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Background: Vitamin D deficiency is common in chronic kidney disease (CKD). 
Vitamin D/vitamin D receptor (VDR) signaling intersects inflammation, oxidative 
stress/mitochondrial injury, fibrogenic pathways, the renin–angiotensin–
aldosterone system (RAAS), and the gut–kidney axis, providing a biologic 
rationale for renoprotection.
Methods: Narrative review; literature identified from PubMed/MEDLINE, Embase, 
Web of Science, and Cochrane Library (January 2000–August 2025). Adult CKD 
populations (non-dialysis, dialysis, transplant) were included. Outcomes covered 
biologic/surrogate (e.g., proteinuria, estimated glomerular filtration rate [eGFR] 
slope) and hard endpoints (kidney failure, major cardiovascular events, fractures, 
mortality).
Results: Nutritional vitamin D reliably corrects deficiency and improves laboratory 
profiles; VDR activators (VDRAs) suppress secondary hyperparathyroidism 
(SHPT). However, consistent benefits on hard outcomes have not been 
demonstrated across CKD settings, likely reflecting heterogeneity (baseline 
vitamin D status, stage, co-therapies, endpoints) and formulation/dosing 
differences (D₃ vs. D₂; cholecalciferol vs. calcifediol; steady vs. bolus). Safety 
considerations (hypercalcemia/mineral imbalance) apply to active agents and 
high-dose bolus regimens.
Conclusion: A pragmatic approach is warranted: replete deficiency with 
nutritional vitamin D (prefer D₃; consider calcifediol when faster repletion 
or persistent SHPT is relevant), avoid mega-bolus dosing, and reserve active 
VDRAs for clear SHPT indications with careful calcium–phosphate–parathyroid 
hormone (PTH) monitoring—rather than positioning vitamin D as disease-
modifying therapy for unselected CKD. Future trials should enrich truly deficient, 
higher-risk phenotypes, standardize regimens, and prioritize event-driven hard 
endpoints with embedded mechanistic markers to confirm on-target biology.
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1 Introduction

Chronic kidney disease (CKD) represents a growing global health 
burden, with increasing mortality and disability-adjusted life years 
(DALYs) (1). Vitamin D deficiency is highly prevalent among patients 
with CKD and is closely associated with decreased renal function (2). 
The progressive loss of nephrons reduces renal 1α-hydroxylase 
activity, limiting the production of active 1,25-dihydroxyvitamin D₃ 
(1,25(OH)₂D₃), whereas urinary loss of vitamin D-binding protein 
(VDBP) due to proteinuria further exacerbates 25(OH)D deficiency 
(3). This dual impairment contributes not only to mineral metabolism 
disorders and secondary hyperparathyroidism but also to 
cardiovascular complications such as vascular calcification and left 
ventricular hypertropy (LVH) (4). Notably, vitamin D receptor (VDR) 
expression is widespread in renal tubular and vascular smooth muscle 
cells, and its signaling appears to exert both protective and potentially 
adverse effects (3, 5). Moreover, various forms of vitamin D 
compounds differ in their biological activities and clinical outcomes, 
complicating treatment strategies. Thus, a comprehensive review of 
the roles of vitamin D in CKD pathogenesis and its translational 
potential in disease progression and intervention is warranted.

2 Vitamin D metabolism and 
physiological functions

Vitamin D is a fat-soluble prohormone that is synthesized 
primarily in the skin from 7-dehydrocholesterol under ultraviolet B 
(UVB) radiation, forming previtamin D₃, which is then thermally 
isomerized into cholecalciferol (vitamin D₃). It can also be obtained 
from dietary sources in the form of either vitamin D₂ or D₃. Regardless 
of its origin, vitamin D undergoes two steps: first, in the liver, it is 
hydroxylated by 25-hydroxylase (CYP2R1) to form 25-hydroxyvitamin 
D₃ [25(OH)D₃], and subsequently, in the kidney, it is hydroxylated by 
1α-hydroxylase (CYP27B1) to generate the biologically active form, 
1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] (6). In addition to renal 
activation, peripheral tissues such as immune cells also express 
CYP27B1, indicating that vitamin D can be locally activated to exert 
paracrine effects (7).

1,25(OH)₂D₃ exerts its effects by binding to the nuclear vitamin 
D receptor (VDR), forming a heterodimer with the retinoid X receptor 
(RXR), which then binds to vitamin D response elements (VDREs) on 
target genes. The ability of this complex depends on ligand-induced 
activation of both the VDR and RXR, reflecting a “dual-ligand 
requirement” for effective transcriptional regulation (8).

Physiologically, vitamin D plays a central role in calcium–
phosphate homeostasis and bone metabolism. It enhances intestinal 
calcium absorption by upregulating calcium transport proteins (e.g., 
TRPV6, calbindin-D) and regulates calcium mobilization and 
reabsorption in bone and kidney tissues. Additionally, it indirectly 
modulates CYP27B1 expression through feedback regulation of 
parathyroid hormone (PTH) and fibroblast growth factor 23 
(FGF23) (9).

In addition to mineral metabolism, vitamin D has 
immunomodulatory, anti-inflammatory, antioxidant, and potential 
antitumor effects. It suppresses Th17 cell responses, inhibits dendritic 
cell maturation, downregulates NADPH oxidase, and enhances 
glutathione antioxidant pathways to reduce reactive oxygen species 

and mitochondrial damage (10). Although preclinical studies suggest 
antitumor activity via modulation of the cell cycle, apoptosis, and 
angiogenesis, large-scale randomized controlled trials have not 
demonstrated a clear benefit in terms of cancer incidence or 
mortality (11).

Overall, vitamin D metabolism involves coordinated actions 
across the skin, liver, kidney, and peripheral tissues. Its biological 
functions are mediated through VDR–RXR transcriptional control 
and are characterized by systemic relevance and context-dependent 
activity (Figure 1).

3 Renal regulation of vitamin D 
metabolism and its alterations in CKD

3.1 Physiological regulation of vitamin D 
metabolism in the kidney

The kidney plays a central role in the activation of vitamin D. In 
particular, proximal tubular epithelial cells express CYP27B1, which 
converts circulating 25-hydroxyvitamin D [25(OH)D] into its 
biologically active form, 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃]. 
This hydroxylation step is tightly regulated by multiple endogenous 
factors. PTH enhances CYP27B1 expression via activation of the 
adenylyl cyclase–protein kinase A (AC–PKA) signaling pathway, 
thereby promoting the synthesis of active vitamin D (12). In contrast, 
FGF23 binds to the Klotho–FGFR complex and activates the Mitogen-
Activated Protein Kinase/Extracellular signal-Regulated Kinase 1 and 
2 pathway, leading to the suppression of CYP27B1 and upregulation 
of the catabolic enzyme 24-hydroxylase (CYP24A1), which accelerates 
the degradation of 1,25(OH)₂D₃ (13).

In addition to hormonal regulation, other metabolic signals also 
contribute to the control of vitamin D hydroxylase activity. 
Magnesium, as a cofactor for cytochrome P450 enzymes, enhances the 
catalytic function of CYP27B1. Inorganic phosphate can directly 
influence the expression of hydroxylases in tubular epithelial cells. 
Additionally, activation of the aryl hydrocarbon receptor (AHR) 
signaling pathway has been implicated in the transcriptional and 
possibly epigenetic regulation of both CYP27B1 and CYP24A1 
(14, 15).

3.2 Dysregulation of vitamin D metabolism 
in chronic kidney disease

In the context of CKD, the regulatory network governing 
vitamin D metabolism becomes markedly disrupted. Inflammatory 
cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α 
(TNF-α), along with hypoxic stress, oxidative damage, and uremic 
toxins, have been shown to suppress the expression and activity of 
CYP27B1 through multiple signaling pathways, resulting in reduced 
synthesis of 1,25(OH)₂D₃ (16). Concurrently, persistent elevation of 
fibroblast growth FGF23 not only downregulates CYP27B1 but also 
induces the catabolic enzyme CYP24A1, accelerating the 
degradation of active vitamin D and further impairing its biological 
activity (13).

In addition to hydroxylase dysregulation, another critical barrier 
to effective vitamin D signaling in CKD lies in the impaired stability 
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of the VDR. VDR expression is downregulated in CKD, and its 
protein turnover is tightly controlled by the ubiquitin-proteasome 
system. On one hand, 1,25(OH)₂D₃ can attenuate VDR ubiquitination 
and delay its degradation (17). On the other hand, certain stressors 
(e.g., uremic toxins) activate the AHR–Hsp90–MDM2 axis, 
promoting VDR ubiquitination and degradation (18), which 
aggravates local inflammation. In addition, activation of cyclin-
dependent kinase CDK11p58 reduces VDR half-life via ubiquitin-
mediated degradation, further weakening VDR’s transcriptional 
activity (19).

Notably, renal transplantation provides direct evidence supporting 
the reversibility of vitamin D metabolic impairment. Studies have 
demonstrated that serum 1,25(OH)₂D₃ levels increase in CKD 
patients following kidney transplantation, indicating that the 
restoration of functional nephron mass can reestablish vitamin D 
activation capacity (20) (Figure 2).

4 The role of vitamin D in the 
pathogenesis of chronic kidney 
disease

The role of vitamin D in CKD extends beyond its classical 
function in calcium–phosphate homeostasis. Emerging evidence 
indicates that vitamin D, through receptor-mediated signaling, 
participates in multiple pathophysiological processes, including 
the regulation of immune and inflammatory responses, the 
mitigation of oxidative stress, the preservation of mitochondrial 
function, the inhibition of renal fibrosis, modulation of the renin–
angiotensin–aldosterone system (RAAS), and the maintenance of 
gut–kidney axis homeostasis. This section provides a concise 
overview of these six aspects to elucidate the multifaceted roles of 
vitamin D in CKD pathogenesis and underscore its potential as a 
therapeutic target.

FIGURE 1

Vitamin D metabolism and physiological functions. This figure illustrates a brief overview of vitamin D’s physiological metabolism and functions. 
CYP24A1 = cytochrome P450 family 24 subfamily A member 1; CYP27B1 = cytochrome P450 ffamily 27 subfamily B member 1; VDRE = vitamin D 
response elements.
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4.1 Immune and inflammatory response

Chronic inflammation and immune dysregulation are key drivers 
of CKD progression. Through activation of the VDR, vitamin D 
modulates both innate and adaptive immunity. It suppresses IL-6 and 
TNF-α production while enhancing IL-10 production in macrophages, 
and inhibits the mTOR/STAT3 pathway in T cells, thereby reducing 
proinflammatory Th17 cells and cytokines such as IL-17 and IL-22, 
while promoting regulatory T-cell (Treg) differentiation (21). 
Moreover, vitamin D upregulates TRAF3 expression to inhibit the 
noncanonical NF-κB2 pathway, alleviating the inflammatory state in 
end-stage renal disease (ESRD) patients and animal models (22). It 
also downregulates TLR4 and mitigates oxidative stress, reducing the 
release of monocyte-derived cytokines such as monocyte 
chemoattractant protein-1 (MCP-1) and TNF-α (23).

Clinically, paricalcitol supplementation has been shown to 
decrease serum IL-6 and TNF-α levels and reduce proteinuria in 
nondialysis CKD patients (24). More recent findings suggest that 

vitamin D may also improve hepcidin and serum iron profiles, 
indicating a potential link between inflammation and iron 
homeostasis (25).

Together, these findings support the role of vitamin D in 
modulating immune and inflammatory responses in CKD through 
multiple pathways and highlight its close connection to oxidative 
stress, which will be discussed in the next section.

4.2 Oxidative stress and mitochondrial 
dysfunction

Renal energy metabolism depends heavily on oxidative 
phosphorylation, and in CKD, mitochondrial dysfunction and 
oxidative stress form a vicious cycle that exacerbates tissue injury. 
Abnormalities in the mitochondrial electron transport chain (ETC), 
combined with impaired antioxidant defenses, lead to excessive 
accumulation of reactive oxygen species (ROS), which damage 

FIGURE 2

Renal regulation of vitamin D metabolism and its alterations in CKD. This figure illustrates the regulation of vitamin D metabolism by the kidneys. Solid 
arrows denote activation or promotion, while dashed arrows represent inhibition. AC = adenylate cyclase; AhR = aryl hydrocarbon receptor; 
CDK11p58 = cyclin-dependent kinase 11 p58; CYP24A1 = cytochrome P450 family 24 subfamily A member 1; CYP27B1 = cytochrome P450 family 27 
subfamily B member 1; ERK1/2 = extracellular signal-regulated Kinase 1/2; FGF23 = fibroblast growth factor 23; Hsp90 = hheat shock protein 90; 
IL-6 = interleukin-6; MAPK = mitogen-activated protein kinase; MDM2 = mouse double minute 2; P = phosphorylation; PKA = protein kinase A; 
PTH = parathyroid hormone; ROS = reactive oxygen species; TNF-α = tumor necrosis factor-alpha; Ub = ubiquitination; VDR = vitamin D receptor.
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lipids, proteins, and mitochondrial DNA, ultimately promoting 
tubular apoptosis, interstitial fibrosis, and glomerulosclerosis 
(26, 27).

Vitamin D mitigates oxidative stress and mitochondrial damage 
through multiple mechanisms. On one hand, it activates the Nrf2 
pathway via VDR, inducing the expression of antioxidant enzymes 
such as superoxide dismutase (SOD), GPX, and CAT to increase ROS 
scavenging, while simultaneously downregulating iNOS and NADPH 
oxidase to limit ROS production (23, 28). On the other hand, vitamin 
D helps stabilize the mitochondrial membrane potential, promotes 
ATP synthesis, and suppresses excessive mitochondrial fission, thereby 
maintaining mitochondrial integrity (29). It also enhances mitophagy 
and mitochondrial repair by modulating key autophagy regulators 
such as PTEN-induced kinase 1 (PINK1) and BCL2/adenovirus E1B 
19 kDa protein-interacting protein 3 (BNIP3), and activating the 
Ca2+–CAMKK2–AMPK signaling pathway (30, 31).

Clinical and preclinical studies support these antioxidant effects. 
In ESRD patients, vitamin D supplementation significantly reduces 
serum malondialdehyde (MDA) and TNF-α levels, indicating 
improved oxidative status (32). In diabetic nephropathy models, VDR 
activation alleviates lipid peroxidation by modulating ATP citrate 
lyase (ACLY) and the Nrf2/Keap1 axis (29). Further studies suggest 
that vitamin D improves mitochondrial calcium homeostasis and 
protects against PM2.5-induced oxidative injury (33).

Overall, vitamin D exerts renoprotective effects in CKD by 
modulating ROS generation, enhancing antioxidant capacity, and 
preserving mitochondrial function, closely intersecting with its roles 
in immune and inflammatory regulation.

4.3 Renal fibrosis and extracellular matrix 
remodeling

Renal fibrosis is the common pathological endpoint of various 
chronic kidney diseases (CKD) and is characterized by fibroblast 
activation, epithelial-to-mesenchymal transition (EMT), and 
abnormal accumulation of the extracellular matrix (ECM), ultimately 
leading to nephron destruction and loss of function (34). The TGF-β1/
Smad3 pathway is a key driver of this process, inducing the expression 
of fibrotic markers such as α-SMA and collagen I, promoting 
interstitial remodeling.

Vitamin D, which acts through VDR, modulates renal fibrogenesis 
at multiple levels. Studies have shown that vitamin D inhibits the 
activation of the TGF-β1/Smad3 signaling cascade by blocking Smad3 
phosphorylation. Concurrently, it interferes with noncanonical 
pathways, including the Wnt/β-catenin and NF-κB pathways, thereby 
maintaining epithelial cell polarity and structural integrity and 
suppressing EMT and ECM deposition (35). In addition, vitamin D 
may exert indirect antifibrotic effects by upregulating bone 
morphogenetic protein-7 (BMP-7) or alleviating oxidative stress and 
inflammation (36).

The VDR agonist paricalcitol has demonstrated multitarget 
antifibrotic effects in experimental models. Deluque et al. reported that 
paricalcitol modulates the Angiopoietin-2/VEGF/VEGFR2 axis, 
attenuates TGF-β–related signaling, and preserves renal tissue 
architecture in an adriamycin nephropathy model (37). Similarly, Lim 
et al. showed that under combined hypoxia and TGF-β1 stimulation, 
paricalcitol inhibits Smad2 phosphorylation, regulates hypoxia-inducible 

factor-1 (HIF-1α) signaling, and reduces oxidative stress, thereby 
blocking the transition of pericytes into myofibroblasts (38).

In summary, vitamin D exerts renoprotective effects on renal 
fibrosis by suppressing profibrotic signaling, modulating multiple 
molecular pathways, and stabilizing the renal microenvironment. 
VDR agonists such as paricalcitol exhibit promising translational 
potential, although further studies are needed to clarify their 
mechanisms and clinical indications.

4.4 Activation of the renin–
angiotensin-aldosterone system and 
disturbances in calcium–phosphate 
homeostasis

Aberrant activation of the RAAS is a critical driver of CKD 
progression, contributing to glomerular hypertension, inflammation, 
and fibrosis. Studies have shown that 1,25(OH)₂D₃ directly 
suppresses renin gene transcription in juxtaglomerular cells, thereby 
reducing angiotensin II levels and mitigating RAAS overactivation 
(39). Additionally, vitamin D inhibits the expression of RAAS-
related receptors through VDR-mediated negative feedback 
mechanisms, indirectly exerting cardiorenal protective effects (40).

Disruption of calcium–phosphate metabolism is another hallmark 
of CKD, underlying the development of mineral and bone disorders 
chronic kidney disease–mineral and bone disorder (CKD-MBD), 
secondary hyperparathyroidism, and vascular calcification. Vitamin 
D regulates key transporters such as TRPV5 and NaPi-IIa in renal 
tubular epithelial cells, increasing calcium and phosphate 
reabsorption. It also modulates systemic mineral balance by 
suppressing parathyroid hormone (PTH) and fine-tuning the FGF23–
Klotho signaling axis (41, 42), thus preserving calcium–phosphate 
homeostasis and bone–kidney axis integrity.

Taken together, these mechanisms illustrate vitamin D’s dual role: 
attenuating RAAS activation and correcting disordered mineral 
metabolism in CKD.

4.5 Gut–kidney axis regulation

The gut–kidney axis refers to the bidirectional interaction between 
the intestinal microbiota and the kidneys, which plays an increasingly 
recognized role in CKD progression (43, 44). As renal function 
declines, microbial diversity decreases, with a reduction in beneficial 
butyrate-producing bacteria and an expansion of uremic toxin–
producing anaerobes such as indole- and p-cresol–generating strains 
(45). This dysbiosis, along with impaired intestinal barrier integrity, 
promotes endotoxin translocation and systemic inflammation (46).

Vitamin D, via the VDR regulates intestinal epithelial and mucosal 
immune cells, contributing to barrier maintenance and microbial 
homeostasis. It promotes the expression of tight junction proteins, 
enhances mucosal integrity, induces the antimicrobial peptide Reg3g, 
and modulates the activity of CD11b+ myeloid cells in Peyer’s patches. 
In humans, 1,25(OH)₂D₃ levels are positively associated with 
microbial α/β-diversity, particularly with the abundance of butyrate-
producing Firmicutes (47).

Notably, microbial-derived metabolites themselves critically shape 
the gut–kidney interplay. Protein fermentation products such as 
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indoxyl sulfate (IS), indole-3-acetic acid (IAA), and p-cresyl sulfate 
(PCS) accumulate in CKD and correlate with tubular interstitial 
fibrosis severity by activating the aryl hydrocarbon receptor (AHR) 
and NF-κB signaling (48). Trimethylamine-N-oxide (TMAO), another 
microbial metabolite, has been linked to oxidative stress, autophagy 
activation, and renal injury. By contrast, short-chain fatty acids 
(SCFAs), particularly butyrate, exert protective effects by engaging 
GPR41/43 and inhibiting histone deacetylases, thereby reinforcing 
epithelial barrier integrity and suppressing NF-κB/TGF-β pathways 
(49). Clinical metabolomic studies in peritoneal dialysis patients 
further demonstrate increased PCS and TMAO alongside reduced 
SCFAs, supporting the concept of a “toxin accumulation–SCFA 
depletion–barrier dysfunction–systemic inflammation” cascade (50).

In parallel, the microbiota may also influence vitamin D 
metabolism by modulating CYP27B1 expression, bile acid recycling, 
and SCFA production. Vitamin D, in turn, can affect renal inflammation 
and metabolic activity by sensing gut-derived metabolites such as 
SCFAs and TMAO through receptors including AHR and GPR41/43 
(51). In summary, vitamin D acts not only as a regulator of mucosal 
immunity and microbial balance but also as an integrative node linking 
host, microbiota, and metabolite signaling within the gut–kidney axis, 
with promising implications for therapeutic intervention.

4.6 Other mechanisms

In addition to its classical roles, vitamin D influences several 
emerging pathways in CKD. Autophagy, a key cellular repair 
mechanism, is often impaired in early CKD, leading to cellular stress 
and injury. Calcitriol has been shown to enhance autophagic activity 
in podocytes and tubular cells by restoring LC3-II expression and 
autophagic flux, while concurrently reducing apoptosis through the 
modulation of Bcl-2 and Bax expression (21).

Klotho, an anti-aging factor predominantly expressed in the 
kidney, is downregulated in CKD and closely linked to vascular 
dysfunction. Vitamin D promotes Klotho expression and improves 
endothelial function, contributing to the regulation of the FGF23–
Klotho axis and mineral balance (52).

In addition, vitamin D deficiency is associated with proteinuria 
and glomerular barrier damage. Supplementation has been linked to 
increased expression of slit diaphragm proteins such as nephrin and 
podocin, as well as reduced tubular injury, possibly through anti-
inflammatory and anti-RAAS mechanisms (53).

Taken together, these findings suggest that vitamin D exerts renal 
protection in CKD not only through inflammation, oxidative stress, 
and fibrosis regulation but also via its roles in autophagy, Klotho 
signaling, and podocyte stability, highlighting its broader therapeutic 
potential (Figure 3).

5 Vitamin D in specific kidney 
diseases: mechanisms and clinical 
implications

5.1 Acute kidney injury

Acute kidney injury (AKI) is a rapidly developing clinical 
syndrome with poor outcomes, which affects approximately 20% of 
hospitalized patients (54). Recent evidence suggests that vitamin D is 

not only a potential biomarker for AKI risk but also may modulate 
AKI progression through multiple pathways.

Epidemiological studies have shown that low serum 25(OH)D 
levels significantly increase the risk of AKI and dialysis demand (55), 
whereas higher vitamin D status and sun exposure are independently 
associated with a lower incidence of AKI (56). Notably, 1,25(OH)₂D 
may be a more sensitive predictor of AKI and adverse outcomes in 
critically ill patients than 25(OH)D is (57).

Mechanistically, vitamin D exerts anti-inflammatory effects via 
VDR-mediated suppression of TLR signaling, induction of Treg 
expansion, and downregulation of proinflammatory cytokines such as 
TNF-α and IL-6. It also enhances antioxidant defenses by upregulating 
enzymes such as glutathione (GSH) and SOD and inhibits NADPH 
oxidase activity. In cisplatin and ischemia–reperfusion models, 
vitamin D protects tubular cells by downregulating ferroptosis-related 
molecules, including acyl-CoA synthetase long-chain family member 
4 (ACSL4) and prostaglandin-endoperoxide synthase 2 (PTGS2) (55).

Clinically, multiple cohort studies support a causal link between 
vitamin D deficiency and AKI risk. Subgroup analysis of the 
VITDAL-ICU trial suggested that critically ill patients with a baseline 
25(OH)D < 12 ng/mL may benefit from high-dose supplementation 
(58). However, some clinical studies highlight that excessive dosing 
may induce hypercalcemia and lead to prerenal or calcium deposition–
related AKI, underscoring the need for precise dosing and indications 
(59, 60).

In summary, vitamin D may contribute to AKI prevention and 
recovery through immunomodulatory, antioxidant, and 
antiferroptotic mechanisms. Its therapeutic potential warrants further 
validation in large-scale randomized trials.

5.2 Diabetic kidney disease

Diabetic kidney disease (DKD), the most common microvascular 
complication of diabetes, affects approximately 40% of diabetic 
patients and remains a leading cause of end-stage renal disease 
worldwide (61). Despite advances in glycemic and RAAS-targeted 
therapies, the incidence and progression of DKD remain substantial, 
highlighting the need for additional therapeutic targets (62). Recent 
studies have focused on the pleiotropic effects of vitamin D on glucose 
metabolism, podocyte stability, inflammation, and fibrosis, suggesting 
its therapeutic relevance in DKD.

Mechanistically, vitamin D improves insulin sensitivity and β-cell 
function, contributing to glycemic control and mitigating 
microvascular damage at early stages (63). Podocytes, early targets of 
injury in DKD, exhibit downregulation of slit diaphragm proteins and 
increased apoptosis under hyperglycemic conditions. Active vitamin 
D has been shown to upregulate nephrin and podocin, restore 
autophagic flux, and reduce podocyte loss, thereby preserving 
glomerular barrier integrity (64).

Vitamin D also negatively regulates the advanced glycation end 
products (AGEs)–receptor for AGEs (RAGE) axis. In diabetic patients, 
supplementation reduces RAGE expression and the circulating levels 
of AGEs and TNF-α, potentially attenuating inflammation and fibrosis 
(65). Furthermore, it promotes renal lipid clearance through the 
activation of lipophagy, alleviating lipid-induced oxidative damage 
(66). These actions highlight the role of vitamin D in modulating 
DKD-specific metabolic and structural pathways in addition to its 
classical anti-inflammatory effects.
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In clinical settings, multiple trials have demonstrated the benefits 
of vitamin D supplementation—whether in the form of active analogs 
or high-dose nutritional forms—in reducing proteinuria, improving 
inflammatory and metabolic profiles, and potentially stabilizing renal 
function in DKD patients (67–69). While the effects on eGFR remain 
variable, the overall trend supports a protective role in delaying 
structural and functional deterioration. In summary, vitamin D may 
exert multifaceted renoprotective effects in DKD through the 
modulation of glucose-lipid metabolism, podocyte biology, oxidative 
injury, and proinflammatory signaling, warranting further large-scale 
trials to refine its application in diabetic populations.

5.3 IgA nephropathy (IgAN)

IgA nephropathy (IgAN) is the most common primary glomerular 
disease, with treatment goals focused on reducing proteinuria and 

slowing the decline in renal function. Experimental studies suggest 
that vitamin D may attenuate renal injury by modulating immune 
responses and suppressing key inflammatory and fibrotic pathways, 
including the NF-κB/TLR4 and TGF-β signaling pathways (70). In 
clinical settings, several prospective and randomized studies have 
shown that supplementation with either active vitamin D or 
cholecalciferol can significantly reduce proteinuria, decrease the levels 
of inflammatory markers such as IL-6 and MCP-1, and increase VDR 
expression (70–75). Low serum vitamin D levels have also been 
associated with more severe histologic lesions and poorer prognosis 
in IgAN patients (76), and supplementation may improve 
cardiovascular autonomic function (77). Representative findings from 
clinical studies are summarized in Table 1.

Vitamin D may help reduce proteinuria and modulate immune 
responses in IgAN patients, but the current evidence is limited by the 
small sample size, short follow-up period, and various interventions. 
Most mechanisms are based on animal data, with little validation in 

FIGURE 3

The role of vitamin D in pathogenesis of chronic kidney disease. This figure illustrates a brief overview of the role of vitamin D in the pathogenesis of 
chronic kidney disease. ACE = angiotensin-converting enzyme; CAT = catalase; ECM = extracellular matrix; ETC = electron transport chain; 
FGF23 = fibroblast growth factor 23; HIF-1α = hypoxia-inducible factor 1-alpha; IL-6 = interleukin-6; IL-10 = interleukin-10; MMP = matrix 
metalloproteinase; mTOR = mechanistic target of rapamycin; NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells; NOS = nitric 
oxide synthase; NOX = NADPH oxidase; RAAS = renin-angiotensin-aldosterone system; SOD = superoxide dismutase; STAT3 = signal transducer and 
activator of transcription 3; TGF-β = transforming growth factor-Beta; Th17 = T helper 17 cell; TNF-α = tumor necrosis factor-alpha.
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humans. Future studies should focus on larger, longer trials and clarify 
dosing and target populations through mechanistic and 
subgroup analyses.

5.4 Lupus nephritis

Lupus nephritis (LN) is one of the most serious complications of 
systemic lupus erythematosus, and is driven by immune complex 
deposition, chronic inflammation, and progressive glomerular injury. 
While earlier animal studies reported inconsistent findings—such as 
potential proinflammatory effects of vitamin D in specific models 
(78)—more recent research has clarified its protective role in LN.

Experimental evidence suggests that vitamin D modulates key 
pathological pathways. It alleviates podocyte autophagy dysfunction 
by downregulating Beclin 1 and LC3B-II (79), reduces proteinuria and 
immune complex accumulation through inhibition of the NF-κB and 
MAPK signaling pathways (80), and blocks NLRP3 inflammasome 
activation via competitive binding to importin-4, thus preventing 
NF-κB nuclear translocation and improving renal structure and 
function (81). Clinical data further support these findings. In LN 
patients, low serum 25(OH)D levels correlate with increased soluble 
MHC Class I chain-related sequence A (sMICA) expression, reduced 
natural killer cel counts, and increased toll-like receptor 4 (TLR4) 
expression on T cells, indicating dysregulated innate immunity (82). 
In addition, vitamin D deficiency is associated with elevated urinary 
MCP-1, disrupted bone metabolism, and increased FGF23 levels, 
suggesting that vitamin D may influence LN progression through both 
immune and mineral-regulatory mechanisms.

Overall, vitamin D appears to exert anti-inflammatory, autophagy-
preserving, and bone/mineral- regulating effects that may attenuate 
LN pathogenesis. However, key questions remain regarding the 
optimal dosing, timing of intervention, and patient-specific variability, 
warranting further high-quality prospective studies.

6 Vitamin D in CKD: timing and 
evidence

Over the past decade, large randomized trials in the general 
population have shown neutral effects of vitamin D on cancer, 
cardiovascular events, fractures, and all-cause mortality (83–88). 
Because CKD features prevalent vitamin D deficiency (VDD) and 
altered metabolism, such neutral findings should not be  simply 

extrapolated. CKD-focused RCTs (Randomized Controlled Trials) 
indicate that in non-dialysis CKD, selective or non-selective VDRAs 
lower PTH but fail to improve LV mass/function or clinical hard 
outcomes and increase hypercalcemia risk (89, 90); in hemodialysis, 
oral alfacalcidol did not reduce cardiovascular composites or mortality 
(91), whereas nutritional vitamin D (cholecalciferol/calcifediol) raises 
25(OH)D and improves biochemistry with neutral/insufficient 
evidence for hard outcomes so far (92–94). Accordingly, guidance 
endorses nutritional vitamin D as the base strategy to correct 
deficiency while avoiding mega-bolus dosing (≥100,000  IU) and 
excessive 25(OH)D; active VD/VDRAs are not for routine prevention 
in CKD G3–G5 (CKD stages 3–5) off dialysis but reserved for 
progressive/severe SHPT(secondary hyperparathyroidism) or PTH 
control on dialysis (95, 96). Kidney-transplant recipients are managed 
within the same “timing–formulation” pathway: prioritize safety and 
monitoring early post-transplant, replete if <30 ng/mL (75 nmol/L) 
thereafter—consider calcifediol when SHPT persists—and transition 
to CKD-style maintenance long term (96). Overall, RCTs underscore 
that biochemical gains do not necessarily translate into hard-outcome 
benefits, likely due to lack of true-deficiency enrichment, inadequate 
target attainment/duration, formulation/dosing differences (D3 > D2; 
faster attainment with calcifediol but requires monitoring), and 
pathway–endpoint mismatch; future trials should enroll deficient 
patients, use steady daily/weekly dosing, prioritize event-driven hard 
outcomes, and incorporate immune/epimeric measurements post-
transplant to reduce exposure misclassification (97) (Table 2).

In sum, across populations and formulations, hard-outcome 
signals remain largely neutral: VITAL, D-Health, and WHI did not 
show clear benefits; in non-dialysis CKD, VDRAs lowered PTH 
without improving LV structure/function or clinical outcomes and 
posed hypercalcemia concerns; in dialysis, alfacalcidol was neutral for 
CV and mortality, while nutritional vitamin D corrected deficiency 
and improved labs but lacked definitive hard-outcome benefits. 
Consistent with Kidney Disease: Improving Global Outcomes 
(KDIGO) 2017—and reaffirmed by the 2024 KDIGO Controversies 
Conference—care should prioritize personalized management along 
bone (osteoporosis/fracture) and cardiovascular (calcification/left 
ventricular hypertrophy, LVH) axes: replete deficiency with nutritional 
vitamin D (D3 preferred; calcifediol when appropriate) using steady 
daily/weekly dosing with monitoring and avoiding mega-bolus; 
reserve active VD/VDRAs for clear SHPT indications (especially in 
dialysis). The Conference further underscores that vitamin D 
supplementation has no proven hard-outcome benefit in CKD, but 
this should not be  misread as a reason to leave deficient patients 

TABLE 1  Clinical studies of vitamin D in IgA nephropathy.

Study (Year) Study design Intervention Sample size Main outcomes

Liu et al. (2012) (73) Open-label RCT Calcitriol 0.5 μg twice weekly × 48 wks 50 ↓ proteinuria vs. control; ↑ VDR 

mRNA; safe profile

Xiaowei et al. (2020) 

(75)

RCT Valsartan + Calcitriol 0.5 μg/day × 24 wks 303 (151 + 152) 98

Szeto et al. (2008) 

(71)

Uncontrolled prospective Calcitriol 0.5 μg twice weekly × 12 wks 10 ↓ proteinuria; ↓ TGF-β correlated 

with proteinuria

Deng et al. (2017) 

(74)

Meta-analysis Calcitriol in non-nephrotic range 

proteinuria

6 RCTs, 384 patients Calcitriol reduced proteinuria 

(WMD: −0.45 g/d, p < 0.00001)

RCT = randomized controlled trial; VDR = vitamin D;mRNA = messenger RNA; TGF-β = transforming growth factor beta; AEs = adverse events; WMD = weighted mean difference; 
wks = weeks.
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untreated; in kidney-transplant recipients, RCT data suggest 
maintaining 25(OH)D ≥ 30 ng/mL may optimize bone endpoints 
(bone mineral density, BMD/fracture). PTH “targets” remain 
uncertain off dialysis; low-dose active VD can be an adjunct for PTH 
control, and extended-release calcifediol can suppress PTH at higher 
25(OH)D (>125 nmol/L), though clinical-outcome data are still 
needed. (98)

Accordingly, future trials should enroll truly deficient, high-risk 
patients; directly compare D3 with modified-release calcifediol; 
prioritize event-driven hard outcomes—patient-important events 
such as all-cause death, MACE (major adverse cardiovascular events), 
kidney failure, or fracture, with follow-up continuing until a 
prespecified event count is reached—and incorporate immune and 
epimeric markers to link biologic responses with clinical endpoints.

7 Conclusion and future directions

As was previously stated, Vitamin D/VDR signaling touches many 
pathways in CKD. It tempers inflammation, oxidative stress, and 
fibrosis, and it modulates RAAS and the gut–kidney axis. These 
mechanisms make biological sense and support a renoprotective 

hypothesis. The clinical signal is less clear. Nutritional vitamin D 
corrects deficiency and improves laboratory profiles. Active analogues 
lower PTH. Yet consistent gains in hard outcomes—kidney failure, 
major cardiovascular events, or mortality—have not been shown. 
Evidence is heterogeneous across baseline vitamin D status, CKD 
stage, co-therapies, endpoints, and—crucially—formulation and 
dosing. For example, in non-dialysis CKD, paricalcitol did not reduce 
LV mass or improve cardiac function in PRIMO and OPERA despite 
biochemical effects, while in hemodialysis the J-DAVID trial found no 
reduction in cardiovascular events with oral alfacalcidol; by contrast, 
extended-release calcifediol reliably raised 25(OH)D and suppressed 
PTH in stage 3–4 CKD, but hard outcomes remain uncertain. Safety 
also requires attention, especially hypercalcemia and mineral 
imbalance with active agents or bolus regimens. A pragmatic approach 
is therefore warranted: replete deficiency with nutritional vitamin D 
(prefer D₃; consider calcifediol when faster repletion or persistent 
SHPT is relevant), avoid mega-bolus dosing, and reserve active 
VDRAs for clear SHPT indications with careful calcium–phosphate–
PTH monitoring—not as disease-modifying therapy in 
unselected CKD.

Future work should be focused and lean: enroll truly deficient, 
higher-risk patients, standardize formulations and dosing, and test 

TABLE 2  Randomized controlled trials (RCTs) of Vitamin D—general population and CKD cohorts.

Population Trial/Year Sample & 
Setting

Intervention Follow-up Prespecified 
primary 
outcome

Main finding

General population VITAL (Manson, 

2019) (83)

US adults, ~25,000 Cholecalciferol 2000 IU/

day

~5 years Cancer, CVD Neutral on hard 

outcomes

General population D-Health (Neale, 

2022; Thompson, 

2023; Waterhouse, 

2023) (84–86)

Australian adults, 

~21,000

Cholecalciferol 

60,000 IU/month

~5 years All-cause mortality/

MACE/Fracture

Neutral on primary 

outcomes; only 

exploratory signals

General population WHI (Jackson, 

2006; Hsia, 2007) 

(87, 88)

Postmenopausal 

women, ~36,000

Calcium + low-dose 

vitamin D

Long-term Hip fracture / CVD Neutral on primary 

outcomes

Non-dialysis CKD PRIMO 

(Thadhani, 2012) 

(89)

CKD G3–G4 with 

LVH

Paricalcitol 2 μg/day 48 weeks LV mass index No difference; ↑ 

hypercalcemia

Non-dialysis CKD OPERA (Wang, 

2014) (90)

CKD G3–G5 with 

LVH

Paricalcitol 1 μg/day 52 weeks LV structure/function No difference; PTH ↓ 

(biochemical)

Hemodialysis J-DAVID (2018) 

(91)

HD without marked 

SHPT

Alfacalcidol 0.5 μg/day ~4 years CV composite/All-cause 

death

Neutral; ↑ biochemical 

Ca/P events

Hemodialysis Morrone (2022) 

(92)

HD, multicenter Oral calcifediol 24 months All-cause/CV outcomes Neutral; 25(OH)D ↑, 

PTH improved

Peritoneal dialysis Brimble (2022) 

(93)

PD, factorial design Cholecalciferol 

50,000 IU/week 

×8 → 10,000 IU/week 

×44

52 weeks CMR-measured LV 

mass

Neutral 

(underpowered); 

25(OH)D ↑

Peritoneal dialysis 

(infection)

Zhang (2024, pilot 

RCT) (94)

PD, small randomized 

trial

Cholecalciferol 2000 IU/

day

12 months Time to recurrent 

peritonitis

Feasibility/attainment 

demonstrated; no 

efficacy signal

CKD = chronic kidney disease; HD = hemodialysis; PD = peritoneal dialysis; LVH = left ventricular hypertrophy; LV = left ventricle/left ventricular; CMR = cardiac magnetic resonance; 
CVD = cardiovascular disease; CV = cardiovascular; MACE = major adverse cardiovascular events; PTH = parathyroid hormone; SHPT = secondary hyperparathyroidism; Ca = calcium; 
P = phosphate; Ca/P events = calcium/phosphate-related laboratory events; 25(OH)D = 25-hydroxyvitamin D; VDRA = vitamin D receptor agonist; RCT = randomized controlled trial; CaD 
(WHI) = calcium plus vitamin D intervention; D3 = cholecalciferol; IU = international unit; y = year(s); mo = month(s); wk = week(s); G3–G5 = CKD stages 3–5; ↑ = increase; ↓ = decrease.
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event-driven hard endpoints aligned to mechanism, while embedding 
translational markers to confirm on-target biology.
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