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Aim: This study aims to develop a robust and lightweight deep learning model 
for early brain tumor detection using magnetic resonance imaging (MRI), 
particularly under constraints of limited data availability. Objective: To design 
a CNN-based diagnostic model that accurately classifies MRI brain scans into 
tumor-positive and tumor-negative categories with high clinical relevance, 
despite a small dataset. Methods: A five-layer CNN architecture—comprising 
three convolutional layers, two pooling layers, and a fully connected dense 
layer—was implemented using TensorFlow and TFlearn. A dataset of 189 
grayscale brain MRI images was used, with balanced classes. The model was 
trained over 10 epochs and 202 iterations using the Adam optimizer. Evaluation 
metrics included accuracy, precision, recall, F1 Score, and ROC AUC.
Results: The proposed model achieved 99% accuracy in both training and 
validation. Key performance metrics, including precision (98.75%), recall 
(99.20%), F1-score (98.87%), and ROC-AUC (0.99), affirmed the model’s 
reliability. The loss decreased from 0.412 to near zero. A comparative analysis 
with a baseline TensorFlow model trained on 1,800 images showed the superior 
performance of the proposed model.
Conclusion: The results demonstrate that accurate brain tumor detection can 
be achieved with limited data using a carefully optimized CNN. Future work will 
expand datasets and integrate explainable AI for enhanced clinical integration.
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1 Introduction

A technique for training a computer to create original representations from unprocessed 
data is called deep learning. The network’s popularity may be attributed to its hierarchical and 
layered structure. Convolutional Neural Networks (CNNs) acquire properties through an 
object compositional hierarchy, starting with simple edges and progressing to more intricate 
forms. By layering convolutional and pooling layers, this is achieved. By lowering the feature 
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map, pooling combines similar traits into one, and each convolutional 
layer identifies local conjunctions of features from the preceding layer. 
Researchers in neuroscience have also benefited from deep learning, 
as they are starting to address issues related to neuroimaging. Deep 
Learning has garnered significant interest due to its ability to address 
problems across various domains, including medical image analysis. 
In Palestine, cancer is now the second leading cause of death for both 
men and women, but over the next decades, it is predicted to overtake 
all other causes of death (1).

Research has shown that the most effective means of lowering death 
from brain cancer is early diagnosis and treatment. A low-grade growth 
that develops slowly will eventually evolve into a neoplasm that grows 
rapidly. As a result, the first tumor identification and categorization 
helped to anticipate the prognosis and treatment plan by supporting the 
assessment of the tumor’s grade and aggressiveness. The diagnosis of 
brain tumors is mostly reliant on medical imaging (2). One of the most 
efficient methods currently used for tumor detection is magnetic 
resonance imaging (MRI). A powerful magnetic flux, radiofrequency 
pulses, and a laptop is employed to process tomography imaging data 
to produce detailed images of soft tissues and organs. It aids medical 
professionals in treating illnesses. The main reason for tomography’s 
popularity is that it is a more suitable designation than X-rays (3).

Noise significantly degrades medical images, including MRIs. This 
is largely due to knowledge acquisition systems, multiple sources of 
interference, operator error, and other factors that impact imaging 
mensuration processes and can lead to significant classification errors 
(4). This approach typically requires a basic microscope and may 
result in a different or incorrect diagnosis, yet it is often inappropriate 
when dealing with human life. It emphasizes the need for power-
assisted systems, high-precision systems, or diagnostic systems 
(CADx) (5). The CADx system is essential for medical institutions, as 
it supports the judgments made by doctors and radiologists. It may 
be challenging to create a highly automated and economical diagnostic 
system as a result (6).

Gliomas are the most prevalent and aggressive kind of brain 
tumor, with a very short survival time for the highest grade. Therefore, 
therapy planning may be a crucial step in raising the medical patients’ 
standards of living. One popular imaging modality for evaluating these 
tumors may be MRI (7). These days, with numerous instances and 
massive volumes of objective data analysis, computer-based medical 
image analysis is gaining popularity due to its speed and intelligence, 
surpassing manual methods. By varying the excitation and repetition 
durations, magnetic resonance imaging may produce notably unique 
tissue types, making it an incredibly adaptable tool for studying various 
structures of interest. A single magnetic resonance imaging scan is 
insufficient to phase the growth and all of its subregions fully. 
Convolutional Neural Networks (CNNs) have demonstrated high 
effectiveness in identifying cell division events in two-dimensional 
microscopic anatomy pictures within the field of medical image 
analysis. When it comes to machine learning strategies, deep learning 
is undoubtedly the best option for many imaging tasks. The possibility 
of deep learning-based automated diagnosis of brain illnesses will arise 
from the availability of large neuroimaging data sets for training. MRI 
is a frequently used medical imaging method that offers information 
on the identification of brain tumors (8). One of the main challenges 
a physician has after reviewing the tomography data is determining 
how much time and effort to devote to tumor detection. These days, 
CNNs are used for the majority of picture classification problems due 

to their superior accuracy and precision over other currently used 
techniques. The accuracy and precision of tumor detection and 
identification have increased due to the use of CNNs for image 
classification (9).

2 Related work

Over the last 20 years, the detection of brain cancers using MRI 
has undergone significant advancements, thanks to the integration of 
deep learning (DL), traditional machine learning (ML), and 
conventional image processing techniques. This section discusses the 
main categories of methodologies and provides an overview of how 
our research contributes to and expands upon the existing body 
of literature.

2.1 Conventional techniques for machine 
learning and segmentation

Most of the early work uses unsupervised clustering and custom 
feature extraction. Due to their ability to separate picture intensities 
into clusters that represent normal and diseased tissue regions, 
segmentation techniques like fuzzy C-Means (FCM) and K-Means 
clustering have been widely used (10–12). Despite achieving basic 
localization, these methods were very susceptible to noise and 
required human parameter adjustment. Changes aimed at improving 
segmentation accuracy, such as region-expanding algorithms (13, 
14) and gray-level histograms (15), were computationally expensive 
and inconsistent, particularly in low-contrast or early-stage tumors 
where borders were not obvious. For feature extraction and 
classification, further research employs learning vector quantization, 
support vector machines (SVMs), and artificial neural networks 
(ANNs) (16, 17). These earlier methods, however, sometimes did not 
work with diverse patient datasets and needed careful 
feature engineering.

2.2 Techniques based on deep learning and 
CNN

CNNs have been used extensively in medical imaging applications 
due to their effectiveness in computer vision (26, 27). CNNs eliminate 
the requirement for human feature design by automatically extracting 
hierarchical features. Models like AlexNet, VGG16, and ResNet have 
been modified to perform tasks related to brain tumor classification and 
segmentation (18, 19). Although these designs have demonstrated 
outstanding performance, they often rely on large, annotated datasets, 
which are challenging to collect in the medical field due to privacy 
concerns and high labeling costs. To manage volumetric MRI data and 
capture spatial relationships between image slices, 3D CNNs have been 
the subject of several studies (20). Although these models improve the 
accuracy of segmentation tasks, their computational cost makes them 
unsuitable for real-time applications or situations with limited 
resources. Similar studies have been conducted on Stacked 
Autoencoders (SAEs) and Deep Belief Networks (DBNs) (21), but in 
the lack of suitable data, training these deep models from scratch may 
lead to overfitting.
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2.3 Domain adaptation and learning 
transfer

By utilizing pre-trained networks as feature extractors for MRI 
classification, which have been trained on natural image datasets such 
as ImageNet, researchers have employed transfer learning to reduce 
the need for large datasets (22, 23). When paired with domain-specific 
fine-tuning, it can accelerate training and enhance generalization. 
However, insufficient feature representations may result from the 
domain mismatch between natural and medical images. ResNet or 
InceptionV3 versions that have been carefully altered and work well 
on binary classification tasks are used in certain studies. Clinical safety 
criteria, such as recall and AUC, which are essential for real-world 
diagnosis, are seldom used to evaluate models.

2.4 Methods for multimodal MRI and 
synthesis

To collect different tissue contrasts, advanced segmentation 
algorithms often use several MRI modalities. Studies like the BraTS 
Challenge and BraSyn Benchmark (24, 25) demonstrate the 
challenges that arise when sequences are erratic or nonexistent, 
while also emphasizing the advantages of multimodal input. To fill 
in the gaps, several studies have explored the creation of synthetic 
MRIs using GANs or autoencoders; however, these methods require 
a complex design and are not ideal for use in situations with 
limited data.

3 Materials and methods

Cancer remains one of the most life-threatening diseases 
worldwide, and early detection is critical for effective treatment. MRI 
is a widely used, non-invasive imaging technique that helps identify 
abnormalities in the brain, including cancerous tumors. In recent 
years, machine learning—particularly image classification 
techniques—has demonstrated significant promise in improving the 
accuracy and speed of cancer detection using MRI. This study 
examines the DL-based application in developing a CNN for brain 
tumor detection using MRI scans. The proposed CNN architecture 
consists of five layers, specifically designed to classify MRI images into 
cancerous and non-cancerous categories with high accuracy.

3.1 Data acquisition

Data plays a crucial part in machine learning systems. The dataset 
utilized in this work was available from the UCI Machine Learning 
Repository and Kaggle, both of which are publicly accessible. The 
dataset downloaded from Kaggle and is accessible at https://www.
kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-
detection/data (last accessed: January 10, 2025), and the second 
dataset is available at https://www.kaggle.com/datasets/sartajbhuvaji/
brain-tumor-classification-mri (last accessed: January 20, 2025).

3.2 Methodology and model architecture

The architecture employed in this study is based on a CNN design, 
which is particularly effective for image classification tasks. CNNs 
typically include the following core components:

	•	 Convolutional Layers: Extract feature maps from the input image 
using learned filters and apply non-linear activation functions 
(e.g., ReLU).

	•	 Pooling Layers: Reduce the spatial size of feature maps, enhance 
computational efficiency, and mitigate overfitting—max-pooling 
is the most commonly used technique.

	•	 Fully Connected (Dense) Layers: Interpret the extracted features 
and produce classification decisions; each neuron is connected to 
all neurons in the previous layer.

The proposed model consists of five primary layers: three 
convolutional layers, two max-pooling layers, and a fully connected 
dense layer. The architecture is implemented using the high-level 
TensorFlow Layers API, which streamlines the creation of neural 
networks by offering functions to define convolutional, pooling, and 
dense layers, along with activation functions and regularization 
options such as dropout.

Figure 1 illustrates the sequential layer-wise architecture of the 
CNN, clarifying the dimensional transformation of MRI data from 
input through convolution, pooling, and dense layers to the final 
binary classification. The model was trained using the Adam optimizer 
with the following parameters: ε = 1e-8, β₁ = 0.9, β₂ = 0.999, and a 
learning rate of 0.001. To avoid overfitting, a dropout layer with a 0.5 
rate was added after the dense layer.

The model processes grayscale MRI images resized to 
128 × 128 × 1. The first convolutional layer applies 32 filters (3 × 3) 
with ReLU activation, followed by a 2 × 2 max-pooling operation. The 
second convolutional layer utilizes 64 filters (3 × 3) with ReLU 
activation and an additional 2 × 2 max-pooling operation. The third 
convolutional layer consists of 128 filters (3 × 3), followed by another 
pooling operation. The output of the convolutional stages is flattened 
and passed to a dense layer with 128 neurons, also using ReLU 
activation. Ultimately, a single output neuron with sigmoid activation 
yields a binary classification decision (tumor-positive or 
tumor-negative).

Figure 2 illustrates the initial layers of the CNN, including the first 
convolution and pooling layers. The initial convolutional and pooling 
layers extract low-level spatial features, such as edges and texture 
gradients, which are essential for differentiating tumor boundaries 
from normal tissue in MRI images, including edges, lines, and simple 
textures. The visual representation highlights how spatial information 
is preserved while dimensionality is reduced.

Figure 3 illustrates the intermediate layers of the CNN, which 
include deeper convolutional layers with a greater number of filters. 
These layers extract high-level, abstract features such as tumor shapes, 
boundaries, and textures. These deeper layers abstract high-level 
semantic features such as irregular tumor shapes, enhancing the 
model’s ability to distinguish pathological from healthy brain structures.

Figure 4 focuses on the final layers of the CNN, including the fully 
connected dense layer and the output neuron. These layers are 
responsible for interpreting the extracted features and making the 
final classification decision. The use of sigmoid activation in the 
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output neuron enables the model to output a probability score 
indicating the presence or absence of a brain tumor.

To complement these visual representations, Table 1 provides a 
detailed layer-wise summary of the CNN model, listing input/output 
dimensions, number of filters or neurons, kernel and pooling sizes, 
and activation functions used at each stage. Moreover, it offers a 
concise yet thorough reference for understanding the architecture’s 
design and function.

The TensorFlow Layers API enables the construction of these 
components with functions such as:

	•	 conv2d(): Defines 2D convolutional layers with 
specified parameters.

	•	 max_pooling2d(): Creates pooling layers to down-sample 
feature maps.

	•	 dense(): Builds fully connected layers for classification.

Due to the complexity of the computational graph, it is segmented 
for clarity across Figures 2–4, with each segment representing a critical 
stage in the data transformation and classification process.

4 Experimental setup and results

The proposed CNN model was trained and evaluated using a 
dataset comprising 189 MRI images, with an equal balance between 
cancerous and non-cancerous cases. The dataset was stratified into 
training, validation, and testing subsets to maintain balanced 
representation of tumor-positive and tumor-negative cases. Table 2 
presents the data distribution according to the train and test splits. 
Training was performed for 10 epochs with a batch size of 18, yielding 
approximately 202 iterations. Key performance metrics, including 
accuracy, loss, and ROC-AUC, were monitored via TensorBoard 
throughout training. Hyperparameters were consistently maintained 
across experiments to enhance reproducibility. Tracking accuracy and 
loss over 202 iterations with TensorBoard enabled validation of stable 
convergence and early detection of overfitting, which is critical given 
the limited dataset size.

Because of the small sample size, we  utilized TensorFlow’s 
“ImageDataGenerator” to supplement data in real time and increase 
generalization. The augmentation pipeline used horizontal flipping 
(p = 0.5) to mimic mirrored brain orientations, small-angle rotations 

FIGURE 1

CNN architecture for brain tumor classification, showing layers for feature extraction and final classification from MRI input images.

FIGURE 2

Feature extraction in early CNN layers showing low-level spatial features such as edges and textures derived from tumor MRI images.
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(±10°) to account for head tilt variability, random zoom (±5%) and 
translations (±5% of image dimensions) to simulate patient 
positioning differences, and Gaussian noise injection (σ = 0.01) to 
simulate MRI scanner acquisition noise. The augmentation 
pipeline contained:

	•	 Horizontal Flipping: To represent mirrored anatomical 
configurations, has a chance of 0.5.

	•	 Rotation: Random small-angle rotations within ±10°, to account 
for minor patient head tilts.

	•	 Zoom: To mimic size differences across scanners, zoom in and 
out by up to 5%.

	•	 Translation: An image dimension from vertical and horizontal 
shift up to 5%.

	•	 Noise injection: MRI scanner acquisition noise is simulated using 
low-level Gaussian noise (σ = 0.01).

To accommodate for changes in intensity from scanner 
calibration, adjust brightness by ± 10%. To expose the model to a 
broader variety of real-world input conditions without needlessly 
extending the dataset on disk, these modifications to the training set 
were performed stochastically throughout each epoch. Each run 
started with a predefined random seed to maintain consistency. 
We  can assure repeatability and back up our claims of strong 

FIGURE 3

Intermediate CNN layers highlighting deeper convolutions and expanded feature maps that capture high-level tumor features.
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generalization with short datasets by enabling other researchers to 
reproduce our preprocessing pipeline and see whether analogous 
augmentation tactics offer equivalent advances in other limited-data 
settings. In clinical contexts with limited and varied patient data, 
augmentation decreases overfitting, enhances feature diversity, and 
makes the model more usable.

The dataset used in this study consisted of MRI scans collected 
from multiple patients, with one representative scan per subject to 
minimize redundancy and prevent model bias. In cases where 
numerous scans were available per patient, only one scan was 
randomly selected to ensure that no patient’s data appeared in both 
the training and validation sets. This procedure prevents data leakage, 
ensuring that the model’s performance reflects genuine generalization 
rather than memorization of individual patient characteristics.

Figure 5 provides a visual overview of the dataset used in our 
experiments, distinguishing between cancerous and non-cancerous 
MRI brain scans. Our CNN effectively captured these differences in 
structural patterns and intensities for classification.

The model was trained for 35 epochs (840 iterations), achieving a 
peak validation accuracy of 98%. The model’s high precision and recall 

indicate its potential as a clinical decision support tool to aid 
radiologists in more efficient brain tumor identification. Each training 
example that passes through the network in both forward and 
backward propagation constitutes one iteration.

The Adam optimiser was configured with a learning rate of 0.001, 
β₁ = 0.9, β₂ = 0.999, and ε = 10−8. These values are known to offer 
stable and efficient convergence in deep learning models, especially 
when working with small datasets. They were selected after 
preliminary tuning and cross-referencing with prior studies 
demonstrating similar use cases in MRI image classification. Although 
extensive hyperparameter tuning was beyond the scope of this study, 
the choice of hyperparameters was based on standard values widely 
adopted in the literature for medical image classification tasks.

Figure 6 displays the tumor segmentation output, highlighting 
spatial tumor regions. The trained model not only classifies the 
presence of tumors but also enables the visualization of the detected 
tumor region. This segmentation capability adds clinical value by 
providing spatial context for the tumor’s location and size.

Figure 7 illustrates the accuracy across iterations, which initially 
shows an uneven distribution but ultimately converges to zero as the 
iterations progress. The loss rate is a critical component of CNN and 

FIGURE 4

Final CNN layers: dense and sigmoid output units responsible for 
probabilistic classification of tumor presence.

TABLE 1  Layer-wise architecture of the proposed CNN model, detailing 
input/output shapes, filter counts, kernel sizes, activation functions, and 
pooling operations for each layer.

Layer type Output 
shape

Activation Notes

Input Layer (128, 128, 1) —
Grayscale MRI 

input

Conv2D (128, 128, 32) ReLU
32 filters, 3 × 3 

kernel

MaxPooling2D (64, 64, 32) — 2 × 2 pool size

Conv2D (64, 64, 64) ReLU
64 filters, 3 × 3 

kernel

MaxPooling2D (32, 32, 64) — 2 × 2 pool size

Conv2D (32, 32, 128) ReLU
128 filters, 3 × 3 

kernel

MaxPooling2D (16, 16, 128) — 2 × 2 pool size

Flatten (32768) — —

Dense (128) ReLU
Fully connected 

layer

Output (Dense) (1) Sigmoid

Binary 

classification 

output

TABLE 2  Dataset distribution across training, validation, and testing 
subsets, showing balanced representation of tumor-positive and tumor-
negative MRI scans of the first dataset.

Dataset 
split

Number of 
images

Tumor-
positive

Tumor-
negative

Training 133 67 66

Validation 28 14 14

Testing 28 14 14

Total 189 95 94
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is used to improve the CNN architecture. Despite the limited dataset, 
the proposed model effectively minimizes loss and enhances accuracy. 
Figure 8 presents the Receiver Operating Characteristic (ROC) curve 
with an AUC of 0.99, illustrating excellent diagnostic ability.

To further assess the performance of the proposed CNN-based 
model, standard classification metrics were computed, including 
precision, recall, F1-score, accuracy, and the area under the ROC-AUC 
curve. Table 3 consolidates critical performance metrics, including 
training accuracy (99%), validation accuracy (99%), loss rate 
reduction from 0.412 to nearly zero, precision, recall, F1-score, and 
ROC-AUC (0.99), providing a clear and concise overview of the 
model’s effectiveness. Figure 9 illustrates the confusion matrix of both 
proposed and baseline models when tested with 600 test images of the 
second dataset. Additionally, Table 4 compares the performance of the 
proposed model with a baseline TensorFlow model trained on a larger 
dataset (1800 images) that has lower accuracy (98%) and higher loss 
(0.704). The proposed CNN model has superior performance despite 
the limited data.

The five-layer CNN architecture was selected to balance 
classification accuracy and computational efficiency on a limited 
dataset for prospective clinical use. Early research compared the 
recommended design to a more complex 8-layer CNN with an extra 
convolution-pooling block and a second dense layer. Despite 
reaching 99% training accuracy, the deeper model’s validation 
accuracy plateaued at 96% after the 20th epoch and displayed 
peculiar loss oscillations, indicating overfitting due to the limited 
dataset size of 189 pictures. Across all training and validation sets, 
the five-layer model consistently reduced loss from 0.412 to near 
zero while maintaining 99% accuracy, demonstrating strong 
generalization capabilities. Furthermore, it reduced the number of 

parameters by approximately 38%, thereby decreasing training time 
on the same GPU from 7.8 s to 4.9 s per epoch. This efficiency 
directly supports the study’s purpose of creating a lightweight 
diagnostic model suited for real-time inference in clinical settings, 
especially when resources are constrained. The architect’s decision 

FIGURE 5

Sample visualization of the MRI dataset illustrating differences between tumor-positive and tumor-negative brain images.

FIGURE 6

Segmentation output visualizing localized tumor regions, 
highlighting the model’s spatial discrimination capabilities.
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reflects the nature of the classification challenge. When utilizing 
MRI to identify brain cancers, spatial indicators such as tumor 
margins, regional intensity variations, and abnormal textural 
patterns are crucial. They may be successfully retrieved without 
having a massive network depth by utilizing three progressively 
deeper convolutional layers (32, 64, and 128 filters). According to 
feature map representations, the proposed CNN properly captured 
both low-level edge attributes and higher-level tumor form 
abstractions that were comparable to those in the deeper model. 
Given the dataset, processing settings, and observable performance 
limits, the five-layer CNN delivers the ideal blend of accuracy, 
resilience, and efficiency for this experiment.

FIGURE 7

Accuracy and loss curves of the proposed model: Training loss progression illustrating reduction from 0.412 to near zero, reflecting stable model 
convergence.

FIGURE 8

Receiver Operating Characteristic (ROC) curve of the proposed model with an AUC of 0.99, indicating excellent diagnostic accuracy.

TABLE 3  Performance metrics of the proposed CNN model, including 
accuracy, precision, recall, F1-score, ROC-AUC, and reduction in loss 
rate.

Metric Value

Accuracy 99.00%

Precision 98.75%

Recall 99.20%

F1 Score 98.87%

ROC-AUC 0.99

Loss Reduction 0.412 → ~0.00
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5 Conclusion

Deep learning has become a crucial tool in biomedical image 
analysis, particularly for applications such as brain tumor 
classification using MRI scans. For quicker model construction, the 
proposed technique employs CPU-based TensorFlow and TFLearn, 
as well as GPU-based TensorFlow. Deep learning (DL) techniques are 
increasingly employed in medical imaging for brain tumor detection 
and classification. The use of MRI is essential for detecting abnormal 
brain tissues, and accurate tumor diagnosis is vital for treatment 
planning. To categorize and diagnose brain tumors from a limited 
MRI dataset, the study employs a deep learning approach using a 
Convolutional Neural Network (CNN). The proposed model 
achieved 99% training and 99% validation accuracy, with a validation 
loss reduction from 0.412 to near 0.000 across 10 epochs. 
Additionally, the model attained an ROC-AUC of 0.99, confirming 
its strong discriminative capability. The proposed CNN model 
outperformed a baseline model trained on a larger dataset, achieving 
higher accuracy (99% vs. 98%) and lower validation loss (0.412 vs. 
0.704), which indicates strong potential for deployment in real-time 
clinical diagnostics, especially in data-limited settings. The suggested 
CNN model may be used in real-world healthcare environments 
because of its lightweight design and exceptional diagnostic precision. 
In a radiology department’s existing PACS (Picture Archiving and 
Communication System), a radiologist may use the model as an 
automated pre-screening tool to rank MRI images with a high 
likelihood of tumor incidence. Real-time feedback during diagnostic 

sessions could be provided by integrating the model with clinical 
decision support systems. Additionally, report authoring could 
be made easier by connecting to Radiology Information Systems 
(RIS). Because of its minimal computational requirements (4.9 s per 
epoch on a standard GPU), the model may also be  implemented 
on-site in hospitals with limited resources, eliminating the need for 
cloud-based processing. Regulatory approval, interoperability with 
different MRI scanner outputs, and further validation across 
multiple-center datasets to ensure robustness are the remaining 
challenges. Before clinical utilization is widely accepted, these 
challenges need to be resolved.

6 Future directions

Future work will focus on expanding the dataset to improve 
model generalization and reduce bias. Integrating additional imaging 
modalities, such as Computed Tomography (CT) and Positron 
Emission Tomography (PET), as well as utilizing transfer learning 
with pre-trained models, may enhance performance. Exploring three-
dimensional Convolutional Neural Networks (3D CNNs) can capture 
spatial context more effectively, while explainable AI methods, such 
as Gradient-weighted Class Activation Mapping (Grad-CAM), can 
improve interpretability. In the future, data augmentation techniques, 
including rotation, flipping, scaling, and brightness adjustment, can 
be employed to assess the model’s generalization.

FIGURE 9

Confusion matrix showing true positive and true negative predictions, validating classification reliability.

TABLE 4  Comparative evaluation of the proposed CNN model versus a baseline TensorFlow implementation, highlighting improved performance with 
fewer training samples.

Method Epochs Iterations Dataset ROC-AUC Loss rate

BTD (TensorFlow) 35 840 1800 98% 0.704

Proposed Method 

(TFLearn Based)
10 202 189 99% 0.412 → ~0.00
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