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shift in premyopic school-aged 
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Purpose: This study aimed to investigate longitudinal changes in ocular 
parameters and develop a machine learning-based model for predicting myopia 
onset and shift within 1 year in school-aged premyopic children.
Methods: This prospective cohort study enrolled 320 premyopic children aged 
6–12 years from the Ophthalmology Clinic of The Second Affiliated Hospital 
of Dalian Medical University. Uncorrected visual acuity (logMAR), cycloplegic 
spherical equivalent (SE), axial length (AL), average corneal curvature (CC), and 
subfoveal choroidal thickness (SFCT) were measured at baseline and 6-month 
intervals for 12 months. Premyopia was defined as  - 0.50 D < SE ≤ + 0.75 D. 
A multivariable analysis evaluated predictive factors including age, gender, 
parental myopia, baseline SE, AL, CC, axial length/corneal radius (AL/CR), and 
SFCT. Machine learning algorithms were used to predict 1-year myopia onset 
and myopia shift, along with Shapley Additive exPlanations (SHAP) interpretation.
Results: Among 284 participants (88.8% retention rate), 141 children (49.3%) 
developed myopia. The cohort exhibited an annual SE progression of 
−0.695 ± 0.222 D and AL elongation of 0.356 ± 0.122 mm. The AL/CR increased 
from 2.986 ± 0.061 to 3.029 ± 0.072 (p < 0.001), while SFCT demonstrated a 
significant reduction of 21.535 ± 9.731 μm (p < 0.001). The optimal model 
achieved an AUC-ROC of 0.963 (95% CI: 0.930–0.997) for myopia onset 
prediction, with baseline SE emerging as the most significant predictor, followed 
by parental myopia, SFCT, and age. Meanwhile, our algorithm also achieved 
clinically acceptable 1-year predictions of SE.
Conclusion: Premyopic children exhibited accelerated myopic progression. Our 
machine learning-based predictive models showed promising performance for 
myopia onset and myopia shift, providing clinically valuable risk stratification for 
targeted prevention strategies.
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1 Introduction

Myopia has become a major global public health issue, especially 
in East Asia. Among Chinese children and adolescents, its prevalence 
shows an annual increase, increasing from 55.5% in 2010 to 60.1% in 
2019, with the peak age of onset dropping from 12 years old in 2010 
to 7 years old in 2019 (1). An earlier onset of myopia is associated with 
a higher risk of developing more severe myopia in adulthood. The 
rapid increase in high myopia cases, coupled with population aging, 
suggests a potential dramatic increase in vision-impaired pathologic 
myopia over the coming decades (2), underscoring the critical 
importance of predicting the risk of myopia and implementing 
early interventions.

To enable early intervention in children at imminent risk of 
myopia onset, the International Myopia Institute (IMI) introduced the 
concept of “premyopia” in 2019. This condition is defined as a 
refractive state with a spherical equivalent between −0.50 D and 
+0.75 D. When combined with baseline refraction, age, and other 
quantifiable risk factors, these factors indicate a sufficient likelihood 
of future myopia development to warrant preventive intervention (3). 
This definition has been consistently adopted in the IMI white papers 
on myopia management in 2021 and 2023 (4, 5).

Premyopia represents a substantial proportion of children. The 
Ireland Eye Study (IES) reported a premyopia prevalence of 32.4% 
among schoolchildren aged 6–7 years (6), while a Spanish study 
documented a prevalence of 42.4% among children aged 5–7 years (7). 
In China, a study conducted in Shanghai found a premyopia 
prevalence of 21.9% among school-aged children, which significantly 
exceeded the prevalence of myopia (2.8%) (8). In Taiwan, the 
prevalence of premyopia reached 52% among preschool children (9). 
Children in the premyopic phase often exhibit no significant visual 
impairment and lack subjective complaints, leading to frequent 
oversight by their parents.

A previous study has shown that the axial length of the eye grows 
rapidly before myopia onset (10). Furthermore, the rate of myopic 
shift and axial elongation in the year preceding myopia onset exceeds 
that observed in children with myopia (11). Therefore, premyopia 
represents a critical period characterized by rapid axial elongation and 
heightened myopia risk, while also constituting a vital window for 
management and early intervention.

Although established methods effectively control myopia 
progression, they carry potential side effects. The necessity of early 
clinical intervention for all premyopic cases remains uncertain. 
Consequently, identifying individuals at the highest risk who warrant 
early treatment is clinically imperative. Rational and effective 
premyopia management could shift the focus of myopia control 
earlier, thereby mitigating myopia onset and progression.

Machine learning (ML), an automated approach to data analysis 
for model building, surpasses traditional linear regression by 
effectively managing complex non-linear relationships and delivering 
superior predictive performance. In ophthalmology, ML is applied in 
areas such as disease diagnosis, severity grading, and progression 
prediction (12). Notable examples include its role in diagnosing 
diabetic retinopathy (13), predicting myopia progression (14, 15), 
customizing contact lens parameters (16, 17), and forecasting visual 
acuity outcomes following treatment for neovascular age-related 
macular degeneration (18). Various ML algorithms are available, each 
with unique strengths and limitations. Random forest, a supervised 

learning algorithm, is extensively used in classification and regression 
tasks and serves as the foundation of many modern machine learning 
systems. Although there is a tendency for overfitting, this risk can 
be minimized by careful system design.

Therefore, this prospective observational study aims to investigate 
the characteristics of myopia progression in school-aged premyopic 
children. Leveraging baseline clinical data and ML techniques, the study 
further aims to predict myopia onset and myopic shift in this population, 
identify potential risk factors for myopia development, and accurately 
stratify high-risk premyopic children to guide clinical interventions.

2 Methods

2.1 Study population

This prospective longitudinal observational study enrolled 
premyopic children aged 6–12 years at the Ophthalmology Clinic of 
The Second Affiliated Hospital of Dalian Medical University between 
September 2023 and March 2024. The study protocol was approved by 
the Ethics Committee of The Second Hospital of Dalian Medical 
University and adhered to the tenets of the Declaration of Helsinki. 
Written informed consent was obtained from the parents or legal 
guardians of all participants.

2.2 Sample size

Based on clinical relevance, model generalizability, and 
measurement feasibility, nine variables—gender, age, parental myopia, 
and standard ophthalmic parameters—were included, with an events-
per-variable (EPV) ratio set at 10. Based on prior literature indicating 
a 1-year myopia incidence rate of approximately one-third in 
premyopia (19), a total of 320 subjects were recruited, accounting for 
a 15% attrition rate and the requirements for model accuracy.

2.3 Inclusion and exclusion criteria

All participants met the following inclusion criteria: children aged 
6–12 years with cycloplegic spherical equivalent refraction ≤ + 0.75 D 
and > − 0.50 D in both eyes, astigmatism or anisometropia of −1.00 
D or less in both eyes, best-corrected distance visual acuity of 0.20 
logMAR or better in both eyes, intraocular pressure (IOP) of less than 
21 mmHg, and legal guardians who fully comprehended the study and 
provided signed informed consent. The exclusion criteria were as 
follows: children with other ocular diseases (e.g., strabismus, 
amblyopia, cataract, other media opacities, or ocular tumors), 
previous or current treatment with myopia control interventions (e.g., 
atropine and multifocal spectacles), inability to cooperate with 
ophthalmic examinations, or inability to complete two follow-up visits 
due to geographical constraints.

2.4 Study procedures

No clinical intervention was performed. Standard myopia 
prevention education was provided during visits, including limiting 
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continuous near work to ≤40 min per session and ensuring ≥10 h of 
weekly outdoor sunlight exposure. Baseline and 6- and 12-month 
follow-up data included sex, age, parental myopia history, uncorrected 
visual acuity (UCVA), cycloplegic spherical equivalent refraction (SE), 
axial length (AL), subfoveal choroidal thickness (SFCT), average 
corneal curvature (CC), and axial length-to-corneal radius ratio (AL/
CR). These parameters were analyzed to develop prediction models 
for 1-year SE progression and myopia onset.

Children exhibiting UCVA >logMAR 0.2  in both eyes during 
follow-up were prescribed single-vision spectacles for classroom use. 
SE was calculated as the sphere plus half of the cylindrical power. 
Myopia was defined as SE ≤ −0.50 D.

SE was measured three times using an autorefractor (ARK-1, 
NIDEK, Japan), with the average calculated. All 3 readings should 
be at most 0.25D apart in both the spherical and cylinder components. 
Three drops of 1% cyclopentolate (Alcon) were instilled at 5-min 
intervals. Refraction was performed 30 min after the last drop. A 
fourth drop was administered if the pupillary light reflexes persisted 
or pupil size was <6.0 mm 15 min post-instillation.

CC and AL were measured three times using the Lenstar LS900 
(Haag-Streit, Switzerland), and averages were recorded. AL/CR = AL 
(mm) × mean CC (D)/337.5.

UCVA was measured using a logMAR chart (VSK-VC-Y; 
WeiShiKang, Guangzhou, China).

SFCT was measured vertically from Bruch’s membrane to the 
choroid–scleral interface at the foveal center using OCT (Cirrus 
HD-OCT 5000; Carl Zeiss, Germany). OCT imaging was conducted 
at similar time points to minimize diurnal variation. All scans were 
acquired without any cycloplegia.

2.5 Statistical analysis

Statistical analyses were performed using SPSS (version 27.0) and 
Python statsmodels (version 0.13.2). Continuous variables were analyzed 
using independent samples t-tests and Wilcoxon rank-sum tests, while 
categorical variables were assessed using chi-squared tests. Within-group 
changes were evaluated using repeated-measures analysis of variance 
(ANOVA). A p-value of < 0.05 was deemed statistically significant.

2.6 Algorithm design

We developed a machine learning-based binary classification model 
to predict 1-year myopia incidence and a regression model to predict SE 
at follow-up, using clinically collected metrics. The dataset was split into 
70% for training and 30% for testing using a stratified random sampling 
approach. Stratification was based on the outcome variable (myopia 
onset) to ensure a similar distribution of events between the sets. This 
split ratio is conventional in machine learning and was deemed adequate 
given the number of features and events, thereby helping to mitigate 
overfitting while maintaining sufficient power for validation.

2.6.1 Classification model development and 
evaluation

Univariate and multivariate logistic regression analyses were used 
to find significant clinical predictors of myopia onset. Features with a 
p-value of < 0.05 in the multivariate analysis were incorporated into 

machine learning algorithms. Five algorithms, Logistic Regression 
(LR), Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), and 
Support Vector Machine (SVM), were comprehensively evaluated to 
optimize myopia-onset prediction performance. The diverse 
algorithmic spectrum ensured robust capture of complex data patterns. 
We used a 5-fold cross-validation (cv. = 5) combined with a grid search 
(GridSearchCV) technique to identify the optimal hyperparameters 
and prevent overfitting. The best set of hyperparameters identified 
through the above cross-validation process was used to train a final 
model on the entire 70% training set. This final model was then 
evaluated on the completely unseen 30% test set. Test-set performance 
metrics included accuracy, precision, recall, F1-score, and area under 
the receiver operating characteristic curve (AUC) (20). We combined 
Shapley Additive exPlanations (SHAP) feature importance with 
correlation coefficients to visualize each feature’s predictive contribution.

2.6.2 Regression model development and 
evaluation

Random Forest Regressor was used for regression tasks. 
Hyperparameters were optimized via grid search (GridSearchCV) to 
enhance predictive performance. Features were scaled to [0, 1] using 
min–max normalization to improve the model efficacy. Five-fold 
cross-validation (cv. = 5) mitigated overfitting, and parallel processing 
(n_jobs = −1) accelerated the computations.

The optimized model was trained on the training set. The model 
performance was quantified using the mean squared error (MSE), 
mean absolute error (MAE), root mean squared error (RMSE), and 
coefficient of determination (R2) between the predicted and actual SE 
values across the training and test sets, ensuring generalizability.

3 Results

3.1 Baseline characteristics of premyopic 
children

Table 1 presents the baseline characteristics of the study cohort. A 
total of 284 school-aged premyopic children completed the 1-year 
follow-up (attrition rate: 11.3%).

3.2 Myopia progression in Premyopic 
children over 1 year

After 1 year, 141 children developed myopia (incidence rate: 
49.3%), with the rate being 51.7% (76/147) among female and 47.4% 
(65/137) among male children. The mean annual refractive 
progression was −0.695 ± 0.222 D, with a mean axial elongation of 
0.356 ± 0.122 mm. The corneal curvature did not show any significant 
changes. The AL/CR increased from 2.986 ± 0.061 at baseline to 
3.029 ± 0.072. SFCT decreased significantly by 21.535 ± 9.731 μm 
during the follow-up period (Table 2).

3.3 Myopia onset prediction

There was no statistically significant difference in the baseline 
characteristics between the test and training sets, ensuring no bias 
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between the groups (Supplementary Table  1). Univariate and 
multivariate logistic regression analyses identified significant features 
in the training set. Features with a p-value of < 0.05 in the multivariate 
analysis—baseline SE, SFCT, age, and parental myopia—were 
incorporated into the machine learning prediction models 
(Supplementary Table 2).

The performance metrics of the five clinical models were 
compared. The DT underperformed on the test set, particularly in 
terms of sensitivity and recall, suggesting potential overfitting. LR and 
NB showed consistent performance across the training and test sets, 
though AUC and accuracy were slightly lower in the test set. SVM 
demonstrated strong training performance but a modest decline in 
testing. RF achieved a high AUC with balanced precision and recall in 
both sets (Figure 1 and Table 3).

Shapley Additive exPlanations (SHAP) analysis was used to 
quantify feature contributions to the predictions. Lower baseline SE, 
parental myopia, thinner SFCT, and older age increased the 1-year 
myopia risk. Baseline SE exerted the strongest influence on the model 
output, followed by parental myopia, SFCT, and age (Figure 2).

3.4 Myopia progression prediction

The trained model achieved an R2 of 0.8931 in the training set, 
indicating an excellent data fit. The MAE, MSE, and RMSE of the 

training set were 0.1002, 0.0179, and 0.1337, respectively, indicating 
that the model had good predictive performance on the training set. 
For the test set, R2 = 0.7667, MAE = 0.1417, MSE = 0.0335, and 
RMSE = 0.1830. Despite the slightly reduced test performance, the 
prediction accuracy remained robust (Figure 3).

4 Discussion

Previous machine learning-based models primarily focused on 
diagnosing non-cycloplegic myopia and predicting risks of high 
myopia or pathologic myopia (8, 14, 21, 22), with insufficient 
consideration for early intervention in premyopia. Our study provided 
the longitudinal evidence establishing the predictive value of ocular 
and genetic factors for myopia development in premyopic children. 
Using the predictive modeling approach, children identified as high 
risk for developing myopia within 1 year may be considered for early 
interventions such as low-concentration atropine eye drops (23), 
peripheral defocus spectacles (24), or a combination thereof. Children 
at low risk may avoid unnecessary interventions beyond reinforced 
lifestyle education. This approach holds significant potential for 
delaying myopia onset and advancing personalized treatment.

Premyopic individuals exhibit depleted hyperopic reserve and 
elevated myopia risk (25, 26). A previous study reported that 
approximately one-third of premyopic children developed myopia 

TABLE 1  Characteristics of premyopia children who were included in the study at baseline (n = 284).

Variable ALL 6–<8 years 8–<10 years 10–<12 years P

Sex, n (%) 0.015

 � Female 147 (51.761) 70 (58.824) 56 (47.863) 21 (43.750)

 � Male 137 (48.239) 49 (41.176) 61 (52.137) 27 (56.250)

Parental myopia, n (%) 0.008

 � 0 26 (9.155) 7 (5.882) 18 (15.385) 1 (2.083)

 � 1 114 (40.141) 55 (46.218) 36 (30.769) 23 (47.917)

 � 2 144 (50.704) 57 (47.899) 63 (53.846) 24 (50.000)

UCVA (logMAR) 0.004 ± 0.051 0.014 ± 0.048 0.008 ± 0.052 −0.028 ± 0.043 <0.001

SE (D) 0.332 ± 0.313 0.468 ± 0.264 0.235 ± 0.310 0.229 ± 0.313 <0.001

AL (mm) 23.135 ± 0.676 22.814 ± 0.647 23.324 ± 0.573 23.470 ± 0.653 <0.001

CC (D) 43.585 ± 1.363 43.839 ± 1.319 43.470 ± 1.331 43.237 ± 1.456 0.017

AL/CR 2.986 ± 0.061 2.961 ± 0.052 3.002 ± 0.058 3.005 ± 0.068 <0.001

SFCT (μm) 307.768 ± 34.464 315.958 ± 34.254 309.378 ± 36.535 302.769 ± 31.763 0.066

UCVA = uncorrected visual acuity; SE spherical equivalent; AL = axial length; CC = corneal curvature; AL/CR = axial length/corneal radius; SFCT = subfoveal choroidal thickness.

TABLE 2  Changes in ocular parameters during the follow-up stage.

Variable Baseline 6 months 12 months P-value

UCVA (logMAR) 0.004 ± 0.051 0.030 ± 0.080 0.096 ± 0.116 <0.001

SE (D) 0.332 ± 0.313 0.038 ± 0.349 −0.363 ± 0.401 <0.001

AL (mm) 23.135 ± 0.676 23.305 ± 0.674 23.492 ± 0.681 <0.001

CC (D) 43.585 ± 1.363 43.591 ± 1.379 43.583 ± 1.360 0.997

AL/CR 2.986 ± 0.061 3.001 ± 0.075 3.029 ± 0.072 <0.001

SFCT (μm) 307.768 ± 34.464 295.884 ± 33.494 286.232 ± 33.937 <0.001

UCVA = uncorrected visual acuity; SE spherical equivalent; AL = axial length; CC = corneal curvature; AL/CR = axial length/corneal radius; SFCT = subfoveal choroidal thickness.
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within 1 year, compared to a < 1% incidence among 
non-premyopic emmetropic children (19). Children with baseline 
SE > +2.00 D showed a 5-year myopia incidence of merely 4.4% 
versus 92.0% among those with SE between 0.00 and −0.50 D (25). 
Our findings confirmed this high-risk profile, demonstrating a 
49.3% 1-year myopia incidence in school-aged premyopes. 
Therefore, our study was designed to capture the initial onset and 
shift in myopia within a high-risk premyopic population. The 
1-year horizon allowed us to observe early changes and build a 
foundational model.

We further identified that lower baseline SE, parental myopia, 
thinner baseline SFCT, and older age increased the risk of myopia. 
Baseline SE emerged as the strongest predictor of myopia onset within 
1 year among premyopic children in China, with lower SE values 
conferring a higher risk. Although AL is significant in myopia control 
(27), the baseline AL and AL/CR ratio were not predictive in our 
study. This discrepancy may stem from variations in the AL-SE 
correspondence. Our cohort showed a mean annual AL increase of 

0.356 ± 0.122 mm, with 1 mm AL elongation corresponding to 1.95 
D SE progression, consistent with previous reports that found SE 
changes of 0.83 D, 1.74 D, and 1.83 D per 1 mm AL increase in 
emmetropes, premyopes, and myopes, respectively (28). This gradient 
is reflected in lens power loss (29). During abnormal axial elongation, 
the crystalline lens may initially compensate for the myopic shift; 
however, this compensatory mechanism diminishes at myopia onset 
(30), exacerbating SE progression per millimeter of AL growth. 
Consequently, SE changes outpaced axial elongation in premyopia. 
Additionally, lens power decreased with age (31), which aligns with 
our observation of a higher myopia incidence in older children, 
suggesting lens involvement in myopiogenesis.

The choroid, a highly vascularized structure that nourishes the 
retinal pigment epithelium and outer retina, is critical for retinal 
function (32). The IMI discussed choroidal involvement in myopia in 
the latest series of myopia control (33). Choroidal thinning, which is 
strongly correlated with AL elongation, may coincide with myopia 
onset. Animal studies have indicated that chicks with initially thinner 

FIGURE 1

ROC of five machine learning algorithms for predicting the risk of myopia onset at 12 months in the training and test sets. ROC = receiver operating 
characteristic curve; AUC = area under the receiver operating characteristic curve.

TABLE 3  Performance metrics of different models on the training set and test set.

Cohort Model AUC AUC 
95%CI

Acc Acc 95%CI Sen Spe PPV NPV Precision Recall F1 
score

Cutoff

Train LR 0.954 0.9274–0.9801 0.889 0.8451–0.9327 0.837 0.940 0.932 0.855 0.932 0.837 0.882 5.870e-01

Test LR 0.916 0.8598–0.9726 0.826 0.7337–0.8962 0.791 0.860 0.848 0.806 0.848 0.791 0.819 5.870e-01

Train NB 0.944 0.9156–0.9732 0.889 0.8392–0.9285 0.837 0.940 0.932 0.855 0.932 0.837 0.882 6.545e-01

Test NB 0.933 0.8810–0.9849 0.860 0.8053–0.9147 0.814 0.907 0.897 0.830 0.897 0.814 0.853 6.545e-01

Train DT 0.955 0.9303–0.9795 0.889 0.8451–0.9327 0.827 0.950 0.942 0.848 0.942 0.827 0.880 5.051e-01

Test DT 0.906 0.8455–0.9662 0.860 0.7684–0.9248 0.791 0.930 0.915 0.815 0.915 0.791 0.849 5.051e-01

Train RF 0.966 0.9458–0.9860 0.899 0.8570–0.9410 0.867 0.930 0.924 0.877 0.924 0.867 0.895 4.983e-01

Test RF 0.963 0.9303–0.9966 0.872 0.8215–0.9225 0.814 0.930 0.919 0.826 0.919 0.814 0.863 4.983e-01

Train SVM 0.956 0.9305–0.9811 0.894 0.8333–0.9242 0.827 0.960 0.953 0.850 0.953 0.827 0.885 6.894e-01

Test SVM 0.928 0.8756–0.9794 0.837 0.7429–0.9055 0.767 0.907 0.886 0.802 0.886 0.767 0.822 6.894e-01

LR = Logistic Regression; NB = Naïve Bayes; DT = Decision Tree; RF = Random Forest; SVM = Support Vector Machine; Acc = accuracy; Sen = sensitivity; Spe = specificity; PPV = positive 
predictive value; NPV = negative predictive value.
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choroids exhibit faster axial growth than those with thicker choroids 
(34). However, clinical evidence establishing a thinner SFCT as a 
predictor of subsequent myopia in premyopic children remains 
unreported. Our study addressed this gap, demonstrating a significant 
SFCT reduction (21.535 ± 9.731 μm) during follow-up. Predictive 
modeling further established a thinner baseline SFCT as a significant 
risk factor for 1-year myopia development in premyopia.

While our algorithm demonstrated promising predictive 
performance with the ocular parameters and parental myopia history, 
a previous study found that gender differences (particularly higher 
susceptibility in females), urban–rural residence disparities, and 
reduced outdoor activity time were also significant independent risk 
factors affecting the occurrence of myopia. Their study documented a 
distinct risk hierarchy: urban female > urban male > rural 
female > rural male children. These factors likely operate through 
multiple pathways, including differential educational pressures, 
variations in natural light exposure affecting dopamine-mediated 
ocular growth regulation, and gender-specific hormonal influences on 
scleral remodeling (35).

Although the incidence of myopia was slightly higher in female 
(51.7%) than in male children (47.4%) in our cohort, gender did not 
demonstrate significant predictive value during feature selection for 
the prediction model. Tideman et al. (36) reported that risk scores 
combining environmental factors and ocular parameters could 
identify high-risk children. Another model suggested that ocular 

factors outweighed environmental and genetic predictors in myopia 
progression (22). Another cohort study found that 2-year myopia 
incidence was correlated solely with parental myopia, independent of 
environmental factors such as near-work duration, diopter hours, 
outdoor time, or tutoring (28). Environmental factors (e.g., daily near-
work duration, outdoor activity, and lighting conditions) present high 
measurement challenges and significant quantification errors due to 
behavioral inconsistencies and seasonal variations. Consequently, to 
ensure model robustness, these factors were excluded from the 
prediction algorithm and addressed through post-prediction clinical 
counseling. Our algorithm exclusively focuses on stable, quantifiable 
predictors (e.g., biometric parameters, baseline refractive status, and 
genetic markers).

5 Limitations

This study had several limitations. First, this single-arm cohort 
study lacked a control group, preventing comparison of ocular 
progression in children with different refractive statuses. Considering 
the current effectiveness of myopia control strategies, we assessed the 
ethical justification for establishing an untreated myopia control 
group. Additionally, due to the necessity and practical difficulties of 
clinical cycloplegic examinations, no high hyperopia reserve control 
group was included. Consequently, the model is best suited to risk 

FIGURE 2

SHAP values of the random forest model for predicting the risk of myopia onset at 12 months. (a) Scatter plot of SHAP values of the random forest 
model. (b) The average SHAP values of the model output by the four indicators. SHAP = Shapley Additive exPlanations.
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stratification within a premyopic cohort identified by current clinical 
standards rather than for screening the general pediatric population. 
This design choice, while pragmatic, may restrict the model’s utility in 
settings where population-wide screening is required.

Second, the sample size was constrained by single-center 
recruitment, which precluded external validation and may limit the 
generalizability of the findings. Although internal validation was 
conducted, external testing is required before clinical implementation. 
Moreover, the algorithm was developed and validated exclusively for 
Chinese school-aged children (6–12 years). While core biometric 
relationships suggest cross-population applicability, clinical use in 
non-Asian cohorts will require local calibration and prospective 
validation. Finally, due to the high incidence of premyopia converting 
into myopia within 1 year, our model only predicted the risk of 
myopia occurrence within a specific 12-month period. Given the 
single-center design, limited follow-up period, and lack of external 
validation, the study should be  considered a preliminary pilot 
investigation. Further multicenter studies with longer follow-up are 
needed to confirm the generalizability and clinical utility of the 
proposed model.

Third, we acknowledge that the exclusion of environmental and 
behavioral predictors—such as time spent outdoors, near-work 

intensity, and degree of urbanicity—is a significant limitation. 
Therefore, our predictions should be interpreted as reflecting baseline 
biological risk, which must be integrated into the patient’s lifestyle and 
supplemented by clinical counseling. It should be emphasized that this 
tool serves as a decision-support aid rather than a standalone 
diagnostic instrument.

6 Conclusion

Over the 1-year study period, premyopic children exhibited 
significant myopic progression, axial elongation, and subfoveal 
choroidal thinning, with a myopia incidence of 49.3%. 
We  developed machine learning-based models to predict 
myopia onset and progression in school-aged premyopes. These 
models demonstrated high accuracy and identified key risk 
factors: lower baseline SE, parental myopia, thinner baseline 
SFCT, and older age collectively increased 1-year myopia risk. 
Our research facilitates the early identification of 
high-risk premyopic individuals for targeted intervention, which 
can improve the efficiency of myopia prevention among 
school-age children.

FIGURE 3

Comparison of SE predicted values and true values at 12 months in both training and testing sets. (a) The fitting situation of linear regression in the 
training set. (b) The fitting situation of linear regression in the testing set. (c) Visualization of the comparison between the true value and the predicted 
value in the training set. (d) Visualization of the comparison between the true value and the predicted value in the testing set. R2 = coefficient of 
determination, MSE = mean squared error, MAE = mean absolute error, and RMSE = root mean squared error.
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Glossary

UCVA - Uncorrected visual acuity

BCVA - Best-corrected visual acuity

IOP - Intraocular pressure

SE - Spherical equivalent

AL - Axial length

CC - Corneal curvature

SFCT - Subfoveal choroidal thickness

AL/CR - Axial length/corneal radius

SHAP - Shapley Additive exPlanations

ML - Machine learning

EPV - Events per variable

LR - Logistic regression

NB - Naïve Bayes

DT - Decision tree

RF - Random Forest

SVM - Support vector machine

ROC - Receiver operating characteristic curve

AUC - Area under the receiver operating characteristic curve

MSE - Mean squared error

MAE - Mean absolute error

RMSE - root mean squared error

R2 - Coefficient of determination
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