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Integration of MRI radiomics 
features and clinical data for 
predicting neurological recovery 
after thoracic spinal stenosis 
surgery: a machine learning 
model
Bin Zheng †, Zhenqi Zhu †, Panfeng Yu , Yan Liang  and 
Haiying Liu *

Spine Surgery, Peking University People’s Hospital, Beijing, China

Background: Thoracic spinal stenosis (TSS) is a rare yet debilitating condition, 
often requiring surgical decompression. Prognostic assessments traditionally 
rely on single clinical or imaging features, limiting prediction accuracy. This 
study explores whether radiomics-based models enhance outcome prediction 
in TSS.
Methods: We retrospectively enrolled 106 surgically treated TSS patients (2012–
2022), collecting clinical data and T2 axial MRI scans. Radiomics features were 
extracted from the most stenotic level, followed by rigorous feature selection 
(ICC > 0.9, U-test, Spearman, mRMR, and LASSO). Six machine learning 
classifiers were trained using radiomics and/or clinical data. Model performance 
was evaluated using AUC on an independent test set.
Results: Radiomics models outperformed clinical models (SVM AUC: 0.824 vs. 
0.731). The combined radiomics–clinical model achieved the highest test-set 
AUC of 0.867, offering improved sensitivity and specificity.
Conclusion: In this preliminary exploratory study, integrating MRI radiomics with 
clinical data appeared to improve prediction of neurological recovery in TSS. 
These findings suggest that radiomics may enable objective, high-dimensional 
assessment of spinal cord pathology and potentially support individualized 
surgical decision-making, although further validation in larger, multicenter 
prospective cohorts is required.
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Introduction

Thoracic spinal stenosis (TSS) is a relatively rare cause of spinal cord compression, often 
resulting from ossification of the ligamentum flavum or the posterior longitudinal ligament 
in the thoracic spine (1). It frequently leads to thoracic spinal cord dysfunction, and severe 
cases require surgical decompression (1). Many clinical studies focus on predicting outcomes 
for TSS or thoracic spinal cord lesions, but most rely on single-factor assessments with limited 
predictive dimensions (2). With the widespread use of MRI, research attention shifts to T2 
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intramedullary high signal intensity (ISI) and its quantitative 
assessment. Kim et al. validate a similar conclusion using the signal 
intensity ratio (SIR): a lower SIR correlates with a higher postoperative 
JOA recovery rate, and the preoperative JOA score itself also acts as a 
positive prognostic indicator (3). Hitchon reports Increased signal 
intensity on T2-weighted MRI images correlated with lower Frankel 
and JOA scores compared to those without (4).

These studies establish the foundation for combined imaging–
clinical assessments. However, feature dimensionality remains low, 
largely relying on visually measurable morphological parameters (such 
as spinal canal diameter or the number of compressed segments) or a 
single grayscale index. This approach fails to capture the potential 
textural heterogeneity in the lesion. Additionally, generalizability remains 
limited—most analyses still use traditional single-factor or multivariate 
regression methods, lacking comprehensive machine learning 
frameworks. Nevertheless, previous cutting-edge research in spinal 
disorders demonstrates radiomics’ potential (5–9). For example, one 
multicenter study combines MRI radiomics and deep learning features 
to predict postoperative upper-limb muscle strength recovery in spinal 
cord injury patients, reporting an AUC near 0.89 on the test set (10).

Researchers therefore need high-throughput radiomic features and 
multi-algorithm machine learning to comprehensively quantify the most 
stenotic level of the thoracic spinal canal, increasing the accuracy and 
clinical utility of outcome predictions on a larger scale. This study 
addresses that gap by using radiomic features from T2 axial MRI to build 
an integrated prediction model. Given the single-center and retrospective 
design, our work should be  regarded as a preliminary exploratory 
analysis, providing early evidence to support individualized risk 
stratification and surgical decision-making in thoracic spinal stenosis.

Methods

Study population

From January 2012 to April 2022, 106 patients (49 men and 57 
women) undergo surgical treatment at our hospital. Inclusion criteria 
are: (a) a clinical diagnosis of thoracic spinal canal stenosis with surgery 
led by a senior orthopedic surgeon; (b) availability of preoperative 
MRI; (c) high-quality images without motion artifacts; and (d) 
preoperative and long-term (≥3 years) follow-up modified Japanese 
Orthopedic Association (mJOA) scores. (e) Standardized posterior 
thoracic laminectomy with instrumentation is performed by a single 
senior spine surgeon. Exclusion criteria include (a) a history of thoracic 
surgery and (b) a history of other diseases (spinal cord tumor, multiple 
sclerosis, spinal cord sclerosis, spinal cord injury, or motor neuron 
disease). We collect clinical data on age, sex, and duration of symptoms. 
We assess neurological impairment using the JOA. Participants divide 
into a poor-outcome group (postoperative JOA < 16) and a good-
outcome group (postoperative JOA ≥ 16), because a postoperative JOA 
under 16 still indicates severe residual deficits (11, 12).

Extraction of MRI parameters

T2-weighted intramedullary high signal intensity (ISI) usually 
reflects intramedullary abnormalities from spinal cord 

compression. We evaluate it both qualitatively and quantitatively. 
ISI severity is classified into three levels: 0 for no signal change, 1 
for mild and fuzzy high signal, and 2 for obvious and easily 
discernible bright signal (13, 14). In this study, we  group ISI 
presence or absence into two categories due to sample-
size considerations.

We use the spinal cord compression ratio to quantify how 
flattened the spinal cord appears in the compressed segment. The 
standard definition is: Spinal cord compression ratio = Minimum 
sagittal (Anterior–Posterior) diameter of the spinal cord at the 
compressed segment/Maximum transverse (Left to Right) diameter. 
A smaller ratio indicates a more flattened cord.

Image preprocessing

All patients undergo MRI on a 3 T scanner in the head-to-
supine position. We  apply a standardized MRI preprocessing 
pipeline to reduce inter-image variability: (1) Resample images to 
ensure consistent resolution (2). Pre-crop the images around the 
spinal cord centerline to maintain uniform dimensions (3). 
Normalize image intensities to keep identical tissue types at 
consistent intensities. SCT (version 4.0.0)1 is applied for 
above process.

ROI segmentation

On axial T2 images, we identify the most severely stenotic level, 
selecting that slice and adjacent slices as the region of interest (ROI). 
Because the intramedullary lesion (ISI) area is often small with unclear 
boundaries, we choose the entire compressed spinal cord cross-section 
as the ROI. Under the supervision of a senior spine surgeon, two 
independent spine surgeons verify the level. We  use the intraclass 
correlation coefficient (ICC) to assess intra- and inter-observer 
reliability. Initially, one investigator delineates the ROI. Another 
investigator with over 10 years of neurosurgical experience then 
randomly selects 30 cases to independently re-delineate, both 
investigators remaining blinded to each other’s results. Using these 30 
cases, we  calculate ICC to measure consistency. We  retain only 
radiomic features with ICC above 0.9  in both datasets for 
further analysis.

Radiomics feature extraction

We carry out feature extraction using the Pyradiomics module.2 
We  enhance the range of derived images using filters such as the 
Laplacian of Gaussian and wavelets. All radiomics features fall into 
seven categories: shape-based features, first-order features, gray-level 
dependence matrix (GLDM) features, gray-level size zone matrix 
(GLSZM) features, neighboring gray-tone difference matrix 

1  https://github.com/neuropoly/spinalcordtoolbox

2  https://github.com/Radiomics/pyradiomics
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(NGTDM) features, gray-level run-length matrix (GLRLM) features, 
and gray-level co-occurrence matrix (GLCM) features. The radiomics 
features are uploaded in Supplementary material 1.

Feature selection

We use a rigorous approach to identify features most pertinent to 
thoracic spinal cord injury. First, a U-test (p < 0.05) pinpoints features 
with significant differences between the spinal cord injury group and 
the spinal cord concussion group. We exclude features with ICC under 
0.9 at this stage. This strategy trims the number of features while 
preserving predictive power.

To address multicollinearity, we perform Spearman correlation 
analysis, examining inter-feature correlations. We label feature pairs 
with a correlation coefficient ≥0.9 or ≤ − 0.9 as strongly correlated 
and retain only the feature with superior diagnostic performance. 
Next, we  use the minimum redundancy maximum relevance 
(mRMR) method to select the top  20 most important features. 
Finally, we apply the least absolute shrinkage and selection operator 
(LASSO) logistic regression to refine the feature set, imposing a 
penalty coefficient during variable selection and arriving at a more 
robust subset.

Model construction

We use multiple machine learning algorithms (Random Forest, 
Bayesian, Neural Network, Decision Tree, Generalized Linear Model, 
and Support Vector Machine) on the selected radiomics features, 
employing SMOTE to balance the classes. To evaluate each classifier’s 

performance, we generate receiver operating characteristic (ROC) 
curves and calculate the area under the curve (AUC).

Statistical analysis

We perform all statistical analyses using Python-based libraries 
(NumPy, Pandas, and SciPy, etc.). We  use the AUC to measure 
predictive model performance. We  employ DeLong’s test for 
comparing AUCs among different models to evaluate statistical 
differences in performance metrics. Analysis code and scripts are 
uploaded in Supplementary materials 2–4.

Results

The study flowgram is shown in Figure 1. We include 106 patients 
with thoracic spinal canal stenosis in this study, dividing them into a 
Good outcome group (63 patients) and a Poor outcome group (43 
patients). Their mean ages are 48.44 ± 10.39 years (Good) and 
46.14 ± 10.89 years (Poor), with no statistically significant difference 
(p = 0.137) (Table 1). The sex ratio is similar in both groups, and the 
average follow-up durations are 45.17 ± 10.10 months and 
43.32 ± 11.90 months, respectively, with no significant difference. The 
Poor group has a significantly longer symptom duration than the 
Good group (18.47 ± 6.70 vs. 13.84 ± 3.76 months, p < 0.001), 
suggesting that persistent symptoms may correlate with worse 
outcomes. On MRI, the Poor group shows a higher incidence of 
intramedullary high signal (ISI) (p = 0.04). Regarding preoperative 
neurological function, the Poor group’s baseline JOA score is distinctly 
lower than that of the Good group (6.88 ± 1.12 vs. 8.13 ± 1.67, 

FIGURE 1

Workflow of radiomics analysis and model construction. Step 1: Region of interest (ROI) segmentation of the most stenotic thoracic spinal cord level 
on axial T2-weighted MRI. Step 2: Radiomics feature extraction from the segmented ROI. Step 3: Feature selection through reproducibility testing, 
statistical filtering, and LASSO regression. Step 4: Model construction using machine learning algorithms, followed by performance evaluation with 
ROC curves and nomogram visualization.
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p < 0.001). The Poor group also has a lower spinal cord compression 
ratio (0.1526 ± 0.0639 vs. 0.1951 ± 0.0621, p < 0.001), indicating more 
severe cord compression. At final follow-up, JOA scores differ 
significantly as well (11.38 ± 2.23 vs. 16.56 ± 0.50, p < 0.001).

We randomly assign all patients to a training set (85 cases) or a 
test set (21 cases) at about a 4:1 ratio. Baseline demographics and 
clinical characteristics do not significantly differ between sets 
(Table  2). Both sets show comparable clinical distributions and 
prognoses, meeting model development and validation needs.

Clinical model construction

JOA baseline, High intensity signal, duration and compression 
rates are applied in clinical model construction. The cross validation 
is shown in Figure 2. Table 3 summarizes different machine learning 
algorithm. The best clinical model achieves an AUC of 0.731 on the 
test set (SVM), with an accuracy of 66.7%, a sensitivity of 62.5%, and 
a specificity of 69.2%. Figure 3 shows the ROC curves and AUCs for 
each machine learning algorithm in the clinical model for the 
test set.

LASSO regression results

Radiomics feature selection and radiomics 
signature building

We extract a total of 1,198 radiomics features from thoracic 
stenosis MRI data, including 234 first-order features, 286 GLCM 
features, 182 GLDM features, 208 GLRLM features, 208 GLSZM 
features, 65 NGTDM features, and 14 shape features (shown in 
Figure  4). After validation, radiomics feature reproducibility is 
satisfactory. We use the LASSO algorithm in the training set to find 
the optimal regularization weight (λ = 0.0126), selecting 10 radiomics 
features that predict outcomes in thoracic spinal canal stenosis, shown 
in Figure  5. Figure  6 shows the coefficient distribution for these 
features. The radiomics score uses this formula:

label = 0.3090601683388831 + +0.127998 * original_firstorder_
Kurtosis −0.077429 * original_firstorder_Minimum +0.114108 * 
original_firstorder_RootMeanSquared −0.047303 * 

original_glcm_Imc2–0.063017 * original_glcm_SumEntropy +0.064179 
* original_glrlm_LongRunLowGrayLevelEmphasis −0.059840 * 
original_glrlm_RunEntropy −0.031554 * original_glrlm_
ShortRunEmphasis −0.016628 * original_glszm_GrayLevelVariance 
+0.008884 * original_glszm_ZoneVariance +0.053577 * original_ngtdm_
Busyness −0.029125 * original_shape_Sphericity

Model construction
We build models using various machine learning algorithms 

based on radiomics features alone, then compare their performance 
(Table 4). The cross validation result is shown in Figure 7. Among 
radiomics-based models, SVM demonstrates the best test-set 
performance, with an AUC of 0.824, an accuracy of 78.1%, a 
sensitivity of 73.3%, and a specificity of 82.4%. Figure 8 shows the 
radiomics model’s ROC curves and AUCs in the training set (A) and 
test set (B).

Radiomics-clinical model
Figure  9 compares the ROC curves of the clinical model, the 

radiomics model, and the combined model in both the training set (A) 
and test set (B). Each model uses its best-performing algorithm, and 
the combined model merges them into a nomogram. Table  5 
summarizes the clinical, radiomics, and combined models. In the 
training set, the radiomics model yields the highest AUC and 
significantly exceeds the clinical model, while the combined model 
reaches an AUC of 0.872. In the test set, the combined model’s ROC 
curve shows an AUC of 0.867, representing the best performance 
overall. Figure 10 shows Calibration curves between three models in 
train set (A) and test set (B). And Figure  11 shows DCA curves 
between three models in train set (A) and test set (B).

Figure 12 presents the nomogram based on radiomics plus clinical 
features, integrating both elements to predict individual surgical 
outcomes. The above ROC analysis supports its effectiveness (Table 6).

Discussion

This study constructs multiple machine learning models using 
T2 axial MRI radiomics features and clinical variables to predict 
neurological recovery after surgery in thoracic spinal stenosis. The 
combined model (radiomics + clinical) provides the best predictive 

TABLE 1  Patients’ demographics.

Variable Train (N = 85) Test (N = 21) P

Age (year) 47.93 ± 10.65 45.81 ± 10.50 p = 0.207

Gender (male/

female)
38/47 11/10

p = 0.53

Follow-up (m) 44.05 ± 10.40 45.95 ± 12.68 p = 0.237

JOA baseline 7.68 ± 1.60 7.38 ± 1.56 p = 0.219

ISI (yes/no) 41/44 13/8 p = 0.262

Compression 

rates
0.1791 ± 0.0644 0.1729 ± 0.0734

p = 0.351

Duration (m) 15.59 ± 5.57 16.24 ± 5.91 p = 0.319

JOA follow-up 14.61 ± 2.88 13.81 ± 3.17 p = 0.133

JOA outcomes 

(good/poor)
54/31 9/12

p = 0.08

TABLE 2  Patients’ demographics in train set and test set.

Variable Good 
(N = 63)

Poor (N = 43) P

Age 48.44 ± 10.39 46.14 ± 10.89 P = 0.137

Follow-up time 

(m)
45.17 ± 10.10 43.32 ± 11.9

p = 0.196

Gender (male/

female)
27/36 22/21

p = 0.4

Duration (m) 13.84 ± 3.76 18.47 ± 6.70 P < 0.001

ISI (yes/no) 27/36 27/16 P = 0.04

JOA baseline 8.13 ± 1.67 6.88 ± 1.12 P < 0.001

Compression rate 0.1951 ± 0.0621 0.1526 ± 0.0639 P < 0.001

JOA follow-up 16.56 ± 0.5 11.38 ± 2.23 P < 0.001
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FIGURE 2

Cross-validation performance of the clinical model.

TABLE 3  Comparison of machine learning performance of clinical model.

Model Accuracy AUC Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task

0 SVM 0.753 0.764 0.457 0.960 0.889 0.716 0.889 0.457 0.604 0.538 Label-

train

1 SVM 0.667 0.731 0.625 0.692 0.556 0.750 0.556 0.625 0.588 0.286 Label-

test

2 KNN 0.788 0.865 0.486 1.000 1.000 0.’ 735 1.000 0.486 0.654 0.600 Label-

train

3 KNN 0.571 0.683 0.375 0.692 0.429 0.643 0.429 0.375 0.400 0.400 Label-

test

4 RandomForest 0.965 0.998 0.914 1.000 1.000 0.943 1.000 0.914 0.955 0.500 Label-

train

5 RandomForest 0.619 0.615 0.250 0.846 0.500 0.647 0.500 0.250 0.333 0.500 Label-

test

6 ExtraTrees 0.588 1.000 0.000 1.000 0.000 0.588 0.000 0.000 NaN 1.000 Label-

train

7 ExtraTrees 0.619 0.678 0.750 0.538 0.500 0.778 0.500 0.750 0.600 0.200 Label-

test

8 XGBoost 0.918 0.978 0.943 0.900 0.868 0.957 0.868 0.943 0.904 0.335 Label-

train

9 XGBoost 0.667 0.663 0.625 0.692 0.556 0.750 0.556 0.625 0.588 0.270 Label-

test

10 LightGBM 0.776 0.834 0.657 0.860 0.767 0.782 0.767 0.657 0.708 0.397 Label-

train

11 LightGBM 0.714 0.731 0.500 0.846 0.667 0.733 0.667 0.500 0.571 0.389 Label-

test
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power, achieving an AUC of 0.867 in the test set, surpassing models 
that include only clinical or only imaging data. This finding 
indicates that incorporating high-dimensional MRI quantitative 
features with patient clinical information greatly enhances the 
ability to discriminate between good and poor postoperative 
neurological recovery, outperforming traditional empirical  
assessments.

In recent years, multiple studies in fields such as cervical spine 
pathologies or spinal cord injuries verify that radiomics holds promise 
for outcome prediction, treatment evaluation, and individualized 
decision-making (10, 15–17). Consistent with those findings, our study 
shows that radiomics-based modeling outperforms models relying solely 
on clinical factors, and that merging radiomics and clinical data further 
boosts the predictive capacity for postoperative neurological outcomes.

FIGURE 3

Receiver operating characteristic (ROC) curves of different machine learning classifiers based on clinical features in the independent test set. Models 
included Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Extra Trees, XGBoost, and LightGBM.

FIGURE 4

Radiomics feature extraction results. (A) Distribution of extracted features across seven categories (first-order, GLCM, GLDM, GLRLM, GLSZM, NGTDM, 
and shape). (B) Violin plots of p-values for different feature categories following univariate filtering, showing significant feature diversity across groups.
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Clinically, TSS prognosis usually depends on surgeon experience 
and a few specific factors—such as preoperative symptom severity or 
MRI findings—but these single-factor predictions have limited 
accuracy (2). For instance, T2 intramedullary high signal is often 
regarded as a marker of severe cord damage and an indicator for poor 
outcome, but its predictive power varies across studies. Kozaki and 
Yukawa report higher intensity is associated with worse outcomes (18, 
19). But traditional MRI qualitative indicators fail to capture the 
complete complexity of lesion properties, leading to suboptimal 
preoperative risk stratification.

Our findings reveal that clinical factors alone (e.g., symptom 
duration, preoperative JOA score) offer limited predictive accuracy for 
TSS outcomes, whereas high-throughput radiomic features from MRI 

markedly enhance model discrimination. Radiomics extracts a 
multitude of objective texture, shape, and grayscale distribution 
features from standard MRI, capturing finer lesion details and spinal 
cord heterogeneity that are imperceptible to the naked eye. These 
high-dimensional, quantitative variables characterize intramedullary 
changes and cord deformation more comprehensively than single 
metrics like T2 high signal presence or maximum compression ratio. 
We observe that a radiomics-based model raises the AUC to around 
0.74 or higher, and that incorporating clinical data further boosts 
performance to 0.867, significantly surpassing any single-factor 
approach. This result implies that a multimodal model can detect the 
complex combination of factors influencing outcomes, thereby 
providing better predictive power than existing methods.

FIGURE 5

Radiomics feature selection using least absolute shrinkage and selection operator (LASSO) regression. (A) Ten-fold cross-validation plot used to 
determine the optimal λ. (B) Coefficient profiles of radiomics features, with 10 non-zero features retained for model construction.

FIGURE 6

Weights of selected radiomics features after LASSO regression. Bar plots show the relative contributions of the 10 retained features to the final 
radiomics signature.
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TABLE 4  Comparison of machine learning performance of radiomics model.

Model_ Accuracy AUC Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task

0 SVM 0.851 0.930 0.750 0.913 0.840 0.857 0.840 0.750 0.792 0.378 Label-

train

1 SVM 0.781 0.824 0.733 0.824 0.786 0.778 0.786 0.733 0.759 0.351 Label-

test

2 KNN 0.7 70 0.846 0.500 0.935 0.824 0.’ 754 0.824 0.500 0.622 0.400 Label-

train

3 KNN 0.531 0.629 0.067 0.941 0.500 0.533 0.500 0.067 0.118 0.600 Label-

test

4 RandomForest 0.865 0.946 0.821 0.891 0.821 0.891 0.821 0.821 0.821 0.412 Label-

train

5 RandomForest 0.562 0.447 0.200 0.882 0.600 0.556 0.600 0.200 0.300 0.540 Label-

test

6 ExtraTrees 0.797 0.870 0.607 0.913 0.810 0.792 0.810 0.607 0.694 0.394 Label-

train

7 ExtraTrees 0.688 0.680 0.800 0.588 0.632 0.’ 769 0.632 0.800 0.’ 

706

0.352 Label-

test

8 XGBoost 0.973 0.997 0.929 1.000 1.000 0.958 1.000 0.929 0.963 0.437 Label-

train

9 XGBoost 0.531 0.376 0.067 0.941 0.500 0.533 0.500 0.067 0.118 0.711 Label-

test

10 LightGBM 0.770 0.840 0.786 0.761 0.667 0.854 0.667 0.786 0.721 0.355 Label-

train

11 LightGBM 0.594 0.543 0.267 0.882 0.667 0.577 0.667 0.267 0.381 0.481 Label-

test

FIGURE 7

Cross-validation performance of radiomics-based models. ROC curves demonstrate performance of different machine learning classifiers in the 
training set using radiomics features only.
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FIGURE 8

Performance of radiomics-based models. (A) ROC curves in the training cohort. (B) ROC curves in the independent test cohort. The SVM-based 
radiomics model achieved the best predictive performance (test-set AUC = 0.824).

FIGURE 9

Comparison of clinical, radiomics, and combined (nomogram) models. (A) ROC curves in the training set. (B) ROC curves in the test set. The combined 
model integrating radiomics and clinical features achieved the best overall predictive performance (test-set AUC = 0.867).

TABLE 5  Comparative performance of clinical, radiomics, and combined models.

Model-
name

Accuracy AUC Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task

Clinic 

signature

0.737 0.783 0.792 0.712 0.559 0.881 0.559 0.792 0.655 0.306 Train

Rad 

signature

0.750 0.835 0.750 0.750 0.581 0.867 0.581 0.750 0.655 0.319 Train

Nomogram 0.816 0.902 0.875 0.788 0.656 0.932 0.656 0.875 0.750 0.322 Train

Clinic 

signature

0.750 0.708 0.333 0.929 0.667 0.’ 765 0.667 0.333 0.444 0.378 Test

Rad 

signature

0.700 0.845 0.667 0.714 0.500 0.833 0.500 0.667 0.571 0.319 Test

Nomogram 0.700 0.857 0.833 0.643 0.500 0.900 0.500 0.833 0.625 0.298 Test
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Radiomics also shows clinical potential by offering objective 
spinal cord injury assessment and individualized estimates of surgical 
benefit. Subtle imaging differences often reflect various pathological 
processes, such as intramedullary degeneration, inflammatory 
edema, microhemorrhages, or local blood supply changes, which 
single imaging signs or subjective observations frequently miss. By 
modeling high-dimensional radiomics, clinicians can better quantify 
the interplay among these pathological factors, identify high-risk 
patients preoperatively, and optimize surgical timing and approach.

Moreover, radiomics easily integrates with artificial intelligence 
algorithms, allowing for the creation of comprehensive decision-support 
systems that merge imaging, clinical characteristics, and surgical 
parameters. Compared to traditional regression models, machine 
learning (e.g., random forests, SVMs, and neural networks) excels at 
handling complex, nonlinear data, enabling more precise, individualized 

prognosis predictions for TSS patients. This is especially valuable for a 
patient population prone to wide variability in postoperative functional 
recovery and in need of timely interventions.

Compared with existing prediction methods, our combined 
radiomics-based model offers multiple advantages and strong clinical 
feasibility. First, radiomics analysis objectively extracts numerous 
MRI features, reducing subjective bias and capturing subtle imaging 
details relevant to spinal canal morphology, spinal cord compression, 
and signal heterogeneity. Second, machine learning algorithms 
incorporate this multidimensional information and uncover 
nonlinear relationships between imaging biomarkers and clinical 
data, improving predictive accuracy. Our findings confirm that a 
multi-factor model outperforms any single-factor approach, 
highlighting the potential of statistical learning in complex clinical 
prediction tasks.

FIGURE 10

Calibration curves of the clinical model, radiomics model, and combined nomogram model. (A) Training set. (B) Test set. The combined model 
demonstrated the best agreement between predicted and observed outcomes.

FIGURE 11

Decision curve analysis (DCA) of the clinical model, radiomics model, and combined nomogram model. (A) Training set. (B) Test set. The nomogram 
consistently provides a higher net clinical benefit across a wider range of threshold probabilities compared with models using clinical or radiomics 
features alone.
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Nonetheless, this study faces certain limitations:(1) Study Design: 
This is a single-center retrospective study with a relatively small sample 
size, which may limit model robustness and generalizability. Larger 
datasets from multiple centers and regions would strengthen external 
validation. Prospective, multicenter designs also help control 
confounders and further validate clinical applicability. (2) ROI 
Segmentation: We manually delineate the lesion region, which introduces 
observer subjectivity. Although it ensures some accuracy, operator 
variability still exists. Future studies may adopt semi-automated or fully 
automated computer-assisted segmentation tools to reduce manual bias.

Conclusion

This preliminary study suggests that integrating T2 axial MRI 
radiomics with clinical variables via machine learning may enhance the 
prediction of postoperative neurological recovery in thoracic spinal 
stenosis. While promising, these findings remain exploratory and require 
external validation in larger, prospective, multicenter studies.
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TABLE 6  Delong test of three models.
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