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Backgroud: Biomarker discovery remains pivotal for improving coronary artery 
disease (CAD) and acute myocardial infraction (AMI) diagnosis. While interferon-
induced transmembrane proteins (IFITM1/2/3) are established in viral defense 
and cancer progression, their roles in cardiovascular pathologies are undefined.
Methods: A retrospective cohort study was conducted, including a discovery 
cohort (129 CAD patients and 20 controls), a validation cohort (40 CAD patients 
and 16 controls) and a third cohort of 52 patients with acute myocardial infraction 
(AMI). Serum IFITM1/2/3 levels were specifically quantified using enzyme linked 
immunosorbent assay (ELISA). Coronary stenosis severity was assessed using 
the Gensini score. The evaluation of diagnostic performance utilized receiver 
operating characteristic (ROC) curves, whereas Spearman’s rank test facilitated 
the analysis of correlations.
Results: Compared with controls, CAD patients exhibited significantly elevated 
serum IFITM1/2/3 levels (p < 0.001). ROC analysis demonstrated exceptional 
diagnostic accuracy for CAD detection: IFITM1 (AUC 0.9375, sensitivity 95%, 
specificity 81.25%), IFITM2 (AUC 0.8984, sensitivity 90%, specificity 75%), 
and IFITM3 (AUC 1.000, sensitivity 97.5%, specificity 100%). IFITM levels were 
significantly positively correlated with Gensini scores (p < 0.0001), indicating a 
plaque burden-dependent expression pattern. AMI patients exhibited further 
elevation of IFITM1/2/3 compared to patients with stable CAD (p < 0.0001), with 
IFITM1 specifically upregulated in AMI with heart failure (3.07 vs. 4.64 ng/mL, 
p = 0.003).
Conclusion: IFITM1/2/3 may serve as novel serum biomarkers for diagnosing 
CAD and AMI, as well as stratifying coronary stenosis severity, with high 
discriminatory capacity. Our findings position IFITMs as promising tools for 
precision cardiovascular risk assessment and therapeutic targeting.
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1 Introduction

Coronary artery disease, a leading cause of mortality worldwide, 
has been recognized as a global public health problem (1). The 
underlying pathology of CAD is defined by the formation of 
atherosclerotic plaques, which involve complex processes such as 
endothelial dysfunction, lipid accumulation, inflammatory reactions, 
and thrombosis (2, 3). The clinical spectrum of CAD includes 
symptoms from stable angina and unstable angina to catastrophic 
consequences such as myocardial infarction (MI), heart failure (HF), 
or sudden cardiac death (4).

The characterization of cardiovascular disease biomarkers has 
become a vital field in translational medicine, serving dual roles in 
elucidating pathophysiological mechanisms and guiding therapeutic 
decision-making (5, 6). They provide profound insights into normal 
molecular physiology and disease activity/progression dynamics, 
and pharmacologists utilize them to unravel the intricacies of drug 
action mechanisms, including efficacy, safety, and off-target effects 
(7). Some biomarkers may serve as risk factors to predict the 
occurrence of cardiovascular events and thus become therapeutic 
targets (8–10).

Interferon-induced transmembrane proteins (IFITMs), conserved 
evolutionarily as a family of cytokines, have diverse roles in antiviral 
defense, immune regulation, and disease pathogenesis (11). The 
human IFITM family includes five functional homologs (IFITM1-5 
and IFITM10), with IFITM1-3 being the most well-characterized 
(12). Initially identified for their potent antiviral activity through 
membrane compartmentalization, IFITMs have been shown by 
emerging studies over the past years to play roles in tumor progression, 
immune modulation, and the cardiovascular system (13). Their 
overexpression in multiple cancers promotes tumor progression via 
Wnt/β-catenin-mediated proliferation, VEGF-driven angiogenesis, 
and EMT-facilitated metastasis (14–16). IFITMs critically regulate 
immune homeostasis by coordinating innate/adaptive responses and 
shaping lymphocyte polarization, antibody diversification, and 
cytokine signaling networks. Conversely, pathological IFITM 
dysregulation exacerbates inflammatory cascades and promotes 
immune evasion (17–19). However, investigations into the roles of 
IFITMs in cardiovascular pathophysiology remain scarce compared 
to their well-characterized functions in virology and oncology. A 
previous study revealed overexpression of IFITM1 and IFITM3 
during heart development (20). Notably, a recent genome-wide 
association study identified a genetic variant in IFITM2 (rs1059091) 
associated with an increased risk of CAD in an Indian population, 
providing the first genetic evidence linking the IFITM family to 
coronary artery disease (21). The co-occurrence of IFITM1/2/3 
overexpression with Treg/neutrophil imbalance in DCM patients 
highlights their potential as master regulators of cardiac inflammation 
(22). Recently, our previous work found that IFITM1 was upregulated 
in arteriosclerotic plaques and contributed to arteriosclerosis 
progression (23).

This retrospective clinical cohort study was performed to explore 
the association of IFITM1/2/3 with coronary stenosis severity and to 

evaluate the diagnostic accuracy of circulating IFITMs for identifying 
CAD and AMI patients. The primary outcome was the diagnostic 
performance of serum IFITM1/2/3 levels in distinguishing CAD and 
AMI patients from healthy controls, as assessed by receiver operating 
characteristic (ROC) analysis. The secondary outcomes included (1) 
the correlation between IFITM1/2/3 levels and coronary stenosis 
severity quantified by Gensini score, and (2) the differential 
expression of IFITM1/2/3  in AMI patients with and without 
heart failure.

2 Methods

2.1 Study design and participants

This was a single-center, retrospective cohort study. A total of 
257 participants were consecutively enrolled from Meizhou 
People’s Hospital between January 2022 and December 2024. The 
study utilized a convenience sampling approach, retrospectively 
including all eligible patients who met the pre-specified inclusion 
and exclusion criteria during the study period. All individuals 
were divided into the CAD discovery cohort (n = 149), the 
validation cohort (n = 56), and the AMI cohort (n = 52). Exclusion 
conditions were: (1) acute infectious diseases; (2) complicated with 
any kind of tumors; (3) severe hepatic or renal insufficiency; (4) 
age <18 or >75 years; (5) incomplete clinical information. The 
control subjects with a previous history of cardiovascular diseases 
or systemic diseases, or those using medications affecting lipid 
metabolism, inflammation, or blood pressure, were excluded. The 
CAD subjects were diagnosed with stable coronary artery disease, 
defined as no acute cardiovascular events (e.g., myocardial 
infarction, stroke) in the prior 6 months. The specific recruitment 
process and grouping are presented in Figure 1. This study was 
approved by the Ethics Committee of Meizhou People’s Hospital 
(2023-C) and conducted in accordance with the Declaration 
of Helsinki.

2.2 Clinical data collection

Data on demographic factors (age, gender) and clinical 
parameters (patient history, pertinent diagnostic imaging studies, 
laboratory test outcomes) were extracted from the hospital electronic 
health record system. Past medical history included hypertension and 
diabetes. Routine laboratory tests were performed in the central 
clinical laboratory of our hospital. The complete blood count was 
analyzed using a Mindray BC-600 hematology analyzer (Mindray 
Bio-Medical Electronics Co., Ltd., Shenzhen, China) with its 
proprietary reagents. Measurements of the lipid profile, aspartate 
aminotransferase (AST), and alanine aminotransferase (ALT) were 
conducted on a Beckman Coulter AU5800 fully automated 
biochemical analyzer (Beckman Coulter, Inc., USA) using reagent kits 
from Medconn Biotechnology Co., Ltd. (Ningbo, China). All 
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procedures followed the manufacturer’s instructions and the 
laboratory’s standard operating protocols.

2.3 Gensini score

Based on coronary angiography results, the Gensini score was 
used to quantify the stenosis severity in CAD. The Gensini score is 
calculated in two steps: first, assigning a stenosis score based on 
artery blockage percentage (1 for ≤25%, 2 for 26%–50%, 4 for 
51%–75%, 8 for 76%–90%, 16 for 91%–99%, 32 for total occlusion); 
second, multiplying this score by a segment-specific coefficient. 
Coefficients were: 5 for the left main coronary artery; 2.5 for the 
proximal left anterior descending and left circumflex arteries; 1.5 
for the middle left anterior descending artery; 1 for the first diagonal 
branch, obtuse marginal branches, and right coronary artery; and 
0.5 for the second diagonal branch and left circumflex posterolateral 
branch (24). Scores were independently assigned by two senior 
cardiologists. Patients were stratified into Gensini-low (n = 63) and 
Gensini-high (n = 66) groups according to median Gensini score.

2.4 Measurement of IFITM1/2/3 serum 
concentrations

Serum levels of IFITM1/2/3 were measured using ELISA kits 
(EH9298, EH9300, EH1111; FineTest) according to the manufacturer’s 
protocols. Serum samples were diluted 1:2 with dilution buffer prior to 
analysis. Absorbance was measured at 450 nm. The concentration in 
samples was calculated using CurveExpert1.4 software (Danie Hyams).

2.5 Statistical analysis

With R (version 4.2.2) and GraphPad Prism (version 9.0), 
statistical analyses were performed. Data normality was assessed using 
the Shapiro–Wilk test. Normally distributed variables were described 
as mean ± SD and compared using Student’s t-test or one-way 
ANOVA. Non-normally distributed variables were expressed as 
median (interquartile range) and compared using the Wilcoxon 
rank-sum test or Kruskal–Wallis H test. Categorical variables, 
expressed as percentages, were assessed by the Chi-square test. The 
association between IFITM levels and the Gensini score was analyzed 
using Spearman’s correlation. The diagnostic performance of serum 
IFITMs was evaluated by ROC curve analysis, with the area under the 
curve (AUC) and 95% confidence interval reported. The optimal 
cutoff value for each biomarker was determined by maximizing 
Youden’s index. To ensure robustness, the diagnostic models and 
cut-offs established in the discovery cohort were validated in an 
independent validation cohort. A p-value < 0.05 was defined as 
statistically significant.

3 Results

3.1 Baseline characteristics of subjects

Baseline characteristics of discovery and validation cohorts are 
tabulated in Table 1. In the discovery cohort, CAD patients had higher 
neutrophils, lymphocytes, and Apolipoprotein B levels compared with 
controls (p < 0.05). Other parameters showed no significant group 
differences. In the validation cohort, white blood cell count, 

FIGURE 1

Flow chart of participants selection.
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neutrophils, lymphocytes, and triglycerides differed significantly 
between groups (p < 0.05).

3.2 Analysis of serum IFITM1/2/3 levels for 
CAD diagnosis

Serum levels of IFITM1/2/3 were analyzed in the discovery cohort. 
CAD patients exhibited significantly higher serum levels of IFITM1/2/3 
compared with healthy controls (Figures 2A–C). ROC curves confirmed 
diagnostic efficacy in three proteins, with area under the curve (AUC) 
values of 0.9569 (95% CI: 0.9200–0.9937; cutoff >1.737 ng/mL, 
sensitivity 91.47%, specificity 95%) for IFITM1, 0.9661 (95% CI: 
0.9338–0.9984; cutoff >6.092 ng/mL, sensitivity 93.8%, specificity 100%) 

for IFITM2, and 0.9881 (95% CI: 0.9726–1.000; cutoff >2,452 pg./mL, 
sensitivity 94.57%, specificity 100%) for IFITM3 (Figures 2D–F, 3A–C). 
Notably, IFITM proteins had optimal diagnostic thresholds determined 
by Youden’s index, which demonstrated robust discriminatory power in 
distinguishing CAD patients from healthy controls (Figures 3D–F).

3.3 Diagnostic discrimination of CAD 
patients by IFITM1/2/3 from healthy 
controls

For validation of IFITM proteins’ diagnostic potential, a validation 
cohort (16 healthy controls, 40 CAD patients) was prospectively 
analyzed. Consistent with the discovery cohort results, serum levels of 

TABLE 1  The demographic and clinical features of discovery and validation cohort.

Variables Discovery cohort Validation cohort

Control 
(n = 20)

CAD (n = 129) p-value Control 
(n = 16)

CAD (n = 40) p-value

Demographics

Gender 0.68 0.577

Female (n, %) 5 (25.00%) 43 (33.33%) 8 (50%) 15 (37.5%)

Male (n, %) 15 (75.00%) 86 (66.67%) 8 (50%) 25 (62.5%)

Age (years) 61.50 (56.00, 66.00) 66.00 (64.00, 69.00) 0.5 58.50 (56.75, 60.00) 64.50 (62.00–67.25) 0.091

Medical history

Diabetes (n, %) / 41 (32%) / 9 (23%) /

Hypertension (n, %) / 89 (69%) / 27 (68%) /

Laboratory examination

White blood cells  

(× 109/L)
6.00 (5.58, 7.38) 7.10 (5.60, 8.70) 0.066 6.10 (5.33, 6.30) 7.50 (5.80, 8.65) 0.03

Neutrophils (× 109/L) 3.26 (2.52, 4.74) 4.66 (3.67, 5.94) 0.001 3.32 (2.85, 3.66) 4.72 (4.04, 6.09) <0.001

Lymphocytes (× 109/L) 2.13 (1.76, 2.45) 1.63 (1.25, 2.11) 0.005 2.17 (1.61, 2.38) 1.56 (1.35, 2.07) 0.033

Monocytes (× 109/L) 0.42 (0.30, 0.53) 0.44 (0.36, 0.57) 0.304 0.37 (0.32, 0.42) 0.43 (0.34, 0.60) 0.102

Red blood cells (× 1010/L) 4.82 (4.55, 5.09) 4.57 (4.16, 4.94) 0.055 4.77 (4.31, 5.00) 4.51 (4.12, 4.84) 0.185

Platelets (× 109/L)
206.00 (193.00, 

251.00)
224.00 (182.00, 262.00) 0.804 224.50 (212.0, 234.75)

215.00 (203.00, 

255.00)
0.935

Triglycerides (mmol/L) 1.22 (1.06, 1.44) 1.42 (1.03, 1.99) 0.074 1.06 (0.92, 1.14) 1.72 (1.17, 2.25) 0.006

Total cholesterol 

(mmol/L)
4.27 (3.76, 4.89) 4.45 (3.86, 5.34) 0.331 4.75 (4.54, 5.01) 4.68 (4.11, 5.39) 0.814

High-density lipoprotein 

(mmol/L)
1.46 (1.33, 1.56) 1.36 (1.12, 1.67) 0.3 1.42 (1.34, 1.61) 1.25 (1.05, 1.45) 0.118

Low-density lipoprotein 

(mmol/L)
2.62 (2.04, 2.87) 2.66 (2.28, 3.40) 0.13 2.76 (2.54, 2.95) 2.90 (2.55, 3.29) 0.245

Apolipoprotein A1 (g/L) 1.16 (1.08, 1.31) 1.21 (1.03, 1.41) 0.902 1.28 (1.23, 1.36) 1.10 (0.95, 1.32) 0.094

Apolipoprotein B (g/L) 0.71 (0.62, 0.76) 0.84 (0.72, 1.04) 0.006 0.76 (0.72, 0.86) 0.88 (0.75, 1.12) 0.053

Markers

IFITM1 (ng/mL) 1.32 (1.11, 1.44) 2.63 (2.06, 3.21) <0.001 1.42 (1.28, 1.57) 2.32 (2.01, 3.54) <0.001

IFITM2 (ng/mL) 4.20 (3.55, 4.92) 9.03 (7.09, 12.13) <0.001 4.11 (3.88, 5.60) 9.34 (7.33, 10.80) <0.001

IFITM3 (pg/mL)
2112.02 (1865.59, 

2249.60)

3419.85 (3076.43, 

4367.26)
<0.001

2084.72 (1910.07, 

2262.84)

3445.12 (3038.17, 

3939.96)
<0.001

Data are presented as mean ± SD, median (IQR), or n (%) as appropriate; group comparisons were performed using Student’s t-test, Wilcoxon rank-sum test, or Chi-square test based on data 
distribution and variable type.
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FIGURE 2

Serum levels and diagnostic performance of IFITM1/2/3 in control and CAD group of discovery cohort. (A–C) Serum IFITM1/2/3 in control and CAD 
subjects; (D–F) ROC curves of IFITM1/2/3 for determination of CAD. Statistical significance was assessed using Wilcoxon rank-sum test.

FIGURE 3

Diagnostic ability of IFITM1/2/3 in discovery cohort. (A–C) Confusion tables of the binary results of IFITM1/2/3; (D–F) Supervised hierarchical clustering 
of IFITM1/2/3 between health control and CAD.
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FIGURE 4

Levels of serum IFITM1/2/3 among different coronary severity groups of discovery cohort. (A–C) Compared IFITM1/2/3 levels in control, Gensini-low 
and Gensini-high groups; (D–F) ROC curves of IFITM1/2/3 for determination of different coronary severity CAD patients; (G–H) Representative 
coronary angiography images. Statistical significance was assessed using Kruskal–Wallis H test.

IFITM1/2/3 were significantly higher in CAD patients compared with 
controls (Supplementary Figure S1A–C). ROC analysis confirmed 
strong diagnostic discrimination, with IFITM1 showing an AUC of 
0.9375 (95% CI: 0.8632–1.000; sensitivity 95%, specificity 81.25%), 
IFITM2 an AUC of 0.8984 (95% CI: 0.8044–1.000; sensitivity 90%, 
specificity 75%), and IFITM3 a perfect AUC of 1.000 (95% CI: 1.000–
1.000; sensitivity 97.5%, specificity 100%) (Supplementary  
Figures S1D–F, S2A–C). Furthermore, when applying the thresholds 
from discovery cohort to the validation cohort, all three proteins 
retained robust classification performance in distinguishing CAD 
status (Supplementary Figure S2D–F).

3.4 Association of IFITM1/2/3 levels with 
coronary stenosis severity

For further investigation of IFITM protein levels and CAD 
severity association, 129 discovery cohort CAD patients were stratified 
by median Gensini score into low/high-stenosis severity groups. 
Figures 4G–H display representative coronary angiography images 
depicting varying stenosis degrees in the two subgroups. Clinical 
characteristics of the two groups were shown in Table 2. Serum IFITM 
concentrations showed a gradual increase from the Gensini-low to 
Gensini-high group (Figures 4A–C). These results suggest a positive 
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correlation between IFITM protein levels and coronary artery stenosis 
severity. This gradient pattern showed a significant correlation with 
angiographic severity scores (Figures  5A–C). Furthermore, ROC 
curve analysis showed that IFITMs exhibited strong discriminatory 
ability in distinguishing low vs. high stenosis severity, with an AUC of 
0.8 (Figures 4D–H).

3.5 Comparison of serum IFITM1/2/3 levels 
in CAD and AMI groups

Subsequent analyses compared serum IFITM1/2/3 concentrations 
among CAD, AMI and control groups. Baseline clinical characteristics 
were detailed in Table 3. Comparative analysis showed significantly 

TABLE 2  Demographic characteristics between GS-low and GS-high group.

Variables Gensini-low (n = 63) Gensini-high (n = 66) p-value

Demographics

Gender 0.575

Female (n, %) 19 (30.16%) 24 (36.36%)

Male (n, %) 44 (69.84%) 42 (63.64%)

Age (year) 66.00 (64.50–67.50) 68.00 (64.00–70.75) 0.056

Height (cm) 162.50 (155.75–167.75) 162.00 (155.00–166.00) 0.518

Weight (kg) 61.50 (57.00–71.00) 64.00 (59.00–70.00) 0.461

Gensini Score 5.50 (2.50–14.50) 37.00 (32.00–55.75) <0.001

Medical history

Diabetes (n, %) 17 (27%) 24 (36%) 0.255

Hypertension (n, %) 46 (73%) 43 (65%) 0.336

Laboratory examination

White blood cells (× 109/L) 6.90 (5.50–8.70) 7.25 (6.03–8.50) 0.472

Neutrophils (× 109/L) 4.55 (3.54–6.46) 4.68 (3.81–5.64) 0.759

Lymphocytes (× 109/L) 1.43 (1.19–1.83) 1.81 (1.36–2.18) 0.025

Monocytes (× 109/L) 0.44 (0.36–0.57) 0.48 (0.36–0.57) 0.561

Red blood cells (× 1010/L) 4.58 (4.12–4.96) 4.56 (4.21–4.90) 0.845

Platelets (× 109/L) 215.00 (171.50–253.50) 232.00 (196.75–270.25) 0.14

Fibrinogen (g/L) 3.15 (2.80–3.65) 3.20 (2.90–3.93) 0.217

D Dimer (mg/L) 0.35 (0.27–0.62) 0.32 (0.25–0.51) 0.47

C reactive protein (mg/L) 2.14 (0.92–3.10) 1.47 (0.91–5.28) 0.986

Creatinine (μmol/L) 88.00 (71.90–101.00) 80.45 (63.65–96.85) 0.289

Procalcitonin (ng/mL) 0.05 (0.05–0.05) 0.05 (0.05–0.05) 0.584

Alanine aminotransferase (U/L) 21.00 (15.00–28.50) 19.50 (15.00–25.00) 0.524

Aspartate aminotransferase (U/L) 21.00 (17.00–25.50) 20.50 (17.25–25.00) 0.85

Triglycerides (mmol/L) 1.51 (0.97–1.90) 1.38 (1.06–2.05) 0.923

Total cholesterol (mmol/L) 4.47 (3.80–5.33) 4.43 (3.95–5.33) 0.796

High-density lipoprotein (mmol/L) 1.49 (1.11–1.79) 1.33 (1.19–1.53) 0.1

Low-density lipoprotein (mmol/L) 2.63 (2.25–3.37) 2.66 (2.40–3.55) 0.276

Apolipoprotein A1 (g/L) 1.21 (1.05–1.44) 1.21 (1.03–1.37) 0.505

Apolipoprotein B (g/L) 0.82 (0.71–1.05) 0.90 (0.73–1.04) 0.394

Homocysteine (μmol/L) 10.75 (9.07–12.97) 10.95 (8.90–12.94) 0.823

Glycated hemoglobin (%) 6.30 (5.88–6.80) 6.20 (5.80–7.05) 0.715

Markers

IFITM1 (ng/mL) 2.11 (1.82–2.53) 2.98 (2.73–3.77) <0.001

IFITM2 (ng/mL) 7.23 (6.63–8.76) 10.93 (9.06–15.54) <0.001

IFITM3 (pg/mL) 3149.47 (2808.80–3397.46) 4088.63 (3515.54–4746.90) <0.001

Data are presented as mean ± SD, median (IQR), or n (%) as appropriate; group comparisons were performed using Student’s t-test, Wilcoxon rank-sum test, or Chi-square test based on data 
distribution and variable type.
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FIGURE 5

Correlation of serum IFITM1/2/3 with Gensini score. (A–C) The correlation results of IFITMs between Gensini score.

higher IFITM1/2/3 levels in AMI patients compared with CAD and 
control groups (Figures 6A–C). ROC curves indicated high diagnostic 
value of serum IFITM1/2/3 for distinguishing AMI from controls, 
with AUC values of 0.9934, 0.9928 and 0.9886, respectively 
(Figures  6D–F). Further stratification of AMI patients into heart 
failure (AMI-HF) and non-heart failure (AMI-nonHF) subgroups 
(clinical characteristics detailed in Supplementary Table S1) revealed 
distinct expression patterns. Notably, IFITM1 levels were significantly 
higher in AMI-HF patients (2.41 ± 0.38 ng/mL vs. 1.79 ± 0.29 ng/mL, 
p = 0.007), while IFITM2 and IFITM3 showed no significant 
expression differences between subgroups (Figures  7A–C). This 
differential expression profile suggests a potential pathophysiological 
role for IFITM1 in post-infarction ventricular remodeling and heart 
failure development, whereas IFITM2/3 appear more broadly 
associated with acute coronary syndrome pathogenesis. These findings 
underscore the proteins’ superior discriminatory capacity in acute 
coronary syndromes and suggest a distinct role for IFITM1 in heart 
failure progression after acute myocardial infarction.

4 Discussion

Coronary artery disease persists as a global health challenge with 
pressing demands for innovative biomarkers to refine diagnostic 
precision and therapeutic monitoring. Our study showed that serum 
IFITM1/2/3 levels were significantly elevated in both stable CAD and 
AMI patient cohorts and positively correlated with stenosis severity. 
ROC analysis indicated strong diagnostic performance of all three 
IFITMs in distinguishing CAD or AMI from controls, with IFITM3 
showing superior discriminative ability for CAD. Notably, elevated 
IFITM1 levels in post-AMI heart failure patients suggested its 
potential role in post-AMI cardiac decompensation mechanisms.

IFITM1, IFITM2, and IFITM3, the most structurally conserved 
members of the interferon-induced transmembrane (IFITM) family, 
have been extensively studied in antiviral defense and oncology (13, 25, 
26). IFITM protein levels correlated with coronary stenosis severity 
(Gensini score) indicated their potential role in CAD pathophysiology. 
The progressive increase in IFITM levels with increasing stenosis severity 
suggested that these proteins may be  involved in the pathological 
processes underlying atherosclerosis, such as endothelial dysfunction, 
inflammation, and thrombosis. Interferon (IFN)-dependent and 
IFN-independent mechanisms control the expression of IFITM genes in 

inflammatory conditions. In canonical IFN signaling, the JAK/STAT 
pathway is activated. This process induces IFITM genes and other 
interferon-stimulated genes (ISGs) (27). Modulation of IFITM 
expression extends beyond IFN-mediated mechanisms to include other 
cytokines (e.g., IL-6, TNF-α, angiotensin II) and molecules like LPS 
(28–30). This dual regulatory architecture enables context-specific 
IFITM induction across diverse inflammatory environments, potentially 
linking their functions to broader pathophysiological processes such as 
vascular inflammation or cytokine storm responses. A recent integrative 
multi-omics study further underscores the importance of STAT1-driven 
transcriptional programs in macrophages within atherosclerotic plaques, 
which aligns with the potential upstream regulation of IFITMs in 
cardiovascular inflammation (31). Building on the association with CAD 
and atherosclerosis, our group investigated a specific functional role. 
We demonstrated that IFITM1 contributes directly to atherosclerosis by 
regulating the phenotypic switch of vascular smooth muscle cells 
(VSMCs). Mechanistically, IFITM1 promotes VSMC proliferation, 
migration, and macrophage-like transdifferentiation through activation 
of the c-Src/MAPK/GATA2/E2F2 signaling pathway, thereby driving 
atherosclerotic plaque development (23).

In addition to their diagnostic potential, our findings also 
suggest a role for IFITM proteins in the pathogenesis of 
AMI. Significantly higher IFITM1/2/3 levels in AMI patients 
compared with CAD and control groups suggest their involvement 
in acute myocardial infarction responses. AMI, from coronary 
artery obstruction, causes myocardial ischemia-hypoxia, cardiac 
dysfunction, and detrimental effects: myocardial damage, heart 
failure, ventricular remodeling, reduced systolic function (32). 
Cellular death is a hallmark of AMI pathology. Damaged cells 
release their intracellular contents, including damage-associated 
molecular patterns (DAMPs), into the extracellular space. The 
immune system detects these DAMPs, initiating an inflammatory 
response (33, 34). Sustained and dysregulated inflammatory 
responses may exacerbate myocardial tissue damage and drive 
maladaptive cardiac remodeling. Thus, elevated inflammation in 
AMI may explain the higher IFITM levels in AMI patients compared 
with CAD patients. This notion is supported by a single-cell 
transcriptomic study in a murine MI model, which identified a 
distinct subpopulation of cardiac-infiltrating neutrophils 
characterized by high expression of Ifitm1, suggesting a specific role 
for IFITM1  in the local immune response following ischemic 
injury (35).
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Another notable finding is that IFITM1 is selectively upregulated 
in post-AMI heart failure and negatively correlated with Ejection 
Fraction (EF) or Fractional Shortening (FS) (Supplementary  
Figure S3), which warrants attention. Preliminary studies suggested 
that IFITM may play a role in modulating cardiac function. Bin et al. 
(36) showed that IFITM1, a key immune-related gene in dilated 
cardiomyopathy (DCM), was significantly upregulated in T-cell-
related subpathways, suggesting its potential role in disease 
progression via T-cell-mediated immune dysfunction. Furthermore, 
Xu et al.’s study (22) identified IFITM1, IFITM2, and IFITM3 as 
immune-related differentially expressed genes in DCM, implying 

that their aberrant expression may contribute to myocardial 
dysfunction through dysregulated immune-inflammatory pathways. 
Additionally, Xiong et al. (37) elucidated the specific mechanism of 
action of IFITM3, confirming that it exacerbates myocardial injury 
associated with myocarditis by activating the JAK2/STAT3 signaling 
pathway. Based on current evidence, we speculate that IFITMs may 
regulate myocardial function through immune-inflammatory 
signaling pathways, thereby contributing to post-infarction 
heart failure.

Collectively, our findings indicate that IFITM proteins could serve 
as novel, efficient, and promising diagnostic biomarkers for CAD and 

TABLE 3  The demographic and clinical features of participants among three groups.

Variables Control (n = 20) CAD (n = 129) AMI (n = 52) p-value

Demographics

Gender 0.24

Female (n, %) 5 (25.00%) 43 (33.33%) 11 (21.15%)

Male (n, %) 15 (75.00%) 86 (66.67%) 41 (78.85%)

Age (year) 61.50 (56.00–66.00) 66.00 (64.00–69.00) 66.50 (64.00–69.25) 0.051

Gensini score / 24.00 (6.00–37.00) 65.00 (39.25–81.25) <0.001

Killp /

I / / 26 (50.00%)

II / / 18 (34.62%)

III / / 6 (11.54%)

IV / / 2 (3.85%)

NA 20 (100.00%) 129 (100.00%) /

Medical history

Diabetes (n, %) / 41 (32%) 16 (37%) 0.6

Hypertension (n, %) / 89 (69%) 40 (82%) 0.13

Laboratory examination

White blood cells (× 109/L) 6.00 (5.58–7.38) 7.10 (5.60–8.70) 8.95 (7.35–10.65) <0.001

Neutrophils (× 109/L) 3.26 (2.52–4.74) 4.66 (3.67–5.94) 7.00 (5.17–8.86) <0.001

Lymphocytes (× 109/L) 2.13 (1.76–2.45) 1.63 (1.25–2.11) 1.29 (0.88–1.73) <0.001

Monocytes (× 109/L) 0.42 (0.30–0.53) 0.44 (0.36–0.57) 0.51 (0.38–0.66) 0.133

Red blood cells (× 1010/L) 4.82 (4.55–5.09) 4.57 (4.16–4.94) 4.46 (4.20–4.80) 0.07

Platelets (× 109/L) 206.00 (193.00–251.00) 224.00 (182.00–262.00) 205.00 (172.25–250.25) 0.263

Troponin (ng/mL) / / 6.27 (0.70–31.56) /

B type natriuretic peptide (pg/mL) / 35.50 (14.60–80.70) 209.50 (66.30–687.98) <0.001

C reactive protein (mg/L) / 1.76 (0.90–3.82) 18.13 (4.61–35.13) <0.001

Creatinine (μmol/L) / 82.30 (67.90–99.90) 83.00 (72.30–94.63) 0.814

Alanine aminotransferase (U/L) / 20.00 (15.00–26.25) 29.00 (20.50–52.50) <0.001

Aspartate aminotransferase (U/L) 21.50 (17.00–24.75) 21.00 (17.00–25.00) 45.00 (27.50–104.00) <0.001

Creatine kinase (U/L) / 87.00 (65.00–115.00) 248.50 (109.75–814.00) <0.001

Creatine kinase MB Isoenzyme (U/L) / 15.10 (12.00–19.40) 30.85 (20.88–100.10) <0.001

Triglycerides (mmol/L) 1.22 (1.06–1.44) 1.42 (1.03–1.99) 1.58 (1.10–2.08) 0.137

Total Cholesterol (mmol/L) 4.27 (3.76–4.89) 4.45 (3.86–5.34) 4.28 (3.74–5.15) 0.486

High-density lipoprotein (mmol/L) 1.46 (1.33–1.56) 1.36 (1.12–1.67) 1.20 (1.02–1.40) 0.001

Low-density lipoprotein (mmol/L) 2.62 (2.04–2.87) 2.66 (2.28–3.40) 2.76 (2.36–3.26) 0.226

Apolipoprotein A1 (g/L) 1.16 (1.08–1.31) 1.21 (1.03–1.41) 1.01 (0.92–1.26) 0.002

Apolipoprotein B (g/L) 0.71 (0.62–0.76) 0.84 (0.72–1.04) 0.89 (0.74–1.04) 0.013

Data are presented as mean ± SD, median (IQR), or n (%) as appropriate; group comparisons were performed using Student’s t-test, Wilcoxon rank-sum test, or Chi-square test based on data 
distribution and variable type.
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FIGURE 6

Serum levels and diagnostic performance of IFITM1/2/3 in control, CAD and AMI subjects. (A–C) Serum IFITM1/2/3 among three groups; (D–F) ROC 
curves of IFITM1/2/3 for determination of AMI from controls. Statistical significance was assessed using using Kruskal–Wallis H test.

FIGURE 7

Serum levels of IFITM1/2/3 in AMI-nonHF and AMI-HF groups. (A–C) Compared IFITMs in AMI-nonHF and AMI-HF groups. Statistical significance was 
assessed using Wilcoxon rank-sum test.

https://doi.org/10.3389/fmed.2025.1645725
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al.� 10.3389/fmed.2025.1645725

Frontiers in Medicine 11 frontiersin.org

AMI. Unlike conventional imaging (invasive or radiation-based), 
IFITM testing offers non-invasive blood-based diagnosis with 
superior accuracy and operational efficiency. Compared with 
established serum biomarkers like C-reactive protein (CRP) and lipid 
markers, IFITM proteins show unique utility in stratifying disease 
severity in CAD.

Our study has several limitations. First, its single-center design 
and the recruitment of patients from a tertiary hospital introduce a 
substantial risk of referral bias. Our cohort likely represents a 
population with more severe or complex disease, which may limit the 
generalizability of our findings to community-based or primary care 
settings with milder cases. Second, the retrospective design, while 
suitable for this initial exploratory study, inherently restricts causal 
inference between IFITM levels and CAD/AMI. Third, despite our 
efforts to control for key clinical variables through multivariable 
analysis, the possibility of residual or unmeasured confounding 
persists. Factors such as detailed medication history (e.g., statins), 
lifestyle factors, and other unassessed inflammatory markers could 
potentially influence both IFITM expression and disease status. 
Fourth, as an initial study, the sample size was determined by data 
availability. Although a post-hoc analysis indicated high statistical 
power for our primary findings, the sample size, particularly of the 
validation cohort, remains modest. Future large-scale, multicenter 
prospective studies are warranted to confirm the diagnostic and 
prognostic value of IFITM proteins in a more generalizable 
population and to allow for more comprehensive adjustment 
of confounders.

5 Conclusion

Our study identifies serum IFITM1, IFITM2, and IFITM3 as 
novel and promising biomarkers for the diagnosis of CAD and 
AMI. The specific upregulation of IFITM1 in post-AMI heart failure 
suggests a potential distinct role in maladaptive remodeling. While 
these findings are compelling, they originate from a single-center 
cohort with inherent limitations such as potential referral bias. 
Therefore, future research should prioritize large-scale, prospective 
multicenter studies to validate the clinical utility of IFITMs, and 
further mechanistic investigations are warranted to elucidate their 
precise pathophysiological roles in atherosclerosis and post-
infarction complications.
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