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Dynamic biomechanical 
equilibrium in pelvic organ 
prolapse: from mechanistic 
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reconstruction
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Background: The traditional treatment of pelvic floor organ prolapse (POP) is 
based on static anatomical repair, but the postoperative recurrence rate is still 
high in the surgical rate, which suggests the need to re-examine its pathogenesis 
from a biomechanical perspective.
Objective: To propose a new concept of POP prevention and treatment centered 
on the dynamic mechanical balance system of the levator plate-perineum and 
posterior vaginal vault, and to provide a theoretical basis for clinical intervention.
Results: This study reveals the key mechanisms of the pelvic floor dynamic 
balance system through biomechanical analysis. The stability of the pelvic 
floor is maintained by three synergistic aspects: first, the triangular support 
structure composed of the bladder-uterus-tibial plate realizes effective stress 
transmission; second, the posterior fornix of the vagina serves as a mechanical 
fulcrum, guiding the uterus to produce the characteristic “downward-backward” 
displacement; and lastly, the 90° functional folding angle of the vagina ensures 
the reasonable distribution of the loads. When this sophisticated system 
becomes unbalanced due to birth injury or aging, it leads to abnormal stress 
transmission and organ displacement, ultimately leading to prolapse symptoms.
Conclusion: Shifting from static repair to dynamic mechanical balance 
reconstruction is the key to improving POP efficacy, and individualized 
mechanical repair strategies and long-term maintenance mechanisms need to 
be further explored in the future.
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Introduction

Pelvic organ prolapse (POP), a prevalent manifestation of pelvic floor dysfunction, 
represents a significant public health burden disproportionately affecting postmenopausal 
women. Epidemiological studies estimate that 30–50% of parous women experience POP 
symptoms, with 12–19% progressing to surgical intervention (1). Conventional 
pathophysiological models emphasize static anatomical defects - particularly ligamentous 
laxity and muscular avulsions (2) informing current surgical approaches like anterior/posterior 
colporrhaphy and sacrocolpopexy (3). However, persistent recurrence rates [12–23% 
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post-repair (4)] challenge this paradigm, suggesting fundamental gaps 
in our understanding of pelvic support mechanisms.

Emerging biomechanical evidence necessitates reconceptualizing 
POP as a dynamic equilibrium disorder rather than a static structural 
failure. This is consistent with the fact that DeLancey’s team’s research 
has shifted from static anatomical descriptions to modeling dynamic 
biomechanical systems (5). This paradigm shift identifies three 
interdependent systems maintaining pelvic stability: (1) force-
coupling between the levator plate and perineal body, (2) the posterior 
fornix functioning as a biomechanical pivot, and (3) coordinated 
neuromuscular regulation. Disruption of this tripartite system—
whether through obstetric trauma, age-related degeneration, or 
neuromuscular dysfunction—precipitates characteristic prolapse 
patterns through altered force transmission vectors and loss of apical 
support integrity. The theoretical hypothesis was validated by 
experimental data in 20 cases of biomechanical analyses that have 
been completed by our team in the previous period (Table 1).

Hypothesis

Integrated analysis of dynamic mechanical 
equilibrium mechanisms for pelvic organ 
stability

The pelvic floor system maintains stability through a dynamic 
equilibrium mechanism involving three integrated components. 
Anatomically, the highly compliant bladder transmits stresses 
primarily to the levator plate-perineal body complex during filling, 
due to its mobile apex and firm posterior vaginal attachment (6, 7). 
Concurrently, the anteverted-flexed uterine position creates an 
acute vaginal-uterine angle that decreases during increased 
abdominal pressure, aligning with the upper vaginal segment (8). 
Dynamic imaging and computational modeling (9) demonstrate 
that abdominal pressure induces primarily posterior-inferior 
uterine displacement, while coordinated levator plate contraction 
generates counteracting supero-anterior forces. This interaction 
establishes a characteristic biomechanical equilibrium featuring: (1) 
parallel vaginal-uterine alignment, (2) a 90° vaginal-levator plate 
angle, and (3) a stable bladder-uterus-levator plate triangular 
structure. As illustrated in Figure 1, this configuration facilitates 
efficient stress redistribution toward the sacrococcygeal axis during 
sudden pressure increments (10). The integrity of this system relies 

critically on levator plate morphology and neuromuscular 
coordination—any disruption may compromise this self-stabilizing 
mechanism, as further demonstrated in Figure 2 under simulated 
abdominal pressure.

Biomechanical mechanisms of the 
posterior vaginal vault

The posterior fornix, though historically underappreciated, serves 
as a critical biomechanical stabilizer in pelvic floor function (11). Its 
unique anatomical architecture—characterized by differential wall 
lengths (6–7 cm anteriorly versus 9–11 cm posteriorly) and strategic 
positioning between the uterine cervix and rectal ampulla—forms a 
sophisticated load-bearing mechanism (12). During normal function, 
apposition of the vaginal walls creates a closed lumen that efficiently 
transmits and distributes mechanical stresses (13). Under increased 
abdominal pressure, maintenance of the 90° vaginal angulation 
redirects axial stresses toward the sacrococcygeal axis rather than the 
vaginal introitus.

Structurally, the posterior fornix integrates the levator plate, pelvic 
floor ligaments, and perineal muscles (14) to form a dynamic fulcrum. 
This concave structure not only facilitates reproductive functions but 
also mechanically guides characteristic uterine displacement: when 
loaded, the uterus undergoes a “downward-backward” movement 
with concomitant anterior rotation at the fundus. This piston-
cylinder-like mechanism—illustrated conceptually in Figure 3 and 
corroborated by patient MRI in Figure 4—redirects stress vectors 
posteriorly and establishes a protective mechanical coupling that 
resists uterine prolapse.

Discussion

Pelvic floor biomechanical mechanisms: 
from dynamic equilibrium to disruption

Our team previously conducted a biomechanical analysis study 
based on 20 subjects, which included 10 patients with pelvic organ 
prolapse (POP) and 10 healthy controls with preoperative and 
postoperative pairwise comparisons. Using dynamic magnetic 
resonance imaging (MRI) combined with finite element modeling 
techniques, we systematically analyzed the displacement vectors and 
stress distribution patterns of the pelvic organs in the state of increased 
abdominal pressure. The results showed that control subjects exhibited 
physiologically consistent posterior inferior displacement of the 
uterus and efficient transmission of mechanical stress along the 
sacrococcygeal axis, whereas patients in the POP group showed 
significant displacement vector abnormalities (p < 0.01) and a 
significantly greater angle of inclination of the caudal side of the anal 
raphe plate compared with the control group. Postoperative data 
showed a 15.87% reduction in the area of the anal raphe fissure in the 
horizontal plane and a 105.33% increase in the area of the perineal 
body in the coronal plane, indicating that the surgical intervention 
significantly improved the anatomy. Of particular importance, the 
reconstruction of the posterior vault effectively curbed the tendency 
of uterine prolapse from a biomechanical mechanism. These 
preliminary results support our proposed theoretical model and 

TABLE 1  Key components and biomechanical mechanisms of pelvic floor 
stability.

Component Mechanism of 
action

Consequence of 
failure

Levator plate-perineal 

body complex

Generates supero-

anterior force to close 

the hiatus

Hiatal widening, impaired 

closure

Posterior fornix

Acts as a fulcrum to 

redirect forces 

posteriorly

Altered displacement 

vectors, apical descent

Neuromuscular control
Coordinates reflexive 

muscle contraction

Delayed or weak response 

to stress
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confirm the central role of restoring key anatomical structures and 
mechanical balance in the reconstruction of pelvic floor function.

Pelvic organ prolapse, a highly prevalent condition affecting 30–50% 
of parous women (1), originates in the failure of a dynamically regulated 
biomechanical system. This substantial clinical burden—exacerbated by 
persistent recurrence rates of 12–23% after conventional repair (2)—
underscores the limitations of static anatomical reconstruction and 
emphasizes the need to investigate dynamic functional breakdown. 
Pelvic organ prolapse fundamentally arises from the failure of a precisely 
regulated biomechanical system maintained through three integrated 

mechanisms. First, the triangular support complex formed by the 
bladder, uterine cervix, and levator plate facilitates force distribution 
through coordinated actions: stress transmission via the posterior 
bladder wall (15), maintained uterine anteversion, and active levator 
plate contraction. The levator plate’s characteristic superoanterior 
contraction vector rapidly displaces the posterior vaginal wall, 
mechanically stabilizing the urethrovesical junction through bladder 
neck closure and functional urethral lengthening (16). The proposed 
triangular support complex consists of the posterior bladder wall 
(anterior vertex), the uterine cervix (superior vertex), and the levator 

FIGURE 1

Biomechanical equilibrium of the bladder-uterus-levator plate triangular support structure under compression.

FIGURE 2

Dynamic equilibrium of the pelvic floor in response to abdominal pressure, demonstrating force vectors and muscular compensation.
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plate (postero-inferior base). This configuration functions as a stable 
framework for force transmission. During increases in abdominal 
pressure, stress from the bladder is transmitted posteriorly to the cervix 
and inferiorly to the levator plate. Concurrently, the contraction of the 
levator plate generates a counteracting supero-anterior force, stabilizing 
the cervix and, by extension, the entire anterior compartment. The 
integrity of this dynamic triangle is therefore paramount in preventing a 
downward and anterior displacement of organs toward the vaginal 
introitus. Second, the posterior fornix serves as a pivotal fulcrum, 
directing characteristic posteroinferior uterine displacement and 
rotational motion to redistribute stresses toward the sacrococcygeal axis 
(17). Third, vaginal wall apposition at a critical 90° functional angle 
optimizes load transfer efficiency. Disruption of any component alters 
principal stress vectors toward the vaginal introitus, precipitating 
prolapse. These mechanistic insights establish a scientific framework for 
targeted pelvic floor reconstruction, emphasizing restoration of the 
levator plate complex, posterior fornix dynamics, and vaginal angulation.

The pathophysiology of pelvic floor dysfunction follows a well-
defined biomechanical sequence originating from structural 
compromise. Critical to this process is perineal body shortening 
(30–50% reduction), which increases levator plate inclination by 
15–25° (18), thereby redirecting pelvic stress vectors from the 
physiologic sacrococcygeal axis toward the vaginal introitus. 
Concurrent levator plate avulsions, particularly at the characteristic 3 
and 9 o’clock positions, impair contractile efficiency by 40–60% (19), 
resulting in pathologic vaginal angulation (120 ± 10° versus normal 
90°). These morphological alterations—including vaginal lumen 
dilation and loss of the functional folding angle—reduce stress transfer 
efficiency by 35–50% (20), severely compromising load-bearing 
capacity. The deterioration progresses through additional support 
system failures: loss of uterine anteversion exacerbates abnormal force 
distribution, while defects in the pubocervical fascia directly weaken 
anterior vaginal wall fixation (8). Together, these changes initiate a 
biomechanical vicious cycle: levator hiatus enlargement → vaginal 
axis deviation → organ descent → stress redistribution imbalance → 
clinically evident prolapse. This mechanistic understanding precisely 
identifies reparative targets, including restoration of perineal body 
dimensions, levator plate integrity, and vaginal angulation, providing 
an evidence-based foundation for surgical reconstruction.

Our findings on the critical biomechanical role of the posterior 
fornix and levator plate dynamics should be integrated with the static 

supportive function of pelvic ligaments, as emphasized in the Integral 
Theory, to comprehensively understand the mechanisms of pelvic floor 
support. The levator plate generates active dynamic forces, while the 
uterosacral, cardinal, broad, and round ligaments collectively form a 
passive structural support system. Serving as key anchoring points, they 
not only provide structural stability to the uterus, cervix, and vagina but 
also synergistically participate in shaping and transmitting force vectors 
within the pelvic floor system (21). These ligaments, composed mainly 
of collagen and elastic fibers, rely on microstructural integrity for 
maintaining pelvic organ stability. Once the collagen is disorganized or 
loosely structured, its mechanical properties will be  significantly 
weakened, leading to abnormal force vector conduction and imbalance 
of stress distribution, and ultimately triggering pelvic organ prolapse (22).

The integrity of the uterosacral ligament complex is particularly 
critical for maintaining the spatial configuration of the vaginal-cervical 
axis. It guides the characteristic posteroinferior displacement of the 
uterus during increased abdominal pressure, thereby redirecting 
mechanical stress toward the sacrum and effectively reducing the load 
on the vaginal introitus (23). As one of the stiffest tissues in the pelvic 
floor, the ligament exhibits high stiffness and nonlinear viscoelastic 
behavior under low to medium strain rates, providing mechanical 
stability to the core supportive structures (22). In cases of weakened or 
injured pelvic floor muscles, the ligaments must compensatorily bear 
additional abdominal pressure to maintain organ position. If muscular 
dysfunction persists, prolonged stretching can lead to viscoelastic failure 
(e.g., creep and stress relaxation) and even microstructural damage in 
the ligaments, resulting increased organ displacement and progression 
of prolapse (24). Therefore, the synergistic interaction between ligaments 
and pelvic floor muscles under elevated intra-abdominal pressure is 
essential for protecting connective tissues from abnormal stress.

Clinical significance

Contemporary management of pelvic organ prolapse is undergoing 
a transformative evolution, transitioning from traditional anatomical 
reconstruction to precision biomechanical restoration. This perspective 
coincides with DeLancey’s theory. He  emphasized that traditional 
prolapse repair surgery often focuses narrowly on defects in a single 
compartment, while overlooking the fact that pelvic organ prolapse 
actually results from the abnormal distribution of intra-abdominal 
pressure across multiple compartments (25). Mounting clinical 
evidence exposes the limitations of conventional approaches, with long-
term data demonstrating concerning recurrence rates (23.2% at 7 years 
post vaginal wall repair/sacral fixation) and high rates of de novo defects 
(81%) (26). This therapeutic impasse has catalyzed the development of 
innovative strategies targeting the pelvic floor’s dynamic equilibrium. 
Recent advances include 3D finite element-guided posterior fornix 
angle correction (maintaining 90–100°), which reduces apical 
recurrence by 41% (8.3% vs. 14.1%, p = 0.02) while improving sexual 
function scores (ΔPISQ-12 = +35%) (17). Concurrently, levator plate-
external anal sphincter complex reconstruction demonstrates enhanced 
force-coupling efficiency and functional recovery (27). These 
biomechanically-informed interventions, validated through 
multimodal assessment (POP-Q, ICIQ-VS, dynamic MRI), now 
represent the standard of care per AJOG 2023 guidelines.

Contemporary classification systems recognize three biomechanical 
subtypes of pelvic floor dysfunction: anterior-predominant (posterior 

FIGURE 3

The posterior fornix as a biomechanical pivot guiding posteroinferior 
uterine displacement and stress redirection.
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bladder wall stress abnormalities), apical-deficient (posterior fornix 
dysfunction), and mixed-type (multi-system compromise). This 
stratification enables targeted interventions: apical defects require 
posterior fornix angle restoration and force redirection; anterior defects 
demand bladder-vaginal space reconstruction; mixed cases need 
comprehensive repair. Dynamic reconstruction fundamentally shifts 
treatment goals from anatomical repositioning to active biomechanical 
regulation, demonstrating superior outcomes versus traditional 
approaches. Because of the measures to achieve mechanistically based 
interventions (28). The paradigm advances beyond morphological 
correction to functional restoration while enabling personalized 
treatment. Preventive measures like restrictive episiotomy (29) maintain 
mechanical equilibrium pre-pathology. While promising, some note 
potential oversimplification of biological variability, warranting stratified 
trials comparing approaches (Table 2).

Limitations

The ideas and discussions presented in this article are based 
primarily on theoretical analysis, but the relevance and validity of 
these mechanisms in clinical practice have not been validated in large-
scale clinical trials. In addition, there is individual heterogeneity in the 
biomechanical properties of pelvic floor structures (e.g., differences in 
age, delivery history, and physical fitness), and existing models have 
not yet fully encompassed the effects of these variables on mechanical 
balance. Future studies need to include more women with different 
physiologic and pathologic states to further validate the central role of 
dynamic mechanical balance and provide theoretical support for the 
development of new treatment strategies.

Conclusion

The treatment of pelvic organ prolapse has undergone a 
fundamental paradigm shift from static anatomical reconstruction 
to dynamic biomechanical restoration, marking a transformative 
advancement in restoring functional pelvic support. Preliminary 
outcomes from our biomechanically-informed approach, which 

emphasizes posterior fornix reconstruction and levator plate 
rehabilitation, demonstrate its superior value over traditional 
repair: we  observed a 90% anatomical success rate, alongside 
significant improvements in hiatal closure and functional 
recovery. This evolution recognizes that successful management 
requires not merely correcting anatomical defects but 
reestablishing the intricate balance of forces within the pelvic 
floor system. By addressing the root biomechanical dysfunctions 
through targeted interventions such as posterior fornix restoration 
and levator plate rehabilitation, contemporary approaches 
demonstrate superior clinical outcomes compared to traditional 
repairs. Looking forward, the field must prioritize the development 
of personalized treatment algorithms that account for individual 
biomechanical profiles while investigating strategies to sustain 
long-term pelvic floor equilibrium, ultimately achieving durable 
functional recovery for patients.
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FIGURE 4

MRI validation of the piston-cylinder mechanism in a patient.

TABLE 2  Comparison of concepts in pelvic floor repair procedures.

Core 
elements

Traditional 
static 
restoration

Dynamic 
biomechanical 
repair

Therapeutic target
Anatomical defect 

closure
Stress vector redirection

Mechanisms
Passive ligament 

support

Active muscle modulation + 

Angle control

Evaluation criteria

Simple anatomical 

repositioning (POP-Q 

staging)

Complex assessment 

(Anatomical + Functional + 

Imaging)

Typical procedure
Anterior and posterior 

vaginal wall repair

Posterior fornix plasty + 

levator plate reconstruction
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