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Background: The prognostic implications of systemic inflammatory markers 
in mismatch repair-proficient (pMMR) advanced colorectal cancer (CRC) 
treated with immunotherapy combined with targeted therapy remain unclear. 
This study aimed to identify key clinical and inflammatory markers predictive 
of overall survival (OS) and progression-free survival (PFS), and to construct a 
nomogram for individualized outcome prediction.
Methods: This retrospective study included 216 pMMR advanced CRC patients 
treated with camrelizumab plus bevacizumab between January 2020 and 
December 2022. Baseline clinical variables and inflammatory indices, including 
neutrophil-to-lymphocyte ratio (NLR), cancer-inflammation prognostic index 
(CIPI), and systemic immune-inflammation index (SII), were analyzed. Patients 
were randomly assigned to a training set (n = 139) or a validation set (n = 77). 
Independent prognostic factors for OS and PFS were identified via multivariable 
Cox regression. A nomogram was constructed and internally validated using 
bootstrap resampling (1,000 iterations).
Results: Elevated body mass index (≥25 kg/m2) was independently associated 
with improved OS (hazard ratio [HR] = 0.430; 95% CI: 0.185–0.980; p = 0.047), 
while elevated CIPI (>828.8) and carcinoembryonic antigen (>5 ng/mL) were 
associated with poorer OS (HR = 1.810, p = 0.045; HR = 2.440, p = 0.025, 
respectively). For PFS, SII ≥ 663.9 predicted worse outcomes (HR = 2.720; 
95% CI: 1.200–6.200; p = 0.016). The nomograms demonstrated moderate 
discrimination with optimism-adjusted C-indices of 0.610 (PFS) and 0.650 
(OS), and calibration curves showed good agreement. Kaplan–Meier analysis 
confirmed significantly poorer OS and PFS in high-risk groups defined by 
nomogram scores (p < 0.001 for both).
Conclusion: This study highlights the prognostic significance of both clinical 
and inflammatory markers in pMMR advanced colorectal cancer undergoing 
immunotherapy combined with targeted therapy. The developed nomogram 
facilitates individualized survival prediction, offering clinicians a practical tool 
to tailor treatment and follow-up strategies for improved patient management.
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1 Introduction

Colorectal cancer (CRC) is a common malignancy of the 
gastrointestinal tract and ranks as the second leading cause of cancer-
related mortality worldwide. According to global cancer statistics, CRC 
accounts for approximately 10% of all cancer diagnoses and 9% of 
cancer-related deaths, with its incidence rising in both developed and 
developing regions. The increasing trends in CRC incidence and 
mortality reflect a broader global health burden. Early detection and 
timely therapeutic intervention are essential for improving clinical 
outcomes, as patients with advanced-stage CRC often experience poor 
survival due to distant metastasis, therapeutic resistance, and limited 
treatment options. The majority of patients with metastatic CRC 
(mCRC), particularly those harboring microsatellite-stable (MSS) or 
mismatch repair-proficient (pMMR) tumors, present considerable 
therapeutic challenges (1–3). Approximately 95% of mCRC cases are 
classified as pMMR, a subtype characterized by a lower response rate to 
immune checkpoint inhibitors compared with microsatellite instability-
high (MSI-H) tumors. While MSI-H tumors typically exhibit high 
tumor mutational burden and neoantigen load, facilitating immune 
activation, pMMR tumors demonstrate lower genomic instability and 
an immunosuppressive tumor microenvironment, which collectively 
contribute to reduced efficacy of immunotherapy (4, 5).

In recent years, the combination of immunotherapy and targeted 
therapy has emerged as a promising treatment strategy for mCRC, 
particularly in pMMR tumors. Targeted agents, including epidermal 
growth factor receptor (EGFR) inhibitors such as cetuximab and 
panitumumab and vascular endothelial growth factor (VEGF) inhibitors 
such as bevacizumab, provide clinical benefits by disrupting critical 
oncogenic pathways involved in tumor progression and metastasis (6, 7). 
When used in conjunction with immune checkpoint inhibitors, such as 
programmed cell death protein 1 (PD-1) or programmed death-ligand 1 
(PD-L1) inhibitors, this dual approach aims to enhance antitumor 
immune responses and reduce therapeutic resistance. Despite the 
theoretical synergy, clinical outcomes among patients with pMMR mCRC 
remain variable, with many individuals failing to achieve sustained 
responses. Identifying reliable prognostic and predictive factors is 
therefore essential to guide personalized treatment decisions and improve 
survival outcomes. While several clinical, molecular, and immunological 
parameters, including tumor burden, gene mutations (such as KRAS, 
NRAS, and BRAF), and features of the immune microenvironment, have 
been associated with response to therapy, no validated prognostic model 
has yet been established for this patient subgroup (8, 9).

This study aims to identify prognostic risk factors in patients with 
advanced pMMR mCRC receiving combined immunotherapy and 
targeted therapy. Furthermore, we  seek to construct a nomogram 
integrating key clinical and molecular variables to enhance the accuracy 
of outcome prediction. This prognostic model may serve as a clinical 
decision-support tool to facilitate individualized treatment planning, 
improve survival outcomes, and reduce treatment-related toxicity.

2 Methods

2.1 Study design

A retrospective evaluation was conducted at our institution to 
identify risk factors and prognostic determinants among patients with 

advanced CRC undergoing immunotherapy combined with targeted 
therapy. The study period spanned from January 2020 through 
December 2022. Patients were included if they met the following 
criteria: (1) age ≥18 years at diagnosis; (2) histopathologically 
confirmed CRC with clinical stage IV disease; (3) confirmed pMMR 
status by immunohistochemical analysis of mismatch repair proteins; 
(4) evidence of distant metastasis following failure of conventional 
treatment, subsequently receiving immunotherapy combined with 
targeted agents, primarily anti–PD-1 therapy plus tyrosine kinase 
inhibitors (TKIs) and/or VEGF monoclonal antibodies; and (5) no 
prior history of immunotherapy. Exclusion criteria encompassed: (1) 
concurrent presence of other malignant tumors; (2) incomplete 
clinical data; and (3) active hepatitis B, active hepatitis C, or HIV 
infection. A total of 216 patients were included in this analysis 
(Figure  1). All research methods, objectives, and protocols were 
formulated in accordance with the STROBE (Strengthening the 
Reporting of Observational Studies in Epidemiology) guidelines (10). 
Informed consent was obtained from all subjects and/or their legal 
guardian(s). The study’s methodology, intent, and protocols were 
reviewed and approved by the hospital’s ethics committee. All 
procedures adhered to applicable guidelines and the Declaration of 
Helsinki. Data was kept confidential, with all personal identifiers 
removed before analysis to protect participant privacy.

2.2 Treatment regimens

All patients received a uniform treatment strategy consisting of 
immune checkpoint inhibition in combination with targeted therapy. 
Immunotherapy was administered using the anti–PD-1 monoclonal 
antibody camrelizumab, given at standard dosing intervals. Targeted 
therapy included the anti–VEGF monoclonal antibody bevacizumab. 
The selection of these agents was based on institutional protocol and 
clinical consensus. Importantly, all patients received combination 
therapy of camrelizumab plus bevacizumab, ensuring consistency of 
therapeutic modality across the cohort. No patients received EGFR 
inhibitors or prior immunotherapy.

2.3 Data collection and outcome measures

Baseline clinical data were collected for all patients. This included 
demographic variables such as sex and age, physical measurements 
including height and weight, tumor location, complete blood count 
(CBC) parameters, and tumor marker levels. Key indices were derived 
from these data to assess inflammatory and prognostic markers.

The body mass index (BMI) was calculated as weight (kg) 
divided by height squared (m2). The NLR was computed by 
dividing the neutrophil count by the lymphocyte count. The 
cancer-inflammation prognostic index (CIPI) was determined 
using the formula: carcinoembryonic antigen (CEA) level × 
neutrophil count/lymphocyte count. The systemic immune-
inflammation index (SII) was calculated as platelet count × 
neutrophil count/lymphocyte count. These indices provide valuable 
insights into the systemic inflammatory and immune response of 
the patients.

To evaluate the prognostic value of NLR, CIPI, and SII, their optimal 
cutoff values were identified using X-tile software (version 3.6.1, Yale 
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University), with overall survival (OS) as the primary endpoint. The 
resulting cutoff thresholds were 3.05 for NLR, 828.8 for CIPI, and 663.9 
for SII. Patients were categorized into high- and low-risk groups based on 
these thresholds. BMI was classified according to the World Health 
Organization (WHO) criteria as ≥25 or <25 kg/m2 (11). CEA levels were 
divided into two groups: ≤5 ng/mL or >5 ng/mL, based on standard 
laboratory reference ranges. These classifications enabled stratification of 
patients for further analysis (12, 13).

2.4 Study outcomes and follow-up

Follow-up was conducted through telephone and outpatient visits, 
with a primary focus on assessing patient disease progression and survival 
status. Follow-up visits were scheduled every 3 months, with the final 
follow-up date set for September 2024. Progression-free survival (PFS) 
was defined as the time interval from the initiation of immunotherapy to 
disease progression, death, loss to follow-up, or the end of the study 
period. OS was defined as the time from the start of immunotherapy to 
death, loss to follow-up, or the end of the study period.

2.5 Statistical analysis

Statistical analyses were performed using SPSS version 27.0 
and R version 4.1.3 software. Patients were randomly allocated to 

a training set and a validation set. The training set was utilized for 
constructing the predictive model, while the validation set served 
to evaluate its performance. Categorical variables were presented 
as frequencies (n) and percentages (%). OS and PFS were estimated 
using the Kaplan–Meier method, and survival curves were 
compared between groups using the Log-rank test. For Cox 
regression analyses, the proportional hazards (PH) assumption was 
formally tested using Schoenfeld residuals (global and covariate-
specific tests), and scaled Schoenfeld residual plots were examined 
to exclude time-dependent effects; no significant violations were 
observed. To identify independent prognostic factors, a 
multivariate Cox proportional hazards regression model was 
employed, calculating hazard ratios (HR) and 95% confidence 
intervals (95% CI) for each variable. Based on the significant 
prognostic factors identified, a nomogram was developed to 
predict individual patient outcomes. The discriminative ability of 
the model was evaluated using receiver operating characteristic 
(ROC) curves, with the area under the curve (AUC) serving as a 
measure of model performance. An AUC closer to 1 indicated high 
predictive accuracy, whereas an AUC near 0.5 suggested poor 
discrimination. Additionally, the model’s consistency was assessed 
using the concordance index (C-index) and calibration curves to 
compare predicted versus observed outcomes. Internal validation 
was conducted using bootstrap resampling with 1,000 iterations. 
In each iteration, the model was refitted on a bootstrap sample and 
tested on the original dataset to estimate optimism. 

FIGURE 1

Flowchart of patient selection.
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Optimism-corrected C-indices, time-dependent AUCs, and 
calibration parameters (intercept and slope) were derived to 
quantify model robustness and reduce overfitting. Patients were 
assigned nomogram scores, which were then used to stratify them 
into high-risk and low-risk groups using X-tile software. Survival 
differences between these risk groups were analyzed with the 
Log-rank test. All statistical tests were two-sided, with a 
significance threshold set at p < 0.05.

3 Results

3.1 Patient demographics and clinical 
outcomes

This study included a total of 216 eligible patients with pMMR 
advanced CRC who underwent immunotherapy combined with 
targeted therapy. The age of participants ranged from 25 to 83 years, 
with a median age of 57 years. The cohort consisted of 120 males 
(55.6%) and 96 females (44.4%). Over a median follow-up period of 
26 months, 198 patients (91.7%) experienced disease progression, and 
185 patients (85.6%) died of the disease. The OS rates at 3, 6, and 
12 months were 91.2% (197/216), 63.0% (136/216), and 30.6% 
(66/216), respectively. The median OS was recorded at 9 months, while 
the median PFS was 5 months. For analytical purposes, patients were 
randomly divided into a training cohort (n = 139) and a validation 
cohort (n = 77). Baseline clinical characteristics before the initiation 
of immunotherapy combined with targeted therapy were compared 
between the two groups. The comparison revealed no statistically 
significant differences in variables such as sex, age, drinking and 
smoking status, primary tumor focus, BMI, CEA levels, and 
inflammatory prognostic indices (all p > 0.05), as detailed in Table 1.

3.2 Univariable analysis of OS and PFS in 
patients with pMMR advanced CRC 
receiving immunotherapy combined with 
targeted therapy

In the univariable analysis, several clinical and biochemical 
factors were significantly associated with OS and PFS in patients 
with pMMR advanced CRC undergoing immunotherapy combined 
with targeted therapy. A higher BMI (≥25 kg/m2) was linked to 
improved OS, with a median OS of 14.2 months compared to 
7.6 months for those with BMI < 25 kg/m2 (p = 0.010). Elevated SII 
(≥663.9) and CIPI (≥828.8) were both associated with poorer OS, 
with median survival times of 5.1 and 4.6 months, respectively, 
versus longer survival in patients with lower SII and CIPI values 
(p = 0.001 and p = 0.002). For PFS, elevated CEA (>5 ng/mL), SII, 
and CIPI were significant predictors of shorter progression-free 
intervals, with median PFS of 3.6 months in the high-CEA group 
versus 4.0 months in the low-CEA group (p = 0.018), and 
2.6 months versus 4.1 months for high versus low SII (p = 0.002) 
and CIPI (p = 0.014). Additionally, an increased NLR (≥3.05) was 
associated with worse OS and PFS (p = 0.002 and p = 0.040, 
respectively). In contrast, variables such as sex, age, alcohol 
consumption, smoking status, and primary tumor location were 
not significantly correlated with survival outcomes (Table 2).

3.3 Multivariable analysis of OS and PFS in 
patients with pMMR advanced CRC 
receiving immunotherapy combined with 
targeted therapy

In the multivariable analysis, several factors were evaluated for 
their impact on OS and PFS in patients with pMMR advanced CRC 
undergoing immunotherapy combined with targeted therapy. A BMI 
of ≥25 kg/m2 was significantly associated with improved OS 
(HR = 0.430, 95% CI: 0.185–0.980, p = 0.047). Elevated CIPI (>828.8) 
was linked to poorer OS (HR = 1.810, 95% CI: 1.002–3.260, p = 0.045). 
Higher CEA levels (>5 ng/mL) were also associated with reduced OS 
(HR = 2.440, 95% CI: 1.120–5.350, p = 0.025). Regarding PFS, a 

TABLE 1  Comparison of baseline characteristics between training cohort 
and validation cohort.

Variables Training cohort 
(n = 139)

Validation cohort 
(n = 77)

Sex

 � Male 80 (57.6%) 40 (51.9%)

 � Female 59 (42.4%) 37 (48.1%)

Age (years)

 � <60 81 (58.3%) 49 (63.6%)

 � ≥60 58 (41.7%) 28 (36.4%)

Drinking

 � No 113 (81.3%) 72 (93.5%)

 � Yes 26 (18.7%) 5 (6.5%)

Smoking

 � No 109 (78.4%) 72 (93.5%)

 � Yes 30 (21.6%) 5 (6.5%)

Primary focus

 � Right half 42 (30.2%) 23 (29.9%)

 � Left half 97 (69.8%) 54 (70.1%)

BMI (kg/m2)

 � <25 117 (84.2%) 62 (80.5%)

 � ≥25 22 (15.8%) 15 (19.5%)

CEA (ng/mL)

 � ≤5 26 (18.7%) 18 (23.4%)

 � >5 113 (81.3%) 59 (76.6%)

SII

 � <663.9 88 (63.3%) 54 (70.1%)

 � ≥663.9 51 (36.7%) 23 (29.9%)

CIPI

 � <828.8 95 (68.3%) 62 (80.5%)

 � ≥828.8 44 (31.7%) 15 (19.5%)

NLR

 � <3.05 80 (57.6%) 49 (63.6%)

 � ≥3.05 59 (42.4%) 28 (36.4%)

CEA, carcinoembryonic antigen; BMI, body mass index; CIPI, cancer-inflammation 
prognostic index; NLR, neutrophil-to-lymphocyte ratio; SII: systemic immune-inflammation 
index.
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higher SII (≥663.9) was significantly associated with shorter PFS 
(HR = 2.720, 95% CI: 1.200–6.200, p = 0.016). Neither BMI nor CIPI 
showed a significant association with PFS (p = 0.225 and p = 0.380, 
respectively). Additionally, the NLR (≥3.05) did not significantly 
impact OS or PFS (HR = 1.220, 95% CI: 0.540–2.750, p = 0.612 for OS 
and HR = 0.640, 95% CI: 0.290–1.430, p = 0.285 for PFS) (Table 3).

3.4 Construction of the nomogram model 
for predicting outcomes in patients with 
pMMR advanced CRC

Based on the independent prognostic factors identified through 
multivariable Cox regression analysis, a nomogram model was 
developed to predict survival outcomes in patients with pMMR 
advanced CRC receiving immunotherapy combined with targeted 

therapy. Each significant variable contributes a specific point value, 
and the sum of these point values constitutes a total score. By aligning 
this total score with the scales presented at the bottom of the 
nomogram, individualized probabilities of PFS (Figure 2A) and OS 
(Figure 2B) can be estimated. Higher total scores correlate with a 
greater likelihood of disease progression and shorter survival, while 
lower total scores suggest more favorable outcomes.

3.5 Discriminative capacity of the 
nomogram models for PFS and OS

The predictive accuracy of the constructed nomograms was 
evaluated using the C-index and ROC curves in both the training and 
validation cohorts. For the PFS nomogram, the C-index was 0.615 in 
the training cohort and 0.598 in the validation cohort. ROC curve 

TABLE 2  Univariable analysis of OS and PFS in patients with pMMR advanced CRC receiving immunotherapy combined with targeted therapy.

Variables Median OS (95% CI), months p-value Median PFS (95% CI), months p-value

BMI (kg/m2) 0.010 0.225

 � <25 7.6 (5.1–10.0) 4.0 (3.3–4.7)

 � ≥25 14.2 (11.3–16.8) 3.4 (1.8–5.3)

CEA (ng/mL) 0.085 0.018

 � ≤5 12.4 (7.2–17.8) 4.0 (0.0–11.6)

 � >5 8.2 (5.3–10.7) 3.6 (2.8–4.2)

SII 0.001 0.002

 � <663.9 10.7 (9.2–12.9) 4.1 (3.2–4.8)

 � ≥663.9 5.1 (1.6–8.5) 2.6 (1.4–3.6)

CIPI 0.002 0.014

 � <828.8 10.4 (8.4–12.6) 4.0 (3.2–4.8)

 � ≥828.8 4.6 (3.2–6.0) 2.6 (1.5–3.5)

NLR 0.002 0.040

 � <3.05 10.9 (9.2–12.8) 4.0 (3.6–4.4)

 � ≥3.05 5.8 (2.7–9.4) 2.6 (1.3–3.7)

Sex 0.214 0.745

 � Male 8.4 (6.1–10.9) 4.2 (3.0–5.1)

 � Female 7.8 (5.1–10.5) 3.6 (2.7–4.4)

Age (years) 0.231 0.814

 � <60 9.4 (7.1–11.6) 4.1 (3.3–4.9)

 � ≥60 6.8 (3.6–10.5) 3.6 (2.4–4.6)

Drinking 0.642 0.899

 � No 7.9 (5.3–10.6) 4.0 (3.3–4.7)

 � Yes 12.3 (7.0–17.5) 4.1 (2.3–5.8)

Smoking 0.530 0.675

 � No 8.3 (6.7–10.1) 4.0 (3.4–4.6)

 � Yes 7.7 (3.7–12.2) 4.1 (2.1–5.9)

Primary focus 0.657 0.623

 � Right half 7.9 (6.8–9.1) 3.1 (1.5–4.4)

 � Left half 8.4 (5.7–11.4) 4.1 (3.1–4.9)

OS, overall survival; PFS, progression-free survival; BMI, body mass index; CEA, carcinoembryonic antigen; CIPI, cancer-inflammation prognostic index; SII, systemic immune-inflammation 
index; NLR, neutrophil-to-lymphocyte ratio.
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analysis further showed that, in the training cohort, the AUC values 
at 3, 6, and 12 months were 0.758, 0.741, and 0.809, respectively 
(Figure 3A), whereas in the validation cohort these values were 0.801, 
0.752, and 0.717 (Figure 3B). These findings indicate that the model’s 
ability to discriminate between patients with different PFS outcomes 
was relatively modest. For the OS nomogram, the training cohort had 
a C-index of 0.658, and the validation cohort had a C-index of 0.665. 
In the training cohort, the AUC values at 6 and 12 months were 0.801 
and 0.859, respectively (Figure 3C), while in the validation cohort they 
were 0.818 and 0.804 (Figure 3D). These results suggest a moderate 
level of discriminatory power for OS, with the nomogram exhibiting 
reasonable accuracy in identifying patients at higher risk of mortality.

3.6 Internal validation and calibration

Bootstrap resampling with 1,000 iterations confirmed the 
robustness of the nomogram models. For PFS, the optimism-corrected 
C-index was 0.610 (apparent: 0.615), and the optimism-adjusted 
AUCs at 3, 6, and 12 months were 0.740, 0.720, and 0.790, respectively, 
closely aligning with the apparent estimates. For OS, the optimism-
corrected C-index was 0.650 (apparent: 0.658), with corrected AUCs 
of 0.800 and 0.840 at 6 and 12 months, respectively. Calibration curves 
demonstrated strong concordance between predicted and observed 
probabilities in both the training and validation cohorts. Calibration 
intercepts were close to zero, and slopes approximated one for both 
PFS and OS, indicating no systematic over- or under-estimation 
of risk.

3.7 Risk stratification based on nomogram 
scores

Using x-tile software to analyze the nomogram-derived prediction 
scores for PFS and OS, optimal cutoff values were determined at 70 
and 162 points, respectively. According to these thresholds, patients 
were categorized into high- and low-risk groups. In the PFS cohort, 
178 patients had scores ≥70 (high-risk group) with a median PFS of 
3 months, whereas 38 patients had scores <70 (low-risk group) with a 
median PFS of 12 months. The Kaplan–Meier curves indicated 
significantly lower PFS rates in the high-risk group compared with the 
low-risk group (p < 0.001, Figure 4A). For OS, 61 patients had scores 
≥162 (high-risk group), showing a median OS of 4 months, while 155 
patients with scores <162 (low-risk group) exhibited a median OS of 
11 months. The high-risk group’s OS rate was significantly lower than 
that of the low-risk group (p < 0.001, Figure 4B).

4 Discussion

The treatment paradigm for advanced CRC has undergone 
substantial advancement with the introduction of immunotherapy 
and targeted agents; however, clinical outcomes remain highly 
variable. This study aimed to identify and validate key prognostic 
factors associated with survival and disease progression in patients 
with mismatch repair–proficient (pMMR) advanced CRC. Specifically, 
we evaluated the prognostic relevance of BMI, CEA, and inflammatory 
markers, including the SII, CIPI, and NLR. These biomarkers were 
selected for their established roles in reflecting systemic inflammation, 
tumor burden, and nutritional status—parameters that influence 
tumor biology and therapeutic response (14–16). In a study of 216 
patients with pMMR advanced CRC treated with combined 
immunotherapy and targeted therapy, several clinical and 
inflammatory indicators demonstrated prognostic significance. 
Higher BMI, lower SII, and lower CIPI were associated with prolonged 
OS, whereas elevated CEA levels correlated with poorer 
OS. Multivariable Cox regression analysis identified BMI ≥ 25 kg/m2, 
CIPI >828.8, CEA > 5 ng/mL, and SII ≥ 663.9 as independent 
predictors of clinical outcomes.

First, the observation that patients with a higher BMI (≥25 kg/m2) 
exhibited improved OS contrasts with the common belief that obesity 
worsens oncologic outcomes. This finding may reflect better 
nutritional status, which could enhance treatment tolerance and 
immune function. Additionally, adipose tissue serves as a reservoir for 
immunomodulatory cytokines that may boost antitumor immune 
responses, especially during immunotherapy (17). While obesity is 
linked to chronic low-grade inflammation, which can both promote 
tumor growth and support antitumor immunity, this relationship is 
complex. Proinflammatory cytokines from adipose tissue may recruit 
immune cells, such as T-cells, to the tumor site, enhancing immune 
surveillance (18, 19). However, the BMI-tumor biology relationship is 
multifaceted, and further research is needed to clarify its underlying 
mechanisms and clinical implications for advanced CRC patients 
undergoing combined immunotherapy and targeted therapy (20–22). 
Second, elevated SII (≥663.9) and CIPI (≥828.8) were significantly 
associated with worse survival outcomes. These indices reflect 
systemic inflammatory status by integrating hematological parameters 
such as platelet, neutrophil, and lymphocyte counts. Persistent 
systemic inflammation is known to foster a pro-tumorigenic 
microenvironment by promoting angiogenesis, tumor proliferation, 
and immune evasion through various cytokines and growth factors. 
Accordingly, elevated SII and CIPI may indicate a more aggressive 
disease phenotype and a suppressed antitumor immune response, 
thereby reducing the efficacy of immune-based therapies (23, 24). 

TABLE 3  Multivariable analysis of OS and PFS in patients with pMMR advanced CRC receiving immunotherapy combined with targeted therapy.

Variables HR (95% CI) OS p-value HR (95% CI) PFS p-value

BMI (≥25 kg/m2 vs. < 25 kg/m2) 0.430 (0.185–0.980) 0.047 - -

CIPI (>828.8 vs. < 828.8) 1.810 (1.002–3.260) 0.045 1.290 (0.720–2.330) 0.380

CEA (>5 ng/mL vs. ≤ 5 ng/mL) 2.440 (1.120–5.350) 0.025 - -

SII (≥663.9 vs. < 663.9) 1.720 (0.770–3.800) 0.182 2.720 (1.200–6.200) 0.016

NLR (≥3.05 vs. < 3.05) 1.220 (0.540–2.750) 0.612 0.640 (0.290–1.430) 0.285

OS, overall survival; PFS, progression-free survival; BMI, body mass index; CEA, carcinoembryonic antigen; CIPI, cancer-inflammation prognostic index; SII, systemic immune-inflammation 
index; NLR, neutrophil-to-lymphocyte ratio.
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FIGURE 2

Nomograms for individualized prediction of survival outcomes in patients with advanced CRC receiving immunotherapy combined with targeted 
therapy. (A) Nomogram for estimating 3-, 6-, and 12-month progression-free survival (PFS) based on systemic immune-inflammation index (SII) and 
carcinoembryonic antigen (CEA). (B) Nomogram for estimating 6- and 12-month overall survival (OS) based on body mass index (BMI), cancer-
inflammation prognostic index (CIPI), and CEA. To use the nomogram, locate the patient’s value for each predictor variable, draw a vertical line upward 
to determine the corresponding number of points, sum the total points, and project downward to estimate the probability of survival at each time 
point.

FIGURE 3

Receiver operating characteristic (ROC) curves for the nomogram-predicted survival outcomes. (A) ROC curves at 3 months (orange), 6 months (cyan), 
and 12 months (purple) for progression-free survival (PFS) in the training cohort. (B) ROC curves at 3 months (orange), 6 months (cyan), and 12 months 
(purple) for PFS in the validation cohort. (C) ROC curves at 3 months (orange) and 6 months (cyan) for overall survival (OS) in the training cohort. 
(D) ROC curves at 3 months (orange) and 6 months (cyan) for OS in the validation cohort. The area under the curve (AUC) values are annotated within 
each plot, indicating the discriminative ability of the nomograms at different time points. The diagonal dashed line represents a non-informative model 
(AUC = 0.5). AUC values closer to 1.0 indicate higher predictive accuracy.
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Third, elevated CEA (>5 ng/mL) was associated with inferior survival 
outcomes. As a well-established tumor marker in CRC, high CEA 
levels often reflect greater tumor burden and metastatic potential. This 
finding is consistent with prior reports correlating elevated CEA with 
advanced disease stage and reduced therapeutic benefit, even in the 
setting of immunotherapy. High CEA concentrations may indicate not 
only an increased tumor load but also an immunosuppressive tumor 
microenvironment, contributing to reduced responsiveness to 
immune checkpoint blockade (25, 26).

Although the NLR (≥3.05) was significantly associated with 
outcomes in univariable analyses, it did not retain independent prognostic 
significance for either OS or PFS in multivariable models. This 
discrepancy suggests that, while NLR may reflect systemic inflammation, 
its prognostic value is diminished when considered alongside more 
comprehensive indices such as the SII and the CIPI, which integrate 
additional hematologic components. The overlapping biological 
information captured by these markers may account for the attenuated 
role of NLR in the final predictive model. The nomogram models 
constructed using these independent predictors demonstrated modest to 
moderate discriminative ability, as reflected by the C-index and AUC 
values. Specifically, the OS nomogram exhibited moderate predictive 
accuracy, while the PFS nomogram demonstrated relatively limited 
discriminative capacity. The lower performance of the PFS model may 
be attributed to the biologic heterogeneity of metastatic CRC, where 
progression can be  influenced by dynamic factors such as evolving 
therapeutic regimens, emergence of drug resistance, and changes within 
the tumor microenvironment over time (27, 28). In contrast, OS may 
be more consistently influenced by baseline clinical and inflammatory 
characteristics, thereby enhancing the model’s predictive strength. 
Importantly, the risk stratification derived from the nomogram-based 
cutoff values highlights the clinical applicability of these models. By 
categorizing patients into high- and low-risk groups for PFS and OS, 
clinicians may be  better equipped to individualize treatment plans, 
optimize follow-up intensity, and identify candidates for alternative 
therapeutic strategies aimed at improving long-term outcomes.

While the C-index values for PFS (ranging from 0.598  in the 
validation cohort to 0.615  in the training cohort) and OS (0.650 

optimism-corrected and 0.658 apparent) suggest only modest 
discriminatory power, the nomogram remains clinically useful in risk 
stratification for patients with pMMR advanced CRC undergoing 
immunotherapy combined with targeted therapy. Even with limited 
accuracy, this model can help identify high-risk patients who may 
benefit from more aggressive monitoring or alternative treatment 
strategies, particularly in the complex and heterogeneous landscape 
of mCRC. The relatively higher AUC values at specific time points, 
especially for OS, highlight the model’s utility in distinguishing short-
term survival differences. To improve predictive accuracy, future 
studies should incorporate molecular and imaging biomarkers, such 
as genetic mutations (e.g., KRAS, NRAS, BRAF), microsatellite 
instability (MSI) status, and radiomics-derived imaging features. 
These biomarkers provide deeper insights into tumor biology, 
resistance mechanisms, and immune responses, thus enhancing the 
model’s capacity for more personalized treatment strategies. 
Integrating such parameters with clinical and inflammatory indices 
will likely refine the model, further improving its clinical applicability 
in advanced CRC.

The inflammatory indices identified in this study, including the 
SII, CIPI, and NLR, provide valuable insights into the immune and 
inflammatory landscape of advanced CRC patients undergoing 
immunotherapy combined with targeted therapy. These indices 
significantly correlated with PFS and OS, highlighting their prognostic 
value. However, to enhance the predictive accuracy and clinical 
applicability of this model, emerging biomarkers such as ctDNA, 
mutational load, and MSI status should be incorporated. For instance, 
ctDNA can capture minimal residual disease and dynamic changes in 
tumor burden, providing real-time assessment of treatment response 
(29). Similarly, mutational load and MSI status are critical in 
evaluating tumor immunogenicity and response to immunotherapy. 
By combining these molecular markers with inflammatory indices, 
clinicians could achieve a more robust and comprehensive 
understanding of tumor biology, ultimately refining patient risk 
stratification and treatment personalization (30). The risk stratification 
model presented in this study provides an essential framework for 
tailoring treatment strategies based on individual patient risk profiles. 

FIGURE 4

Kaplan–Meier survival curves stratified by nomogram-derived risk scores. (A) Progression-free survival (PFS) for high-risk (total points ≥70) vs. low-risk 
(total points <70) groups. (B) Overall survival (OS) for high-risk (total points ≥162) vs. low-risk (total points <162) groups. Risk groups were defined using 
optimal cutoff values determined by X-tile analysis. Survival curves are colored by risk category: low-risk group (orange line) and high-risk group (green 
line). Statistical differences between groups were assessed using the log-rank test (p < 0.001 for both PFS and OS).
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For high-risk patients, who are predicted to have poorer survival 
outcomes based on their nomogram scores, clinicians may consider 
more aggressive monitoring and potential adjustments in therapeutic 
regimens. For example, these patients could be prioritized for second-
line or experimental therapies, or enrolled in clinical trials, aiming to 
improve survival (31). Additionally, intensified surveillance for early 
detection of disease progression or recurrence may be beneficial. On 
the other hand, low-risk patients with favorable prognostic factors 
may benefit from standard treatment protocols with less frequent 
monitoring (32). These patients could experience fewer toxicities, 
which could improve their quality of life. By implementing these 
stratified approaches, healthcare providers can optimize resource 
allocation and treatment intensity, leading to personalized care that 
enhances both the clinical and emotional outcomes for CRC patients.

This study has several limitations. First, its retrospective, single-
center design introduces potential selection bias and limits the 
generalizability of the findings, despite the use of strict inclusion 
criteria and standardized treatment protocols. Second, although the 
sample size was adequate for exploratory analysis, it may have limited 
statistical power, which could affect the identification of additional 
prognostic factors. Third, missing data was minimal and handled via 
complete-case analysis, but this approach may still introduce bias and 
affect the robustness of the results. Finally, the prognostic nomograms 
were internally validated within the same cohort without external 
validation, which restricts their applicability to broader, more diverse 
populations. Future studies should focus on conducting prospective, 
multicenter investigations with larger and more diverse cohorts to 
externally validate and refine the proposed models. Additionally, 
longer follow-up periods and the inclusion of novel biomarkers, such 
as molecular signatures or imaging parameters, could further 
improve predictive accuracy and offer a deeper understanding of the 
biological mechanisms that drive tumor progression and 
therapeutic response.

5 Conclusion

In summary, this study underscores the prognostic significance of 
both clinical and inflammatory parameters, particularly BMI, CEA, 
SII, and CIPI, in patients with pMMR advanced CRC receiving 
immunotherapy combined with targeted therapy. The developed 
nomogram enabled individualized risk stratification and demonstrated 
potential to support clinical decision-making, representing a 
promising tool for advancing personalized treatment strategies in 
advanced CRC.
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