of long
bone fractures may experience non-union (15). In cases of
delayed healing or non-union during the fracture healing process,
surgical intervention is often required. Autologous bone grafting,
regarded as the gold standard for the treatment of fractures
and bone defects, has been widely employed in clinical practice
(16). In addition to surgical treatment, non-invasive physical
agent modalities such as electrical stimulation, electromagnetic
stimulation, low-intensity pulsed ultrasound, and low-level laser
therapy have been shown to facilitate the acceleration of
fracture healing and have gained widespread recognition in
clinical practice. These adjunctive therapies provide effective
supplementary strategies for optimizing the healing of fractures
(17-20).

Most randomized controlled trials (RCTs) use standard care
as a control, while few directly compare distinct physical agent
modalities modalities. Traditional meta-analyses typically allow
for the comparison of only two treatment methods at a time,
failing to provide comprehensive evidence regarding the relative
efficacy of various interventions for fracture healing. Network
meta-analysis (NMA) addresses this limitation by facilitating
simultaneous comparisons of multiple treatment options and
enabling the ranking of each intervention based on various
outcomes. This approach offers clinicians a clear, evidence-
based framework for treatment decisions, thereby assisting
in making informed and scientifically sound clinical choices
when addressing complex cases of delayed healing or non-
union (21).

Consequently, we conducted a NMA aimed at synthesizing the
existing evidence to compare the efficacy of different physical agent
modalities in promoting fracture healing and alleviating pain. The
specific objective is to identify the most effective physical agent
modalities approach, thereby providing robust support for clinical
decision-making and assisting in the optimization of treatment
strategies for fracture healing.

2 Methods

The protocol was registered with PROSPERO under
registration number CRD420251030229.
2.1 Search strategy

This NMA adheres to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines (22).
As of April 2025, we conducted a comprehensive search for relevant
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literature in the PubMed, Embase, and Web of Science databases.
Search strategies were developed for each of the three databases
(See Supplementary Table 1 for details). Two authors (LL and SFH)
independently conducted literature searches and screenings, with
any discrepancies resolved through mutual discussion. To augment
potential relevant studies, the authors also examined the references
of the included literature. The language was restricted to English,
with no date limitations applied.

2.2 Exclusion and inclusion criteria

Studies that met the following criteria were included: (1)
Patients with fractures or delayed healing following a fracture,
regardless of fracture location and severity. (2) Physical agent
modalities involving one or more of the following: Electrical
Stimulation (ES), Pulsed Electromagnetic Fields Stimulation
(PEMES), Ultrasound Therapy (UST), Low-Level Laser Therapy
(LLLT), Magnetic Stimulation (MS), Extracorporeal Shock
Wave Therapy (ESWT), and Capacitively Coupled Electric Field
Stimulation (CCEES). (3) Control groups receiving either placebo
stimulation or standard treatment alone. (4) studies reporting at
least one outcome of interest, including pain, time to complete
fracture healing, and the number of cases of complete fracture
healing. (5) Randomized controlled trial (RCT) design. We
excluded: ® Non-human studies; @ Studies lacking quantifiable
outcome measures; @ Studies not involving disease models; @ Case
reports, reviews, editorials, commentaries, conference abstracts,
and articles not in English.

2.3 Data extraction

Two authors independently conducted eligibility assessments
on the retrieved articles, initially excluding irrelevant studies
based on their titles and abstracts. The remaining articles
were then downloaded for a comprehensive review of the
full texts, from which data were extracted for the eligible
studies, including the first author’s name, publication vyear,
country/region, participant characteristics (sample size, mean age,
fracture location), interventions, follow-up duration, and outcomes
of interest (Table 1). When extracted data were presented as
medians and interquartile ranges, we applied Hozo’s formula to
convert them into means and standard deviations (23). In cases
of discrepancies, discussions were held to reach consensus. If any
required information was missing, the corresponding author of the
article was contacted via email.

2.4 Risk of bias

The risk of bias in the included studies was assessed using
the Cochrane Risk of Bias Tool (RoB 2.0) 2 (24) across six
domains: the randomization process, deviations from intended
interventions, missing outcome data, measurement of the outcome,

2 https://methods.cochrane.org/risk-bias-2
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selection of the reported results, and other sources of bias. The two
authors independently rated each study as "low risk," "high risk,"
or "some concerns" for each of the aforementioned domains. Any
discrepancies that arose during the review process were resolved
through discussion or negotiation between the two authors.

2.5 Statistical analysis

In this study, for dichotomous outcomes, we reported risk
ratios (RR) with 95% credible intervals, while for continuous
outcome variables, we reported mean differences (MD) with 95%
confidence intervals (ClIs). Traditional meta-subgroup analyses
were conducted using Review Manager 5.4.1, while calculations
and visualizations were carried out using R 4.4.3 (R Foundation
for Statistical Computing) and Stata SE 15.1 (StataCorp, College
Station, TX). Given the heterogeneity between trials, we employed
a Bayesian hierarchical random effects model for multiple
comparisons (25, 26). Based on the theory of the likelihood
function and certain initial assumptions, we performed Markov
Chain Monte Carlo (MCMC) simulations using R 4.4.3, with
500,000 iterations and 20,000 for annealing to investigate posterior
distributions (27-29). We assessed model goodness-of-fit by
calculating the deviance information criterion (DIC) and employed
the node splitting method to compare the consistency of direct
and indirect evidence for each comparison (30). To address
heterogeneity in the study, a random effects model was employed,
and the degree of heterogeneity was quantified using the I?
statistic. To rank the interventions, we calculated the Surface
Under the Cumulative Ranking Curve (SUCRA) probability values,
which range from 0 to 1, with higher values indicating that the
intervention is more likely to be the most effective (31, 32).
A network diagram was created to analyse the geometrical structure
of the intervention network and to identify potential biases, with
the size of the nodes representing the number of participants in
each group and the thickness of the lines reflecting the number of
studies. A conjugate prior distribution was used for the Bayesian
network meta-analysis (NMA), and a ranking table was generated
to illustrate the comparisons of each pair of interventions for
each outcome. Pairwise meta-analyses were conducted using the
DerSimonian-Laird random effects model to estimate the variance
of heterogeneity and obtain direct evidence (33). Finally, we utilized
a comparison-adjusted funnel plot to assess potential publication
bias (34, 35). Furthermore, sensitivity analyses were performed to
explore their potential impact on the conclusions.

3 Results

3.1 Description of the included studies

We searched the PubMed, Embase, and Web of Science
databases, identifying 341, 797, and 404 articles, respectively. After
removing 410 duplicate articles, a total of 1,132 articles were
identified. Based on title and abstract screening, 1,042 articles were
excluded, leaving 90 articles that underwent full-text review, of
which 39 articles met the eligibility criteria for our systematic
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TABLE 1 Main characteristics of included studies.

Intervention/ Follow-up Outcomes

Comparator

Sample size (n) Fracture
(intervention/comparator) site
Intervention/Comparator

References Mean age (years) (SD)

Intervention/Comparator

Country/

Regions

e n

BUIDIPBN Ul SIB13U0IS

0

640" UISIa1UOAY

neurostimulation/placebo
stimulation

Acosta-Olivo et al. (36) Mexico 54.8 (13.07) Laser 13 13 Wrist Bone 1 month Pain relief difference
acupuncture/acupuncture
Barker et al. (37) UK >18 >18 Magnetic field/placebo 9 7 Tibia 12 month Number of cases achieving
stimulation complete fracture healing
Beck et al. (38) Australia 28.33 (7.68) 26.09 (7.99) Capacitively coupled electric 22 21 Tibia 2 month Time to complete fracture
field/placebo stimulation healing
Busse et al. (39) Canada 37.1(13.2) 39.1 (14.6) LIPUS/placebo stimulation 214 201 Tibia 1 year + Number of cases achieving
complete fracture healing
Chang et al. (40) Taiwan 33.64 (7.82) 30.56 (9.61) Laser/placebo stimulation 25 25 Wrist and Hand 2 week Pain relief difference
Cheing et al. (41) China 63.8 (12.6) 60.3 (20.2) Electromagnetic field/placebo 23 22 Distal radius 5 day Pain relief difference
stimulation
Duran et al. (42) Istanbul 58.9 (10.7) 62.0 (9.5) IFC/placebo stimulation 18 17 Proximal 4 month + Pain relief difference
humeral
Elboim-Gabyzon et al. Israel 80.26 (9.83) 78.06 (8.45) TENS/placebo stimulation 23 18 Hip 5 day Pain relief difference
(43)
Elsebahy et al. (44) Egypt ~8 LIPUS/none 15 15 supracondylar 1 month + Time to complete fracture
healing
Factor et al. (45) Israel 58 (13.25) 59 (16.75) Electromagnetic field/placebo 14 13 Distal radius 3 month Number of cases achieving
stimulation complete fracture healing;
time to complete fracture
healing
Factor et al. (46) Israel 49 59 Electromagnetic field/placebo 11 14 Distal radius 6 month Number of cases achieving
stimulation complete fracture healing
Fourie et al. (47) South Africa 35(11) 31(13.25) IFC/placebo stimulation 41 35 Tibial shaft 2 years + Time to complete fracture
healing
Gopalan et al. (48) India 28 (7.291) 26.75 (8.723) LIPUS/none 20 20 Mandibular 3 month Number of cases achieving
complete fracture healing
Gorodetskyi et al. (49) Russia 71.5(2) 70.8 (3) Non-invasive interactive 30 30 Trochanteric of 10 day Pain relief differences
neurostimulation/placebo the femur
stimulation
Gorodetskyi et al. (50) Russia 35.3(9) 38.4(9) Non-invasive interactive 30 30 Ankle 11 day Pain relief difference

(Continued)
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TABLE 1 (Continued)

References Intervention/ Fracture Outcomes

Country/

Mean age (years) (SD) Sample size (n) Follow-up

e n

BUIDIPBN Ul SI213U0I4

S0

[FIVIIENUIIN

Regions Intervention/Comparator Comparator (intervention/comparator) site
Intervention/Comparator
Hannemann et al. (51) Netherlands 35(13) 34 (14.75) Electromagnetic field/placebo 51 51 Scaphoid 1 year + Time to complete fracture
stimulation healing
Hannemann et al. (52) Netherlands 44.3 (17) 37.7 (13.25) Electromagnetic field/placebo 24 29 Scaphoid 1 year + Time to complete fracture
stimulation healing
Heckman et al. (53) USA 36 (2.3) 31(1.8) LIPUS/placebo stimulation 33 34 Tibia 9 month + Number of cases achieving
complete fracture healing;
time to complete fracture
healing
Kristiansen et al. (54) USA 54 (3) 28(2) LIPUS/placebo stimulation 30 31 Distal radial 3 month + Number of cases achieving
complete fracture healing;
time to complete fracture
healing
Liu et al. (55) China 61.5(2.1) 63.5(1.2) Electromagnetic field/placebo 40 42 Vertebral 3 month + Pain relief difference
stimulation
Liu et al. (56) China 67.9 (5.58) 65.7 (6.09) LIPUS/none 41 40 Distal radius 1 month + Time to complete fracture
healing
Martinez-Rondanelli Colombia 31 (10) 29 (9) Electromagnetic field/placebo 32 31 Diaphyseal 6 month Number of cases achieving
etal. (57) stimulation femoral complete fracture healing
Mohajerani et al. (58) Iran 37.06 (10.6) 37(10.7) Electromagnetic field/none 16 16 Mandibular 2 week Pain relief difference
Moncada et al. (59) Colombia 30.2 Magnetic field/placebo 32 32 Femoral shaft 6 month Number of cases achieving
stimulation complete fracture healing
Oncel et al. (60) Turke 44 (15) 40 (16) TENS/placebo stimulation 25 25 rib 3 day Pain relief difference
Patel et al. (61) India 15~ 35 LIPUS/none 14 14 Mandibular 1 month + Pain relief difference
Piazzolla et al. (62) Italy 73.6 (7.82) 72.88 (6.09) Capacitively coupled electric 33 33 Vertebral 6 month Pain relief difference
field/none
Ricardo et al. (63) Cuba 26.7 LIPUS/placebo stimulation 10 11 Scaphoid 2.3 years Time to complete fracture
healing
Santana-Rodriguez et al. Saudi Arabia 64 (13.1) 58.9 (17.3) PUS/placebo stimulation 24 23 Rib 6 month Pain relief difference
(64)
Schofer et al. (65) Germany 42.6 (14.6) 45.1 (11.9) LIPUS/placebo stimulation 51 50 Tibia 4 month Number of cases achieving
complete fracture healing
Scott et al. (66) UK 40 (9.05) 46 (20.09) Capacitively coupled electric 10 11 Long bones 9 month Number of cases achieving
field/placebo stimulation complete fracture healing

(Continued)
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TABLE 1 (Continued)

References Country/ Mean age (years) (SD) Intervention/ Sample size (n) Fracture Follow-up Outcomes
Regions Intervention/Comparator Comparator (intervention/comparator) site
Intervention/Comparator
Sharrard et al. (67) UK 34.7 (17.66) 45.4 (14.76) Electromagnetic field/placebo 20 25 Tibia 3 month Number of cases achieving
stimulation complete fracture healing
Shi et al. (68) China 41.1 (14.5) 38.4 (11.6) Electromagnetic field/placebo 31 27 Long bones 4 month + Number of cases achieving
stimulation complete fracture healing
Simonis et al. (69) UK 31.7 (14.6) 32.3(16.3) Electrical 18 16 Tibia 6 month Number of cases achieving
stimulation/placebo complete fracture healing
stimulation
Streit et al. (70) USA 47 (9.75) Electrical 5 3 Metatarsal 5 month + Time to complete fracture
stimulation/placebo healing
stimulation
Wangetal. (71) Taiwan 35.5(16.0) 35.4(19.2) Shock wave/none 27 30 Long bones 12 month Pain relief difference;
number of cases achieving
complete fracture healing
White et al. (72) Canada 27.1(9.4) 26.5(12.1) LIPUS/placebo stimulation 69 73 Scaphoid 2.4 years Number of cases achieving
complete fracture healing
Wuetal. (73) China 43.1 (9.6) 42.5(8.2) ST + PNF + TEAS/ST + PNF 20 20 Tibial plateau 1 month + Pain relief difference
Yadav et al. (74) India Unclear Unclear Ultrasound/placebo 39 28 Tibia 1 month + Number of cases achieving
stimulation complete fracture healing
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FIGURE 1

Flow diagram of the preferred reporting items for systematic reviews and meta-analyses (PRISMA) criteria. RCTs, randomized controlled trials.

review and NMA (36-74). The detailed PRISMA flow chart is
presented in Figure 1.

Table 1 summarizes the characteristics of the 39 studies.
Among these, 15 studies assessed pain improvement before and
after physical agent modalities, 13 studies reported the time to
complete fracture healing, and 17 studies documented the number
of patients with fully healed fractures. Three studies evaluated
capacitively coupled electric field stimulation, nine studies assessed
electrical stimulation (ES), two studies investigated magnetic
stimulation (MS), ten studies examined pulsed electromagnetic
field stimulation (PEMFS), two studies focused on low-level laser
therapy (LLLT), one study assessed extracorporeal shockwave
therapy (ESWT), and twelve studies investigated ultrasound
therapy (UST). This research was conducted across multiple

Frontiers in Medicine

countries, including China, the United States, Russia, Israel,
Colombia, and India, and included 2,379 participants, with ages
ranging from 5 to 72 years. The fracture sites were diverse,
comprising 2.90% for humeral fractures (reported in two articles),
8.34% for femoral fractures (reported in three articles), 2.67%
for ankle fractures (reported in one article), 14.18% for scapular
fractures (reported in four articles), 10.66% for radial fractures
(reported in five articles), 40.30% for tibial fractures (reported
in ten articles), 1.82% for hip fractures (reported in one article),
4.32% for rib fractures (reported in two articles), 2.23% for carpal
fractures (reported in two articles), 4.46% for mandibular fractures
(reported in three articles), 0.4% for metatarsal fractures (reported
in one article), and 6.60% for vertebral fractures (reported in
two articles). Additionally, three studies reported on long bone
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FIGURE 2
Traffic light plot for the risk-of-bias assessment of included trials.

fractures involving a total of 136 participants. Finally, the follow-
up durations for the three outcome measures varied: the pain relief
difference ranged from 5 days to 6 months; the time to complete
fracture healing ranged from 1 month to 2.3 years; and the number
of cases achieving complete fracture healing ranged from 1 month

to 2.4 years.

Frontiers in Medicine

3.2 Risk of bias

We conducted an assessment of the risk of bias, the results
of which are illustrated in Figure 2. Among the studies, 26
indicated a low risk of bias, 11 reported a moderate risk, and

2 demonstrated a high risk. All studies reported randomization.
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A

Experimental Control Mean Difference Mean Difference.
1.1.1 Low-Level Laser Therapy

C. Acosta-Olivo2017 48 15716 4 2086 13 59%  240[099,381] —
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Forest plot of comparison: physical agent modalities group versus control group. (A) Difference between post-treatment and pre-treatment pain
scores; (B) time to complete fracture healing (days); (C) number of patients with fully healed fractures.Cl, confidence interval; MD, mean difference.
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However, J. D. Heckman et al. (53), M. Oncel et al. (60) and G. Scott
etal. (66) conducted unplanned treatments during the intervention
phase, leading to their classification as moderate risk. W. J. Sharrard
et al. (67) and N. J. White et al. (72) were deemed high risk due
to individual participants withdrawing from the trial as a result of
the intervention. Furthermore, B. R. Beck et al. (38), J. W. Busse
et al. (39), E. Duran et al. (42), A. Piazzolla et al. (62), N. Santana-
Rodriguez et al. (64) and H. F. Shi et al. (68) were classified as
moderate risk due to dropout or loss to follow-up for personal
reasons, whereas all other studies reported no loss of outcome data.
B. R. Beck et al. (38) was also rated as moderate risk for failing to
assess whether fractures had fully healed based on imaging reports;
all other studies were classified as low risk. Additionally, all studies,
except for S. Y. Elsebahy et al. (44) and M. E. Moncada et al. (59),
did not show any potential risk of selective reporting bias.

3.3 Standard meta-analysis

3.3.1 Pain relief difference

This study included 14 investigations that assessed pain
intensity using the Visual Analogue Scale (VAS). To illustrate the
extent of pain relief, we used the difference between the VAS
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score recorded before the application of physical agent modalities
and the score obtained after the final treatment session as the
primary analytical measure. Due to significant overall heterogeneity
(I2 = 90.8%, P < 0.00001), a random-effects model was employed
for the meta-analysis of pain scores. The analyses were further
divided into six subgroups based on different physical interventions
(LLLT, CCEFS, UST, ESWT, ES, PEMFS) (Figure 3A). For ES, I2
was found to be 92% (P < 0.00001), while LLLT and PEMFS
reported 12 values of 0% and 4%, respectively. Due to the limited
number of studies, I? could not be calculated for the remaining
three interventions. Hence, the variation in different physical
agent modalities may have contributed to the high heterogeneity
observed. The analysis results demonstrated that LLLT significantly
reduced pain in fracture patients: MD = 2.22, 95% CI (1.50, 2.94),
P < 0.00001. This was followed by ES: MD = 1.86, 95% CI (0.90,
2.82), P =0.0002; UST: MD = 1.30, 95% CI (0.39, 2.21), P = 0.005;
PEMEFS: MD = 0.52, 95% CI (0.24, 0.81), P = 0.0003; ESWT:
MD = 0.52, 95% CI (0.16, 0.88), P = 0.004. Lastly, CCEFS showed
an MD of —0.56, 95% CI (—1.01, —1.11), P = 0.01, indicating that
CCEFS did not alleviate pain, this may be largely attributed to two
factors: First, the number of studies included in the analysis was
limited, with only one investigation evaluating the analgesic effect
of CCEFS, resulting in insufficient statistical power. Second, that
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study adopted a follow-up period of up to 6 months; although pain
levels showed marked improvement over time, the dominant role
of the body’s own repair mechanisms during the natural fracture
healing process may have substantially diluted the additional effects
of physical agent therapy in the later stages. This could be a key
reason for the negative effect observed. Future high-quality studies
with shorter follow-up periods, particularly during the acute phase,
are recommended to clarify the true effectiveness of CCEFS in
pain management. In the sensitivity analysis, excluding individual
studies did not lead to significant changes in the overall results,
suggesting that the findings are robust (Supplementary Figure 1A).

3.3.2 Time to complete fracture healing (days)

In total, 9 studies were included, reporting on the fracture
healing times of patients with different fracture locations following
physical agent modalities. Due to the high overall heterogeneity
of the included studies (I*> = 82.7%, P = 0.0006), a random-
effects model was employed for the meta-analysis. Furthermore,
subgroup analyses were conducted for different physical agent
modalities (CCEFS, ES, PEMFS, UST) (Figure 3B). The I? values
for PEMFS and UST were 29% and 99%, respectively, while 12
could not be calculated for CCEFS and ES due to an insufficient
number of studies. Thus, the high heterogeneity may be attributed
to the different physical intervention methods employed. The
results indicated that the treatment group showed a significant
improvement in fracture healing time compared to the control
group, UST: MD = —28.09, 95% CI (—40.27, —15.91), P < 0.00001;
PEMFS: MD = —11.26, 95% CI (—22.39, —0.13), P = 0.05; CCEFS:
MD = 3.10, 95% CI (—5.67, 11.87), P = 0.49; ES: MD = —19.49,
95% CI (—51.23, 12.25), P = 0.23. Although CCEFS and ES did
not show statistical significance, the overall results indicated that
physical agent modalities effectively reduced fracture healing time:
MD = —21.58, 95% CI (—31.05, —12.11), P < 0.00001. In the
sensitivity analysis, the summary results remained stable after the
exclusion of individual studies, suggesting that the findings are
robust (Supplementary Figure 1B).

3.3.3 Number of cases achieving complete
fracture healing

16 included studies reported on the number of cases achieving
complete fracture healing. Due to moderately high overall
heterogeneity (12 = 46.9%, P = 0.09), a random-effects model was
still employed. The results indicated that, overall, physical agent
modalities significantly increased the number of cases achieving
complete fracture healing compared to the control group, with
a risk ratio (RR) of 1.37, 95% confidence interval (CI) (1.17,
1.60), P < 0.0001. Further subgroup analyses were conducted
based on different physical agent modalities (MS, CCEFS, PEMFS,
ES, ESWT, UST) (Figure 3C), revealing that PEMFS and UST
exhibited statistically significant effects and played a positive role
in promoting fracture healing, PEMFS: RR = 1.92, 95% CI (1.01,
3.65), P = 0.05; UST: RR = 1.44, 95% CI (1.13, 1.84), P = 0.003.
In addition, the 12 values for MS, PEMFS, and UST were 6%, 75%,
and 77%, respectively, indicating that the high heterogeneity may
still be attributed to the different physical intervention methods.
In the sensitivity analysis, after excluding individual studies, the
summary results did not show significant changes, suggesting that
the findings are robust (Supplementary Figure 1C).
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3.4 Network meta-analysis

3.4.1 Network map

We generated three network node diagrams (Figures 4A-C),
three primary outcomes, each involving different physical agent
modalities. Analysing these study data, we assessed the relative
efficacy of seven types of physical agent modalities (Figures 4D-F).
Further details are provided in the ranking table (Supplementary
Table 2). We conducted pairwise comparative analyses of all
treatment approaches using MD and RR with 95% confidence
intervals. The results showed that, for most comparisons between
physical agent modalities, the 95% confidence intervals included
the null value (MD = 0 or RR = 1), indicating that the differences in
effectiveness between these interventions did not reach statistical
significance. This suggests that the relative efficacy of different
physical agent modalities remains uncertain. However, a trend
suggesting that Low-Level Laser Therapy (LLLT) may be more
effective in alleviating post-fracture pain compared with the
other five groups. The following data supports this assertion:
ESWT vs LLLT: MD = —1.74, 95% CI (—3.94, 0.45); CCEFS vs
LLLT: MD = —2.82, 95% CI (—5.03, -0.61); PEMFS vs LLLT:
MD = —1.68, 95% CI (—3.41, 0.04); UST vs LLLT: MD = —0.96,
95% CI (—3.31, 1.39), and ES vs LLLT: MD = —0.37, 95%
CI (=197, 1.22) (Figure 4D). Similarly, when considering the
time to complete fracture healing (days), although no statistically
significant differences were observed, UST showed a notable trend
toward reducing the time to complete fracture healing (days)
compared to the other groups. This trend is supported by the
data: UST vs CCEFS: MD = —31.22, 95% CI (—69.42, 6.97); UST
vs PEMFES: MD = —12.36, 95% CI (—38.40, 13.69); ES vs UST:
MD = 8.63, 95% CI (—40.25, 57.51) (Figure 4E). Moreover, when
considering the number of patients achieving complete fracture
healing, CCEFS demonstrated a significant advantage over the
other intervention groups, CCEFS vs MS: RR = 13.79, 95% CI(0.78,
244.89); CCEFS vs ESWT: RR = 12.61, 95% CI (0.70, 228.37);
PEMEFS vs CCEFS: RR = 0.12, 95% CI (0.01, 2.03); UST vs CCEFS:
RR = 0.10, 95% CI (0.01, 1.80); ES vs CCEFS: RR = 0.13, 95% CI
(0.01, 2.36) (Figure 4F).

3.4.2 Ranking of treatments

Figure 5 illustrates the cumulative probabilities of each
intervention across various potential rankings, represented by
SUCRA values, which indicate the ranking of treatments; a
higher SUCRA value signifies a more favorable ranking among
all available treatments. A SUCRA value of 100% denotes the
best treatment effect, while a SUCRA value of 0% indicates the
poorest treatment effect. According to the ranking results shown
in Table 2, the two highest-ranked interventions for pain relief are
LLLT (SUCRA 87.5%) and ES (SUCRA 80.8%), followed by UST
(SUCRA 62.5%), PEMEFS (SUCRA 42.9%), ESWT (SUCRA 41.0%),
and CCEFS (SUCRA 13.7%). In terms of time to complete fracture
healing (days), UST (SUCRA 82.9%) and ES (SUCRA 61.3%) are
ranked highest, followed by PEMFS (SUCRA 58.7%) and CCEFS
(SUCRA 24.7%). Finally, with respect to the number of patients
achieving complete fracture healing, CCEFS (SUCRA 99.9%) and
PEMFS (SUCRA 67.6%) ranked highest, followed by ES (SUCRA
58.4%), UST (SUCRA 53.6%), ESWT (SUCRA 30.2%), and MS
(SUCRA 23.2%).
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Network meta-analysis of physical agent modalities for fractures. (A—C) Network evidence plots for fractures. (D—F) Forest plot represents the direct
and indirect comparison. PL, placebo; LLLT, low-level laser therapy; MS, magnetic stimulation; ESWT, extracorporeal shock wave therapy; CCEFS,
capacitively coupled electric field stimulation; PEMFS, pulsed electromagnetic fields stimulation; UST, ultrasound therapy; ES, electrical stimulation

3.5 Publication of bias

Funnel plots were employed to assess publication bias for all
outcome indicators. The funnel plots for Pain Relief Difference,
Time to Complete Fracture Healing (days), and Number of Cases
Achieving Complete Fracture Healing exhibited a symmetrical and
even distribution, suggesting the absence of significant publication

bias (Figure 6).
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4 Discussion

To the best of our knowledge, this study represents the first
NMA comparing the efficacy of different physical agent modalities
for treating patients with fractures. This NMA meticulously
reviewed the most recent data from 39 eligible randomized
controlled trials, evaluating the effectiveness of physical agent

modalities in fracture patients. This study confirms that physical
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FIGURE 5

Rankogram for all outcomes. Each line segment represents a treatment. The area enclosed by the line segment and the coordinate axis represents
the cumulative probability of treatment. (A) Difference between post-treatment and pre-treatment pain scores; (B) time to complete fracture

healing (days); (C) number of patients with fully healed fractures.

TABLE 2 SUCRA ranking of different outcome indicators.

Physical agent Pain relief difference Time to complete fracture Number of cases achieving
modalities healing (days) complete fracture healing
Capacitive_coupling 13.7% 24.7% 99.90%
Electrical 80.8% 61.3% 58.40%
Electromagnetic 42.9% 58.7% 67.60%
Laser 87.5% - -

Placebo 21.7% 22.4% 17.10%
Shock_wave 41.0% — 30.20%
Ultrasound 62.5% 82.9% 53.60%

magnetic - - 23.20%
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FIGURE 6
Funnel diagram. Publication bias for assessing study results. (A) Difference between post-treatment and pre-treatment pain scores; (B) time to
complete fracture healing (days); (C) number of patients with fully healed fractures.

agent modalities significantly promotes fracture healing and
alleviates pain. To compare the effects of different physical
agent modalities, we sought indirect evidence through pairwise
comparisons. However, indirect treatment comparisons revealed
no statistically significant differences in efficacy among the seven
modalities. Subsequently, by calculating the SUCRA values for
these therapies and conducting a ranking analysis, we found that
both LLLT and ES significantly relieve pain, with the reduction in
pain scores likely reaching or even exceeding the minimal clinically
important difference. This indicates that their effects go beyond
statistical significance and provide pain relief that is genuinely
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meaningful to patients. Such a degree of improvement can help
enhance sleep quality and daily functioning, thereby improving
overall quality of life and potentially reducing dependence on
analgesic medications. Consequently, these two physical agent
modalities demonstrate substantial clinical value as complementary
approaches to pain management. UST markedly shortens fracture
healing time, while CCEFS significantly increases the healing rate
in patients with fractures, followed by PEMFS. These effects enable
patients to regain physical function earlier, fundamentally reducing
the risk of complications associated with prolonged immobilization
or delayed healing, and ultimately leading to substantial savings
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in healthcare resources. In this context, these physical agent
modalities serve not only as effective clinical tools for preventing
fracture non-union but also as strategies that enhance the overall
quality of treatment. They therefore provide strong evidence
supporting the clinical prioritization of efficient physical therapy
modalities. However, since only a few studies have examined the
application of LLLT and CCEFS in patients with fractures, this
result warrants cautious interpretation.

Patients with fractures often experience acute postoperative
pain, which is typically managed with analgesic medications.
However, such treatments frequently come with adverse side
effects, including nausea, vomiting, delirium, constipation, and
gastrointestinal dysfunction. The incidence of these side effects is
particularly higher in the elderly population (75), and postoperative
analgesic efficacy is often poorer compared to younger individuals
(76). Consequently, the application of non-pharmacological and
non-invasive analgesic methods in the management of acute
postoperative pain has garnered increasing attention. Our research
found that low-level laser therapy (LLLT) exhibits the best analgesic
effects. However, due to the low certainty of evidence, further
studies are required to validate this conclusion. LLLT is based on
a specialized technical device capable of emitting light beams with
precise characteristics for medical applications. It stimulates the
mitochondria to produce ATP, enhances mitochondrial electron
transport rates, regulates reactive oxygen species to reduce
oxidative stress, and induces the activation of transcription factors
such as AP-1, p53, NF-kB, and HIF, thereby promoting extracellular
matrix deposition and activating anti-inflammatory and anti-
apoptotic pathways. Clinically, these effects manifest as pain and
inflammation relief, as well as facilitation of tissue repair (77-79).
Literature indicates that in vitro, LLLT modulates the inflammatory
response by activating the WNT pathway and inhibiting the
NE-kB signaling pathway (80). In vivo, it regulates the levels
of inflammatory precursor factors such as IL-1, IL-6, IL-8, and
IL-18 to control the inflammatory response (81). Furthermore,
LLLT positively influences bone tissue metabolism and fracture
healing (82, 83) by stimulating microcirculation and increasing the
activity of osteoblasts, thus enhancing the osteogenic effect (84).
However, therapeutic benefits appear restricted to early healing
phases (< 21 days post-fracture), with diminished efficacy in
chronic non-union models.(85).

Beyond LLLT,
established analgesic
electrical nerve stimulation (TENS), non-invasive interactive
neurostimulation (NIN), and interferential current (IFC). TENS
delivers pulsed electrical currents transcutaneously, making it a

(ES)
such as

electrical stimulation encompasses

approaches transcutaneous

prevalent non-pharmacological intervention for pain management
(86, 87). It is capable of generating a sensation similar to
acupuncture at frequencies of 2-4 Hz by stimulating A8 and C
fibers in the afferent nerves, thereby activating downstream pain
inhibition pathways and producing a spatially diffuse analgesic
effect (88). Studies by Gorodetskyi I et al. (49) and Lord SR
et al. (89) have investigated the role of TENS in reducing acute
postoperative pain in elderly patients following hip fractures,
both reporting significant pain relief, which is consistent with our
findings. Moreover, NIN has been shown to have a positive effect in
the postoperative care of patients with femoral neck fractures (49),
with its pain relief mechanism thought to involve segmental and
descending neural inhibition (90). IFC operates on the principle of
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a low-frequency-modulated medium-frequency current created by
the superposition of two medium-frequency currents with slight
phase differences (91). IFC therapy is believed to alleviate pain
through gate control mechanisms and the release of endogenous
opioids (92). Although this therapy has been in use for decades, its
physiological effects have not been fully substantiated, making it
challenging to completely elucidate its analgesic action (93).

Fracture patients frequently endure acute postoperative
pain, conventionally managed with analgesics. However, these
pharmacological interventions often induce adverse effects such as
nausea, constipation, delirium, and gastrointestinal dysfunction.
According to our study, physical agent modalities significantly
shortens the time to fracture healing and improves the complete
healing rate in fracture patients. SUCRA ranking in this study
indicates that ultrasound therapy (UST) can markedly reduce
the time to complete fracture healing (days) compared to other
physical agent modalities, which aligns with the findings of
Kristiansen et al. (54) who reported that treatment with low-
intensity pulsed ultrasound (LIPUS) shortened radiological healing
times by 38%. When ultrasound propagates through biological
tissues, it generates micro-mechanical strain, which stimulates
biochemical responses at the cellular level and promotes bone
formation (94). Fracture patients often experience prolonged
immobilization, leading to a deficiency of mechanical load at the
injury site. However, ultrasound can produce mechanical forces
that improve the mechanical environment of the affected area,
potentially facilitating endochondral ossification, a key mechanism
in fracture healing (95, 96). Additionally, the mechanical stress
generated by ultrasound further promotes osteogenesis, protein
synthesis, calcium uptake, and DNA synthesis in various cell types
(97). As ultrasound transmits through the tissue to the bone,
cells adjacent to the fracture site convert biomechanical stimuli
into biochemical responses via integrins, which serve as crucial
molecular mediators of mechanotransduction (98). Furthermore,
ultrasound stimulation increases the expression of integrins,
enhancing the adhesion of osteoblasts at the fracture site, thereby
aiding in fracture healing (99, 100).

Early clinical studies suggest that high-intensity ultrasound
stimulation in the range of 5000 to 25000 mW/cm? may induce
adverse effects including necrosis, cessation of bone healing,
and fibrous tissue formation (101, 102). Consequently, low-
intensity pulsed ultrasound (LIPUS) has consequently become
the clinical standard (103). LIPUS has been shown to positively
influence fracture healing regardless of the patient’s age, smoking
status, the presence of a fracture gap, fibular fractures, or the
location of distal fractures (104). Animal studies indicate that
LIPUS not only accelerates the formation of bone callus but
also enhances the mechanical strength at the fracture site (105,
106). During the fracture healing process, The periosteum serves
as a primary reservoir for osteoprogenitor cells during bone
regeneration, playing a central role in callus formation. Tam
et al. (107) demonstrated that LIPUS interventions positively
stimulate osteogenesis and the activation of cell differentiation in
human periosteal cells. Additionally, cyclooxygenase-2 (COX-2)
and prostaglandin E2 (PGE2) are key biological processes involved
in the mineralization and remodeling phases of bone healing
(108), COX-2 promotes fracture healing by upregulating genes
associated with endochondral ossification and angiogenesis (98,
109), whereas PGE2 enhances collagen synthesis in cultured bone
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and further stimulates osteoblast proliferation (110). Tang et al.
(99) and Kokubu T et al. (111) found that expression of COX-2
and PGE2 in osteoblasts was significantly increased when cells were
subjected to ultrasound stimulation.

Pulsed Electromagnetic Fields Stimulation (PEMFS) has
emerged as a clinical mainstay (2), demonstrating particular
efficacy during the angiogenic-osteogenic coupling phase of bone
repair and remodeling (112). Multiple studies have demonstrated
that PEMEFS actively promotes bone healing by regulating
voltage-gated ion channels, increasing cytosolic calcium ion
concentrations, enhancing early angiogenesis, and facilitating the
differentiation and maturation of osteoblasts (113). Research
indicates that PEMFS upregulates TGF-f expression and promotes
the proliferation and osteogenic differentiation of stem cells via
coordinated signaling through BMP, ERK/MAPK, and Notch
pathways (114-117). The effectiveness of PEMFS is closely related
to exposure duration, to significantly enhance fracture healing,
PEMES should be applied for at least 8 h per day over a period
of 45-60 days (118). Furthermore, studies have found that PEMFS
can upregulate the expression of placental growth factor (PIGF)
and brain-derived neurotrophic factor (BDNF). PIGE a member
of the vascular endothelial growth factor (VEGF) subfamily, is
a key regulator of angiogenesis and vasculogenesis (119). BDNF
promotes angiogenesis through two mechanisms: Firstly, by locally
activating subsets of endothelial cells, and secondly, by recruiting
bone marrow-derived cells. These both mechanisms contribute
to the formation of new blood vessels, thereby facilitating
bone formation (120). Additionally, Parhampour et al. (121)
discovered that PEMFS can improve bone metabolic disorders and
restore joint function.

In our study, CCEFS demonstrated significant effects on
fracture healing and was ranked first in the third outcome measure
based on the SUCRA rankings. As a non-invasive bone growth
stimulation method, CCEFS has the potential to enhance osteoblast
function and increase new bone formation (122). An in vitro
study revealed the mechanism of action of CCEFS, which involves
the activation of voltage-gated calcium channels in the plasma
membrane, leading to increased cytosolic calcium concentration
and phospholipase A2 (PLA2) activity (123). The rise in cytosolic
calcium activates the calmodulin pathway, further upregulating the
expression of osteogenic-related genes, including fibroblast growth
factor (FGF) 2, osteocalcin (OCN), TGF-, BMP, and alkaline
phosphatase (ALP) (124, 125). PLA2 promotes the synthesis of
PGE2, thereby further facilitating the osteogenic process (126).
Additionally, a study (127) have reported that CCEFS has a positive
impact on alleviating chronic pain. However, our NMA did not
demonstrate a significant effect of CCEFS on post-fracture pain
relief. This may be attributed to the inclusion of only one relevant
study (62), which, although indicating that CCEFS could more
rapidly relieve pain, found no significant difference in the overall
level of pain relief compared to the control group.

In the included studies, the number of investigations on LLLT,
MS, ESWT, and CCEFS was relatively limited, largely reflecting
the characteristics of each technique and their current clinical
use. ESWT carries a potential risk of secondary injury due to
possible adverse effects such as hematoma formation and increased
pain (128). Research on MS has focused mainly on neurological
rehabilitation (129), with comparatively less application in fracture
treatment. CCEFS already has a well-established therapeutic
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protocol for fracture healing (122), and its technical stability has
resulted in fewer novel research directions. For LLLT, progress
in fracture pain management has been slow, partly due to the
lack of standardization in pain assessment tools (such as VAS,
NRS, and the McGill Pain Questionnaire) and partly because
current clinical practice still relies heavily on pharmacological
analgesia (130). These factors may together contribute to the
current relative scarcity of research on these therapies in the field
of fracture rehabilitation.

5 Limitation

First, restricted study availability and underpowered sample
sizes compromised generalizability while reducing statistical
precision. Second, there was an imbalance in the number
of comparisons and sample sizes among the physical agent
modalities. Among the three different outcome measures, studies
on UST constituted the largest proportion, while those on CCEFS
and MS comprised the smallest, which may have impacted
the research findings. Third, we acknowledge the substantial
heterogeneity observed in this study, which may largely stem
from clinical differences among the included trials, such as
variations in fracture type, duration of intervention, and device
parameters. Because the original studies provided insufficient
data, we were unable to perform subgroup analyses to further
explore the specific influence of these factors. Therefore, the
findings of this network meta-analysis should be interpreted as
representing an overall effect across diverse clinical contexts.
Future studies should adopt more standardized designs and
provide more detailed reporting to better account for these
key variables. Fourth, the lack of direct comparisons between
physical agent modalities, relying instead on indirect evidence,
may limit the reliability and comprehensiveness of the conclusions.
Finally, the use of SUCRA scores does not account for
differences in study quality and relies solely on relative ranking
to evaluate treatment efficacy. Including low-quality studies
may introduce bias and lead to systematic errors in effect
size estimation. When such biased estimates are incorporated
into a network meta-analysis model, they can distort the
true comparative effectiveness between treatments, causing the
SUCRA rankings to deviate from reality and reducing their
overall reliability. Given that the design of the SUCRA scoring
system focuses on relative efficacy while neglecting effect size,
it may inadvertently undermine the clinical significance of the
treatment effects.

6 Conclusion

Physical agent modalities demonstrate therapeutic potential
in fracture management, effectively reducing pain and enhancing
osseous regeneration. In indirect head-to-head comparisons,
although different physical agent modalities did not show clear
advantages or disadvantages in pain relief and fracture healing,
this study provides valuable insights for clinical decision-making.
Notably, LLLT and ES displayed potential advantages in pain
alleviation, while UST and CCEFS exhibited superior effectiveness

frontiersin.org


https://doi.org/10.3389/fmed.2025.1646903
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Li et al.

in promoting fracture healing. However, these preliminary
conclusions require validation through high-quality, large-sample
randomized controlled trials, and further clinical research is
necessary to confirm the efficacy of these interventions.
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