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Backgroud: Biomarker discovery remains pivotal for improving coronary artery
disease (CAD) and acute myocardial infraction (AMI) diagnosis. While interferon-
induced transmembrane proteins (IFITM1/2/3) are established in viral defense
and cancer progression, their roles in cardiovascular pathologies are undefined.
Methods: A retrospective cohort study was conducted, including a discovery
cohort (129 CAD patients and 20 controls), a validation cohort (40 CAD patients
and 16 controls) and a third cohort of 52 patients with acute myocardial infraction
(AMI). Serum IFITM1/2/3 levels were specifically quantified using enzyme linked
immunosorbent assay (ELISA). Coronary stenosis severity was assessed using
the Gensini score. The evaluation of diagnostic performance utilized receiver
operating characteristic (ROC) curves, whereas Spearman’s rank test facilitated
the analysis of correlations.

Results: Compared with controls, CAD patients exhibited significantly elevated
serum IFITM1/2/3 levels (p < 0.001). ROC analysis demonstrated exceptional
diagnostic accuracy for CAD detection: IFITM1 (AUC 0.9375, sensitivity 95%,
specificity 81.25%), IFITM2 (AUC 0.8984, sensitivity 90%, specificity 75%),
and IFITM3 (AUC 1.000, sensitivity 97.5%, specificity 100%). IFITM levels were
significantly positively correlated with Gensini scores (p < 0.0001), indicating a
plaque burden-dependent expression pattern. AMI patients exhibited further
elevation of IFITM1/2/3 compared to patients with stable CAD (p < 0.0001), with
IFITM1 specifically upregulated in AMI with heart failure (3.07 vs. 4.64 ng/mL,
p = 0.003).

Conclusion: IFITM1/2/3 may serve as novel serum biomarkers for diagnosing
CAD and AMI, as well as stratifying coronary stenosis severity, with high
discriminatory capacity. Our findings position IFITMs as promising tools for
precision cardiovascular risk assessment and therapeutic targeting.
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1 Introduction

Coronary artery disease, a leading cause of mortality worldwide,
has been recognized as a global public health problem (1). The
underlying pathology of CAD is defined by the formation of
atherosclerotic plaques, which involve complex processes such as
endothelial dysfunction, lipid accumulation, inflammatory reactions,
and thrombosis (2, 3). The clinical spectrum of CAD includes
symptoms from stable angina and unstable angina to catastrophic
consequences such as myocardial infarction (MI), heart failure (HF),
or sudden cardiac death (4).

The characterization of cardiovascular disease biomarkers has
become a vital field in translational medicine, serving dual roles in
elucidating pathophysiological mechanisms and guiding therapeutic
decision-making (5, 6). They provide profound insights into normal
molecular physiology and disease activity/progression dynamics,
and pharmacologists utilize them to unravel the intricacies of drug
action mechanisms, including efficacy, safety, and off-target effects
(7). Some biomarkers may serve as risk factors to predict the
occurrence of cardiovascular events and thus become therapeutic
targets (8-10).

Interferon-induced transmembrane proteins (IFITMs), conserved
evolutionarily as a family of cytokines, have diverse roles in antiviral
defense, immune regulation, and disease pathogenesis (11). The
human IFITM family includes five functional homologs (IFITM1-5
and IFITM10), with IFITM1-3 being the most well-characterized
(12). Initially identified for their potent antiviral activity through
membrane compartmentalization, IFITMs have been shown by
emerging studies over the past years to play roles in tumor progression,
immune modulation, and the cardiovascular system (13). Their
overexpression in multiple cancers promotes tumor progression via
Whnt/f-catenin-mediated proliferation, VEGF-driven angiogenesis,
and EMT-facilitated metastasis (14-16). IFITMs critically regulate
immune homeostasis by coordinating innate/adaptive responses and
shaping lymphocyte polarization, antibody diversification, and
cytokine signaling networks. Conversely, pathological IFITM
dysregulation exacerbates inflammatory cascades and promotes
immune evasion (17-19). However, investigations into the roles of
IFITM:s in cardiovascular pathophysiology remain scarce compared
to their well-characterized functions in virology and oncology. A
previous study revealed overexpression of IFITM1 and IFITM3
during heart development (20). Notably, a recent genome-wide
association study identified a genetic variant in IFITM2 (rs1059091)
associated with an increased risk of CAD in an Indian population,
providing the first genetic evidence linking the IFITM family to
coronary artery disease (21). The co-occurrence of IFITM1/2/3
overexpression with Treg/neutrophil imbalance in DCM patients
highlights their potential as master regulators of cardiac inflammation
(22). Recently, our previous work found that IFITM1 was upregulated
in arteriosclerotic plaques and contributed to arteriosclerosis
progression (23).

This retrospective clinical cohort study was performed to explore
the association of IFITM1/2/3 with coronary stenosis severity and to
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evaluate the diagnostic accuracy of circulating IFITMs for identifying
CAD and AMI patients. The primary outcome was the diagnostic
performance of serum IFITM1/2/3 levels in distinguishing CAD and
AMI patients from healthy controls, as assessed by receiver operating
characteristic (ROC) analysis. The secondary outcomes included (1)
the correlation between IFITM1/2/3 levels and coronary stenosis
severity quantified by Gensini score, and (2) the differential
expression of IFITM1/2/3 in AMI patients with and without
heart failure.

2 Methods
2.1 Study design and participants

This was a single-center, retrospective cohort study. A total of
257 participants were consecutively enrolled from Meizhou
People’s Hospital between January 2022 and December 2024. The
study utilized a convenience sampling approach, retrospectively
including all eligible patients who met the pre-specified inclusion
and exclusion criteria during the study period. All individuals
were divided into the CAD discovery cohort (n=149), the
validation cohort (n = 56), and the AMI cohort (n = 52). Exclusion
conditions were: (1) acute infectious diseases; (2) complicated with
any kind of tumors; (3) severe hepatic or renal insufficiency; (4)
age <18 or >75 years; (5) incomplete clinical information. The
control subjects with a previous history of cardiovascular diseases
or systemic diseases, or those using medications affecting lipid
metabolism, inflammation, or blood pressure, were excluded. The
CAD subjects were diagnosed with stable coronary artery disease,
defined as no acute cardiovascular events (e.g., myocardial
infarction, stroke) in the prior 6 months. The specific recruitment
process and grouping are presented in Figure 1. This study was
approved by the Ethics Committee of Meizhou People’s Hospital
(2023-C) and conducted in accordance with the Declaration
of Helsinki.

2.2 Clinical data collection

Data on demographic factors (age, gender) and clinical
parameters (patient history, pertinent diagnostic imaging studies,
laboratory test outcomes) were extracted from the hospital electronic
health record system. Past medical history included hypertension and
diabetes. Routine laboratory tests were performed in the central
clinical laboratory of our hospital. The complete blood count was
analyzed using a Mindray BC-600 hematology analyzer (Mindray
Bio-Medical Electronics Co., Ltd., Shenzhen, China) with its
proprietary reagents. Measurements of the lipid profile, aspartate
aminotransferase (AST), and alanine aminotransferase (ALT) were
conducted on a Beckman Coulter AU5800 fully automated
biochemical analyzer (Beckman Coulter, Inc., USA) using reagent Kits
from Medconn Biotechnology Co., Ltd. (Ningbo, China). All
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Total participants assessed for eligibility
(2022/1-2024/12, n=410)
Excluded (n=153)
Acute infectious diseases (n=28)
.| Complicated with tumors (n=20)
Severe heptatic/renal insufficiency (n=22)
Age < 18 or > 75 years (n=67)
Incomplete clinical information (n=16)
A 4
Participants included for this study
(n=257)
A\ 4 \4 Y
Discovery cohort Validation cohort AMI cohort
(n=149) (n=56) (n=52)
y A4 y A4 A4
CAD patients Healthy controls CAD patients Healthy controls AMI patients
(n=129) (n=20) (n=40) (n=16) (n=52)
FIGURE 1
Flow chart of participants selection.

procedures followed the manufacturer’s instructions and the
laboratory’s standard operating protocols.

2.3 Gensini score

Based on coronary angiography results, the Gensini score was
used to quantify the stenosis severity in CAD. The Gensini score is
calculated in two steps: first, assigning a stenosis score based on
artery blockage percentage (1 for <25%, 2 for 26%-50%, 4 for
51%-75%, 8 for 76%-90%, 16 for 91%-99%, 32 for total occlusion);
second, multiplying this score by a segment-specific coefficient.
Coeflicients were: 5 for the left main coronary artery; 2.5 for the
proximal left anterior descending and left circumflex arteries; 1.5
for the middle left anterior descending artery; 1 for the first diagonal
branch, obtuse marginal branches, and right coronary artery; and
0.5 for the second diagonal branch and left circumflex posterolateral
branch (24). Scores were independently assigned by two senior
cardiologists. Patients were stratified into Gensini-low (n = 63) and
Gensini-high (n = 66) groups according to median Gensini score.

2.4 Measurement of IFITM1/2/3 serum
concentrations

Serum levels of IFITM1/2/3 were measured using ELISA kits
(EH9298, EH9300, EH1111; FineTest) according to the manufacturer’s
protocols. Serum samples were diluted 1:2 with dilution buffer prior to
analysis. Absorbance was measured at 450 nm. The concentration in
samples was calculated using CurveExpertl.4 software (Danie Hyams).
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2.5 Statistical analysis

With R (version 4.2.2) and GraphPad Prism (version 9.0),
statistical analyses were performed. Data normality was assessed using
the Shapiro-Wilk test. Normally distributed variables were described
as mean + SD and compared using Student’s t-test or one-way
ANOVA. Non-normally distributed variables were expressed as
median (interquartile range) and compared using the Wilcoxon
rank-sum test or Kruskal-Wallis H test. Categorical variables,
expressed as percentages, were assessed by the Chi-square test. The
association between IFITM levels and the Gensini score was analyzed
using Spearman’s correlation. The diagnostic performance of serum
IFITMs was evaluated by ROC curve analysis, with the area under the
curve (AUC) and 95% confidence interval reported. The optimal
cutoff value for each biomarker was determined by maximizing
Youden’s index. To ensure robustness, the diagnostic models and
cut-offs established in the discovery cohort were validated in an
independent validation cohort. A p-value < 0.05 was defined as
statistically significant.

3 Results
3.1 Baseline characteristics of subjects

Baseline characteristics of discovery and validation cohorts are
tabulated in Table 1. In the discovery cohort, CAD patients had higher
neutrophils, lymphocytes, and Apolipoprotein B levels compared with
controls (p < 0.05). Other parameters showed no significant group
differences. In the validation cohort, white blood cell count,
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TABLE 1 The demographic and clinical features of discovery and validation cohort.
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Variables Discovery cohort Validation cohort
Control CAD (n = 129) p-value Control CAD (n = 40) p-value
(n =20) (n = 16)

Demographics
Gender 0.68 0.577
Female (11, %) 5(25.00%) 43 (33.33%) 8 (50%) 15 (37.5%)
Male (n, %) 15 (75.00%) 86 (66.67%) 8 (50%) 25 (62.5%)
Age (years) 61.50 (56.00, 66.00) 66.00 (64.00, 69.00) 0.5 58.50 (56.75, 60.00) 64.50 (62.00-67.25) 0.091
Medical history
Diabetes (1, %) / 41 (32%) / 9(23%) /
Hypertension (1, %) / 89 (69%) / 27 (68%) /
Laboratory examination
White blood cells

6.00 (5.58, 7.38) 7.10 (5.60, 8.70) 0.066 6.10 (5.33, 6.30) 7.50 (5.80, 8.65) 0.03
(x 10°/L)
Neutrophils (x 10°/L) 3.26 (2.52,4.74) 4.66 (3.67, 5.94) 0.001 3.32(2.85, 3.66) 4.72 (4.04, 6.09) <0.001
Lymphocytes (x 10°/L) 2.13 (1.76, 2.45) 1.63 (1.25,2.11) 0.005 2.17 (1.61,2.38) 1.56 (1.35, 2.07) 0.033
Monocytes (x 10°/L) 0.42 (0.30, 0.53) 0.44 (0.36, 0.57) 0.304 0.37 (0.32, 0.42) 0.43 (0.34, 0.60) 0.102
Red blood cells (x 10'°/L) 4.82 (4.55, 5.09) 4.57 (4.16, 4.94) 0.055 4.77 (4.31, 5.00) 4.51 (4.12,4.84) 0.185

206.00 (193.00, 215.00 (203.00,
Platelets (x 10°/L) 224.00 (182.00, 262.00) 0.804 224.50 (212.0, 234.75) 0.935

251.00) 255.00)

Triglycerides (mmol/L) 1.22 (1.06, 1.44) 1.42 (1.03, 1.99) 0.074 1.06 (0.92, 1.14) 1.72 (1.17,2.25) 0.006
Total cholesterol

4.27 (3.76, 4.89) 4.45 (3.86, 5.34) 0.331 4.75 (4.54, 5.01) 4.68 (4.11, 5.39) 0.814
(mmol/L)
High-density lipoprotein

1.46 (1.33, 1.56) 1.36 (1.12, 1.67) 0.3 1.42 (1.34, 1.61) 1.25 (1.05, 1.45) 0.118
(mmol/L)
Low-density lipoprotein

2.62 (2.04, 2.87) 2.66 (2.28, 3.40) 0.13 2.76 (2.54, 2.95) 2.90 (2.55, 3.29) 0.245
(mmol/L)
Apolipoprotein Al (g/L) 1.16 (1.08, 1.31) 1.21 (1.03, 1.41) 0.902 1.28 (1.23, 1.36) 1.10 (0.95, 1.32) 0.094
Apolipoprotein B (g/L) 0.71 (0.62, 0.76) 0.84(0.72, 1.04) 0.006 0.76 (0.72, 0.86) 0.88 (0.75, 1.12) 0.053
Markers
IFITM1 (ng/mL) 1.32 (111, 1.44) 2.63 (2.06,3.21) <0.001 1.42 (1.28, 1.57) 2.32(2.01, 3.54) <0.001
IFITM2 (ng/mL) 4.20 (3.55,4.92) 9.03 (7.09, 12.13) <0.001 4.11 (3.88, 5.60) 9.34(7.33, 10.80) <0.001

2112.02 (1865.59, 3419.85 (3076.43, 2084.72 (1910.07, 3445.12 (3038.17,
IFITM3 (pg/mL) <0.001 <0.001

2249.60) 4367.26) 2262.84) 3939.96)

Data are presented as mean + SD, median (IQR), or 1 (%) as appropriate; group comparisons were performed using Student’s t-test, Wilcoxon rank-sum test, or Chi-square test based on data

distribution and variable type.

neutrophils, lymphocytes, and triglycerides differed significantly
between groups (p < 0.05).

3.2 Analysis of serum IFITM1/2/3 levels for
CAD diagnosis

Serum levels of IFITM1/2/3 were analyzed in the discovery cohort.
CAD patients exhibited significantly higher serum levels of IFITM1/2/3
compared with healthy controls (Figures 2A-C). ROC curves confirmed
diagnostic efficacy in three proteins, with area under the curve (AUC)
values of 0.9569 (95% CI: 0.9200-0.9937; cutoff >1.737 ng/mL,
sensitivity 91.47%, specificity 95%) for IFITM1, 0.9661 (95% CI:
0.9338-0.9984; cutoft >6.092 ng/mL, sensitivity 93.8%, specificity 100%)
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for IFITM2, and 0.9881 (95% CI: 0.9726-1.000; cutoff >2,452 pg./mL,
sensitivity 94.57%, specificity 100%) for IFITM3 (Figures 2D-E 3A-C).
Notably, IFITM proteins had optimal diagnostic thresholds determined
by Youden’s index, which demonstrated robust discriminatory power in
distinguishing CAD patients from healthy controls (Figures 3D-F).

3.3 Diagnostic discrimination of CAD
patients by IFITM1/2/3 from healthy
controls

For validation of IFITM proteins” diagnostic potential, a validation
cohort (16 healthy controls, 40 CAD patients) was prospectively
analyzed. Consistent with the discovery cohort results, serum levels of
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FIGURE 2

Serum levels and diagnostic performance of IFITM1/2/3 in control and CAD group of discovery cohort. (A—C) Serum IFITM1/2/3 in control and CAD
subjects; (D—F) ROC curves of IFITM1/2/3 for determination of CAD. Statistical significance was assessed using Wilcoxon rank-sum test.
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FIGURE 3
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Diagnostic ability of IFITM1/2/3 in discovery cohort. (A—C) Confusion tables of the binary results of IFITM1/2/3; (D—F) Supervised hierarchical clustering
of IFITM1/2/3 between health control and CAD.
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FIGURE 4

Levels of serum IFITM1/2/3 among different coronary severity groups of discovery cohort. (A—C) Compared IFITM1/2/3 levels in control, Gensini-low
and Gensini-high groups; (D—F) ROC curves of IFITM1/2/3 for determination of different coronary severity CAD patients; (G—H) Representative
coronary angiography images. Statistical significance was assessed using Kruskal-Wallis H test.

IFITM1/2/3 were significantly higher in CAD patients compared with
controls (Supplementary Figure SIA-C). ROC analysis confirmed
strong diagnostic discrimination, with IFITM1 showing an AUC of
0.9375 (95% CI: 0.8632-1.000; sensitivity 95%, specificity 81.25%),
IFITM2 an AUC of 0.8984 (95% CI: 0.8044-1.000; sensitivity 90%,
specificity 75%), and IFITM3 a perfect AUC of 1.000 (95% CI: 1.000-
1.000; sensitivity 97.5%, specificity 100%) (Supplementary
Figures S1D-F, S2A-C). Furthermore, when applying the thresholds
from discovery cohort to the validation cohort, all three proteins
retained robust classification performance in distinguishing CAD
status (Supplementary Figure S2D-F).
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3.4 Association of IFITM1/2/3 levels with
coronary stenosis severity

For further investigation of IFITM protein levels and CAD
severity association, 129 discovery cohort CAD patients were stratified
by median Gensini score into low/high-stenosis severity groups.
Figures 4G-H display representative coronary angiography images
depicting varying stenosis degrees in the two subgroups. Clinical
characteristics of the two groups were shown in Table 2. Serum IFITM
concentrations showed a gradual increase from the Gensini-low to
Gensini-high group (Figures 4A-C). These results suggest a positive
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TABLE 2 Demographic characteristics between GS-low and GS-high group.

Variables Gensini-low (n = 63) Gensini-high (n = 66)

Demographics

Gender 0.575
Female (n, %) 19 (30.16%) 24 (36.36%)

Male (n, %) 44 (69.84%) 42 (63.64%)

Age (year) 66.00 (64.50-67.50) 68.00 (64.00-70.75) 0.056
Height (cm) 162.50 (155.75-167.75) 162.00 (155.00-166.00) 0.518
Weight (kg) 61.50 (57.00-71.00) 64.00 (59.00-70.00) 0.461
Gensini Score 5.50 (2.50-14.50) 37.00 (32.00-55.75) <0.001
Medical history

Diabetes (1, %) 17 (27%) 24 (36%) 0.255
Hypertension (n, %) 46 (73%) 43 (65%) 0.336
Laboratory examination

White blood cells (x 10°/L) 6.90 (5.50-8.70) 7.25 (6.03-8.50) 0.472
Neutrophils (x 10°/L) 4.55 (3.54-6.46) 4.68 (3.81-5.64) 0.759
Lymphocytes (x 10°/L) 1.43 (1.19-1.83) 1.81 (1.36-2.18) 0.025
Monocytes (x 10°/L) 0.44 (0.36-0.57) 0.48 (0.36-0.57) 0.561
Red blood cells (x 10'%/L) 4.58 (4.12-4.96) 4.56 (4.21-4.90) 0.845
Platelets (x 10°/L) 215.00 (171.50-253.50) 232.00 (196.75-270.25) 0.14
Fibrinogen (g/L) 3.15 (2.80-3.65) 3.20 (2.90-3.93) 0.217
D Dimer (mg/L) 0.35 (0.27-0.62) 0.32 (0.25-0.51) 0.47
C reactive protein (mg/L) 2.14 (0.92-3.10) 1.47 (0.91-5.28) 0.986
Creatinine (pmol/L) 88.00 (71.90-101.00) 80.45 (63.65-96.85) 0.289
Procalcitonin (ng/mL) 0.05 (0.05-0.05) 0.05 (0.05-0.05) 0.584
Alanine aminotransferase (U/L) 21.00 (15.00-28.50) 19.50 (15.00-25.00) 0.524
Aspartate aminotransferase (U/L) 21.00 (17.00-25.50) 20.50 (17.25-25.00) 0.85
Triglycerides (mmol/L) 1.51 (0.97-1.90) 1.38 (1.06-2.05) 0.923
Total cholesterol (mmol/L) 4.47 (3.80-5.33) 4.43 (3.95-5.33) 0.796
High-density lipoprotein (mmol/L) 1.49 (1.11-1.79) 1.33 (1.19-1.53) 0.1
Low-density lipoprotein (mmol/L) 2.63(2.25-3.37) 2.66 (2.40-3.55) 0.276
Apolipoprotein A1 (g/L) 1.21 (1.05-1.44) 1.21 (1.03-1.37) 0.505
Apolipoprotein B (g/L) 0.82 (0.71-1.05) 0.90 (0.73-1.04) 0.394
Homocysteine (pmol/L) 10.75 (9.07-12.97) 10.95 (8.90-12.94) 0.823
Glycated hemoglobin (%) 6.30 (5.88-6.80) 6.20 (5.80-7.05) 0.715
Markers

IFITMI (ng/mL) 2.11(1.82-2.53) 2.98 (2.73-3.77) <0.001
IFITM2 (ng/mL) 7.23 (6.63-8.76) 10.93 (9.06-15.54) <0.001
IFITM3 (pg/mL) 3149.47 (2808.80-3397.46) 4088.63 (3515.54-4746.90) <0.001

Data are presented as mean + SD, median (IQR), or 1 (%) as appropriate; group comparisons were performed using Student’s ¢-test, Wilcoxon rank-sum test, or Chi-square test based on data
distribution and variable type.

correlation between IFITM protein levels and coronary artery stenosis 3.5 Com Pa rison of serum IFITM1/2/3 levels
severity. This gradient pattern showed a significant correlation with  in CAD and AMI groups

angiographic severity scores (Figures 5A-C). Furthermore, ROC

curve analysis showed that IFITMs exhibited strong discriminatory Subsequent analyses compared serum IFITM1/2/3 concentrations
ability in distinguishing low vs. high stenosis severity, withan AUCof =~ among CAD, AMI and control groups. Baseline clinical characteristics
0.8 (Figures 4D-H). were detailed in Table 3. Comparative analysis showed significantly
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FIGURE 5
Correlation of serum IFITM1/2/3 with Gensini score. (A—C) The correlation results of IFITMs between Gensini score.

higher IFITM1/2/3 levels in AMI patients compared with CAD and
control groups (Figures 6A-C). ROC curves indicated high diagnostic
value of serum IFITM1/2/3 for distinguishing AMI from controls,
with AUC values of 0.9934, 0.9928 and 0.9886, respectively
(Figures 6D-F). Further stratification of AMI patients into heart
failure (AMI-HF) and non-heart failure (AMI-nonHF) subgroups
(clinical characteristics detailed in Supplementary Table S1) revealed
distinct expression patterns. Notably, IFITMI1 levels were significantly
higher in AMI-HF patients (2.41 + 0.38 ng/mL vs. 1.79 + 0.29 ng/mL,
p=0.007), while IFITM2 and IFITM3 showed no significant
expression differences between subgroups (Figures 7A-C). This
differential expression profile suggests a potential pathophysiological
role for IFITMI in post-infarction ventricular remodeling and heart
failure development, whereas IFITM2/3 appear more broadly
associated with acute coronary syndrome pathogenesis. These findings
underscore the proteins’ superior discriminatory capacity in acute
coronary syndromes and suggest a distinct role for IFITM1 in heart
failure progression after acute myocardial infarction.

4 Discussion

Coronary artery disease persists as a global health challenge with
pressing demands for innovative biomarkers to refine diagnostic
precision and therapeutic monitoring. Our study showed that serum
IFITM1/2/3 levels were significantly elevated in both stable CAD and
AMI patient cohorts and positively correlated with stenosis severity.
ROC analysis indicated strong diagnostic performance of all three
IFITM:s in distinguishing CAD or AMI from controls, with IFITM3
showing superior discriminative ability for CAD. Notably, elevated
IFITM1 levels in post-AMI heart failure patients suggested its
potential role in post-AMI cardiac decompensation mechanisms.

IFITM1, IFITM2, and IFITM3, the most structurally conserved
members of the interferon-induced transmembrane (IFITM) family,
have been extensively studied in antiviral defense and oncology (13, 25,
26). IFITM protein levels correlated with coronary stenosis severity
(Gensini score) indicated their potential role in CAD pathophysiology.
The progressive increase in IFITM levels with increasing stenosis severity
suggested that these proteins may be involved in the pathological
processes underlying atherosclerosis, such as endothelial dysfunction,
inflammation, and thrombosis. Interferon (IFN)-dependent and
IFN-independent mechanisms control the expression of IFITM genes in
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inflammatory conditions. In canonical IFN signaling, the JAK/STAT
pathway is activated. This process induces IFITM genes and other
interferon-stimulated genes (ISGs) (27). Modulation of IFITM
expression extends beyond IFN-mediated mechanisms to include other
cytokines (e.g., IL-6, TNF-a, angiotensin II) and molecules like LPS
(28-30). This dual regulatory architecture enables context-specific
IFITM induction across diverse inflammatory environments, potentially
linking their functions to broader pathophysiological processes such as
vascular inflammation or cytokine storm responses. A recent integrative
multi-omics study further underscores the importance of STAT1-driven
transcriptional programs in macrophages within atherosclerotic plaques,
which aligns with the potential upstream regulation of IFITMs in
cardiovascular inflammation (31). Building on the association with CAD
and atherosclerosis, our group investigated a specific functional role.
We demonstrated that IFITM1 contributes directly to atherosclerosis by
regulating the phenotypic switch of vascular smooth muscle cells
(VSMCs). Mechanistically, IFITM1 promotes VSMC proliferation,
migration, and macrophage-like transdifferentiation through activation
of the c-Src/MAPK/GATA2/E2F2 signaling pathway, thereby driving
atherosclerotic plaque development (23).

In addition to their diagnostic potential, our findings also
suggest a role for IFITM proteins in the pathogenesis of
AMI. Significantly higher IFITM1/2/3 levels in AMI patients
compared with CAD and control groups suggest their involvement
in acute myocardial infarction responses. AMI, from coronary
artery obstruction, causes myocardial ischemia-hypoxia, cardiac
dysfunction, and detrimental effects: myocardial damage, heart
failure, ventricular remodeling, reduced systolic function (32).
Cellular death is a hallmark of AMI pathology. Damaged cells
release their intracellular contents, including damage-associated
molecular patterns (DAMPs), into the extracellular space. The
immune system detects these DAMPs, initiating an inflammatory
response (33, 34). Sustained and dysregulated inflammatory
responses may exacerbate myocardial tissue damage and drive
maladaptive cardiac remodeling. Thus, elevated inflammation in
AMI may explain the higher IFITM levels in AMI patients compared
with CAD patients. This notion is supported by a single-cell
transcriptomic study in a murine MI model, which identified a
distinct subpopulation of cardiac-infiltrating neutrophils
characterized by high expression of Ifitm1, suggesting a specific role
for IFITMI in the local immune response following ischemic
injury (35).
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TABLE 3 The demographic and clinical features of participants among three groups.

10.3389/fmed.2025.1645725

Variables Control (n = 20) CAD (n = 129) AMI (n = 52) p-value
Demographics

Gender 0.24
Female (1, %) 5 (25.00%) 43 (33.33%) 11 (21.15%)

Male (n, %) 15 (75.00%) 86 (66.67%) 41 (78.85%)

Age (year) 61.50 (56.00-66.00) 66.00 (64.00-69.00) 66.50 (64.00-69.25) 0.051
Gensini score / 24.00 (6.00-37.00) 65.00 (39.25-81.25) <0.001
Killp /

I / / 26 (50.00%)

11 / / 18 (34.62%)

III / / 6 (11.54%)

v / / 2(3.85%)

NA 20 (100.00%) 129 (100.00%) /

Medical history

Diabetes (1, %) / 41 (32%) 16 (37%) 0.6
Hypertension (1, %) / 89 (69%) 40 (82%) 0.13
Laboratory examination

White blood cells (x 10°/L) 6.00 (5.58-7.38) 7.10 (5.60-8.70) 8.95 (7.35-10.65) <0.001
Neutrophils (x 10°/L) 3.26 (2.52-4.74) 4.66 (3.67-5.94) 7.00 (5.17-8.86) <0.001
Lymphocytes (x 10°/L) 2.13 (1.76-2.45) 1.63 (1.25-2.11) 1.29 (0.88-1.73) <0.001
Monocytes (x 10°/L) 0.42 (0.30-0.53) 0.44 (0.36-0.57) 0.51 (0.38-0.66) 0.133
Red blood cells (x 10"/L) 4.82 (4.55-5.09) 4.57 (4.16-4.94) 4.46 (4.20-4.80) 0.07
Platelets (x 10°/L) 206.00 (193.00-251.00) 224.00 (182.00-262.00) 205.00 (172.25-250.25) 0.263
Troponin (ng/mL) / / 6.27 (0.70-31.56) /

B type natriuretic peptide (pg/mL) / 35.50 (14.60-80.70) 209.50 (66.30-687.98) <0.001
C reactive protein (mg/L) / 1.76 (0.90-3.82) 18.13 (4.61-35.13) <0.001
Creatinine (pmol/L) / 82.30 (67.90-99.90) 83.00 (72.30-94.63) 0.814
Alanine aminotransferase (U/L) / 20.00 (15.00-26.25) 29.00 (20.50-52.50) <0.001
Aspartate aminotransferase (U/L) 21.50 (17.00-24.75) 21.00 (17.00-25.00) 45.00 (27.50-104.00) <0.001
Creatine kinase (U/L) / 87.00 (65.00-115.00) 248.50 (109.75-814.00) <0.001
Creatine kinase MB Isoenzyme (U/L) / 15.10 (12.00-19.40) 30.85 (20.88-100.10) <0.001
Triglycerides (mmol/L) 1.22 (1.06-1.44) 1.42 (1.03-1.99) 1.58 (1.10-2.08) 0.137
Total Cholesterol (mmol/L) 4.27 (3.76-4.89) 4.45 (3.86-5.34) 4.28 (3.74-5.15) 0.486
High-density lipoprotein (mmol/L) 1.46 (1.33-1.56) 1.36 (1.12-1.67) 1.20 (1.02-1.40) 0.001
Low-density lipoprotein (mmol/L) 2.62 (2.04-2.87) 2.66 (2.28-3.40) 2.76 (2.36-3.26) 0.226
Apolipoprotein Al (g/L) 1.16 (1.08-1.31) 1.21 (1.03-1.41) 1.01 (0.92-1.26) 0.002
Apolipoprotein B (g/L) 0.71 (0.62-0.76) 0.84 (0.72-1.04) 0.89 (0.74-1.04) 0.013

Data are presented as mean + SD, median (IQR), or n (%) as appropriate; group comparisons were performed using Student’s ¢-test, Wilcoxon rank-sum test, or Chi-square test based on data

distribution and variable type.

Another notable finding is that IFITM1 is selectively upregulated
in post-AMI heart failure and negatively correlated with Ejection
Fraction (EF) or Fractional Shortening (FS) (Supplementary
Figure S3), which warrants attention. Preliminary studies suggested
that IFITM may play a role in modulating cardiac function. Bin et al.
(36) showed that IFITM1, a key immune-related gene in dilated
cardiomyopathy (DCM), was significantly upregulated in T-cell-
related subpathways, suggesting its potential role in disease
progression via T-cell-mediated immune dysfunction. Furthermore,
Xu et al’s study (22) identified IFITM1, IFITM2, and IFITM3 as
immune-related differentially expressed genes in DCM, implying
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that their aberrant expression may contribute to myocardial
dysfunction through dysregulated immune-inflammatory pathways.
Additionally, Xiong et al. (37) elucidated the specific mechanism of
action of IFITM3, confirming that it exacerbates myocardial injury
associated with myocarditis by activating the JAK2/STAT3 signaling
pathway. Based on current evidence, we speculate that IFITMs may
regulate myocardial function through immune-inflammatory
signaling pathways, thereby contributing to post-infarction
heart failure.

Collectively, our findings indicate that IFITM proteins could serve
as novel, efficient, and promising diagnostic biomarkers for CAD and
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AMI. Unlike conventional imaging (invasive or radiation-based),
IFITM testing offers non-invasive blood-based diagnosis with
superior accuracy and operational efficiency. Compared with
established serum biomarkers like C-reactive protein (CRP) and lipid
markers, IFITM proteins show unique utility in stratifying disease
severity in CAD.

Our study has several limitations. First, its single-center design
and the recruitment of patients from a tertiary hospital introduce a
substantial risk of referral bias. Our cohort likely represents a
population with more severe or complex disease, which may limit the
generalizability of our findings to community-based or primary care
settings with milder cases. Second, the retrospective design, while
suitable for this initial exploratory study, inherently restricts causal
inference between IFITM levels and CAD/AMI. Third, despite our
efforts to control for key clinical variables through multivariable
analysis, the possibility of residual or unmeasured confounding
persists. Factors such as detailed medication history (e.g., statins),
lifestyle factors, and other unassessed inflammatory markers could
potentially influence both IFITM expression and disease status.
Fourth, as an initial study, the sample size was determined by data
availability. Although a post-hoc analysis indicated high statistical
power for our primary findings, the sample size, particularly of the
validation cohort, remains modest. Future large-scale, multicenter
prospective studies are warranted to confirm the diagnostic and
prognostic value of IFITM proteins in a more generalizable
population and to allow for more comprehensive adjustment
of confounders.

5 Conclusion

Our study identifies serum IFITM1, IFITM2, and IFITM3 as
novel and promising biomarkers for the diagnosis of CAD and
AMLI. The specific upregulation of IFITM1 in post-AMI heart failure
suggests a potential distinct role in maladaptive remodeling. While
these findings are compelling, they originate from a single-center
cohort with inherent limitations such as potential referral bias.
Therefore, future research should prioritize large-scale, prospective
multicenter studies to validate the clinical utility of IFITMs, and
further mechanistic investigations are warranted to elucidate their
precise pathophysiological roles in atherosclerosis and post-
infarction complications.
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