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Aim: This study aims to develop a robust and lightweight deep learning model
for early brain tumor detection using magnetic resonance imaging (MRI),
particularly under constraints of limited data availability. Objective: To design
a CNN-based diagnostic model that accurately classifies MRI brain scans into
tumor-positive and tumor-negative categories with high clinical relevance,
despite a small dataset. Methods: A five-layer CNN architecture—comprising
three convolutional layers, two pooling layers, and a fully connected dense
layer—was implemented using TensorFlow and TFlearn. A dataset of 189
grayscale brain MRl images was used, with balanced classes. The model was
trained over 10 epochs and 202 iterations using the Adam optimizer. Evaluation
metrics included accuracy, precision, recall, F1 Score, and ROC AUC.

Results: The proposed model achieved 99% accuracy in both training and
validation. Key performance metrics, including precision (98.75%), recall
(99.20%), Fl-score (98.87%), and ROC-AUC (0.99), affirmed the model's
reliability. The loss decreased from 0.412 to near zero. A comparative analysis
with a baseline TensorFlow model trained on 1,800 images showed the superior
performance of the proposed model.

Conclusion: The results demonstrate that accurate brain tumor detection can
be achieved with limited data using a carefully optimized CNN. Future work will
expand datasets and integrate explainable Al for enhanced clinical integration.

KEYWORDS

MRI images, deep learning, medical diagnosis, computer-aided diagnosis, healthcare,
neuroimaging

1 Introduction

A technique for training a computer to create original representations from unprocessed
data is called deep learning. The networK’s popularity may be attributed to its hierarchical and
layered structure. Convolutional Neural Networks (CNNs) acquire properties through an
object compositional hierarchy, starting with simple edges and progressing to more intricate
forms. By layering convolutional and pooling layers, this is achieved. By lowering the feature
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map, pooling combines similar traits into one, and each convolutional
layer identifies local conjunctions of features from the preceding layer.
Researchers in neuroscience have also benefited from deep learning,
as they are starting to address issues related to neuroimaging. Deep
Learning has garnered significant interest due to its ability to address
problems across various domains, including medical image analysis.
In Palestine, cancer is now the second leading cause of death for both
men and women, but over the next decades, it is predicted to overtake
all other causes of death (1).

Research has shown that the most effective means of lowering death
from brain cancer is early diagnosis and treatment. A low-grade growth
that develops slowly will eventually evolve into a neoplasm that grows
rapidly. As a result, the first tumor identification and categorization
helped to anticipate the prognosis and treatment plan by supporting the
assessment of the tumor’s grade and aggressiveness. The diagnosis of
brain tumors is mostly reliant on medical imaging (2). One of the most
efficient methods currently used for tumor detection is magnetic
resonance imaging (MRI). A powerful magnetic flux, radiofrequency
pulses, and a laptop is employed to process tomography imaging data
to produce detailed images of soft tissues and organs. It aids medical
professionals in treating illnesses. The main reason for tomography’s
popularity is that it is a more suitable designation than X-rays (3).

Noise significantly degrades medical images, including MRIs. This
is largely due to knowledge acquisition systems, multiple sources of
interference, operator error, and other factors that impact imaging
mensuration processes and can lead to significant classification errors
(4). This approach typically requires a basic microscope and may
result in a different or incorrect diagnosis, yet it is often inappropriate
when dealing with human life. It emphasizes the need for power-
assisted systems, high-precision systems, or diagnostic systems
(CADx) (5). The CADx system is essential for medical institutions, as
it supports the judgments made by doctors and radiologists. It may
be challenging to create a highly automated and economical diagnostic
system as a result (6).

Gliomas are the most prevalent and aggressive kind of brain
tumor, with a very short survival time for the highest grade. Therefore,
therapy planning may be a crucial step in raising the medical patients’
standards of living. One popular imaging modality for evaluating these
tumors may be MRI (7). These days, with numerous instances and
massive volumes of objective data analysis, computer-based medical
image analysis is gaining popularity due to its speed and intelligence,
surpassing manual methods. By varying the excitation and repetition
durations, magnetic resonance imaging may produce notably unique
tissue types, making it an incredibly adaptable tool for studying various
structures of interest. A single magnetic resonance imaging scan is
insufficient to phase the growth and all of its subregions fully.
Convolutional Neural Networks (CNNs) have demonstrated high
effectiveness in identifying cell division events in two-dimensional
microscopic anatomy pictures within the field of medical image
analysis. When it comes to machine learning strategies, deep learning
is undoubtedly the best option for many imaging tasks. The possibility
of deep learning-based automated diagnosis of brain illnesses will arise
from the availability of large neuroimaging data sets for training. MRI
is a frequently used medical imaging method that offers information
on the identification of brain tumors (8). One of the main challenges
a physician has after reviewing the tomography data is determining
how much time and effort to devote to tumor detection. These days,
CNNss are used for the majority of picture classification problems due
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to their superior accuracy and precision over other currently used
techniques. The accuracy and precision of tumor detection and
identification have increased due to the use of CNNs for image
classification (9).

2 Related work

Over the last 20 years, the detection of brain cancers using MRI
has undergone significant advancements, thanks to the integration of
deep learning (DL), traditional machine learning (ML), and
conventional image processing techniques. This section discusses the
main categories of methodologies and provides an overview of how
our research contributes to and expands upon the existing body
of literature.

2.1 Conventional techniques for machine
learning and segmentation

Most of the early work uses unsupervised clustering and custom
feature extraction. Due to their ability to separate picture intensities
into clusters that represent normal and diseased tissue regions,
segmentation techniques like fuzzy C-Means (FCM) and K-Means
clustering have been widely used (10-12). Despite achieving basic
localization, these methods were very susceptible to noise and
required human parameter adjustment. Changes aimed at improving
segmentation accuracy, such as region-expanding algorithms (13,
14) and gray-level histograms (15), were computationally expensive
and inconsistent, particularly in low-contrast or early-stage tumors
where borders were not obvious. For feature extraction and
classification, further research employs learning vector quantization,
support vector machines (SVMs), and artificial neural networks
(ANNS) (16, 17). These earlier methods, however, sometimes did not
datasets and needed careful

work with diverse patient

feature engineering.

2.2 Techniques based on deep learning and
CNN

CNN s have been used extensively in medical imaging applications
due to their effectiveness in computer vision (26, 27). CNNs eliminate
the requirement for human feature design by automatically extracting
hierarchical features. Models like AlexNet, VGG16, and ResNet have
been modified to perform tasks related to brain tumor classification and
segmentation (18, 19). Although these designs have demonstrated
outstanding performance, they often rely on large, annotated datasets,
which are challenging to collect in the medical field due to privacy
concerns and high labeling costs. To manage volumetric MRI data and
capture spatial relationships between image slices, 3D CNNs have been
the subject of several studies (20). Although these models improve the
accuracy of segmentation tasks, their computational cost makes them
unsuitable for real-time applications or situations with limited
resources. Similar studies have been conducted on Stacked
Autoencoders (SAEs) and Deep Belief Networks (DBNs) (21), but in
the lack of suitable data, training these deep models from scratch may
lead to overfitting.
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2.3 Domain adaptation and learning
transfer

By utilizing pre-trained networks as feature extractors for MRI
classification, which have been trained on natural image datasets such
as ImageNet, researchers have employed transfer learning to reduce
the need for large datasets (22, 23). When paired with domain-specific
fine-tuning, it can accelerate training and enhance generalization.
However, insufficient feature representations may result from the
domain mismatch between natural and medical images. ResNet or
InceptionV3 versions that have been carefully altered and work well
on binary classification tasks are used in certain studies. Clinical safety
criteria, such as recall and AUC, which are essential for real-world
diagnosis, are seldom used to evaluate models.

2.4 Methods for multimodal MRI and
synthesis

To collect different tissue contrasts, advanced segmentation
algorithms often use several MRI modalities. Studies like the BraTS$
Challenge and BraSyn Benchmark (24, 25) demonstrate the
challenges that arise when sequences are erratic or nonexistent,
while also emphasizing the advantages of multimodal input. To fill
in the gaps, several studies have explored the creation of synthetic
MRIs using GANs or autoencoders; however, these methods require
a complex design and are not ideal for use in situations with
limited data.

3 Materials and methods

Cancer remains one of the most life-threatening diseases
worldwide, and early detection is critical for effective treatment. MRI
is a widely used, non-invasive imaging technique that helps identify
abnormalities in the brain, including cancerous tumors. In recent
years, machine learning—particularly image classification
techniques—has demonstrated significant promise in improving the
accuracy and speed of cancer detection using MRI. This study
examines the DL-based application in developing a CNN for brain
tumor detection using MRI scans. The proposed CNN architecture
consists of five layers, specifically designed to classify MRI images into

cancerous and non-cancerous categories with high accuracy.

3.1 Data acquisition

Data plays a crucial part in machine learning systems. The dataset
utilized in this work was available from the UCI Machine Learning
Repository and Kaggle, both of which are publicly accessible. The
dataset downloaded from Kaggle and is accessible at https://www.
kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-
detection/data (last accessed: January 10, 2025), and the second
dataset is available at https://www.kaggle.com/datasets/sartajbhuvaji/
brain-tumor-classification-mri (last accessed: January 20, 2025).
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3.2 Methodology and model architecture

The architecture employed in this study is based on a CNN design,
which is particularly effective for image classification tasks. CNNs
typically include the following core components:

« Convolutional Layers: Extract feature maps from the input image
using learned filters and apply non-linear activation functions
(e.g.» ReLU).

« Pooling Layers: Reduce the spatial size of feature maps, enhance
computational efficiency, and mitigate overfitting—max-pooling
is the most commonly used technique.

« Fully Connected (Dense) Layers: Interpret the extracted features
and produce classification decisions; each neuron is connected to
all neurons in the previous layer.

The proposed model consists of five primary layers: three
convolutional layers, two max-pooling layers, and a fully connected
dense layer. The architecture is implemented using the high-level
TensorFlow Layers API, which streamlines the creation of neural
networks by offering functions to define convolutional, pooling, and
dense layers, along with activation functions and regularization
options such as dropout.

Figure 1 illustrates the sequential layer-wise architecture of the
CNN, clarifying the dimensional transformation of MRI data from
input through convolution, pooling, and dense layers to the final
binary classification. The model was trained using the Adam optimizer
with the following parameters: ¢ = le-8, f; = 0.9, f, =0.999, and a
learning rate of 0.001. To avoid overfitting, a dropout layer with a 0.5
rate was added after the dense layer.

The model processes grayscale MRI images resized to
128 x 128 x 1. The first convolutional layer applies 32 filters (3 x 3)
with ReLU activation, followed by a 2 x 2 max-pooling operation. The
second convolutional layer utilizes 64 filters (3 x 3) with ReLU
activation and an additional 2 x 2 max-pooling operation. The third
convolutional layer consists of 128 filters (3 x 3), followed by another
pooling operation. The output of the convolutional stages is flattened
and passed to a dense layer with 128 neurons, also using ReLU
activation. Ultimately, a single output neuron with sigmoid activation
yields a binary classification decision (tumor-positive or
tumor-negative).

Figure 2 illustrates the initial layers of the CNN, including the first
convolution and pooling layers. The initial convolutional and pooling
layers extract low-level spatial features, such as edges and texture
gradients, which are essential for differentiating tumor boundaries
from normal tissue in MRI images, including edges, lines, and simple
textures. The visual representation highlights how spatial information
is preserved while dimensionality is reduced.

Figure 3 illustrates the intermediate layers of the CNN, which
include deeper convolutional layers with a greater number of filters.
These layers extract high-level, abstract features such as tumor shapes,
boundaries, and textures. These deeper layers abstract high-level
semantic features such as irregular tumor shapes, enhancing the
model’s ability to distinguish pathological from healthy brain structures.

Figure 4 focuses on the final layers of the CNN, including the fully
connected dense layer and the output neuron. These layers are
responsible for interpreting the extracted features and making the
final classification decision. The use of sigmoid activation in the
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FIGURE 1

CNN architecture for brain tumor classification, showing layers for feature extraction and final classification from MRI input images.
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FIGURE 2

Feature extraction in early CNN layers showing low-level spatial features such as edges and textures derived from tumor MRl images.

output neuron enables the model to output a probability score
indicating the presence or absence of a brain tumor.

To complement these visual representations, Table 1 provides a
detailed layer-wise summary of the CNN model, listing input/output
dimensions, number of filters or neurons, kernel and pooling sizes,
and activation functions used at each stage. Moreover, it offers a
concise yet thorough reference for understanding the architecture’s
design and function.

The TensorFlow Layers API enables the construction of these
components with functions such as:
layers  with

e conv2d(): Defines convolutional

specified parameters.

2D

« max_pooling2d(): Creates pooling layers to down-sample
feature maps.
o dense(): Builds fully connected layers for classification.

Due to the complexity of the computational graph, it is segmented

for clarity across Figures 2-4, with each segment representing a critical
stage in the data transformation and classification process.
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4 Experimental setup and results

The proposed CNN model was trained and evaluated using a
dataset comprising 189 MRI images, with an equal balance between
cancerous and non-cancerous cases. The dataset was stratified into
training, validation, and testing subsets to maintain balanced
representation of tumor-positive and tumor-negative cases. Table 2
presents the data distribution according to the train and test splits.
Training was performed for 10 epochs with a batch size of 18, yielding
approximately 202 iterations. Key performance metrics, including
accuracy, loss, and ROC-AUC, were monitored via TensorBoard
throughout training. Hyperparameters were consistently maintained
across experiments to enhance reproducibility. Tracking accuracy and
loss over 202 iterations with TensorBoard enabled validation of stable
convergence and early detection of overfitting, which is critical given
the limited dataset size.

Because of the small sample size, we utilized TensorFlow’s
“ImageDataGenerator” to supplement data in real time and increase
generalization. The augmentation pipeline used horizontal flipping
(p = 0.5) to mimic mirrored brain orientations, small-angle rotations
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FIGURE 3

Intermediate CNN layers highlighting deeper convolutions and expanded feature maps that capture high-level tumor features.

(+10°) to account for head tilt variability, random zoom (+5%) and
translations (+5% of image dimensions) to simulate patient
positioning differences, and Gaussian noise injection (¢ = 0.01) to
simulate  MRI scanner acquisition noise. The augmentation
pipeline contained:

o Horizontal Flipping: To represent mirrored anatomical
configurations, has a chance of 0.5.

« Rotation: Random small-angle rotations within +10°, to account
for minor patient head tilts.

o Zoom: To mimic size differences across scanners, zoom in and
out by up to 5%.

Frontiers in Medicine 05

o Translation: An image dimension from vertical and horizontal
shift up to 5%.

« Noise injection: MRI scanner acquisition noise is simulated using
low-level Gaussian noise (6 = 0.01).

To accommodate for changes in intensity from scanner
calibration, adjust brightness by + 10%. To expose the model to a
broader variety of real-world input conditions without needlessly
extending the dataset on disk, these modifications to the training set
were performed stochastically throughout each epoch. Each run
started with a predefined random seed to maintain consistency.
We can assure repeatability and back up our claims of strong
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FIGURE 4
Final CNN layers: dense and sigmoid output units responsible for
probabilistic classification of tumor presence.

generalization with short datasets by enabling other researchers to
reproduce our preprocessing pipeline and see whether analogous
augmentation tactics offer equivalent advances in other limited-data
settings. In clinical contexts with limited and varied patient data,
augmentation decreases overfitting, enhances feature diversity, and
makes the model more usable.

The dataset used in this study consisted of MRI scans collected
from multiple patients, with one representative scan per subject to
minimize redundancy and prevent model bias. In cases where
numerous scans were available per patient, only one scan was
randomly selected to ensure that no patient’s data appeared in both
the training and validation sets. This procedure prevents data leakage,
ensuring that the model’s performance reflects genuine generalization
rather than memorization of individual patient characteristics.

Figure 5 provides a visual overview of the dataset used in our
experiments, distinguishing between cancerous and non-cancerous
MRI brain scans. Our CNN effectively captured these differences in
structural patterns and intensities for classification.

The model was trained for 35 epochs (840 iterations), achieving a
peak validation accuracy of 98%. The model’s high precision and recall
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TABLE 1 Layer-wise architecture of the proposed CNN model, detailing
input/output shapes, filter counts, kernel sizes, activation functions, and
pooling operations for each layer.

Layer type Output Activation Notes
shape
Grayscale MRI
Input Layer (128,128, 1) —
input
32 filters, 3 x 3
Conv2D (128,128, 32) ReLU
kernel
MaxPooling2D (64, 64, 32) — 2 x 2 pool size
64 filters, 3 x 3
Conv2D (64, 64, 64) ReLU
kernel
MaxPooling2D (32,32, 64) — 2 x 2 pool size
128 filters, 3 x 3
Conv2D (32,32,128) ReLU
kernel
MaxPooling2D (16, 16, 128) — 2 x 2 pool size
Flatten (32768) — —
Fully connected
Dense (128) ReLU
layer
Binary
Output (Dense) (1) Sigmoid classification
output

TABLE 2 Dataset distribution across training, validation, and testing
subsets, showing balanced representation of tumor-positive and tumor-
negative MRI scans of the first dataset.

Dataset Number of Tumor- Tumor-
split images positive negative
Training 133 67 66
Validation 28 14 14
Testing 28 14 14
Total 189 95 94

indicate its potential as a clinical decision support tool to aid
radiologists in more efficient brain tumor identification. Each training
example that passes through the network in both forward and
backward propagation constitutes one iteration.

The Adam optimiser was configured with a learning rate of 0.001,
S1=0.9, B, =0.999, and & = 1075, These values are known to offer
stable and efficient convergence in deep learning models, especially
when working with small datasets. They were selected after
preliminary tuning and cross-referencing with prior studies
demonstrating similar use cases in MRI image classification. Although
extensive hyperparameter tuning was beyond the scope of this study,
the choice of hyperparameters was based on standard values widely
adopted in the literature for medical image classification tasks.

Figure 6 displays the tumor segmentation output, highlighting
spatial tumor regions. The trained model not only classifies the
presence of tumors but also enables the visualization of the detected
tumor region. This segmentation capability adds clinical value by
providing spatial context for the tumor’s location and size.

Figure 7 illustrates the accuracy across iterations, which initially
shows an uneven distribution but ultimately converges to zero as the
iterations progress. The loss rate is a critical component of CNN and
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FIGURE 5

Sample visualization of the MRI dataset illustrating differences between tumor-positive and tumor-negative brain images

is used to improve the CNN architecture. Despite the limited dataset,
the proposed model effectively minimizes loss and enhances accuracy.
Figure 8 presents the Receiver Operating Characteristic (ROC) curve
with an AUC of 0.99, illustrating excellent diagnostic ability.

To further assess the performance of the proposed CNN-based
model, standard classification metrics were computed, including
precision, recall, F1-score, accuracy, and the area under the ROC-AUC
curve. Table 3 consolidates critical performance metrics, including
training accuracy (99%), validation accuracy (99%), loss rate
reduction from 0.412 to nearly zero, precision, recall, F1-score, and
ROC-AUC (0.99), providing a clear and concise overview of the
model’s effectiveness. Figure 9 illustrates the confusion matrix of both
proposed and baseline models when tested with 600 test images of the
second dataset. Additionally, Table 4 compares the performance of the
proposed model with a baseline TensorFlow model trained on a larger
dataset (1800 images) that has lower accuracy (98%) and higher loss
(0.704). The proposed CNN model has superior performance despite
the limited data.

The five-layer CNN architecture was selected to balance
classification accuracy and computational efficiency on a limited
dataset for prospective clinical use. Early research compared the
recommended design to a more complex 8-layer CNN with an extra
convolution-pooling block and a second dense layer. Despite
reaching 99% training accuracy, the deeper model’s validation
accuracy plateaued at 96% after the 20th epoch and displayed
peculiar loss oscillations, indicating overfitting due to the limited
dataset size of 189 pictures. Across all training and validation sets,
the five-layer model consistently reduced loss from 0.412 to near
zero while maintaining 99% accuracy, demonstrating strong
generalization capabilities. Furthermore, it reduced the number of
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FIGURE 6
Segmentation output visualizing localized tumor regions,
highlighting the model’s spatial discrimination capabilities.

parameters by approximately 38%, thereby decreasing training time
on the same GPU from 7.8 s to 4.9 s per epoch. This efficiency
directly supports the study’s purpose of creating a lightweight
diagnostic model suited for real-time inference in clinical settings,
especially when resources are constrained. The architect’s decision
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Accuracy and loss curves of the proposed model: Training loss progression illustrating reduction from 0.412 to near zero, reflecting stable model
convergence.
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Receiver Operating Characteristic (ROC) curve of the proposed model with an AUC of 0.99, indicating excellent diagnostic accuracy.

TABLE 3 Performance metrics of the proposed CNN model, including
accuracy, precision, recall, F1-score, ROC-AUC, and reduction in loss

rate.

Metric Value

Accuracy 99.00%
Precision 98.75%
Recall 99.20%

F1 Score 98.87%
ROC-AUC 0.99
Loss Reduction 0.412 — ~0.00

Frontiers in Medicine

reflects the nature of the classification challenge. When utilizing

MRI to identify brain cancers, spatial indicators such as tumor

margins, regional intensity variations, and abnormal textural

patterns are crucial. They may be successfully retrieved without

having a massive network depth by utilizing three progressively
deeper convolutional layers (32, 64, and 128 filters). According to
feature map representations, the proposed CNN properly captured

both low-level edge attributes and higher-level tumor form

abstractions that were comparable to those in the deeper model.

Given the dataset, processing settings, and observable performance
limits, the five-layer CNN delivers the ideal blend of accuracy,

resilience, and efficiency for this experiment.

08
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BTD (TensorFlow)
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Confusion matrix showing true positive and true negative predictions, validating classification reliability.

TABLE 4 Comparative evaluation of the proposed CNN model versus a baseline TensorFlow implementation, highlighting improved performance with

fewer training samples.

Method ‘ Epochs ‘ Iterations
BTD (TensorFlow) 35 840
Proposed Method

10 202
(TFLearn Based)

5 Conclusion

Deep learning has become a crucial tool in biomedical image
analysis, particularly for applications such as brain tumor
classification using MRI scans. For quicker model construction, the
proposed technique employs CPU-based TensorFlow and TFLearn,
as well as GPU-based TensorFlow. Deep learning (DL) techniques are
increasingly employed in medical imaging for brain tumor detection
and classification. The use of MRI is essential for detecting abnormal
brain tissues, and accurate tumor diagnosis is vital for treatment
planning. To categorize and diagnose brain tumors from a limited
MRI dataset, the study employs a deep learning approach using a
Convolutional Neural Network (CNN). The proposed model
achieved 99% training and 99% validation accuracy, with a validation
loss reduction from 0.412 to near 0.000 across 10 epochs.
Additionally, the model attained an ROC-AUC of 0.99, confirming
its strong discriminative capability. The proposed CNN model
outperformed a baseline model trained on a larger dataset, achieving
higher accuracy (99% vs. 98%) and lower validation loss (0.412 vs.
0.704), which indicates strong potential for deployment in real-time
clinical diagnostics, especially in data-limited settings. The suggested
CNN model may be used in real-world healthcare environments
because of its lightweight design and exceptional diagnostic precision.
In a radiology department’s existing PACS (Picture Archiving and
Communication System), a radiologist may use the model as an
automated pre-screening tool to rank MRI images with a high
likelihood of tumor incidence. Real-time feedback during diagnostic
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‘ Dataset ‘ ROC-AUC ‘ Loss rate
1800 98% 0.704
189 99% 0.412 > ~0.00

sessions could be provided by integrating the model with clinical
decision support systems. Additionally, report authoring could
be made easier by connecting to Radiology Information Systems
(RIS). Because of its minimal computational requirements (4.9 s per
epoch on a standard GPU), the model may also be implemented
on-site in hospitals with limited resources, eliminating the need for
cloud-based processing. Regulatory approval, interoperability with
different MRI scanner outputs, and further validation across
multiple-center datasets to ensure robustness are the remaining
challenges. Before clinical utilization is widely accepted, these
challenges need to be resolved.

6 Future directions

Future work will focus on expanding the dataset to improve
model generalization and reduce bias. Integrating additional imaging
modalities, such as Computed Tomography (CT) and Positron
Emission Tomography (PET), as well as utilizing transfer learning
with pre-trained models, may enhance performance. Exploring three-
dimensional Convolutional Neural Networks (3D CNNs) can capture
spatial context more effectively, while explainable AI methods, such
as Gradient-weighted Class Activation Mapping (Grad-CAM), can
improve interpretability. In the future, data augmentation techniques,
including rotation, flipping, scaling, and brightness adjustment, can
be employed to assess the model’s generalization.
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