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Background: Adenocarcinoma of the esophagogastric junction (AEG) 
is increasingly recognized as a distinct gastrointestinal tumor type with 
a poor prognosis. However, the mechanisms driving AEG progression, 
particularly the interplay between metabolic reprogramming and the immune 
microenvironment, remain poorly understood.

Methods: We integrated multi-omics to profile the tumor microenvironment 
and metabolic reprogramming of AEG. Tumor tissues and paired normal adjacent 
tissues from AEG patients were subjected to single-cell RNA sequencing (N=11), 
spatial transcriptomics (N=4), and metabolomics analysis (N=26). Molecular 
experiments and animal models were used for validation.

Results: Our analysis revealed an AEG-specific malignant subtype originating 
from the esophagogastric junction, characterized by heightened proliferation 
and poor differentiation. These malignant cells exhibited metabolic 
reprogramming marked by hyperactivation of the glutamine-arginine-
spermine axis with concomitant spermine accumulation. Spermine was found 
to drive the polarization of tumor-associated macrophages into an APOE+ 
immunosuppressive phenotype, thereby modulating the tumor immune 
microenvironment. Mechanistically, spermine promoted the phosphorylation of 
STAT3, thereby enhancing its binding affinity to the APOE promoter region and 
leading to enhanced transcriptional activation of APOE.

Conclusion: This study identified AEG-like malignant cells as a high-risk subtype, 
revealed the metabolic-immune crosstalk driven by the spermine-STAT3-APOE 
axis in AEG progression, and provided potential targets for AEG metabolic 
intervention and immunotherapy.

KEYWORDS

adenocarcinoma of the esophagogastric junction, single-cell RNA sequencing, spatial 
transcriptomics, cancer metabolism, tumor microenvironment

OPEN ACCESS

EDITED BY

Xingjie Gao,  
Tianjin Medical University, China

REVIEWED BY

Izabela Siemińska,  
Jagiellonian University Medical College, 
Poland
Manyi Sun,  
Nankai University, China

*CORRESPONDENCE

Yanping Xu  
 yanpingxu@tongji.edu.cn  

Chenfei Wang  
 08chenfeiwang@tongji.edu.cn  

Shuchang Xu  
 xschang@163.com

†These authors have contributed equally to 
this work

RECEIVED 25 June 2025
ACCEPTED 29 July 2025
PUBLISHED 02 September 2025

CITATION

Zhang Y, Liu Z, Sun H, Wang Z, Chen Y, Hu Z, 
Li X, Xu K, Chen Y, Xu Y, Wang C and 
Xu S (2025) Malignant epithelia cells-derived 
spermine induces APOE+ macrophages to 
suppress tumor immunity in adenocarcinoma 
of the esophagogastric junction.
Front. Med. 12:1636699.
doi: 10.3389/fmed.2025.1636699

COPYRIGHT

© 2025 Zhang, Liu, Sun, Wang, Chen, Hu, Li, 
Xu, Chen, Xu, Wang and Xu. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  02 September 2025
DOI  10.3389/fmed.2025.1636699

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1636699&domain=pdf&date_stamp=2025-09-02
https://www.frontiersin.org/articles/10.3389/fmed.2025.1636699/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1636699/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1636699/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1636699/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1636699/full
mailto:yanpingxu@tongji.edu.cn
mailto:08chenfeiwang@tongji.edu.cn
mailto:xschang@163.com
https://doi.org/10.3389/fmed.2025.1636699
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1636699


Zhang et al.� 10.3389/fmed.2025.1636699

Frontiers in Medicine 02 frontiersin.org

1 Introduction

Adenocarcinoma of the esophagogastric junction (AEG) is a 
clinically challenging malignancy with increasing incidence and 
poor prognosis (1–3). The unique anatomical location at the 
esophagogastric junction (EGJ) complicates early detection, 
precise diagnosis, and effective treatment strategies (4, 5). 
Although AEG is currently classified within clinical guidelines as 
a subtype of gastric adenocarcinoma (GAC) and esophageal 
adenocarcinoma (EAC) for management purposes (6, 7), emerging 
evidence suggests that it possesses distinct molecular 
characteristics, metastatic behaviors, and responses to therapy, 
highlighting the necessity for tailored diagnostic and treatment 
approaches (8, 9). Despite advancements in molecular subtyping 
(4, 10–13), the mechanisms driving AEG progression, particularly 
the interplay between tumor heterogeneity, metabolic 
reprogramming, and the tumor microenvironment (TME), remain 
inadequately understood.

Recent studies emphasize that metabolic reprogramming not 
only supports tumor cell proliferation but also actively influences 
the immunosuppressive TME by modulating immune cell 
functions (14, 15). Tumor cells preferentially utilize glycolysis or 
glutaminolysis to sustain rapid growth, while accumulating 
immunosuppressive metabolites which impair cytotoxic T cells 
activation and promotes the expansion of regulatory T cells and 
tumor-associated macrophages (TAMs), facilitating immune 
evasion (16). Therefore, understanding the metabolic alterations 
in AEG tumor cells and their interactions with the TME is 
essential for improving patient outcomes, as these processes may 
explain the limited effectiveness of immune therapies and reveal 
new therapeutic targets to disrupt tumor progression and enhance 
treatment efficacy.

Apolipoprotein E (APOE), a secreted protein, traditionally 
recognized for its role in lipid metabolism and neurodegenerative 
diseases (17), is increasingly implicated in immune regulation and 
cancer progression. Previous studies have shown that APOE can 
promote the proliferation and migration of tumor cells (18), 
inhibit the tumor immune microenvironment (19), and be related 
to resistance to immunotherapy (20, 21). However, the effect 
exerted by APOE within tumor immune regulation, especially in 
AEG TME, remains unclear.

This study aimed to unravel these complexities by integrating 
single-cell RNA sequencing (scRNA-seq), spatial transcriptomics 
(ST), and metabolomics to map the tumor heterogeneity, 
metabolic-immune crosstalk, and immune interactions 
underpinning AEG progression. We  focused on identifying 
EGJ-specific malignant subtypes, their metabolic alterations, and 
the microenvironmental niches that sustain their aggressiveness. 
Our findings uncovered a specific AEG-like malignant cells 
subtype, originating from the EGJ, characterized by poor 
differentiation and adverse prognosis. These malignant cells 
engaged in metabolically driven immunosuppression by secreting 
spermine to promote the polarization of TAMs toward an APOE+ 
phenotype. This work identified the interaction between 
malignant epithelial cells and TAMs as a key driver of the 
spermine-mediated immunosuppressive TME, highlighting a 
distinct intercellular mechanism within the AEG that promotes 
tumor progression.

2 Materials and methods

2.1 Sample collection

73 patients diagnosed with AEG who underwent surgery at 
Shanghai Tongji Hospital were included in this study (6 for scRNA-seq 
and ST, 13 for LC–MS untargeted metabolomics and 54 for IHC 
analysis). None of them had received any prior treatment for this 
disease, including chemotherapy, radiotherapy, targeted therapy, or 
biological therapy, and did not have any other malignancies. More 
detailed clinical information, such as age, sex, TNM staging, and 
degree of differentiation, was summarized in Supplementary Table S1. 
The Research Ethics Committees of Shanghai Tongji Hospital 
approved the study (No. 2021-080), and all patients provided written 
informed consent.

2.2 Cell lines and cell culture

The mouse macrophage cell line RAW264.7, mouse forestomach 
carcinoma cell line MFC, human monocytic leukemia cell line THP-1 
and human AEG cell line OE-19 were purchased from National 
Collection of Authenticated cell cultures. RAW264.7 and MFC cells 
were cultured in DMEM medium (Meilunbio) containing 10% fetal 
bovine serum (FBS, Gibco). THP-1 and OE-19 cells were cultured in 
RPMI 1640 medium (Meilunbio) containing 10% FBS. All cells were 
grown at 37°C in a 5% CO2 incubator. THP-1 cells were pretreated 
with 100 ng/mL PMA for 48 h for differentiating into macrophages 
before further treatments.

2.3 Subcutaneous tumor model

All animal experiments were executed in accordance with the 
ethical obligations approved by the department of laboratory animal 
science of Tongji University (No. TJAB09624101). MFC cells (5 × 106) 
were subcutaneously transplanted into the right dorsal flank of male 
5 to 6-week-old 615 mice (BiKai Laboratory Animals). Spermine 
(5 mg/kg) or equal volume of PBS was intraperitoneally administered 
into these mice once daily for 2 weeks from the day of tumor cell 
inoculation. Tumor size was measured with a caliper every 2 days, and 
tumor volume was calculated using the formula: volume 
(mm3) = 0.5 × width2 × length. Mice were sacrificed by cervical 
dislocation at day 21, and tumors were harvested for flow cytometry 
and Immunohistochemistry.

2.4 Single-cell RNA-seq

2.4.1 Sample processing and library construction
AEG samples were collected post-surgery, cut into ~1 mm3 pieces, 

and suspended in 5 mL digestion buffer (2 mg/mL Collagenase type 
II, 200 U/mL DNase I). After 45 min incubation at 37°C with shaking, 
the suspensions were filtered through a 100 μm filter and centrifuged 
at 400 g, 4°C for 10 min. Erythrocytes were lysed for 2 min using a red 
blood cell lysis solution. The cell suspensions were passed through a 
40 μm filter and centrifuged again. The pellets were re-suspended in 
PBS with 0.04% BSA, and cell viability was confirmed (>80%) using 
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trypan blue exclusion. The single-cell suspensions were counted with 
AO-PI (LUNA, D23001) and adjusted to 700–1,200 cells/μL for library 
preparation using the Chromium Next GEM Single Cell 3′ Kit v3.1 
(10x Genomics). Libraries were sequenced on the Illumina 
NovaSeq  6,000 System (paired-end, 150 bp). Sequencing was 
performed by Outdo Biotech Co., Ltd. (Shanghai, China).

2.4.2 Data processing
Alignment, filtering, barcode counting, and unique molecular 

identifier (UMI) counting of the sequencing data were performed 
using Cell Ranger 7 (10x Genomics, version 6.0.0) with default 
parameters and mapped to the GRCh38 human reference genome to 
generate feature-barcode matrix for each sample. Raw feature-barcode 
matrices were processed using the Seurat R package (version 4.9.9). 
Cells with mitochondrial RNA rate <= 20% and non-mitochondrial 
gene counts > 1,000 were kept for the following analysis. Highly 
variable genes were calculated using “FindVariableFeatures” function 
in Seurat with “vst” method and nfeatures = 2000. Normalization and 
variance stabilization were performed using “SCTransform v2” 
function in Seurat with default parameters. All the data processing 
steps described on above were performed on each sample, respectively. 
After quality control and general data processing, the Seurat objects 
of all samples were integrated using “PrepSCTIntegration” and 
“merge” functions in Seurat based on the selected integration genes 
which were identified using “SelectIntegrationFeatures” function. The 
merged Seurat object was used in the further analysis.

2.4.3 Dimension reduction, batch effect removal 
and clustering

For dimension reduction, we selected 2000 integration genes as 
highly variable genes and performed principal component analysis 
(PCA) with 50 components. The batch effect was removed using 
Harmony (22) R package based on the PCA space with the dimension 
set to 50. Then the data were visualized using uniform manifold 
approximation and projection (UMAP) which using the top  30 
dimensions in projection space adjusted by Harmony. For clustering, 
the shared nearest neighbor (SNN) modularity optimization-based 
clustering algorithm called Louvain was applied to cluster all single 
cells (resolution = 1). For T cells, B cells, myeloid cells and epithelial 
cells, the clustering resolution = 0.5.

2.4.4 Cell type annotation
The major cell types were annotated based on the expression of 

known markers. CD3D for T cells; CD79A for B cells; IGKC for 
plasma cells; CD68 for Mono/Macro cells; KIT for mast cells; 
COL1A2 for fibroblasts; PECAM1 for endothelial cells; EPCAM for 
epithelial cells. After annotation the major cell types, we re-clustered 
each major cell type to further annotated minor cell types. The 
minor cell types were named by the cell type and the representative 
marker genes of each cluster. The cluster-specific marker genes were 
identified using “FindAllMarkers” function in Seurat and selected 
based on average log fold change and adjusted p value. For T cells, 
we used a public single-cell T cell atlas in gastric cancer (23) as 
reference and using “TransferData” function in Seurat to get the 
transferred cell type annotation for each single cell in our data. 
Then refining annotation results using the known marker genes, 
each cell cluster can be annotated by the cell type with the max 
proportion in it. For B cells, the known marker genes for B cell sub 

lineages were used and the cell type signature scores were calculated 
using “AddModuleScore_UCell” function in Seurat based those 
marker genes (IGHD, TCL1A, YBX3, MS4A1 for FBC; AICDA, 
GCSAM, RGS13, IRAG2 for GCB; CD27, IGHD- for MBC). Then 
each cell cluster can be annotated by the cell type with the max 
UCell score in it. For myeloid cells, the annotation procedure was 
the same as B cells (used marker genes: S100A8, VCAN, FCN1 for 
Macro; CD163, C1QA, APOC1 for Mono; CD1A, CD1C, CLEC10A 
for cDC). For epithelial cells, the malignant cells were firstly 
identified by the epithelial cells with both high CNV scores and 
high UCell scores of AEG malignant cell marker genes. Then, the 
rest of epithelial cell were annotated as normal epithelial cells and 
applied the same annotation procedure described on above (used 
marker genes: MUC5AC, TFF1, MUC6, TFF2 for pit mucous cell; 
PGA3, LIPF, PGA4, PGC for chief cell; ATP4A, ATP4B, CBLIF for 
parietal cell).

2.5 Spatial transcriptome

2.5.1 Sample processing
Paired tumor and adjacent tissues from patient 2 and patient 3 in 

the scRNA-seq dataset were used for ST. After scRNA-seq tissue 
removal, samples were embedded in OCT and stored at −80°C. ST 
libraries were prepared using the Visium Spatial Gene Expression Kit 
(10x Genomics) per manufacturer’s instructions. Samples were 
sectioned at 10 μM, placed on capture slides, fixed, stained with H&E, 
and imaged on a Leica CS2. After permeabilization (18 min), reverse 
transcription and second strand synthesis were performed. Probe 
(Large PN-1000364) amplification was done with Cq value determined 
at ~25% of peak fluorescence. Libraries were sequenced on the 
NovaSeq  6,000 (Illumina). Sequencing was provided by Outdo 
Biotech Co., Ltd. (Shanghai, China).

2.5.2 Data processing
The raw data were processed using Space Ranger (10x Genomics, 

version 2.1.1) with default parameters and mapped to the GRCh38 
human reference genome to generate feature-barcode matrix for each 
sample. Processed data were further normalized using “SCTransform 
v2” function in Seurat with default parameters.

2.5.3 Spatial cell type annotation
Since the spot diameter in 10X Visium slide is larger than the 

diameter of a single cell, the gene expression profile in each ST spot is 
actually a mixture of gene expression profiles of multiple cells with 
similar or different cell states. Therefore, the key point of spatial cell 
type annotation is to decompose the cell type composition in each 
spot. We  used STRIDE (24) to perform the spatial cell type 
deconvolution for each ST slide with our annotated scRNA-seq data 
as reference. For scRNA-seq data, immune cells from all samples were 
included while the epithelial cells were sample specific. STRIDE is a 
topic modeling-based method for accurately decomposing and 
integrating ST slides. In our previous benchmark work, STRIDE 
exhibited the overall best performance among other published cell-
type deconvolution tools, which ensured the accuracy and robustness 
of the spatial cell type annotation in our study. Based on the cell type 
proportions inferred by STRIDE, we annotated each spot by the cell 
type with the biggest proportion in it.
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2.6 Estimated copy number variations in 
epithelial cells

The copy number variations (CNV) were estimated based on 
expression level from scRNA-seq data using CopyKAT (25) R package. 
All epithelial cells were treated as the query cells while T cells and B 
cells were treated as the normal cell references. The CopyKAT uses 
integrative Bayesian approaches to identify genome-wide aneuploidy 
at 5 MB resolution in single cells, and cells with high CNV scores are 
considered as malignant cells.

2.7 Public bulk RNA-seq data processing 
and AEG score

The public bulk RNA-seq dataset of adenocarcinoma of the 
esophagogastric junction (AEG) used in our study including 83 AEG 
tumors with paired normal adjacent tissues (NATs) (12). The raw 
RNA-seq data were filtered, normalized and identified differentially 
expressed genes (DEGs) using limma (26) R package. The DEGs with 
the log2 fold change <1.2 were removed then the top 50 and bottom 
50 of the rest DEGs were selected as the positive and negative marker 
gene sets of AEG malignant cells. The AEG score, which was the 
activation score of AEG marker genes in each epithelial cell was 
calculated using “AddModuleScore_UCell” function in Seurat with 
both positive and negative AEG marker gene sets.

2.8 Public scRNA-seq data processing, EAC 
score and GAC score

To investigate the potential origin site of AEG malignant cells, 
we collected 2 public scRNA-seq datasets of EAC and GAC as the 
references (27, 28). The processed count data were downloaded and 
imported using Seurat package, then the similar workflow used in our 
malignant cell annotation were applied to these public data. 
Normalization and variance stabilization were performed using 
“SCTransform v2” function in Seurat with default parameters. The 
major cell type annotations were acquired from their original 
publications. CopyKAT was applied to epithelial cells to calculate 
CNV score with the same parameter setting in our data while T and 
B cells were used as reference normal cells as well. Next, the malignant 
cells in each public scRNA-seq data can be identified according to 
CNV scores. Since the cancer type of AEG is adenocarcinoma, we only 
included malignant cells which sampled from adenocarcinoma 
sources in further analysis. Moreover, for GAC scRNA-seq data, only 
samples from body, antrum and distal were included. The filtering is 
simply performed according to the sample sheets which provided in 
publications of those public data. After that, we extracted all malignant 
cells from public scRNA-seq data and calculated the genome-wide 
correlations between those reference malignant cells and malignant 
cell identified in our scRNA-seq data. Only the common genes 
expressed in all scRNA-seq data were included in the correlation 
calculation. The correlations, which named as EAC scores and GAC 
scores in our study, represented the overall similarities between AEG 
malignant cells and malignant cells from EAC and GAC. AEG 
malignant cells with high EAC or GAC scores suggesting that these 
cells were likely started from EAC or GAC tissues.

2.9 TCGA cohort and survival analysis

The TCGA cohort consisting 248 samples from TCGA-STAD and 
TCGA-ESCA projects were built and downloaded from GDC data 
portal. To make samples in this cohort are similar with AEG samples 
in our study, we only selected TCGA samples with disease type were 
“adenomas and adenocarcinomas” and “primary tumor.” Moreover, 
for TCGA-STAD project, only TCGA samples from cardia, fundus of 
stomach, gastric antrum and pylorus were included and for TCGA-
ESCA project, only TCGA samples from esophagus, thoracic 
esophagus and lower third of esophagus were included. For the 
selected 248 samples their TPM matrices and clinical sheets were 
downloaded, and EAC score, GAC score and AEG score were 
calculated for each TCGA sample in the same way as what we did in 
scRNA-seq data. The samples in this cohort were classified into 3 
groups, including EAC-like, GAC-like and AEG-like, according to the 
similarity score between 3 cancer types.

Survival analysis is performed using the “survfit” function in 
“survival” R package. The optimal cutoff is defined as the point with 
the most significant split. Finally, the survival curve was plotted using 
“ggsurvplot” function in “survminer” R package.

2.10 Malignant cell differentiation score

The malignant cell differentiation state is highly associated with 
cell malignancy while less differentiated malignant cells have stronger 
proliferation and migration abilities. To investigate the differentiation 
states in different AEG subtypes, we used CytoTRACE (29) R package 
to predict the differentiation score of malignant cells from scRNA-seq 
data with the subsampling size = 1,000. The higher differentiation 
score means the cell was less differentiated. Genes associated with 
stemness and differentiation were then predicted based on their 
correlation with differentiation scores.

2.11 Gene expression programs of 
epithelial cells

The gene expression programs (GEPs) of epithelial cells were 
acquired from a public scRNA-seq study of esophageal squamous-cell 
carcinoma (27). The GEP is a gene set containing genes with a specific 
function. Total 4 GEPs were used in our study, including terminal 
differentiation (Terminal diff), epithelial-mesenchymal transition 
(EMT), oxidative damage (Oxd) and stress response (Stress). The 
usage of each GEP was evaluated using “AddModuleScore_UCell” 
function in Seurat.

2.12 Metabolic flux intensity

The cellular metabolic states in malignant cells were predicted 
by Compass (30) Python package based on scRNA-seq data and 
flux balance analysis (FBA). Because of the poor scalability of 
Compass, all the reaction flux intensities were predicted on the cell 
type level. The purpose of FBA is to find an optimal solution of 
metabolic reaction flux intensities to make the target system has a 
balance between intake and output of metabolites. Therefore, the 
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output of Compass is a reaction flux intensity matrix. The reaction 
flux intensity matrix and reaction-metabolite stoichiometric 
number matrix were then multiplied to get the flux intensity 
of metabolites.

2.13 Cell–cell interaction

The cell–cell interactions (CCIs) between cell types were predicted 
using CellChat R package (31) with the default parameters based on 
scRNA-seq data of each sample. CCIs with p value <0.01 were 
considered as significant.

2.14 LC–MS untargeted metabolome

2.14.1 Metabolite extraction
100 mg samples were placed in 2 mL centrifuge tubes with 

1,000 μL tissue extract (75% methanol: chloroform, 25% H₂O) and 
ground twice at 50 Hz for 60s each. Samples were sonicated for 
30 min at room temperature, incubated on ice for 30 min, and 
centrifuged at 12,000 rpm, 4°C for 10 min. The supernatant was 
concentrated, dried, and redissolved in 200 μL 50% acetonitrile 
with 4 ppm 2-chloro-l-phenylalanine. The supernatant was filtered 
through a 0.22 μm membrane and transferred for LC–
MS detection.

2.14.2 LC–MS/MS analysis
LC was performed using a Vanquish UHPLC system (Thermo 

Fisher Scientific). Samples were injected onto an ACQUITY UPLC® 
HSS T3 column (2.1 × 100 mm, 1.8 μm) at 0.3 mL/min with a 2 μL 
injection and 40°C column temperature. Metabolites were detected 
using a Q Exactive Focus mass spectrometer (Thermo Fisher 
Scientific) with ESI ion source, in Full MS-ddMS2 mode. MS1 scans 
were performed at 70,000 resolution (m/z 100–1,000), followed by 
MS/MS with HCD at 30 eV and 17,500 resolutions. Dynamic 
exclusion was applied to remove unwanted data.

2.14.3 Data processing
The raw data were firstly converted to mzXML format by 

“MSConvert” function in ProteoWizard package (v3.0.8789) (32) and 
processed using XCMS R package (v3.12.0) (33) for feature detection, 
retention time correction and alignment. The batch effect was 
removed by correcting the data based on QC samples. Metabolites 
with RSD > 30% in QC samples were filtered and then used for 
subsequent data analysis.

The metabolites were identified by accuracy mass and MS/MS 
data which were matched with HMDB (34), MassBank (35), KEGG 
(36), LMSD (37), mzcloud (38) and the metabolite database built by 
Panomix Biomedical Tech Co., Ltd. (Shuzhou, China). The molecular 
weight of metabolites was determined according to the mass-to-
charge ratio (m/z) of parent ions in MS data. Molecular formula was 
predicted by parts per million (ppm) and adduction, and then 
matched with the database to realize MS identification of metabolites. 
At the same time, the MS/MS data from quantitative table of MS/MS 
data, were matched with the fragment ions and other information of 
each metabolite in the database, so as to realize the MS/MS 
identification of metabolites.

2.14.4 Pathway enrichment
The significantly up-regulated and down-regulated metabolites in 

tumor samples were identified using MetaboAnalyst (39) package 
according to the paired Wilcoxon test. Then those metabolites were 
mapped back to KEGG metabolic pathways and the differential 
abundance (DA) score were calculated based on the differential 
fraction of numbers of up and down-regulated metabolites (40).

2.15 Flow cytometry analysis

The subcutaneous tumors were isolated and chopped into 1 mm3 
pieces. Cell suspensions were collected after the tumor pieces were 
digested by collagenase and DNase in 37°C water bath for 30 min. Cells 
from spleen were isolated by mincing with a 5-mL syringe plunger 
against a 70 μm cell strainer into a 15 mL falcon tube using Roswell Park 
Memorial Institute (RPMI) medium. The cells were depleted of 
erythrocytes by RBC lysis buffer (Beyotime, Cat.: C3702). All samples 
were acquired with the CytoFLEX LX (Beckman Coulter) and analyzed 
with FlowJo software. The antibodies used were as follows: PE/Cyanine7 
anti-mouse CD45 (BioLegend, #103113), FITC anti-mouse CD3 
(BioLegend, #100203), FITC anti-mouse/human CD11b (BioLegend, 
#101205), PE anti-mouse F4/80 (BioLegend, #111603), APC anti-mouse 
CD206 (BioLegend, #141707), APC anti-human CD206 (BioLegend, 
#321109), PE anti-human APOE (BioLegend, #803404), FITC anti-
mouse CD45 (BioLegend, #103107), PE/Cyanine7 anti-mouse CD3 
(BioLegend, #100219), APC anti-mouse CD4 (BioLegend, #100412), PE 
anti-mouse CD8 (BioLegend, #100708), PE anti-mouse Foxp3 
(BioLegend, #320007), APC anti-mouse TNFα (BioLegend, #506307).

2.16 Immunohistochemistry

Paraffin sections of tumor samples from 54 AEG patients were 
obtained from Shanghai Tongji Hospital. After deparaffinization, 
rehydration, antigen retrieval, and blocking, the arrays were incubated 
overnight at 4°C with indicated antibodies. The slides were developed 
with DAB and counterstained with hematoxylin. The images of 
stained slides were acquired using software VS2000 (Olympus). The 
staining intensity of each sample was scored by two pathologists 
blinded to the clinical data by applying a semiquantitative 
immunoreactivity score.

For subcutaneous MFC tumors, fixation was conducted in 4% 
paraformaldehyde (Beyotime) and the follow-up procedures, 
including image scanning were performed by Servicebio (Shanghai, 
China). The staining intensity of each image (four random images for 
one tumor sample) was analyzed using the ImageJ software.

The antibodies used were as follows: APOE (Proteintech, #18254-
1-AP, #66830-1-Ig), SMS (Proteintech, #68040-1-lg), ACHE 
(Proteintech, #17975-1-AP), VNN1 (Proteintech, # 21745-1-AP), 
F4/80 (Servicebio, #GB12027), CD206 (Servicebio, #GB113497), CD8 
(CST, #98941).

2.17 siRNA transfection

siRNAs targeting human SMS, mouse sms and negative control 
(siNC) were designed and synthesized by Tsingke (Beijing, China). 
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The siRNAs were transfected into MFC cells and OE-19 cells using 
Lipofectamine 2000 (Thermofisher) according to the 
manufacturer’s instructions.

2.18 Real-time qPCR

Total RNA was extracted using EZ-press RNA Purification Kit 
(EZBioscience). The complementary DNA was synthesized from 
purified RNA using 4 × Reverse Transcription Master Mix 
(EZBioscience) according to the manufacturer’s instructions. 
qRT-PCR was performed using an Applied Biosystem 7,300 plus 
Sequence Detection System (Applied Biosystems). The cycle threshold 
(Ct) values were analyzed using the 2−ΔΔCt method, and the final 
results were presented as relative fold change. The expression of 
GAPDH served as internal reference. The sequences of primers used 
were shown in Supplementary Table S5.

2.19 Chromatin immunoprecipitation assay

ChIP assay was examined using the ChIP Assay Kit (P2078; 
Beyotime). Cells were fixed with 1% formaldehyde for 20 min at room 
temperature. The chromatin digestion, immunoprecipitation and 
elution were performed according to the manufacturer’s instructions. 
The enriched DNA was analyzed by qPCR with SYBR Green Master 
Mix (Yeasen). The primer sequences for ChIP were shown in 
Supplementary Table S5.

2.20 Western blot

Cells were washed with PBS and lysed in radio immune 
precipitation assay (RIPA) containing 1% protease inhibitor and 
1% phosphatase inhibitor at 4°C for 30 min. The cell lysates were 
heated with 5x Native Gel Sample Loading Buffer (New Cell 
Molecular Biotech, WB3002) at 95°C for 10 min and subjected and 
subjected to SDS-PAGE (10%ExpressCast PAGE, New Cell 
Molecular Biotech, P2012) analysis. The Western blot was 
performed according to standard protocol. Antibodies to APOE 
(Proteintech, #66830-1-Ig), STAT3 (Proteintech, #10253-2-AP), 
p-STAT3 (HUABIO, #ET1603-40), P65 (CST, #8242S), p-P65 
(CST, #3033S), and vinculin (Proteintech, #26520-1-AP) were 
purchased commercially and used according to the 
manufacturer’s instructions.

2.21 Statistical analyzes

Statistical analysis was performed using GraphPad Prism 9 
software. Data of bar graphs represents as fold change or 
percentage relative to control with standard deviation of three 
independent experiments. Normally distributed data were 
analyzed using Student’s t-test. Abnormal distributed data were 
analyzed using non-parametric test. The correlations of IHC 
staining were analyzed using Pearson’s rank test. Statistical 
significance was defined as a p value of less than 0.05. Levels of 

significance were indicated as ns, not significant, *: p < 0.05, **: 
p < 0.01, ***: p < 0.001; ****: p < 0.0001.

3 Results

3.1 Decoding tumor microenvironment 
characteristics through single-cell and 
spatial transcriptomic profiling

To investigate the cell type composition of the AEG 
microenvironment and explore potential AEG subtypes with distinct 
molecular signatures, we included 11 samples from 6 patients in our 
scRNA-seq dataset. Among these samples, 5 patients had paired tumor 
and NAT samples, while 1 patient had only a tumor sample. 
Additionally, our ST dataset comprised 4 paired tumor and NAT slides 
from 2 patients (specifically patient 2 and patient 3 from the scRNA-seq 
dataset). Furthermore, to gain insights into the metabolic differences 
between tumor and NAT tissues, we conducted LC–MS untargeted 
metabolomics analysis on 26 paired samples from 13 AEG patients 
(Figure  1A; Supplementary Table S1). In the scRNA-seq dataset, 
we retained a total of 60,847 cells after performing quality control and 
doublet removal. Following normalization, batch correction, and 
clustering, we identified 8 major cell types based on established marker 
genes and AEG malignant scores (Figures 1B,C; Methods). These cell 
types included T cells (N = 12,893, expressing CD3D), B cells (N = 4,274, 
expressing CD79A), Plasma cells (N = 2,091, expressing IGKC), Mono/
Macro (monocytes or macrophages, N = 2,039, expressing CD68), Mast 
(N = 451, expressing KIT), Normal Epithelial (N = 16,273, expressing 
EPCAM), Malignant cells (N = 22,229, expressing EPCAM and high 
AEG malignant score) and Fib/Endo (Fibroblasts or Endothelial, 
N = 597, expressing COL1A2 and PECAM1 respectively). We did not 
observe significant proportion changes between tumor and NAT tissues 
in the scRNA-seq dataset for most immune cell types, except for Mono/
Macro cells, which exhibited a higher proportion in the tumor tissue (p 
value < 0.05). As expected, the proportion of normal epithelial cells was 
significantly decreased in the tumor tissues, while the proportion of 
malignant cells was significantly elevated (Figure 1D).

To resolve the spatial distribution of cell types, we performed 
further annotation of the ST slides using the cell types identified in 
the scRNA-seq analysis (Figure  1E; Supplementary Figure S1A; 
Methods). Among the 4 slides analyzed, we observed the presence 
of malignant cells exclusively in 2 tumor tissue slides, while they 
were absent in the 2 NAT tissue slides. This finding not only 
confirmed the accuracy of our definition of malignant cells based on 
the scRNA-seq data but also highlighted the distinct molecular 
characteristics of the TME. In both tumor tissue slides, a clear 
demarcation between normal and malignant epithelial cells was 
evident, representing a canonical boundary structure commonly 
observed in solid tumor tissues. Notably, in the ST slide obtained 
from the tumor tissue of patient 3 (ST-P3-Tumor), Fibroblasts or 
Endothelial cells accounted for over 80% of the spots, and immune 
cells were clustered around and surrounding the malignant cells. 
This spatial arrangement suggested the presence of a highly active 
immune environment and further validated the advantages of 
leveraging spatial transcriptomics for studying the structure of 
the TME.
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3.2 Differential malignant epithelial cellular 
origins determine tumor heterogeneity in 
AEG

We first investigated the primary source of AEG malignant cells. 
These cells may originate from the esophagogastric junction, or they 
may also result from the migration of malignant cells belonging to 
EAC and GAC. To validate these potential origins, we  annotated 
malignant and normal epithelial cells based on copy number variation 
(CNV) and gene expression of AEG malignant markers obtained from 

public bulk RNA-seq data (12). Malignant epithelial cells (N = 22,392) 
were identified as epithelial cells exhibiting high CNV scores and AEG 
marker scores, while the remaining cells (N = 16,110) were classified 
as normal epithelial cells (Figure  2A; Supplementary Table S2; 
Methods). Notably, although the majority of malignant cells were 
found in tumor samples, a small number of malignant cells were also 
present in adjacent normal tissue samples (Figure 2B). This finding 
suggests that despite the normal morphology of tissue located 2 cm 
away from the tumor site, its cellular identity may have already 
undergone molecular changes. Therefore, molecular identification and 

FIGURE 1

Overview of AEG TME characterized by scRNA-seq and ST. (A) Scheme of the study workflow (NAT: normal adjacent tissue). (B) UMAP of all the 60,847 
cells included in this study, colored by major cell types. (C) UMAP of expression levels of the marker gene for each major cell type. (D) Major cell type 
proportion changes between tumor and adjacent tissues (P, two-sided Wilcoxon test). p values: Mono/Macro (<0.05), normal epithelial (<0.01), 
malignant (<0.01). (E) Spatial major cell type distribution and proportion of each tumor and adjacent ST slide (P2: patient 2, P3: patient 3), colored by 
major cell types.
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FIGURE 2

Identification of the potential origins of malignant epithelial cells in AEG. (A) UMAP of all the 38,502 epithelial cells from 11 samples (T: tumor, NAT: 
normal adjacent tissue), colored by the samples, consisted of 22,392 malignant epithelial cells and 16,110 normal epithelial cells (left panel). Malignant 
and normal epithelial cells were annotated by both CNV scores (top right panel) and AEG marker scores (bottom right panel, markers were acquired 

(Continued)
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classification of AEG could provide more accurate insights. Using 
known gene markers, we classified normal epithelial cells into 3 major 
cell types, including chief cells (N = 1,557), parietal cells (N = 96), and 
pit mucous cells (PMCs, N = 14,457) (Supplementary Figures S2A,B). 
The composition of these three normal epithelial cell types did not 
exhibit significant differences between tumor and NAT samples 
(Supplementary Figures S2C,D).

In contrast to normal epithelial cells, malignant epithelial cells 
tended to form patient-specific clusters, reflecting the tumor 
heterogeneity across AEG patients (Figure  2C). To determine the 
potential origin of each malignant cluster, we extracted the malignant 
cells from public scRNA-seq datasets of EAC (27) and GAC (28) and 
treated them as referenced malignant cells (Methods). Subsequently, 
we calculated the global gene expression correlations to assess the 
similarities between malignant cells from our AEG dataset and the 
referenced malignant cells (Figure 2D; Supplementary Figure S2E). 
Based on their relative similarities with malignant cells from different 
tumor primary sites, we classified our AEG malignant cells into three 
groups, indicating the potential origins of malignant cells in AEG 
(Figure 2E). The EAC-like malignant cells (N = 4,633) showed higher 
similarity scores with EAC malignant cells, suggesting a more probable 
origin from the esophagus rather than the stomach or EGJ. Similarly, 
the GAC-like malignant cells (N = 17,596) exhibited a higher gastric-
derived probability. In contrast, the AEG-like malignant cells 
(N = 163) did not display high similarity with either EAC or GAC cells 
but showed the highest similarity with the bulk AEG RNA-seq dataset. 
In this case, we hypothesized that these malignant cells were directly 
derived from the EGJ. Notably, over half of the samples had a mixed 
malignant origin, and sample P7_T even exhibited malignant cells 
with all three origins (refer to Figure 2E), highlighting the complexity 
of tumor primary sites in AEG.

3.3 EGJ-originating AEG-like malignant 
cells exhibit a poorly differentiated state 
and associated with adverse clinical 
outcomes

Although the AEG-like malignant cells were rare in AEG and only 
present in 3 samples (P7_T, P6_NAT, and P4_NAT), these cells exhibited 
significantly higher altered CNVs compared to the other 2 subtypes 

(Figure 2F). Besides, we compared the differentiation states among the 
3 malignant subtypes and noted that both AEG-like and GAC-like 
malignant cells displayed a less differentiated state, indicating a high 
degree of stemness and proliferation capacity (Figure 2G; Methods). 
Furthermore, we conducted an analysis of functional gene program 
enrichments within each malignant subtype (Figure  2H; Methods). 
Interestingly, the AEG-like malignant cells displayed a higher enrichment 
of epithelial-mesenchymal transition (EMT) programs, indicating their 
heightened potential for metastasis. Additionally, these cells 
demonstrated a pronounced enrichment of stress responses (Stress) and 
oxidative damage (Oxd) programs. These programs encompass genes 
that are activated in response to extensive cellular stimuli and oxidative 
damage (27) (e.g., EGR1, JUN, and GXP2) (Supplementary Table S4).

We further identified marker genes specific to AEG-like malignant 
cells (Figure  2I; Supplementary Table S3). Among these genes, 
we validated the expression of ACHE and VNN1 in 54 paired AEG 
samples using immunohistochemistry (IHC) (Figure 2J). Both ACHE 
and VNN1 were found to be significantly upregulated in AEG tumor 
tissues compared with NAT, and ACHE expression was correlated 
with the grade of tumor differentiation. The expression of ACHE was 
higher in poorly-differentiated or un-differentiated tumors (G3/G4) 
than in well-differentiated or moderately-differentiated tumors (G1/
G2) (Figure 2K). ACHE is an acetylcholine hydrolase that plays a 
complex role in tumor biology (41). The oncogenic mechanism 
underlying ACHE in AEG and its potential as a molecular marker for 
AEG warrant further investigation. Moreover, in the validation cohort 
collected from the TCGA dataset, patients with high AEG-like 
malignant signatures showed significantly shorter median survival 
times than patients with high GAC-like and EAC-like malignant 
signatures (Figure 2L; Methods).

Collectively, these results suggested that AEG-like malignant cells 
originating from the EGJ represent an important subtype in AEG, 
characterized by high malignancy and adverse prognosis.

3.4 Metabolic reprogramming drives 
spermine accumulation in AEG-like 
malignant cells

Cancer is accompanied by profound metabolic disturbances 
affecting tumor cell proliferation and immune cell differentiation. 

from public RNA-seq of AEG). (B) Stacked bar plot showing malignant and normal epithelial cell proportions in each sample, ranked by malignant cell 
proportion (T: tumor, NAT: normal adjacent tissue). (C) UMAP of 22,392 malignant epithelial cells, divided into 12 clusters according to the gene 
expression similarity. (D) Heatmap showing the potential origins of each malignant cluster. The origin of each cluster was identified by the whole 
genome expression similarity scores between each cluster and referenced cells from public EAC, GAC and AEG datasets. (E) UMAP of malignant cells, 
colored by 3 potential origins (left), with the bar plots showed the cell proportion of each malignant subtype (middle) and the cell number of total 
malignant cells (right) in each sample (ranked by the cell proportion of GAC-like malignant cells). (F) Violin plot showing CNV scores of malignant cells, 
grouped by potential cell origins and ranked by the median CNV score of each group (P, two-sided Wilcoxon test, ****: p < 0.0001). (G) Violin plot 
showing differentiation scores in each malignant cell subtypes, grouped and colored by malignant cell subtypes. The higher the differentiation score is, 
the less the cell is differentiated (P, two-sided Wilcoxon test, ****: p < 0.0001). (H) Boxplot showing the usage of identified gene expression program 
(GEP) in each malignant cell subtype. The black point in each box represents the median value of GEP usages in each malignant cell subtype (Terminal 
diff: terminal differentiation, EMT: epithelial-mesenchymal transition, Oxd: oxidative damage, Stress: stress response; P, two-sided Wilcoxon test, ****: 
p < 0.0001). (I) Volcano plot showing differential expression genes between AEG-like malignant cells and other malignant cells. Top-ranked marker 
genes are labeled (P, two-sided Wilcoxon test). (J) IHC staining of ACHE and VNN1 in NAT and AEG tumor (N = 54; scale bars = 50 μm; P, two-sided 
Wilcoxon test, ****: p < 0.0001). (K) Correlations of ACHE expression (left) and VNN1 expression (right) with tumor differentiation grade of AEG (G1/G2, 
N = 21; G3/G4, N = 33; P, Mann–Whitney test, *: p < 0.05). (L) Kaplan–Meier survival curve compared patients with different malignant origins (N = 50 
for AEG-like, N = 32 for EAC-like, N = 166 for GAC-like; P, log-rank, global: p = 0.034, AEG-like and GAC-like: p = 0.043, AEG-like and EAC-like: 
p = 0.0098).
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FIGURE 3

Characterization of metabolic states in AEG-like malignant cells. (A) Dot plot showing the intensities of metabolic fluxes in AEG-like malignant cells 
which were predicted from scRNA-seq data. The metabolic flux intensity reflects the intensity change trend of specific metabolite during the global 
metabolic exchanges. The positive intensity means the metabolite is accumulated (output), while the negative intensity means consumption (intake). 

(Continued)
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We first investigated whether specific metabolic states contribute to 
the invasive phenotype of AEG-like malignant cells. Analyzing 
metabolite flux intensities inferred from scRNA-seq data, 
we  observed significant alterations in metabolic pathways in 
AEG-like malignant cells. Notably, these cells exhibited heightened 
intake of glutamate in both the cytoplasm and mitochondria, while 
simultaneously accumulating glucose in the extracellular space 
(Figure  3A; Methods). The high glucose microenvironment can 
promote the proliferation and suppress apoptosis of malignant cells 
(42), providing support to the high proliferation ability of AEG-like 
malignant cells.

To further characterize the metabolic features of AEG-like 
malignant cells, we performed LC–MS untargeted metabolomics on 
26 paired AEG samples (Supplementary Figure S3A; Methods). Our 
findings revealed significant upregulation of spermine, lithocholic 
acid, and adenine in AEG tumor samples compared to normal 
samples. Conversely, several lipids and lipid-like metabolites, 
including γ -linolenic acid, 9-cis-retinoic acid, and dodecanoic acid, 
were significantly down-regulated (Figure 3B). Integration of these 
differential metabolites into metabolic pathways highlighted the 
arginine and proline metabolism pathways as the most prominently 
upregulated in tumor samples (Figures 3C,D; Methods). According to 
our metabolomics data, the intensity of glutamate was decreased in 
AEG tumor samples, consistent with the predicted up-regulation of 
glutamate intake in AEG-like malignant cells (Figures  3A,E). 
Meanwhile, glutamine, proline, and spermine displayed significantly 
increased intensities in tumor samples (Figure  3E), suggesting 
metabolic reprogramming characterized by dysregulation of 
glutamate-arginine-spermine metabolism in AEG-like malignant cells.

We performed metabolic enrichment analysis on ST data to 
validate and further explore the metabolic reprogramming observed 
in AEG-like malignant cells. The spots corresponding to AEG-like 
malignant cells displayed significantly higher glucose intensity 
compared to spots corresponding to normal cell types, indicating a 
glucose-rich microenvironment within AEG-like malignant cells 
(Figure 3F). Additionally, the intake potential of glutamate was higher 
in AEG-like malignant spots compared to GAC-like malignant spots 
and other normal spots, consistent with our previous findings. 
Glutamine also displayed higher intensity in AEG-like malignant 
spots. Furthermore, gene expression analysis revealed significant 

upregulation of glutaminase (GLS), arginosuccinate synthase 1 (ASS1), 
and glutamine transporter SLC1A5 in AEG-like malignant cells, while 
the expression of glutamate-ammonia ligase (GLUL) was suppressed 
(Figures  3G,H). These gene expression changes suggested that 
AEG-like malignant cells exhibit increased uptake of glutamine from 
the extracellular matrix through glutamine transporters such as 
SLC1A5 and glutamine further metabolized into glutamate and 
arginine under the action of GLS and ASS1. Arginine was rapidly 
consumed and converted into spermine under the up-regulation of 
spermine synthase (SMS), leading to spermine accumulation, as 
confirmed by both scRNA-seq and ST data (Figures 3I,J). Additionally, 
IHC analysis revealed that the protein levels of SMS were significantly 
higher in tumor tissues compared to NATs (Figure 3K).

Collectively, these findings indicated that AEG-like malignant 
cells exhibit a metabolic reprogramming characterized by glucose 
enrichment, elevated glutamate intake, and enhanced spermine 
production, providing a solid metabolic foundation for tumorigenesis 
and tumor proliferation in these cells.

3.5 AEG-like malignant cells foster an 
immunosuppressive TME enriched with 
Macro_APOE

Next, we assessed the impact of AEG-like malignant cells on the 
TME of AEG. ST data showed significantly lower proportions of 
immune cells and higher proportions of fibroblasts in AEG-like 
malignant spots compared to GAC-like malignant spots, indicating 
the cold and immunosuppressive TME surrounding AEG-like 
malignant cells (Figure 4A). Then we detected the cell–cell interactions 
(CCIs) between AEG-like malignant cells with peripheral immune 
and stromal cell subtypes, established based on a public reference and 
cluster-specific marker genes (Supplementary Figures S4A–F; 
Methods). The results revealed that AEG-like malignant cells, as well 
as GAC-like and EAC-like malignant cells, demonstrated a preference 
for interacting with APOE+ macrophages (Macro_APOE) and specific 
CD8T cell subtypes, including CD8Trm_ITGAE, CD8Trm_CXCR4, 
CD8Trm_CCL5, and CD8Tex (Figure 4B). Although all malignant 
subtypes interacted with Macro_APOE cells and CD8T cells, AEG-like 
malignant cells showed the strongest CCI strength (Figure  4C), 

The z-score reflects the variations of metabolic flux intensities in malignant cells, the positive intensity means the change of specific metabolite is up-
regulated in AEG-like malignant cell, the positive intensity means down-regulation ([c]: cytoplasm, [e]: extracellular space, [m]: mitochondrion, [l]: 
lysosome, [g]: Golgi apparatus). (B) Dot plot showing the differentially expressed metabolites in AEG tumor samples acquired from LC–MS untargeted 
metabolomics on 13 paired AEG tumor and normal samples. Each dot represents a metabolite, sized by average intensity in AEG tumor samples and 
colored by its regulation type (red: up-regulated in AEG tumor samples, blue: down-regulated in AEG tumor samples, gray: no significant difference; P, 
two-sided Wilcoxon test). Top differentially expressed metabolites are labeled. (C) Lollipop plot showing the pathway enrichment of differentially 
expressed metabolites in AEG tumor samples, colored by pathway and sized by the number of matched metabolites in each pathway (DA-score: 
differential abundance score, positive: pathway is up-regulated in AEG tumor samples, negative: pathway is down-regulated in AEG tumor samples). 
(D) Illustration showing the key metabolites and enzymes in arginine and proline metabolism. The dot line means some reaction steps between linked 
metabolites are not shown (circle: metabolite, rectangle: enzyme gene, arrow: reaction direction). (E) Boxplot showing the intensity changes of key 
metabolites in arginine and proline metabolism between tumor and normal AEG samples, grouped and colored by samples source (red: tumor, blue: 
normal; P, two-sided Wilcoxon test, ns: p > 0.05, *: p < 0.05, **: p < 0.01, ****: p < 0.0001). (F) Dim plots showing the metabolic flux distributions on ST 
slides, which predicted from gene expressions of ST data. Violin plots showing the metabolic flux intensities in spots, grouped by the spot cell types 
([c]: cytoplasm, [e]: extracellular space, [m]: mitochondrion; P, two-sided Wilcoxon test, ns: p > 0.05, *: p < 0.05, ****: p < 0.0001). (G) Violin plots 
showing the gene expression levels of key enzymes in arginine and proline metabolism in scRNA-seq data, grouped by cell types. (H) Spatial plots and 
violin plots showing the expression levels of key enzyme genes on ST slides in tumor and normal spatial regions (P, two-sided Wilcoxon test, ns: 
p > 0.05, ****: p < 0.0001). (I) Violin plots showing the gene expression levels of SMS in scRNA-seq data, grouped by cell types. (J) Dim plots and violin 
plots showing the gene expression levels of SMS and intensities of spermine in ST data ([c]: cytoplasm; P, two-sided Wilcoxon test, ****: p < 0.0001). 
(K) IHC staining of SMS in NAT and AEG tumor (N = 54; scale bars = 50 μm; P, two-sided Wilcoxon test, ****: p < 0.0001).
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FIGURE 4

Characterization of AEG immune microenvironment. (A) Spatial plot showing the cell type annotation of ST spots (left). The immune and fibroblasts 
cell type fractions in AEG-like and GAC-like spots are shown in boxplots on the right (P, two-sided Wilcoxon test, ****: p < 0.0001). (B) Clustered 
heatmap showing the average interaction probability between 3 malignant cell types and other immune and stromal cell types (scaled by cell types). 
The average interaction probability is indicated by color. (C) Chord plot showing the CCIs from 3 malignant cell types to selected target cell types, 
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suggesting their heightened potential for immune regulation within 
the AEG TME.

We then investigated the CCIs between major immune cell 
subtypes in TME (Methods), and found that certain subtypes of CD8T 
cells (CD8Tex, CD8Trm_CXCR4, CD8Trm_ITGAE, and CD8Trm_
CCL5) and myeloid cells (Macro_APOE and cDC_CD1C) exhibited 
high CCI activity in both incoming and outgoing signals (Figure 4D). 
Notably, Macro_APOE cells showed the strongest outgoing CCI 
strength, indicating their significant role as signal senders in the AEG 
TME. Outgoing signaling in Macro_APOE cells was enriched in 
pathways associated with immune response, T cell activation, and 
inflammatory regulation, such as MHC-I, CD6, and VCAM 
(Figure 4E). Furthermore, we identified several immunosuppressive 
CCIs through which Macro_APOE cells modulate T cell activation, 
such as HLA-E-CD8A/B and LGALS9-CD44/CD45, leading to the 
establishment of a T cell-suppressive TME (Figure 4F). Additionally, 
Macro_APOE proportion significantly increased in tumor samples 
(Figure 4G), which was consistent with the IHC analysis that APOE 
was highly expressed in AEG tumor tissue compared to NAT in the 
validate cohort (Figure 4H). Given that APOE serves as a macrophage-
specific marker (19, 43), its expression levels directly reflect Macro_
APOE abundance. Furthermore, APOE expression was also positively 
correlated with tumor TNM stages (Figure 4I), and patients with high 
Macro_APOE cell signatures in the TCGA AEG cohort showed a poor 
prognosis (Figure 4J). These results suggested that Macro_APOE was 
enriched in the TME and played pivotal role in the immune 
suppression and tumor progression of AEG.

3.6 Spermine activates the STAT3/APOE 
axis in macrophage in vitro

Metabolic changes in tumor cells can modulate immune cell 
survival and function, ultimately promoting immune suppression and 
driving tumor progression (44). Due to AEG-like malignant cells 
showed the strongest CCI strength with Macro_APOE and spermine 
accumulated in AEG-like malignant cells, further investigation 
focused on the relationship between spermine and Macro_APOE 
cells. We analyzed the correlation between SMS and APOE expression 
in AEG samples by IHC. Notably, the expression of SMS was positively 
correlated with APOE (Figure 5A), which indicated that spermine was 
probably positively correlated with Macro_APOE cells. Based on these 
observations, we speculated that spermine derived from AEG-like 
malignant cells modulates the immunosuppressive TME in AEG by 
regulating Macro_APOE cells.

To validate this hypothesis, we  first investigated the effect of 
spermine on macrophage polarization. Macrophages can be generally 
classified into two subpopulations: proinflammatory M1 phenotype 
and immunosuppressive M2 phenotype. We detected the expression 
of APOE, as well as M1 and M2 marker genes, in macrophages treated 
with spermine. The results demonstrated that spermine significantly 
elevated the expression of APOE both at mRNA and protein levels 
(Figures 5B,C). Flow cytometry analysis further confirmed spermine 
treatment increased Macro_APOE proportion (Figure 5D). Besides, 
we also observed the increased expression of M2 marker genes, while 
the expression of M1 marker genes either decreased or remained 
unaltered (Figure  5E). Similarly, flow cytometry analysis showed 
spermine treatment increased CD206+ macrophages proportion 
(Figure  5F; Supplementary Figures S5A,B). These phenomena 
suggested that spermine promoted macrophages polarization toward 
Macro_APOE, an immunosuppressive M2 phenotype. We  then 
generated SMS low-expression tumor cells by small interfering RNA 
(siRNA) and cultured macrophages in a mixture of tumor cells culture 
medium (CM) and freshly complete medium (1:1) in  vitro 
(Figures 5G,H). We found that macrophages exposed to CM from 
SMS low-expressing tumor cells were less polarized toward Macro_
APOE, and the M2 marker genes expression and the proportion 
CD206+ macrophages also declined (Figures  5I–M; 
Supplementary Figures S5C,D). These results showed that both 
exogenously added spermine and tumor cells-derived spermine could 
polarize macrophages toward the Macro_APOE phenotype.

The NF-κB and STAT3 signaling pathways have been identified as 
the two primary molecular cascades that regulate M2 polarization in 
tumor-associated macrophages (45, 46). We therefore investigated 
whether these two pathways were altered after spermine treatment on 
macrophages. It is notable that spermine stimulation resulted in a 
marked intensification of STAT3 phosphorylation, while the 
phosphorylation levels of P65 remained unaltered (Figure 5N). This 
finding suggested that spermine activates the STAT3 signaling 
pathway in macrophages. STAT3 is a well-known transcription factor, 
phosphorylated STAT3 forms a homodimer, which is then 
translocated to the nucleus to facilitate transcriptional regulation of 
target genes (47). Given that spermine regulated APOE at the 
transcriptional level, we wondered whether STAT3 is a transcription 
factor for APOE. STAT3 phosphorylation inhibitor (stattic) treatment 
suppressed APOE expression at both the mRNA and protein level 
(Figures 5O,P). And the inhibitions of STAT3 signaling efficiently 
overruled the effect of spermine on APOE (Figure 5Q). ChIP-qPCR 
further confirmed that STAT3 bound to the APOE promoter, and 
spermine promoted this binding (Figure 5R).

colored by cell types. The arrow widths are proportional to the interaction strength between connected cell types. The inner bar colors represent the 
targets that receive signal from the corresponding outer bar. The inner and outer bar size is proportional to the signal strength received by the targets 
or send by the senders. (D) Dot plot showing average incoming and outgoing CCI strengths of each minor cell type, colored by major cell types. The 
dot size is proportional to the number of total CCIs in each minor cell type. (E) Heatmap showing the outgoing (left) and incoming (right) signaling 
patterns of target cell types in the pathway level. The relative interaction strength is indicated by color. The bar plots showing the total signaling 
strength of each cell type (top) and the total signaling strength of each signaling pathway (right). (F) Dot plot showing the top significant CCIs between 
Macro_APOE cells and other target cell types. The interaction probability is indicated by color. (G) Boxplot showing the cell type proportions of Macro_
APOE cells in AEG tumor and NAT (P, two-sided Wilcoxon test, *: p < 0.05). (H) IHC staining of APOE in NAT and AEG tumor (N = 54; scale 
bars = 50 μm; P, two-sided Wilcoxon test, ****: p < 0.0001). (I) Correlations of APOE expression with TNM stages of AEG tumor (TI, N = 17; TII-TIV, 
N = 37; P, Mann–Whitney test, *: p < 0.05). (J) Kaplan–Meier survival curve compared patients with different Macro_APOE signature levels (N = 23 for 
Macro_APOE signature high, N = 225 for Macro_APOE signature low; P, log-rank).
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FIGURE 5

Spermine activates the STAT3/APOE axis in macrophage in vitro. (A) The correlation analysis of SMS and APOE expressions in human AEG samples 
(N = 54; P, Pearson correlation test). (B) Real-time qPCR analysis of APOE mRNA expression in RAW264.7 and THP-1 treated with DMSO or spermine 
(10 μM) for 48 h (N = 3; P, two-tailed unpaired t-test, *: p < 0.05, **: p < 0.01). (C) Western blot analysis of APOE protein expression in RAW264.7 and 
THP-1 treated with DMSO or spermine (10 μM) for 48 h. (D) Flow cytometry analysis of APOE+ cell proportion in THP-1 treated with DMSO or spermine 
(10 μM) for 48 h (N = 3; P, two-tailed unpaired t-test, ***: p < 0.001). (E) Real-time qPCR analysis of M1 markers and M2 markers mRNA expression in 
RAW264.7 and THP-1 treated with DMSO or spermine (10 μM) for 48 h (N = 3; P, two-tailed unpaired t-test, ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: 
p < 0.001; ****: p < 0.0001). (F) Flow cytometry analysis of CD206+ cell proportion in RAW264.7 and THP-1 treated with DMSO or spermine (10 μM) for 
48 h (N = 3; P, two-tailed unpaired t-test, ***: p < 0.001). (G) Assessment of the efficiency of SMS knockdown by small interfering RNA in MFC and 
OE-19 via Western blot. (H) Scheme for the process of culture medium (CM) of tumor cells extraction and macrophages cultivation. (I) Real-time qPCR 
analysis of APOE mRNA expression in RAW264.7 and THP-1 treated with CM of control or siSMS for 48 h (N = 3; P, two-tailed unpaired t-test, *: 
p < 0.05). (J) Western blot analysis of APOE protein expression in RAW264.7 and THP-1 treated with CM of control or siSMS for 48 h. (K) Flow 
cytometry analysis of APOE+ cell proportion in THP-1 treated with CM of control or siSMS for 48 h (N = 3; P, two-tailed unpaired t-test, ns: p > 0.05, *: 
p < 0.05, **: p < 0.01, ***: p < 0.001). (L) Real-time qPCR analysis of M1 markers and M2 markers mRNA expression in RAW264.7 and THP-1 treated with 
CM of control or siSMS for 48 h (N = 3; P, two-tailed unpaired t-test, **: p < 0.01). (M) Flow cytometry analysis of CD206+ cell proportion in RAW264.7 
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Taken together, these results indicated that spermine activated the 
STAT3/APOE axis in macrophages, thereby promoting the 
polarization of macrophages toward Macro_APOE.

3.7 Validation of spermine-mediated 
immunosuppression through promoting 
Macro_APOE polarization in vivo

Next, we further investigated the immunomodulatory effects of 
spermine on the TME in  vivo. MFC cells were subcutaneously 
inoculated into the right dorsal flank of 615 mice. Starting from the 
day of tumor implantation, mice received daily intraperitoneal 
injections of either spermine (5 mg/kg) or PBS (vehicle control) for 14 
consecutive days (48) (Figure 6A). Spermine treatment significantly 
increased tumor burden, as evidenced by both enlarged tumor volume 
and elevated tumor weight compared to PBS-treated controls 
(Figure  6B). Flow cytometric analysis revealed spermine-induced 
remodeling of immune cell populations. Specifically, we observed 
increased population of M2 macrophages (CD206+F4/80+) in tumor 
tissue and spleen (Figures 6C,D), accompanied by a reduced CD8+/
CD4+ T cell ratio (Figures 6E,F). Tumors from spermine-treated mice 
exhibited expanded Treg cells (Foxp3+CD4+) populations and 
diminished functional cytotoxic T cells (TNFα+CD8+) (Figures 6G,H). 
We then examined the level of APOE expression, F4/80+ macrophages, 
CD206+ macrophages and CD8+T cells using IHC staining (Figure 6I). 
The results confirmed that spermine treatment promoted macrophages 
polarization toward Macro_APOE and reduced the CD8+T cells 
infiltration. Notably, although spermine increased the proportion of 
CD206+ macrophages, the total F4/80+ macrophage population 
exhibited no significant alteration, suggesting specific modulation of 
macrophage polarization rather than global macrophage recruitment 
(Figure 6J).

Overall, these results demonstrated that spermine induce 
immunosuppressive TME through promoting Macro_APOE 
polarization, and inhibiting cytotoxic CD8+T infiltration, ultimately 
facilitating tumor progression.

4 Discussion

This study integrates multi-omics and functional analysis to 
unravel the complex interplay between tumor heterogeneity, 
metabolic reprogramming, and immunosuppression TME in 
AEG. A rare yet aggressive subpopulation of AEG-like malignant 
cells, originating directly from the EGJ, emerged as a critical 
driver of tumor progression. The AEG-like malignant cells-
derived spermine drives macrophage polarization toward Macro_
APOE through the activation of STAT3 signaling, thus leading to 

the establishment of an immunosuppressive TME, ultimately 
facilitating AEG tumor progression.

The EGJ exposes to both gastric acid and bile reflux, creating a 
pro-inflammatory environment for tumor cell. Specifically, AEG-like 
malignant cells demonstrated a pronounced enrichment of stress 
responses and oxidative damage programs (Figure 2H), indicating 
that these cells are subject to greater exposure to cellular stimuli and 
oxidative damage. Besides, the expression of SMS in AEG-like 
malignant cells was higher than that in EAC-like malignant cells and 
GAC-like malignant cells (Figure 3I), and spatial transcriptomics data 
further confirmed that spermine accumulated around AEG-like 
malignant cells (Figure 3J), indicating that tumor metabolism in this 
area differed from that in the EAC and GAC. These factors may drive 
AEG-like malignant cell emergence and high malignancy.

Spermine, a key polyamine species, has been widely implicated in 
oncogenesis. Elevated spermine levels are frequently observed across 
multiple cancer types (49–52) and correlate with pro-tumorigenic 
processes including enhanced cellular proliferation, suppressed 
apoptosis, and transcriptional activation of metastasis-associated 
genes (49, 50, 53). Beyond its direct oncogenic effects, spermine exerts 
immunomodulatory functions that contribute to immunosuppressive 
microenvironments. For instance, spermine could inhibit IFN-I 
response through suppressing JAK signaling to attenuate autoimmune 
pathogenesis in systemic lupus erythematosus (54). It also restricts 
lung inflammation by impairing dendritic cell-mediated cytokine 
secretion, collectively demonstrating its potent immunosuppressive 
properties. Additionally, it has also been proved that spermine could 
regulate the polarization of macrophages. In acute liver injury models, 
it drives macrophage polarization toward M2 phenotypes via ATG5-
dependent autophagy (55). Besides, spermine suppresses innate 
immune response by significantly reducing the levels of inducible 
NOS2 in macrophages responding to H. pylori infection (56). In this 
study, we also found that spermine plays an immunosuppressive role 
in the TME of AEG. Spermine facilitated the polarization of 
macrophages toward the Macro_APOE, and enhanced the infiltration 
of Tregs while simultaneously reducing the infiltration of functional 
T cells within the tumors. Notably, while we identified that spermine 
increases APOE transcription via STAT3 phosphorylation in 
macrophages, the upstream mechanisms driving STAT3 activation 
and spermine’s broader immunomodulatory effects on other immune 
cells remain to be further elucidated.

The functional polarization of TAMs plays a pivotal role in 
shaping immunosuppressive tumor microenvironments (57). Our 
findings highlight a specific subset of Macro_APOE as key 
mediators of spermine-driven immunosuppression in 
AEG. Emerging evidences underscored immunosuppressive 
crosstalk mediated by Macro_APOE with both tumor cells or 
immune cells. In pancreatic cancer, Macro_APOE activated 
CXCL1 and CXCL5 expression through LDL receptor and NF-κB 

and THP-1 treated with CM of control or siSMS for 48 h (N = 3; P, two-tailed unpaired t-test, **: p < 0.01). (N) Western blot analysis of STAT3 and P65 
total and phosphorylated protein expression in THP-1 treated with DMSO or spermine (10 μM) for 48 h. (O) Real-time qPCR analysis of APOE mRNA 
expression in THP-1 treated with DMSO or stattic (10 μM) for 24 h (N = 3; P, two-tailed unpaired t-test, **: p < 0.01). (P) Western blot analysis of APOE 
in THP-1 treated with DMSO or stattic (10 μM) for 24 h. (Q) Western blot analysis of APOE in THP-1 treated with spermine in the presence or absence 
of stattic. (R) ChIP-qPCR analysis of STAT3 binding to the APOE promoter in THP1 treated with DMSO or spermine (10 μM) for 48 h (N = 3; P, two-
tailed unpaired t-test, ns: p > 0.05, *: p < 0.05, ***: p < 0.001).
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FIGURE 6

Validation of spermine-mediated immunosuppression through promoting Macro_APOE polarization in vivo. (A) Scheme for MFC subcutaneous grafts 
and treatment with spermine or PBS in 615 mice (left). Representative images of the tumors at sacrifice (right) (N = 6 for each group). (B) Tumor volume 
(left) and tumor weight (right) in mice in (A) (N = 6; P, two-way ANOVA for left, two-tailed unpaired t-test for right, ***: p < 0.001; ****: p < 0.0001). 
(C,D) Percentage of CD206+ macrophages in tumor (C) and spleen (D) were assessed by flow cytometry (N = 3; P, two-tailed unpaired t-test, *: 
p < 0.05, **: p < 0.01). (E,F) Percentage of CD8+ T and CD4+ T cells in tumor (M) and spleen (N) were assessed by flow cytometry (N = 3; P, two-tailed 
unpaired t-test, ****: p < 0.0001). (G) Percentage of Treg cells in tumor were assessed by flow cytometry (N = 3; P, two-tailed unpaired t-test, ***: 

(Continued)
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signaling in tumor cells, thereby establishing immunosuppressive 
niches (19). Similarly, Macro_APOE impaired immunotherapy 
efficacy via interactions with CD8Tex in triple-negative breast 
cancer, an effect reversible through APOE blockade (21). Through 
CCIs network analysis, we confirmed extensive communication 
hubs mediated by Macro_APOE involving tumor cells and other 
immune cells, such as CD8Tex populations. However, the precise 
molecular mechanisms underlying these interactions require 
systematic interrogation. Macro_APOE has also been shown to 
directly regulate tumor cell proliferation and invasion. In 
particular, APOE was identified as a highly specific and effective 
protein in M2 macrophage-derived exosomes. Exosomes derived 
from M2 macrophages mediate intercellular transfer of PI3K-Akt 
signaling pathway activated by APOE in recipient gastric cancer 
cells, thereby reshaping the migration of cytoskeleton (18). The 
present study focuses on the immunoregulatory role of 
APOE. Further investigation is required to determine whether it 
exerts a direct regulatory effect on tumor cells and, if so, whether 
this regulatory effect is consistent with the mechanism observed in 
gastric cancer.

As spermine-STAT3-APOE axis is a key mechanism driving 
immunosuppression in AEG, targeting any part of the axis may 
disrupt the metabolic-immune crosstalk and re-sensitize tumors 
to immunotherapy. Polyamine blockade therapy (PBT) 
simultaneously targets both endogenous synthesis and exogenous 
uptake to achieve comprehensive polyamine depletion in the 
TME. Representative agents include the ornithine decarboxylase 
(ODC) inhibitor DFMO and the polyamine transport inhibitor 
AMXT1501. This combinatorial strategy has demonstrated 
marked synergistic antitumor efficacy in preclinical models (58). 
In neuroblastoma models, its efficacy has been shown to surpass 
that of DFMO monotherapy (59). A recent study proved that both 
DFMO and AMXT-1501 had individual efficacy on tumor 
regression in hepatocellular carcinoma, and the combination 
with PD1 inhibitor seemed to result in much better tumor 
control. Besides, a spermine-restricted diet  also be  helpful to 
sensitize the response to immunotherapy (60). Combined 
inhibition of STAT3 and immune checkpoint blockade (ICB) has 
shown encouraging results, whereby the addition of STAT3 
inhibitors can enhance therapeutic efficacy, and reduce resistance 
to ICB immunotherapy in parallel. Dasatinib, an indirect STAT3 
inhibitor, significantly facilitated anti-CTLA-4 immunotherapy 
in head and neck squamous cell carcinoma (61), while the 
combined blockade of IL-6 and PD-L1 remarkably inhibited the 
growth of pancreatic ductal adenocarcinoma and hepatocellular 
carcinoma (62, 63). In mice colon cancer model, a combination 
therapy involving stattic was found to significantly enhance the 
antitumor T cell response, improve long-term survival, and 
reduce the immunosuppressive TME, compared to survivin 
mRNA monotherapy (64). Stattic also showed effective inhibition 
of the spermine-STAT3-APOE axis in our study, suggesting that 
STAT3 is a potential target for combination immunotherapy in 

AEG. APOE blockade has also been reported to enhance the 
efficacy of ICB therapy. COG 133 TFA is a fragment of APOE 
peptide, exerting the effect of APOE blockade by competing with 
APOE holoproteins for binding to low-density lipoprotein (LDL) 
receptors (65). The combination of COG 133 TFA and anti-PD1 
dual treatment can produce significant tumor suppression (21, 
66) and COG 133 TFA monotherapy also can reduce the 
proliferation, invasion and migration of cancer cells (66). Based 
on the research above, precision targeting of the spermine-
STAT3-APOE axis represents a promising strategy to remodel the 
tumor microenvironment and enhance the efficacy of ICB 
therapy in AEG.

However, this study has some limitations. First, the scRNA-seq 
and ST data used to analysis contained only six AEG patients, 
resulting in a certain bias. These findings need to be  further 
validated in larger cohorts. Second, while adjacent normal tissues 
serve as a common control in cancer studies, we recognize that 
molecular alterations due to field cancerization effects or tumor 
microenvironment influence may exist. This could potentially 
affect comparative analyzes with tumor tissues. Procurement of 
healthy donor-matched tissues (e.g., esophagogastric junction) is 
ethically and logistically challenging for this disease cohort. In 
future studies, we will incorporate age-matched healthy controls 
from organ donation programs where feasible.

Collectively, this work established a framework in which 
metabolic reprogramming and immune suppression converge to fuel 
AEG progression, offering novel therapeutic targets for this 
understudied malignancy.
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