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As societies age, the number of individuals experiencing stroke increases,
necessitating more effective rehabilitation strategies. Over half of stroke
survivors suffer from upper limb impairments, making assessments of sensory-
motor function crucial for both improving interventions and tracking progress.
Ideally, such assessments could also be performed at home without requiring
a therapist’s presence. Advances in computer vision and human pose
estimation allow for human movement analysis using consumer-grade cameras.
This study investigates whether a single webcam, combined with human
pose estimation and deep learning algorithms, can automatically detect
compensatory movements in persons with stroke performing a drinking task.
Twenty participants with stroke with mild to moderate upper limb impairment
were recruited. Each participant performed multiple repetitions of the drinking
task while being recorded by multiple cameras and an optical motion capture
system (OMC) for kinematic ground truth. The videos were labeled by therapists
to indicate the presence or absence of compensatory movements. Human
poses were extracted from the videos using MediaPipe, and deep learning
models were trained to predict these compensatory movements based on
MediaPipe keypoints. Several factors affecting compensation detection accuracy
were evaluated. Models trained on raw MediaPipe keypoints for inter-person
compensation detection failed to generalize, achieving accuracy around 50%.
Using custom features instead of raw keypoints improved the accuracy to
70%. In contrast, intraperson classification achieved high accuracy, typically
exceeding 90%. Using OMC data significantly improved classification accuracy
compared to using MediaPipe keypoints. Camera angle had an effect on
accuracy, and convolutional neural networks outperformed long short-term
memory networks. Generalizing models remain limited by (1) the measurement
uncertainty of human pose estimation and (2) insufficient data representing
the full spectrum of compensatory strategies (3) accurate compensation
labels. The results demonstrate that deep learning approaches can differentiate
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between compensatory and non-compensatory movements when movement
representations are sufficiently accurate. Future work should improve pose
estimation and expand labeled datasets to better reflect the stroke population.
While general models are limited in accuracy, personalized models using
consumer cameras can support home-based rehabilitation. This digitalized
assessment approach has the potential to quantify recovery progress throughout
the continuum of care.

KEYWORDS

stroke, assessments, movement quality, upper limb, artificial intelligence, computer
vision, human pose estimation, webcam

1 Introduction

The global population is aging rapidly (1). Age is a significant,
non-modifiable risk factor for stroke, and the number of stroke
cases is expected to rise accordingly (2). Currently, there are
over 100 million stroke survivors worldwide, with 12 million new
cases reported each year (3). Among these survivors, up to 50%
experience chronic upper limb impairments (4), such as reduced
range of motion pathological synergies, motor coordination issues
and spasticity (5), significantly limiting their independence in
daily life. This increasing burden presents major challenges for
healthcare systems, emphasizing the urgent need for more effective
and scalable rehabilitation strategies to improve patient outcomes.

To address these challenges, maximizing the effectiveness of
rehabilitation across inpatient, outpatient, and home-based care is
crucial. Tele-rehabilitation and technology-assisted solutions are
emerging as essential tools in this effort (6). True recovery of
upper limb function in people with stroke through neuroplasticity
is the ideal goal, involving the rewiring of neural pathways to
restore motor function (7). This forms part of rehabilitation
strategies, combining traditional and innovative therapies to
restore function (8). However, many people with stroke rely on
compensatory strategies, such as using unaffected limbs or adopting
maladaptive movement patterns, to regain functionality. While
these strategies provide short-term benefits, they may impede
neuroplastic recovery and reinforce undesirable movement habits
(9). As such, heavy reliance on compensation can serve as a
biomarker for limited neuroplastic recovery (10–12).

Common compensatory patterns include trunk leaning,
shoulder abduction, and shoulder hiking. To differentiate these
from true recovery without increasing therapists workload, there
is growing support for adopting instrumented, technology-based
assessments (9).

This approach faces three main challenges: selecting an
appropriate motor task, accurately measuring movements,
and quantifying movement quality/detecting compensatory
movements. The drinking task (13), proposed as a standardized
motor task by Kwakkel et al. (9), is particularly suitable for stroke
rehabilitation. It is a key activity of daily living that is important
to achieve autonomy and involves essential movement primitives
such as reaching and hand-to-mouth motion, making it both
functionally relevant and easy to standardize. In extension of this
framework, there are also ongoing approaches to segment specific

types of functional movements from continuous activity streams,
leading toward continuous evaluation of upper limb movement
quality during daily life activities (14).

While optical motion capture (OMC) systems provide highly
accurate kinematic data (13, 15), their cost and complexity
limit widespread use in clinical and home settings. Alternative
approaches, such as RGB- and RGB-D cameras (16, 17),
inertial measurement units (IMUs) (18–20), and multi-camera 3D
reconstruction systems (21), offer more accessible and affordable
solutions but come with trade-offs in accuracy.

Consumer-grade devices with integrated cameras, such as
smartphones, tablets, and laptops, are widely accessible and could
enable an objective, large-scale remote assessment of movement
quality and recovery progress.
Primary goal: Evaluate the feasibility of using a single RGB camera
and deep learning models to detect compensatory upper limb
movements in people with stroke performing the drinking task.
Secondary goal: Systematically investigating factors that influence
detection accuracy, identifying main challenges that need to be
addressed to enable full clinical functionality. To this end, the
contribution of the following factors to compensation detection
performance is assessed:

1. Severity of compensation: Participants were categorized as
mild or moderate compensators based on therapist labeling.
Hypothesis: more severe compensations are easier to detect,
leading to higher classification accuracy for this subgroup.

2. Inter- vs. intra-participant classification: Given the variability
in compensation strategies and movement patterns, and
the lack of large-scale datasets to fully capture post-stroke
compensations, the following factors are assessed:

• Inter-Participant: training on one group of participants and
testing on previously unseen participants.

• Intra-Participant: training on a subset of trials from
a participant and testing on other trials from the
same participant.

3. Camera perspective and quality of motion data: As pose
estimation accuracy depends on viewpoint, three “at home”
reproducible perspectives for the drinking task are compared:
frontal view, 45◦ ipsilateral (close), and 45◦ contralateral (far).
MediaPipe was chosen since it can run on consumer-grade
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devices, bypassing potential data security issues when processing
in the cloud. To isolate the impact of pose estimation noise vs.
classification performance, results are bench-marked using:

• High-quality optical motion capture (OMC) data (gold
standard).

• Noisier human pose estimation (HPE) data from a single
RGB camera.

4. Input features: Compare custom kinematic features
with raw keypoint time-series data for classifying
compensatory movements.

5. Classifier architecture: Evaluate different classification
models:

• CNN and LSTM for time-series data.
• Random Forest for custom kinematic features.

This study aims to advance stroke rehabilitation by providing
scalable, data-driven tools to quantify movement quality, aligning
with European stroke rehabilitation guidelines (9, 11).

2 Method and analysis

2.1 Participants

The research was conducted in accordance with ethical
standards (Declaration of Helsinki an Swiss national standards)
as approved by the local ethics committee (BASEC-No: 2022-
00491). Participants were recruited from the University Hospital
Zurich Stroke Registry and the cereneo clinic. Those eligible for
the study were invited to participate in a single measurement
session lasting approximately two to three hours. Inclusion
criteria required participants to be at least 18 years of age,
capable of providing informed consent, and to have a confirmed
hemiparetic stroke diagnosis. Additionally, participants needed
to have at least partial ability to perform a reaching movement
and grasp a cup using a cylindrical grip with the affected
hand, without assistance. Exclusion criteria included pre-existing
upper limb deficits, such as orthopedic impairments, and other
neurological conditions.

Demographic characteristics of the participants were collected
and the severity of upper limb sensorimotor impairment was
assessed using the Fugl-Meyer Assessment for Upper Extremity
(FMA-UE). The FMA-UE was conducted by a trained evaluator
along with the measurements of the drinking task during a
single session. The final sample involved 20 people with stroke
[14 chronic (time since stroke > 6 months), 6 subacute (time
since stroke between 1 to 6 months)], with a mean FMA-
UE score of 51.7 (11.5) assessed on the day of recording,
reflecting a moderate level of upper limb impairment and
matching demographic data (mean age 72, 14 males, and 6
females) with previous studies (22). Participants in the subacute
phase were recruited during their rehabilitation stay at the
cereneo clinic.

2.2 Measurement procedure

The measurement procedure, which followed established
protocols from previous research (22), required participants to
begin and end a drinking task in a standardized pose. The
cup was consistently placed 30 cm from the table’s edge (see
Figure 1). It was filled with approximately 100 ml of water and
refilled as needed between trials. Each repetition of the drinking
task was considered a trial. Participants were instructed to take
a sip of water during each trial. In the rare instances where
participants dropped the cup and spilled water (as occurred with
2 participants), the water was replaced with a ball of similar weight,
and participants were instructed to continue with the drinking
movement regardless. Each participant completed 40 trials of the
drinking task with their less affected arm, followed by 40 trials
with their more affected arm. The less affected arm served as
a control, representing proxy data for able-bodied, age-matched
individuals. Every trial was recorded individually, participants
received verbal instructions at the start of each trial, and recording
was halted upon trial completion and restarted at a new trial.
After several repetitions, participants were asked whether they
required a break; if requested, a break was provided to minimize
potential fatigue effects. Additional trials were conducted if any
were deemed invalid (e.g., movement beginning before recording
or incomplete movement). After completing the drinking task, the
FMA-UE was performed.

2.3 Measurement systems

This study employed two primary measurement systems:
webcams and an OMC system. The measurement setup, including
the table, cup, recording perspectives, and OMC markers on
the participant, is illustrated in Figure 1. Both systems were
synchronized automatically using an LED triggered by the OMC
(master), which was visible in the webcam field of view to mark the
start and end of recording.

OMC: The OMC system operated at a sampling frequency of
100 Hz, utilizing technologies from Vicon, Qualisys, or Optitrack,
depending on the specific measurement setup, leveraging 7 to
10 OMC cameras. Nine retroreflective markers positioned on
anatomical landmarks of the arm, trunk, and face were used for
they analysis, in accordance with the standardized marker setup
of previous studies that measured the Drinking Task using OMC
(13, 22). The cup used in the task was 3D printed and allowed the
attachment of OMC markers, relevant for phase classification.

Webcams: Three Logitech Brio 4k webcams were positioned
in front of the participant at a distance of approximately 1.5m.
One camera was placed at a 0-degree recording angle (center
camera), while the other two were placed at 45-degree recording
angles toward the frontal plane of the participant. The 45-degree
camera referred to as “close” was positioned on the side where
the drinking task was performed. The webcams were internally
synchronized and continuously recorded at 60 frames per second
with a resolution of 1,080p (1,920 × 1,080). The choice of camera
perspectives was based on their reproducibility in clinical or home
settings using tablets, laptops, or comparable end-user devices,
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FIGURE 1

Participant performing drinking task, recorded from three different camera perspectives (“close,” “center,” “far”) and with optical motion capture and
corresponding keypoints overlay.

with the goal of identifying the optimal recording angle for
classification accuracy.

2.4 Data preparation and modeling

Videos from each camera were automatically segmented into
trials using LED signals synchronized with the OMC system.
OMC data further enabled segmentation of the drinking task into
five phases, following Alt Murphy (22): (1) reaching (including
grasping), (2) forward transport (glass to mouth), (3) drinking, (4)
back transport (glass to table, including release), and (5) returning
(hand to initial position).

Experienced therapists labeled each phase for compensatory
movements based on the checklist by Barth et al. (23) and the
Reaching Performance Scale (24) and described in full detail
in Sauerzopf et al. (25). Shoulder compensations were defined
as excessive scapular elevation, shoulder hiking, or abduction

in cases of insufficient shoulder flexion. Hand compensations
included inadequate hand opening or grasping. Approximately
40 trials per participant were labeled for the affected side,
while less-affected side trials were consistently labeled as no
compensation. This labeling provided the ground truth across
participants, phases, and compensation types. Due to measurement
noise, reliable hand compensation detection was not feasible
with MediaPipe, and subsequent analyses therefore focused on
shoulder compensation.

Compensation severity was categorized as mild (≥1 phase
labeled yes), moderate (≥3 phases labeled yes), and less-affected
(all phases no). Participants without compensation (no trial
labeled as compensation “yes”) were excluded resulting in
13 participants with shoulder compensation. Undersampling
was used for equal representation of compensatory and non-
compensatory trials. Data normalization included scaling by ear-to-
ear distance and mirroring of right-hand trials to ensure consistent
left-hand representation.
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Pose data were extracted from all videos using MediaPipe
BlazePose (heavy model) (26). From the 33 available 3D keypoints,
only upper-body keypoints (0–22) were retained, and analyses
used 2D coordinates due to unreliable depth information in
seated participants. Three camera perspectives (close, far, center)
were processed separately to allow subsequent evaluation of
viewpoint effects.

In addition to raw keypoints, custom kinematic features,
following Alt Murphy (22), were derived from MediaPipe and
OMC (Table 1). These included measures such as minimum
elbow extension, maximum shoulder angle, and peak tangential
velocity. Certain features required phase durations, which were
computed both from OMC and directly from MediaPipe
keypoints. This dual approach allowed comparisons between
precise OMC-based phase segmentation and noisier, purely vision-
based segmentation. OMC-derived features were assumed to have
minimal measurement error and therefore served as a benchmark.
A Random Forest classifier (20 estimators) was trained on
these features.

For raw keypoints, two deep learning models were tested: a 1D
Convolutional Neural Network (CNN) with three convolutional
layers (64 filters), global average pooling, and a softmax classifier;
and a Long Short-Term Memory (LSTM) network with two
recurrent layers (50 units each), dropout (0.2), a dense layer (20
units), and a softmax output. Both CNN and LSTM were trained
with the Adam optimizer and employed sparse categorical cross-
entropy as the loss function, and used a batch size of 32. To mitigate
overfitting and promote efficient training, early stopping was
employed. Parameters were chosen through preliminary searches
to balance performance and complexity. For custom features, a
Random Forest served as a classical baseline.

All analyses were implemented in Python (3.9.6). Video
processing used OpenCV
(opencv-python==4.8.1.78); deep learning used
TensorFlow (tensorflow==2.15.0); and Random
Forest classification and utilities used Scikit-learn
(scikit-learn==1.4.0).

2.5 Comparison of key factors affecting
compensation detection performance

Multiple analysis pipelines were compared and five key factors
were systematically varied, assessing each factors impact on
classification accuracy (ref Figure 2). The performance of each
pipeline was determined by its test accuracy, recall, and precision
in detecting compensations. The test accuracy was defined by the
percentage of trials correctly classified as compensation yes or no.

1. Severity of compensation: The impact of compensation severity
was assessed by splitting the dataset into data containing mild
and moderate compensations and data with only moderate
compensations. This allowed us to determine whether the pose
estimation method could detect subtle compensations or was
limited to larger, more pronounced movements.

2. Inter- vs. intra-participant classification: Two training
and validation strategies were applied. Intra-participant
classification involved splitting trials from the same participant

TABLE 1 Custom features based on keypoints.

Name Description

Min Elbow Extension Minimum elbow extension (angle of keypoints 11,
13, 15) during the reaching phase.

Average Smoothness Calculates the average smoothness of the
movement based on the variance in velocities
between the shoulder, elbow, and hand keypoints
of the reaching arm.

Number of Movement Units Number of movement units measured during the
phases.

Peak Average Velocity Peak elbow velocity (pixel/frame) during the
reaching phase.
A sliding window of 8 is applied to smooth the
data.

Peak Tangential Velocity Peak tangential velocity (pixel/frame) during the
reaching phase.
Calculated as the distance between the shoulder
(keypoint 11) and hand (keypoint 15) per frame.
A sliding window of 8 is applied to smooth the
data.

Max Shoulder Angle Max shoulder angle (keypoints 11, 13, and 23)
over all phases.

into training and testing sets to evaluate performance within
a single individual (80–20 training-test split of trials). For
inter-participant classification, the dataset was partitioned
by participants to evaluate the model’s ability to generalize
to unseen individuals with varying compensation patterns.
Stratified group 3-fold cross-validation (StratifiedGroupKFold)
was applied, ensuring that all data from a given participant
was confined to either the training or the test set within each
fold. This approach preserved class balance across folds while
preventing information leakage between participants.

3. Camera perspectives and quality of motion data: Three
camera angles (far, close, and center - see Figure 1) were
tested to evaluate the influence of perspective on pose
estimation accuracy and, consequently, on the classification of
compensatory movements. The selected angles were chosen to
reflect feasible setups in clinical and home settings.

High quality motion data from OMC, combined with the
movement quality measures from Murphy et al. (22), served as a
baseline condition to disentangle the measurement uncertainty
of MediaPipe from the inherent uncertainty in compensatory
movement classification. Three data modalities were tested with
increasing data quality (MediaPipe standalone: features and
phase classification based on MediaPipe keypoints; Hybrid:
features based on MediaPipe and phase classification based on
OMC; OMC: features and phase classification based on OMC).
A Random Forest classifier was used as a robust classical model
to benchmark deep learning approaches.

4. Input features: Two types of input features were tested:
first, custom kinematic features derived from kinematics and
movement phases (see Table 1) and second, timeseries-data
based on MediaPipe keypoints.

5. Classifier architectures: For raw keypoint inputs, 1D
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory networks (LSTMs) were tested as standard
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FIGURE 2

FlowChart of analysis.

methods for time-series data classification problems. For
kinematic feature inputs, a Random Forests was used as a
classical machine learning baseline, allowing for a comparison
of deep learning against traditional approaches.

3 Results

The analysis yielded classification accuracies across a range
of experimental settings, varying by compensation severity
(mild vs. moderate), training split (inter- vs. intra-participant),
camera perspective (close, center, far), and motion data quality,
input features and classifier architecture. Three data modalities
were compared: (1) standalone MediaPipe keypoints, (2) a
hybrid approach combining MediaPipe keypoints with OMC-
based phase classification, and (3) complete OMC data as a
high-fidelity baseline.

Results (test accuracy, recall and precision) are summarized in
Table 2 for custom features, and Table 3 for time-series data (intra-
participant, CNN). The findings are structured according to the key
factors hypothesized to influence the classification performance.

1. Severity of compensation
The severity of compensatory movements influenced
classification performance differently across evaluation settings
(Table 2). In inter-participant scenarios, mild compensations
were classified more accurately and with higher recall than
moderate compensations. For example, in the Hybrid–close
camera condition, inter-participant accuracy was 0.70 (±
0.02) for mild compensations compared to 0.58 (± 0.09) for
moderate, and recall was 0.64 (± 0.05) (mild) vs. 0.30 (±
0.17) (moderate). Precision, however, was slightly higher for
moderate compensations (0.76 ± 0.22) compared to mild
(0.72 ± 0.03), although with greater variability. These results
suggest that mild compensations, while more subtle, were

generally more consistently detected across participants,
whereas moderate compensations led to less reliable recall.
In intra-participant classification, the differences were less
pronounced, and in some cases, moderate compensations
slightly outperformed mild ones. For instance, accuracy values
in the close camera condition were 0.88 (mild) and 0.91
(moderate), while precision improved from 0.72 (mild) to
0.76 (moderate). This indicates that when training and testing
on the same individual, classification performance remained
high regardless of compensation severity, with moderate
compensations offering a small advantage.
Using keypoint time-series data with CNNs, both mild and
moderate compensation groups achieved consistently high
intra-participant accuracies (0.92–0.95; Table 3).
In addition to stratified 3-fold cross-validation with
undersampling, a stricter leave-one-subject-out (LOSO)
analysis with SMOTE (see Supplementary material) was
also performed. The results were highly consistent across
both evaluation schemes for OMC mild and for the hybrid
mild/moderate conditions, supporting the robustness of these
findings. The only notable deviation was in OMC Moderate,
where LOSO performance degraded compared to stratified CV,
underscoring the difficulty of generalizing this condition with
limited sample size.

2. Inter- vs. intra-participant classification
A pronounced performance gap was observed between inter-
and intra-participant evaluations. Intra-participant models
consistently achieved substantially higher accuracy, recall, and
precision across all feature sets and camera perspectives.
For instance, using custom features with Standalone-center
for mild compensations, accuracy improved from 0.48 (±
0.10) in the inter-participant evaluation to 0.83 in the intra-
participant split. A similar effect was observed for precision
(0.49 ± 0.14 inter vs. 0.83 intra) and recall (0.32 ± 0.07
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TABLE 2 Test Accuracy (A), Recall (R), and Precision (P) for inter- and intra-participant classification using Standalone, Hybrid, and OMC features.

Custom features method Standalone Hybrid OMC (A/R/P)

Comp. Cam. Metric Inter Intra Inter Intra Inter Intra

mild

center

Accuracy 0.48 (± 0.10) 0.83 0.48 (± 0.12) 0.82

0.71 (± 0.06) 0.63 (± 0.14) 0.84 (± 0.18) 0.92 0.92 0.92

Recall 0.32 (± 0.07) 0.83 0.37 (± 0.12) 0.82

Precision 0.49 (± 0.14) 0.83 0.48 (± 0.16) 0.83

far

Accuracy 0.57 (± 0.05) 0.86 0.58 (± 0.09) 0.88

Recall 0.42 (± 0.06) 0.86 0.48 (± 0.15) 0.88

Precision 0.61 (± 0.09) 0.86 0.61 (± 0.10) 0.88

close

Accuracy 0.63 (± 0.07) 0.83 0.70 (± 0.02) 0.88

Recall 0.62 (± 0.21) 0.83 0.64 (± 0.05) 0.88

Precision 0.63 (± 0.08) 0.83 0.72 (± 0.03) 0.88

moderate

center

Accuracy 0.43 (± 0.03) 0.89 0.42 (± 0.04) 0.85

0.65 (± 0.22) 0.48 (± 0.40) 0.59 (± 0.34) 0.93 0.93 0.94

Recall 0.01 (± 0.01) 0.89 0.02 (± 0.00) 0.85

Precision 0.05 (± 0.04) 0.90 0.11 (± 0.06) 0.86

far

Accuracy 0.58 (± 0.06) 0.89 0.60 (± 0.10) 0.88

Recall 0.28 (± 0.12) 0.89 0.33 (± 0.16) 0.88

Precision 0.68 (± 0.16) 0.89 0.67 (± 0.21) 0.88

close

Accuracy 0.55 (± 0.09) 0.93 0.58 (± 0.09) 0.91

Recall 0.29 (± 0.20) 0.93 0.30 (± 0.17) 0.91

Precision 0.70 (± 0.25) 0.93 0.76 (± 0.22) 0.91

Rows are grouped by compensation severity and camera angle. Results are shown as mean (± SD) for inter-participant and single-point estimates for intra-participant evaluation.

TABLE 3 Intra-participant comparison of CNN Models using MediaPipe keypoints time-series data with different compensation intensity subgroups
(mild, moderate) and camera angles (far, close, center).

Compensation Camera
Train Test

Accuracy Recall Precision Accuracy Recall Precision

Mild Center 0.94 0.94 0.94 0.94 0.94 0.94

Mild Far 0.92 0.92 0.93 0.94 0.94 0.95

Mild Close 0.94 0.94 0.94 0.92 0.92 0.92

Moderate Center 0.96 0.96 0.96 0.92 0.92 0.92

Moderate Far 0.97 0.97 0.97 0.93 0.93 0.93

Moderate Close 0.95 0.95 0.95 0.95 0.95 0.95

Compensation severity was categorized as mild if at least one phase was labeled as displaying compensation, moderate if this was the case for three or more phases.

inter vs. 0.83 intra). The same pattern was evident with
custom features from higher-quality data: in OMC-based
classification, inter-participant accuracies ranged between 0.65
(± 0.22) (moderate, inter) and 0.71 (± 0.06) (mild, inter),
while intra-participant accuracies were consistently high at
0.92–0.94. These findings indicate that generalization across
participants is substantially more challenging than within-
participant classification, highlighting the strong individual
variability in compensatory movement patterns.
In contrast, keypoint time-series models failed to generalize for
inter-participant settings (accuracy around 0.5), but performed
well in intra-participant classification (0.92–0.95).

3. Camera perspective and quality of motion data
Both camera perspective and data quality strongly influenced
classification outcomes. As expected, the OMC condition
consistently provided the highest performance, with inter-
participant accuracies of 0.71 (± 0.06) for mild compensations
and to 0.65 (± 0.22) for moderate compensations, and
near-perfect intra-participant accuracies 0.92 (mild) and 0.93
(moderate). Hybrid features yielded similar performance to
Standalone, with accuracy values that were the same or
up to 0.07 higher under otherwise comparable conditions.
For example, in the mild–close condition, Hybrid improved
inter-participant accuracy from 0.63 (± 0.07) to 0.70 (±
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0.02), and intra-participant accuracy from 0.83 to 0.88.
Camera perspective also played a role: the close perspective
outperformed both center and far perspectives, particularly for
moderate compensations. In the Hybrid–close condition, inter-
participant accuracy (mild) reached 0.70 (± 0.02), compared
to 0.48 (± 0.12) for the center view and 0.58 (± 0.09) for
the far view. Notably, the center–moderate inter-participant
condition performed extremely poorly, with accuracies ranging
only from 0.42–0.43, recall from 0.01–0.02, and precision from
0.05–0.11 across Standalone and Hybrid models, indicating a
near-complete failure to detect compensations in this setting.
Intra-participant accuracies were also highest in the close
(moderate) condition (0.91) compared to 0.85–0.88 in far and
center views. These results confirm that richer kinematic detail
(OMC or closer viewpoints) substantially improves classification
performance, while distant perspectives degrade performance,
especially in inter-participant classification.

4. Input features
The choice of input features had a marked impact on
performance, but this effect differed between inter- and intra-
participant evaluations. With custom features, both inter-
and intra-participant classification were feasible, although
inter-participant accuracies remained modest (ranging from
0.48–0.70 for mild compensations and 0.42–0.60 for moderate
compensations). In contrast, time-series models (CNN)
only converged in the intra-participant setting, where they
achieved substantially higher and more consistent performance.
Specifically, CNN intra-participant test accuracies were between
0.92 and 0.95 across all conditions, with balanced precision and
recall values (≥ 0.92). For example, in the mild–far condition,
intra-participant test accuracy increased from 0.88 (custom
features) to 0.94 (CNN time-series). Similarly, in the moderate–
close condition, accuracy improved from 0.91 (custom features)
to 0.95 (CNN).
By contrast, in the inter-participant evaluation, time-series
classification failed to converge and yielded accuracies
close to or below 0.50, highlighting struggle to generalize
across participants.

5. Classifier architecture
When comparing model architectures for time-series
classification, CNNs consistently outperformed LSTMs.
In the intra-participant setting, CNNs achieved high and
balanced performance across all conditions, with test accuracies
between 0.92–0.95, while LSTMs failed to converge and
produced accuracies close to or below 0.50, effectively
at chance level. For instance, in the moderate–far intra
condition, CNN performance reached 0.93 accuracy, 0.93
recall, and 0.93 precision, whereas the LSTM failed to
surpass random performance. In the inter-participant setting,
both CNN and LSTM failed to converge, indicating that
temporal models in their current form were unable to capture
inter-individual variability.
These findings suggest that CNNs are well-suited to intra-
participant time-series classification, effectively leveraging
keypoint trajectories to detect compensations, while LSTMs
were unstable and ineffective in this task. However, the failure
of both CNN and LSTM in inter-participant classification
emphasizes that temporal models alone may not be sufficient

to handle between-participant variability in compensatory
movement patterns.

4 Discussion

Recent advances in computer vision based 2D pose estimation
using single RGB cameras present a promising low-cost alternative
for movement analysis. While 2D pose estimation has achieved
high accuracy levels, its performance is highly dependent on
recording conditions such as camera angle and the complexity of
the movement. Errors in joint angle estimation can range from
under 10 degrees to over 50 degrees, highlighting the need to
optimize recording setups for specific applications. In the context
of stroke rehabilitation, identifying the optimal camera perspective,
pose estimation algorithm, and outcome measures for detecting
upper limb compensations during the drinking task remains a
significant challenge.

Although pose estimation algorithms are improving, they
do not yet match the accuracy of OMC systems, necessitating
alternative methods to quantify movement quality. Movement
therapists bring invaluable expertise to this task, but their
availability is limited, especially in home-based settings. This
underscores the need for accessible, automated tools capable of
detecting compensations with therapist-level insights. Previous
work has demonstrated the feasibility of using consumer-grade
webcams and deep learning classifiers to detect compensatory
movements during a drinking task (30), but further investigation
is needed to enhance the robustness and generalization of
these methods.

4.1 Summary of findings

This study demonstrates that compensatory movement
detection using a single RGB camera is feasible, with several
factors significantly influencing classification accuracy. For
inter-participant evaluation, mild compensations were detected
more reliably than moderate ones, whereas in intra-participant
evaluation, moderate compensations were detected more reliably
than mild ones. Intra-participant classification yielded consistently
high accuracy, while inter-participant classification remained
challenging, especially with MediaPipe-based models. The close
view camera perspective overall provided better results than
frontal and far cam perspectives. Models using custom kinematic
features outperformed those using raw keypoints for inter-
participant classification, especially when paired with high-quality
phase classification from OMC data. Conversely, raw keypoints
performed slightly better in intra-participant settings using
CNNs. Across all settings, CNNs outperformed LSTMs using
time-series data.

4.2 Interpretation and relation to previous
work

Recent studies on compensation detection in stroke
rehabilitation have explored various sensing and analysis
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methods. According to Wang et al. (27), body-worn sensors
and OMC dominate the field, though markerless systems like
2D pose estimation are gaining traction. Machine learning
remains underused, and most studies involve small samples,
limiting generalizability.

The drinking task has been analyzed using OMC (22),
IMUs (28), and markerless approaches (29). While OMC offers
high accuracy, it is impractical for home use; IMUs face drift
and calibration challenges in real-world settings; and 2D pose
estimation, though more accessible, may lack precision. Lin
et al. (30) showed promising intra-subject results for detecting
compesnation in people with stroke performing the drinking task
using BlazePose, but their study lacked inter-participant validation.

The need for objective and reliable labeling remains a challenge.
Jose et al. (31) and Sauerzopf et al. (32) highlight inter-rater
variability in video-based scoring, emphasizing the need for
automated, standardized approaches.

Building on these findings, this study uses MediaPipe-based 2D
pose estimation with deep learning for automated compensation
detection during a drinking task. The findings are discussed around
the five factors influencing classification performance:

1. Severity of compensation
Contrary to our initial hypothesis, mild compensations
were generally classified more accurately than moderate
compensations in inter-participant settings. For example, with
OMC features, inter-participant accuracy reached 0.71 (± 0.06)
for mild but only 0.65 (± 0.22) for moderate; recall and precision
followed the same pattern [mild: 0.63 (± 0.14) recall, 0.84 (±
0.18) precision; moderate: 0.48 (± 0.40) recall, 0.59 (± 0.34)
precision]. These findings, together with the confusion matrices
(Figure 3), indicate that generalization across participants is
more robust for mild compensations. A likely explanation lies
in dataset composition: there were substantially more mild
samples, whereas only five patients exhibited sufficient moderate
compensations, leading to high variance and lower reliability
for that group. The confusion matrices (Figure 3) further show
that moderate compensations are often misclassified in inter-
participant settings, which can be attributed to the small number
of moderate cases and the resulting variability across patients.
While moderate compensations appear more distinct within
individuals (intra-participant), their scarcity makes them harder
to generalize reliably across participants.
The original hypothesis was only supported in intra-participant
classification, where moderate compensations achieved slightly
higher accuracies (OMC: 0.93 vs. 0.92 for mild), suggesting
that more pronounced compensations are easier to detect
within individuals. Also, labeling inconsistencies, particularly
in edge cases, introduce noise into the data (32) and likely
affect test accuracy. This underscores the need for larger and
more balanced datasets, as well as more robust labeling and
feature representations, to capture both subtle and pronounced
compensatory movements with equal reliability.

2. Inter- vs. intra-participant evaluation
As expected, intra-participant models outperformed inter-
participant models. This likely reflects the individuality of
compensatory strategies, which may not generalize well across
subjects. To improve inter-participant compensation detection,

expanding the dataset either through broader data collection or
augmentation using synthetic movement data could help better
represent the variability in post-stroke compensation strategies
during the drinking task. The performance gap is especially
pronounced with less accurate data sources, emphasizing that
inter-participant classification requires movement patterns to
remain detectable despite increased measurement noise. This is
further highlighted by the improved inter-participant accuracy
when using high-fidelity OMC data.

3. Camera perspective and data quality
While MediaPipe is optimized for frontal views, the close
camera consistently performed best in this study. This likely
reflects the importance of sagittal-plane information for
tasks like reaching, which are difficult to capture from a
purely frontal perspective. The close camera offered a mixed
frontal-sagittal view, improving the ability to detect relevant
movement characteristics. In contrast, the moderate–center
camera condition underperformed, most likely because certain
features were less reliable in the absence of depth information
that cannot be captured from a frontal view. Likewise, the
mild–far condition was negatively affected by occlusions, as the
moving arm was partially obstructed at greater distances, leading
to reduced classification performance.
Higher-quality motion data consistently led to better
classification performance. This was evident not only
when comparing OMC to MediaPipe but also in the
hybrid approach, where MediaPipe keypoints were paired
with OMC-derived phase segmentation. These results
demonstrate that deep learning models are capable of
identifying compensatory patterns provided that movement
representations are sufficiently accurate, both in spatial quality
and temporal segmentation.

4. Input features
MediaPipe keypoint time-series data failed to generalize for
inter-participant classification, likely due to a low signal-to-
noise ratio. The limited number of participants and noise in
the keypoints likely prevented the models from learning robust
patterns of compensation. Improving generalization would
require both higher-quality time-series data and a larger training
population. Intra-participant classification using MediaPipe
time-series data achieved accuracies of 0.92–0.95 which is in line
with Lin et al. (30), reporting 0.92.
The improved performance of intra-participant models using
custom features shows the benefit of prior feature selection
in enhancing the signal-to-noise ratio. For example, accuracies
reached up to 0.70 in the mild group (close camera, hybrid
approach), suggesting that meaningful kinematic features can
still be extracted even from noisier data sources if domain
knowledge is incorporated effectively.

5. Classifier architecture
The CNN outperformed the LSTM by reliably capturing
local temporal–spatial patterns in joint trajectories, achieving
intra-participant accuracies ≥ 0.92. In contrast, the LSTM
failed to converge (accuracies around 0.5). LSTMs are more
data-demanding and sensitive to variability, which may have
amplified instability given the limited dataset size. Both
models failed in inter-participant classification, indicating that
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FIGURE 3

Confusion matrices for OMC and Hybrid Close models under mild and moderate conditions.

architectural choice alone is insufficient for generalization, and
highlighting the need for strategies such as normalization or
domain adaptation.

4.3 Limitations and future directions

This study demonstrates the potential of consumer-grade
webcams and deep learning to detect upper limb compensatory
movements in people with stroke during a drinking task. However,
several limitations, must be addressed in future research to
achieve robust, automated compensation detection and enhance
clinical applicability.

The limited sample size, comprising only 20 participants with
13 exhibiting compensatory movements, restricted the dataset’s
representativeness across diverse compensation patterns. The little
amount of data did limit the use of validation data during
training process, usually leading to overfitting of the model. This
study solely relied on test data set to evaluate the perfomance.
Furthermore, the drinking task’s motor requirements excluded
individuals with severe impairments, skewing the sample toward
those with higher functionality. This probably hampered the
models’ ability to generalize to the broader stroke population.
Future research should prioritize larger cohorts spanning a wide

range of impairment levels and exploring methods to synthetically
enrich the data set with data augmentation methods (33–35) as
previously successfully implemented in optimizing rare disease
gait classification (36). Using the unaffected side of participants
as a proxy for able-bodied movements may represent a limitation,
even when therapists label these movements as non-compensatory.
Future work should therefore include movement data from age-
matched able-bodied participants for comparison.

Pose estimation accuracy was a significant challenge,
as MediaPipe’s 2D keypoints probably struggled to
discern subtle differences between compensatory and
non-compensatory movements.

Using only MediaPipe was an explicit choice from the outset,
as it can run efficiently on consumer-grade devices and avoids
data security concerns associated with cloud-based processing.
However, this lightweight algorithm comes at the cost of reduced
accuracy, which represents a key limitation of the present study.
Future work should therefore include comparative analyses with
more advanced pose estimation models to quantify potential
performance gains and evaluate whether the trade-off between
accessibility and accuracy can be optimized.

This study was conducted in a controlled setting with
standardized conditions, including fixed camera positions and
only one person in view. Real-world applications, however, may
introduce additional challenges such as multiple people in frame,
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varying lighting conditions, diverse camera devices, and challenges
in how the application is used without support. Future work should
examine these factors and their impact in real-life scenarios, and
investigate how applications on tablets, smartphones, or laptops
can be designed to maximize usability for people with stroke,
including clear user guidelines and tutorials and potential fine-
tuning options of the classification model leveraging movement
data of the specific end user.

The binary labeling system for compensatory movements,
while practical, lacked granularity for detailed clinical insights
and was susceptible to inter- and intra-rater variability (32).
Manual labeling by therapists was labor-intensive and might have
introduced noise into the training data. Inconsistent annotations
obscure compensatory patterns, especially in small datasets,
undermining model performance. As described in full detail in
Sauerzopf et al. (32), inter-rater reliability was good for reaching,
drinking, and returning phases (ICCs 0.75–0.88) and moderate for
transport phases (ICCs 0.65–0.68). Future work should develop
data-driven labeling approaches, such as unsupervised learning or
continuous assessment scales, to improve consistency and reduce
dependence on manual annotations.

In summary, advancing tracking precision, expanding
dataset diversity, and refining labeling methods are critical to
developing low-cost, user-friendly tools for stroke rehabilitation.
These improvements will enhance patient outcomes in clinical
and home settings, aligning with the vision of scalable,
technology-driven care.

5 Conclusion

Enhancing the effectiveness of rehabilitation strategies and
home therapy, along with the implementation of smart home
assessments, will be essential in the future of patient care. For
these technologies to be successfully adopted, they must be low-
cost, accessible, and user-friendly. This study demonstrates that
with tailored algorithms, current computer vision technologies can
already be applied to detect compensatory movements. However,
the importance of accurate movement representation and the
need for larger datasets remain critical for developing models
that generalize well. Continued progress in technology and data
collection methods will further enhance the potential of computer
vision in rehabilitation contexts, ultimately contributing to more
effective and accessible patient care.
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