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Objectives: Determining the nature of thyroid nodules through a single fine-
needle aspiration (FNA) biopsy is not feasible for approximately one-third of 
patients. We developed a predictive model to assist FNA decision-making and 
reduce unnecessary FNAs.
Methods: This retrospective study consecutively included patients who 
underwent ultrasound-guided FNA between March 2018 and March 2023. 
Patients were divided into a training dataset (70%) and a validation dataset (30%). 
Univariate analysis was performed within the training dataset using Kruskal–
Wallis test for continuous variables and chi-square test or Fisher’s exact test for 
categorical variables. Variables with significance were entered into multivariate 
logistic regression. The prediction model (B-Model) was constructed using a 
cascaded three-stage logistic regression framework: Stage I  distinguished 
benign from non-benign nodules, Stage II differentiated malignant from non-
malignant nodules, Stage III separated follicular neoplasm from indeterminate/
atypia nodules. Model performance was assessed in the validation dataset using 
sensitivity (SEN), specificity (SPE), and accuracy (ACC). The reduction in repeat 
FNA facilitated by the B-Model was calculated.
Results: Training and validation datasets included 1,573 and 672 cases, 
respectively. The overall SEN, SPE and ACC of the B-Model were 84.7%, 76.7% 
and 60.1% in the validation dataset. The application of the B-Model reduced the 
number of patients requiring repeat FNA from 255 to 153, resulting in a 40.0% 
reduction.
Conclusion: The B-Model demonstrated robust predictive performance, 
facilitating the optimization of pre-FNA diagnostic workflows, significantly 
reducing unnecessary repeat FNAs, and advancing precision in thyroid nodule 
management.
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1 Introduction

Thyroid nodules (TNs) are common in the general population, 
with a global incidence ranging from 19 to 68%. Most nodules are 
benign, with 7–15% being malignant (1–3). Given the differences in 
pathogenesis, biologic behavior, and clinical manifestations, there are 
significant variations in treatment and prognosis among different 
pathologic types and subtypes of TNs (4). In recent years, the advent 
and dissemination of treatment technologies, such as ablation, 
targeted therapy, immunotherapy, and traditional Chinese medicine, 
have revolutionized the management of TNs (5). To provide patients 
with more precise and personalized treatment strategies, accurate 
pathologic diagnosis of TNs is crucial.

Ultrasound (US)-guided fine-needle aspiration biopsy (FNA) is a 
safe and effective method for obtaining thyroid cells and is currently 
the preferred approach for diagnosing TNs (1, 6–8). The Bethesda 
System for Reporting Thyroid Cytopathology (BSRTC), which is 
widely adopted globally, aims to unify the terminology used in 
pathology reports and achieve standardized reporting (9–11). BSRTC 
II, V, and VI are distinctly labeled as benign, suspicious for malignancy, 
and malignant. Conversely, BSRTC I, III, and IV encompass 
nondiagnostic, atypia of undetermined significance, and follicular 
neoplasm, respectively, which lack definitive diagnoses and exhibit a 
potential occurrence range of 20–34% (10–13). Multiple guidelines 
suggest that comprehensive management should be performed based 
on clinical risk factors in accordance with the patient’s wishes. Repeat 
FNA (rFNA) is highly recommended for BSRTC I  nodules. For 
BSRTC III, a range of options are advised, including rFNA, rFNA with 
molecular testing, diagnostic lobectomy, and surveillance. Concerning 
BSRTC IV, the recommended approach encompasses rRNA coupled 
with molecular testing or diagnostic lobectomy (1, 6, 14). Therefore, 
approximately one-third of patients may require two FNA procedures 
to achieve a more precise diagnosis. Even after undergoing two FNAs, 
some patients still confront diagnostic ambiguity, which ultimately 
requires thyroidectomy. This undoubtedly increases patient exposure 
to invasive procedures, prolongs waiting time, and imposes a 
significant financial burden.

This study aimed to devise a predictive model (B-Model) for 
BSRTC categorization of FNA that identifies nodules that cannot 
be determined solely through FNA so that we can minimize ineffective 
punctures, maximize the diagnostic efficiency of FNA, and ultimately 
promote precision medicine.

2 Materials and methods

2.1 Patients

This single-center retrospective study consecutively included 
patients who underwent US-FNA of TNs between March 2018 and 
March 2023 (n = 4,210). To evaluate temporal generalizability, the 
dataset was divided chronologically into two cohorts: March 2018 to 
February 2022 (training dataset) and March 2022 to March 2023 
(validation dataset). Exclusions criteria included: absence of 
ultrasound images, pathology-confirmed non-thyroid lesions, 
operator experience <3 years, multiple punctures (only the last result 
retained), and missing biochemical data. After exclusions, the final 

study population consisted of 1,573 patients in the training dataset 
and 672 patients in the validation dataset, with an approximate ratio 
of 7:3 between the two cohorts. The overall study design and patient 
selection flow are illustrated in Figure 1.

2.2 Acquisition of clinical information and 
biochemical results

Clinical information and biochemical results for all patients were 
obtained from an electronic medical data management system. The 
following clinical features were recorded: patient’s age and sex. 
Biochemical results included free triiodothyronine (FT3), free 
thyroxine (FT4), thyroid-stimulating hormone (TSH), antithyroid 
peroxidase autoantibody (A-TPO), thyroglobulin antibody (A-TG), 
thyroglobulin (TG), and thyrotropin receptor antibody (TRAb). All 
biochemical tests were conducted within 1 month of the FNA.

2.3 Cytopathology acquisition and 
grouping

All cytopathologic examinations were performed by two 
pathologists with >8 years of thyroid cytopathology experience and 
subsequently reviewed by a senior pathologist with >15 years of 
experience. Findings were classified according to the 2023 revision of 
BSRTC into four groups: Group 1 (BSRTC II), Group 2 (BSRTC I/III), 
Group 3 (BSRTC IV), and Group 4 (BSRTC V/VI).

2.4 Ultrasound image acquisition and 
interpretation

Ultrasound data were retrieved from the institutional imaging 
system. Two US radiologists (>7 years of thyroid imaging experience) 
independently assessed thyroid echotexture, nodule position, capsule 
distance, size, volume, composition, echogenicity, echotexture, 
margin, shape, orientation, calcifications, posterior features, halo and 
Adler’s semiquantitative grading for nodule blood flow (Grades 0–3). 
Discrepancies were resolved by consensus with a senior radiologist 
(>20 years of experience).

2.5 Statistical analysis

SPSS statistical software (version 20.0; IBM Corporation, Armonk, 
NY, USA) was used for the statistical analysis. Baseline characteristics 
between the training and validation datasets were compared using the 
Mann–Whitney U test for continuous variables and the chi-square or 
Fisher’s exact test for categorical variables. Univariate analyses were 
further performed within the training dataset to identify factors 
associated with pathological classification, applying the Kruskal–
Wallis test for continuous variables and the chi-square or Fisher’s exact 
test for categorical variables across the four groups. A p-value of <0.05 
was considered statistically significant.

The prediction model (B-Model) was developed using 
multivariable logistic regression in SPSS based on training 
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dataset, and it adopted a three-stage architecture as illustrated in 
Figure  1: (1) distinguished benign from non-benign nodules 
(Group  1 vs. non-Group  1) by Equation P1; (2) differentiated 
malignant from non-malignant nodules (Group  4 vs. 
non-Group 4) by Equation P2; (3) separated follicular neoplasm 
from indeterminate/atypia nodules (Group  3 vs. Group  2) by 
Equation P3. Each equation had two versions: one that included 
biochemical indicators as independent variables P(w), and 
another that did not include biochemical indicators as 
independent variables P(w/o). For other special circumstances, a 
supplementary version was designed P(c). Multivariable logistic 
regression analyses with backward stepwise selection were 
applied to identify independent variables x1-i. Based on clinical 
significance or published reports, we  graded each risk factor, 
selected an appropriate grade as the baseline risk reference value, 
and recorded the score as 0 (1, 6, 13). β0-i is the regression 
coefficient of each independent variable. Using these parameters, 
we calculated P as the dependent variable corresponding to each 

risk factor classification using the following formula, where exp 
denotes the natural exponential function:

	 β β β β= + + +…+0 1 1 2 2y x x ixi

	

β β β β

β β β β

+ + + +

+ + + +
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The dependent variable P in the equation above uses 0.5 as a 
threshold value. Similar cascaded/sequential logistic regression 
approaches have been applied in recent medical prediction studies to 
improve classification performance and manage class imbalance 
(15–17).

The data in the validation dataset were used to select the equations 
and validate the performance of the prediction models. By substituting 
the data into previously established equations and considering the 
actual pathologic results as the gold standard, the sensitivity (SEN), 

FIGURE 1

Study flow diagram of patient enrollment, dataset allocation, and B-Model development. Study flow diagram showing inclusion and exclusion criteria, 
patient enrollment, and dataset allocation into training and validation cohorts, with datasets divided chronologically (March 2018–February 2022 for 
training, March 2022–March 2023 for validation). Architecture of the cascaded logistic regression model (B-Model), in which three logistic regression 
equations were sequentially linked: Equation P1 distinguished benign from non-benign nodules (Group 1 vs. non-Group 1); Equation P2 differentiated 
malignant from non-malignant nodules (Group 4 vs. non-Group 4); and Equation P3 further separated follicular neoplasm from indeterminate/atypia 
nodules (Group 3 vs. Group 2). BSRTC, Bethesda System for Reporting Thyroid Cytopathology [Flowchart design: Boardmix Online Platform (https://
boardmix.cn)].
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specificity (SPE), accuracy (ACC), positive predictive rate (PPV), 
negative predictive rate (NPV) and area under the receiver operating 
characteristic curve (AUC-ROC) of each equation were evaluated. 
Finally, the rate of reduction in rFNAs after the B-Model 
implementation was calculated using the following equation:

	
( )  2 / 3 -

  % 100%
 2 / 3

True Group B Model FN
rFNA reduction rate

True Group
−

= ×

(FN: True Group 2/3 cases incorrectly classified as Group 1/4 by 
B-Model).

3 Results

3.1 Patient characteristics

In the training dataset, the final cohort included 1,573 patients 
[median age: 48 years (IQR: 38–57)] of the initial 2,818 patients, after 
the exclusion of 1,245 patients. In the validation dataset, the final 
cohort included 672 patients [median age: 50 years (IQR: 40–58)] of 
the initial 1,392 patients, after excluding 720 patients. The patient 
characteristics, US features, and biochemical results are shown in 
Table 1. Overall, no significant statistical differences were observed 
between two cohorts for most baseline characteristics except three 
laboratory indicators (FT4, A-TG, and A-TPO; p = 0.047, <0.001, and 
0.002, respectively). These differences likely reflect case-mix shifts 
from time-based cohort division and variability in laboratory assays.

3.2 Factors influencing pathology

In the training dataset, univariate analysis identified significant 
differences (p < 0.05) in 2 patient characteristics, 15 US features, and 
4 biochemical markers across the groups (Table  2). Specifically, 
thyroid echogenicity and A-TG levels were significantly different 
between Groups 1 and 3 (p = 0.047 and p = 0.046, respectively) 
whereas FT4 levels were significantly different between Groups 2 and 
4 (p = 0.032). All significant variables were included as independent 
covariates in the subsequent multivariate analysis.

3.3 Construction of equations P1, P2, and P3

There versions of Equation P1 were derived: P1(w/o) (χ2 = 457.323, 
p < 0.001), P1(w) (χ2 = 300.627, p < 0.001), and P1(c) (χ2 = 300.627, 
p < 0.001). P1(c) was generated by cross-validation to address the 
absence of biochemical indicators in P1(w). Two versions of Equation 
P2 were developed: P2 (w/o) (χ2 = 324.479, p < 0.001) and P2 (w) 
(χ2 = 198.300, p < 0.001). Two versions of Equation P3 were established: 
P3 (w/o) (χ2 = 148.499, p < 0.001) and P3 (w) (χ2 = 98.663, p < 0.001).

3.4 Verification of equations P1, P2, and P3

The validation results showed that among the three Equation P1 
variants, P1(c) demonstrated the highest SEN (88.3%), SPE (68.0%), 

ACC (83.1%), PPV (89.2%), and NPV (66.1%), while maintaining 
comparable ROC-AUC (0.830 vs. 0.842/0.842 in P1(w/o)/P1(w), all 
p < 0.001). The reduced variable count (from 10 to 6) enhanced 
clinical utility. In the final selected Equation P1, significant predictors 
included markedly hypoechoic feature (OR: 10.286, 95% CI: 6.118–
17.296), hypoechoic feature (OR: 4.703, 95% CI: 3.190–6.932), 
irregular/extra-thyroidal extension (OR: 1.705, 95% CI: 1.180–2.463), 
enhanced posterior features (OR: 1.853, 95% CI: 1.265–2.715), and 
shadowing (OR: 2.809, 95% CI: 1.220–5.031), whereas lobulated shape 
showed nonsignificant association (OR: 1.122, 95% CI: 0.636–1.980). 
Isoechoic/hyperechoic pattern, oval-to-round shape, and absent 
posterior features were identified as independent protective factors for 
benign nodules.

Among the 498 non-Group 1 cases predicted by Equation P1, 
Equation P2 (w) demonstrated higher SEN (80.6% vs. 74.4%) and 
NPV (74.0% vs. 73.3%) compared to P2 (w/o), with comparable 
ROC-AUC (0.735 vs. 0.759, both p = 0.000). Thus, P2 (w) was 
selected to reduce missed diagnoses of malignancy. Key risk factors 
in Equation P2 included isthmus location (OR: 4.000, 95% CI: 
1.475–10.843), size > 5 mm (highest risk at 5–10 mm; OR: 3.058, 
95% CI: 1.671–5.596), markedly hypoechoic/hypoechoic features 
(OR: 20.203, 95% CI: 5.203–81.179), taller-than-wide shape (OR: 
5.165, 95% CI: 2.889–9.235), microcalcifications/complex 
calcifications (OR: 1.199, 95% CI: 0.626–2.296), and elevated TRAb 
(OR: 1.628, 95% CI: 1.119–2.368). These were independent 
predictors of malignant nodules.

Among the 181 cases predicted as neither Group  1 nor 4 by 
Equation P1 and P2, Equation P3(w) showed higher SPE (96.0% vs. 
95.4%) than P3(w/o) with similar SEN (both 37.5%), ACC (93.4% vs. 
92.7%), PPV (both 2.9%), NPV (70.0% vs. 72.7%), and ROC-AUC 
(0.814 vs. 0.837, both p = 0.000). The predictive performance of 
Equations P1, P2 and P3 in the validation dataset are presented in 
Table 3 and Figure 2.

3.5 Overall efficacy of the B-Model

For the validation dataset, the number of cases correctly predicted 
by the B-Model were 115, 91, 3, and 195 in Groups 1, 2, 3, and 4, 
respectively. The prediction results of B-Model in the validation 
dataset are presented in Table 4. True Group 2/3 cases were 255, and 
true Group 2/3 cases incorrectly classified as Group 1/4 by B-Model 
was 153. The rFNA reduction rate was 40%.

4 Discussion

US remains the primary imaging tool for TN risk stratification. 
While certain US features are associated with malignancy, most 
nodules still require FNA for definitive diagnosis. This study bridges 
this gap by integrating clinical, biochemical, and US features into a 
cascaded multivariable logistic regression model (B-Model) for 
pre-FNA prediction of BSRTC categories.

Operationally, the B-Model links three logistic regression 
equations in sequence. At the point of use, clinicians input the 
available clinical, ultrasound, and biochemical variables; the 
model sequentially evaluates benign vs. non-benign (Equation 
P1), malignant vs. non-malignant (Equation P2), and follicular 
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TABLE 1  Comparison of baseline clinical characteristics and ultrasound features of thyroid nodules between the training and validation datasets a,b.

Characteristics Training dataset
(n = 1,573)

Validation dataset
(n = 672)

p-value

Age (y) 48 (38, 57) 50 (40, 58) 0.079

Sex 0.117

 � Female 1,252 (79.6) 515 (76.6)

 � Male 321 (20.4) 157 (23.4)

Thyroid echotexture 0.290

 � Homogeneous 1,211 (77.0) 531 (79.0)

 � Heterogeneous 362 (23.0) 141 (21.0)

Lobe 0.076

 � Right 837 (53.2) 324 (48.2)

 � Left 633 (42.0) 294 (43.8)

 � Isthmus 103 (6.5) 54 (8.0)

Position 0.184

 � Superior 330 (21.0) 132 (19.6)

 � Middle 712 (45.3) 286 (42.6)

 � Inferior 531 (33.8) 254 (37.8)

Capsule distance (mm) 0.114

 � >2 463 (29.4) 175 (26.0)

 � ≤2 1,110 (70.6) 497 (74.0)

Size (mm) 0.072

 � ≤5.0 354 (22.5) 129 (19.2)

 � 5.1–10.0 553 (35.2) 219 (32.6)

 � 10.1–40.0 578 (36.7) 282 (42.0)

 � >40.0 88 (5.6) 42 (6.3)

Volume (mL) 0.20 (0.05, 1.56) 0.30 (0.06, 1.89)

Composition 0.529

 � Solid 1,304 (82.9) 540 (80.4)

 � Predominantly solid 139 (8.8) 69 (10.3)

 � Predominantly cystic 55 (3.5) 25 (3.7)

 � Spongiform 75 (4.8) 38 (5.7)

Echogenicity 0.331

 � Markedly hypoechoic 309 (19.6) 131 (19.5)

 � Hypoechoic 897 (57.0) 365 (54.3)

 � Isoechoic/ hyperechoic 367 (23.3) 176 (26.2)

Nodule echotexture 0.157

 � Homogeneous 872 (55.4) 350 (52.1)

 � Heterogeneous 701 (44.6) 322 (47.9)

Margin 0.427

 � Smooth 866 (55.1) 357 (53.1)

 � Ill-defined 707 (44.9) 315 (46.9)

Shape 0.880

 � Oval-to-round 1,126 (71.6) 479 (71.3)

 � Lobulated 74 (4.7) 29 (4.3)

 � Irregular/extra-thyroidal extension 373 (23.7) 164 (24.4)

(Continued)
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neoplasm vs. indeterminate/atypia (Equation P3). A fixed 
threshold of 0.5 is applied at each step, ensuring that every nodule 
is ultimately assigned to one, and only one, predicted 
BSRTC group.

As illustrated in Figure 3 this structured, pre-FNA assignment 
provides direct guidance for patient management. In contrasts to the 
conventional workflow, where indeterminate cytology (BSRTC I, III, 
IV) often necessitate rFNA and may ultimately proceed to diagnostic 
lobectomy, the B-Model enables early identification of nodules likely 
to yield indeterminate results. Such cases can be directly triaged to 
FNA plus molecular testing or diagnostic lobectomy, thereby avoiding 
redundant punctures. In the validation dataset, this approach reduced 
the rFNA by 40.0%, minimizing patient trauma and conserving 

healthcare resources. Importantly, the B-Model theoretically requires 
only a single FNA per nodule, representing a significant advancement 
in clinical efficiency.

A key methodological consideration was the reduction of 
cumulative errors inherent to cascaded regression. To mitigate this 
risk, BSRTC categories with similar clinical management strategies 
were merged (BSRTC I with III, and BSRTC V with VI), reducing 
six categories to four groups (1, 8, 11, 18). This consolidation 
balanced statistical robustness clinical practicality and minimized 
propagation error. Similar sequential or multi-step logistic 
regression strategies have been applied successfully in other medical 
domains, supporting both interpretability and transparency of the 
modeling process (19–21).

TABLE 1  (Continued)

Characteristics Training dataset
(n = 1,573)

Validation dataset
(n = 672)

p-value

Orientation 0.400

 � Wider-than-tall 885 (56.3) 391 (58.2)

 � Taller-than-wide 688 (43.7) 281 (4.8)

Calcifications 0.653

 � Absent 1,136 (72.2) 479 (71.3)

 � Macrocalcifications 148 (9.4) 66 (9.8)

 � Microcalcifications 248 (15.8) 102 (15.2)

 � Peripheral calcifications 19 (1.2) 13 (1.9)

 � More than two forms 22 (1.4) 12 (1.8)

Posterior features 0.731

 � Absent 1,242 (79.0) 530 (78.9)

 � Enhancement 247 (15.7) 101 (15.0)

 � Shadowing 84 (5.3) 41 (6.1)

Halo 0.216

 � Absent 1,361 (86.5) 590 (87.8)

 � Uniform halo 24 (1.5) 15 (2.2)

 � Uneven halo 188 (12.0) 67 (9.9)

Blood flow 0.735

 � Grade 0 796 (50.6) 355 (52.8)

 � Grade 1 385 (24.5) 163 (24.3)

 � Grade 2 230 (14.6) 89 (13.2)

 � Grade 3 162 (10.3) 64 (9.7)

TSH (μIU/mL) 1.80 (1.17, 2.66) 1.81 (1.20, 2.70) 0.592

FT3 (pmol/L) 4.43 (4.09, 4.73) 4.32 (4.05, 4.72) 0.129

FT4 (pmol/L) 15.97 (14.64, 17.37) 16.45 (14.93, 17.83) 0.047*

A-TG (IU/mL) 17.29 (13.82, 27.71) 15.17 (11.32 31.73) 0.000**

A-TPO (IU/mL) 12.56 (9.19, 18.00) 15.39 (8.97, 22.71) 0.002**

TG (ng/mL) 24.06 (10.19, 76.87) 22.65 (9.67, 54.69) 0.056

TRAb (IU/L) 1.13 (0.80, 1.44) 1.14 (0.80, 1.57) 0.146

a Continuous variables are presented as medians (Q1, Q3), and categorical variables are presented as numbers and percentages. b p-values were calculated using the Mann–Whitney U test for 
continuous variables and the chi-square test or Fisher’s exact test for categorical variables. *: p-value < 0.05, **: p-value < 0.01. Asterisks indicate statistically significant differences. A-TG, 
thyroglobulin antibody; A-TPO, antithyroid peroxidase autoantibody; FT3, free triiodothyronine; FT4, free thyroxine; TG, thyroglobulin; TRAb, thyrotropin receptor antibody; TSH, thyroid-
stimulating hormone.
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TABLE 2  Patient clinical characteristics and ultrasound findings of the nodules associated with grouping in the training dataset a-c.

Characteristics Group 1
(n = 455)

Group 2
(n = 504)

Group 3
(n = 76)

Group 4
(n = 538)

p-value

Age (y) 50 (40, 58) 49 (39, 58) 50 (41, 60) 44 (36, 52) 0.000**

Sex 0.000**

 � Female 385 (84.6) 410 (81.3) 56 (73.7) 401 (74.5)

 � Male 70 (15.4) 94 (18.7) 20 (26.3) 137 (25.5)

Thyroid echotexture 0.130

 � Homogeneous 340 (74.7) 379 (75.2) 61 (80.3) 43 (80.1)

 � Heterogeneous 115 (25.3) 125 (24.8) 15 (19.7) 10 (19.9)

Lobe 0.001**

 � Right 257 (56.5) 257 (51.0) 37 (48.7) 286 (53.2)

 � Left 176 (38.7) 224 (44.4) 35 (46.1) 198 (36.8)

 � Isthmus 22 (4.8) 23 (4.6) 4 (5.3) 54 (10.0)

Position 0.000**

 � Superior 62 (13.6) 115 (22.8) 9 (11.8) 144 (26.8)

 � Middle 206 (45.3) 221 (43.8) 32 (42.1) 253 (47.0)

 � Inferior 187 (41.1) 168 (33.3) 35 (46.1) 141 (26.2)

Capsule distance (mm) 0.041*

 � >2 125 (27.5) 166 (32.9) 14 (18.4) 158 (29.4)

 � ≤2 330 (72.5) 338 (67.1) 62 (81.6) 380 (70.6)

Size (mm) 0.000**

 � ≤5.0 35 (7.7) 168 (33.3) 1 (1.3) 150 (27.9)

 � 5.1–10.0 105 (23.1) 161 (31.9) 17 (22.4) 270 (50.2)

 � 10.1–40.0 265 (58.2) 149 (29.6) 49 (64.5) 115 (21.4)

 � >40.0 50 (11.0) 26 (5.2) 9 (11.8) 3 (0.6)

Volume (mL) 1.73 (0.18, 6.77) 0.12 (0.30, 0.79) 1.50 (0.323, 4.41) 0.11 (0.04, 0.28) 0.000**

Composition 0.000**

 � Solid 287 (63.1) 425 (84.3) 65 (85.5) 527 (98.0)

 � Predominantly solid 84 (18.5) 38 (7.5) 9 (11.8) 8 (1.5)

 � Predominantly cystic 35 (7.7) 17 (3.4) 1 (1.3) 2 (0.4)

 � Spongiform 49 (10.8) 24 (4.8) 1 (1.3) 1 (0.2)

Echogenicity 0.000**

 � Markedly hypoechoic 33 (7.3) 91 (18.1) 12 (15.8) 173 (32.2)

 � Hypoechoic 175 (38.5) 311 (61.7) 52 (68.4) 359 (66.7)

 � Isoechoic/hyperechoic 247 (54.3) 102 (20.2) 12 (15.8) 6 (1.1)

Nodule echotexture 0.000**

 � Homogeneous 217 (47.7) 310 (61.5) 38 (50.0) 307 (57.1)

 � Heterogeneous 238 (52.3) 194 (38.5) 38 (50.0) 231 (42.9)

Margin 0.000**

 � Smooth 332 (73.0) 252 (50.0) 63 (82.9) 219 (40.7)

 � Ill-defined 123 (27.0) 252 (50.0) 13 (17.1) 319 (59.3)

Shape 0.000**

 � Oval-to-round 385 (84.6) 376 (74.6) 62 (81.6) 303 (56.3)

 � Lobulated 24 (5.3) 17 (3.4) 7 (9.2) 26 (4.8)

(Continued)
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Although machine learning and deep learning methods such as 
convolutional neural networks (CNNs) have been increasingly 
applied in radiomics, they remain limited by several drawbacks 
(22–26). First, the ‘black-box’ nature of CNNs prevents transparent 
identification of the imaging features driving classification, thereby 
reducing interpretability. Second, overfitting may arise when 
models are over-parameterized, which undermines generalizability 
(26–29). In contrast, we  selected a cascaded logistic regression 
model because it provides transparent and interpretable results that 
facilitate the training of junior clinicians; its sequential structure 
mimics a decision tree, which helps handle data imbalance while 

preserving a linear framework; and it also offers a necessary 
foundation for subsequent AI research, enabling insight into the 
underlying decision logic before moving toward more advanced 
algorithms (17, 20, 30).

Beyond diagnostic utility, the B-Model highlighted certain 
features that deserve further clinical attention. Equation P2 identified 
younger age, isthmus location, and small nodule size (particularly 
5–10 mm) as predictors of malignancy. While some study have 
reported similar findings, one possible explanation for this 
observation in our cohort is the relatively high proportion of 
sub-centimeter and isthmus-located nodules (31–34). This indicated 

TABLE 2  (Continued)

Characteristics Group 1
(n = 455)

Group 2
(n = 504)

Group 3
(n = 76)

Group 4
(n = 538)

p-value

 � Irregular/extra-thyroidal 

extension

46 (10.1) 111 (22.0) 7 (9.2) 209 (38.8)

Orientation 0.000**

 � Wider-than-tall 371 (81.5) 287 (56.9) 62 (81.6) 165 (30.7)

 � Taller-than-wide 84 (18.5) 217 (43.1) 14 (18.4) 373 (69.3)

Calcifications 0.000**

 � Absent 384 (84.4) 369 (73.2) 55 (72.4) 328 (61.0)

 � Macrocalcifications 35 (7.7) 59 (11.7) 10 (13.2) 44 (8.2)

 � Microcalcifications 31 (6.8) 62 (12.3) 9 (11.8) 146 (27.1)

 � Peripheral calcifications 5 (1.1) 10 (2.0) 2 (2.6) 2 (0.4)

 � More than two forms 0 (0.0) 4 (0.8) 0 (0.0) 18 (3.3)

Posterior features 0.000**

 � Absent 339 (74.5) 389 (77.2) 36 (47.4) 478 (88.8)

 � Enhancement 107 (23.5) 76 (15.1) 38 (50.0) 26 (4.8)

 � Shadowing 9 (2.0) 39 (7.7) 2 (2.6) 34 (6.3)

Halo 0.000**

 � Absent 354 (77.8) 445 (88.3) 51 (67.1) 511 (95.0)

 � Uniform halo 7 (1.5) 5 (1.0) 2 (2.6) 10 (1.9)

 � Uneven halo 94 (20.7) 54 (10.7) 23 (30.3) 17 (3.2)

Blood flow 0.000**

 � Grade 0 161 (35.4) 298 (59.1) 5 (6.6) 332 (61.7)

 � Grade 1 136 (29.9) 98 (19.4) 14 (18.4) 137 (25.5)

 � Grade 2 94 (20.7) 59 (11.7) 25 (32.9) 52 (9.7)

 � Grade 3 64 (14.1) 49 (9.7) 32 (42.1) 17 (3.2)

TSH (μIU/mL) 1.65 (1.00, 2.62) 1.89 (1.25, 2.95) 1.93 (1.39, 2.34) 1.77 (1.25, 2.46) 0.044*

FT3 (pmol/L) 2.26 (4.12, 4.74) 4.34 (4.06, 4.66) 4.76 (4.45, 5.37) 4.37 (4.09, 4.73) 0.035*

FT4 (pmol/L) 15.98 (14.51, 17.46) 15.74 (14.56, 16.98) 16.12 (14.34, 17.17) 16.09 (14.74, 17.48) 0.217

A-TG (IU/mL) 18.08 (14.44, 28.99) 17.31 (12.94, 39.23) 15.00 (15.00, 112.55) 17.12 (13.78, 22.44) 0.079

A-TPO (IU/mL) 12.47 (9.10, 16.67) 11.97 (8.34, 16.65) 28.00 (14.46, 38.66) 12.72 (9.47, 18.65) 0.000**

TG (ng/mL) 46.63 (18.28, 137.28) 24.87 (10.88, 101.10) 35.78 (12.97, 204.05) 17.15 (7.57, 37.48) 0.000**

TRAb (IU/L) 1.13 (0.83, 1.40) 1.11 (0.80, 1.44) 0.44 (0.30, 0.93) 1.15 (0.80, 1.48) 0.000**

a Continuous variables are presented as medians (Q1, Q3), and categorical variables are presented as numbers and percentages. b p-values were calculated using the Kruskal–Wallis test for 
continuous variables and chi-square test or Fisher’s exact test for categorical variables. c If the variable has a theoretical value of <10, it can be obtained using Fisher’s exact test. *: p-value < 
0.05, **: p-value < 0.01. Asterisks indicate statistically significant differences. A-TG, thyroglobulin antibody; A-TPO, antithyroid peroxidase autoantibody; FT3, free triiodothyronine; FT4, free 
thyroxine; TG, thyroglobulin; TRAb, thyrotropin receptor antibody; TSH, thyroid-stimulating hormone.
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that conventional size–risk associations, which are largely derived 
from nodules ≥1 cm, may not fully capture the risk pattern of 
microcarcinomas. As a result, the diagnosis of microcarcinomas 
remains challenging, particularly for junior clinicians (35). By 
incorporating these features, our model provides intuitive “rules of 
thumb” that support structured image interpretation and enhance 
diagnostic confidence, especially for nodules ≤1 cm. Thus, the 
B-Model serves not only as a decision-support system but also as a 
valuable teaching aid.

This study has limitations. First, although the training and 
validation cohorts were largely comparable, differences were observed 
in FT4, A-TG, and A-TPO levels. These variations likely reflect 
case-mix shifts from time-based cohort division and assay-related 
variability in laboratory testing, but they were confined to biochemical 
indicators and did not affect model performance. Second, as a single-
center study, variability in ultrasonography and pathologic 
interpretation may limit generalizability. Third, collinearity and 
potential confounding were not explicitly tested, though variables 

TABLE 3  Predictive efficacy of equations P1 (w/o), P1 (w), P1 (c), P2 (w/o), P2 (w), P3 (w/o), and P3 (w) in the validation dataset.

Equations SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) ROC-AUC 
(95% CI)

PAUC

P1 (w/o) 86.5 65.7 81.3 88.2 62.0 0.842 (0.807, 0.876) 0.000

P1 (w) 87.3 64.5 81.5 88.0 63.0 0.842 (0.808, 0.876) 0.000

P1 (c) 88.3 68.0 83.1 89.2 66.1 0.830 (0.792, 0.868) 0.000

P2 (w/o) 74.4 66.4 70.3 67.7 73.3 0.759 (0.717, 0.801) 0.000

P2 (w) 80.6 52.3 66.1 61.5 74.0 0.735 (0.691, 0.779) 0.000

P3 (w/o) 37.5 95.4 92.8 2.9 72.7 0.837 (0.650, 1.000) 0.000

P3 (w) 37.5 96.0 93.4 2.9 70.0 0.814 (0.599, 1.000) 0.000

ACC, accuracy; NPV, negative predictive value; PAUC, p-value for area under the curve; PPV, positive predictive value; ROC-AUC, receiver operating characteristic-area under the curve; SEN, 
sensitivity; SPE, specificity.

FIGURE 2

Receiver operating characteristic (ROC) curve analysis for three regression equations. (A) ROC curves comparing three designs (Equation P1) predicting 
Group 1 (BSRTC II). AUC values: P1(w/o): 0.842 (95% confidence interval [CI] 0.807–0.876), P1(W): 0.842 (95% CI 0.808–0.876), P1(C): 0.830 (95% CI 
0.792–0.868). (B) ROC curves comparing two designs (Equation P2) predicting Group 4 (BSRTC V/VI). AUC values: P2(w/o): 0.759 (95% CI 0.717–0.801), 
P2(w): 0.735 (95% CI 0.691–0.779). (C) ROC curves comparing two designs (Equation P3) distinguishing Groups 2 (BSRTC I/III) and 3 (BSRTC IV). AUC 
values: P3(w/o): 0.837 (95% CI 0.650–1.000); P3(w): 0.814 (95% CI 0.599–1.000). BSRTC, Bethesda System for Reporting Thyroid Cytopathology (ROC 
curve plotting: SPSS 20.0, IBM; image editing: Adobe Photoshop CS5).

TABLE 4  The prediction results of B-Model in the validation dataset.

Prediction grouping Actual grouping

Group 1 Group 2 Group 3 Group 4

Group 1 115 50 3 6

Group 2 30 91 5 45

Group 3 2 3 3 2

Group 4 22 95 5 195
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were selected based on clinical relevance and univariable screening, 
and regression coefficients remained stable. Finally, while the B-Model 
reduced rFNA by 40% under retrospective conditions, its real-world 
effectiveness and operational feasibility requires validation through 
prospective multicenter studies.

In conclusion, we developed a cascaded logistic regression model 
and demonstrated its effectiveness. By integrating clinical, ultrasound, 
and biochemical indicators, the B-Model enabled pre-FNA prediction 
of BSRTC categories, thereby optimizing the diagnostic workflow for 
TNs, reducing unnecessary FNAs, and advancing precision medicine 
in TN management.
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FIGURE 3

Diagnostic workflows for thyroid nodular diseases. (A) Conventional workflow based on fine-needle aspiration (FNA). Indeterminate results (BSRTC I, III, 
IV) require repeat FNA/and molecular testing, with unresolved nodules often proceeding to diagnostic lobectomy. (B) Proposed workflow using 
B-Model. Nodules are stratified into predicted BSRTC II/V/VI (direct FNA), BSRTC I/III (FNA + molecular testing), and BSRTC IV (molecular testing or 
direct diagnostic lobectomy), providing a more streamlined and individualized management strategy. Notably, in the B-Model, each nodule 
theoretically requires only a single FNA, avoiding repeated punctures. FNA, fine-needle aspiration; BSRTC, Bethesda System for Reporting Thyroid 
Cytopathology [Flowchart design: Boardmix Online Platform (https://boardmix.cn)].
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