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Integration of MRI radiomics
features and clinical data for
predicting neurological recovery
after thoracic spinal stenosis
surgery: a machine learning
model

Bin Zheng', Zhenqi Zhu', Panfeng Yu, Yan Liang and
Haiying Liu*

Spine Surgery, Peking University People’s Hospital, Beijing, China

Background: Thoracic spinal stenosis (TSS) is a rare yet debilitating condition,
often requiring surgical decompression. Prognostic assessments traditionally
rely on single clinical or imaging features, limiting prediction accuracy. This
study explores whether radiomics-based models enhance outcome prediction
in TSS.

Methods: We retrospectively enrolled 106 surgically treated TSS patients (2012-
2022), collecting clinical data and T2 axial MRI scans. Radiomics features were
extracted from the most stenotic level, followed by rigorous feature selection
(ICC>0.9, U-test, Spearman, mRMR, and LASSO). Six machine learning
classifiers were trained using radiomics and/or clinical data. Model performance
was evaluated using AUC on an independent test set.

Results: Radiomics models outperformed clinical models (SVM AUC: 0.824 vs.
0.731). The combined radiomics—clinical model achieved the highest test-set
AUC of 0.867, offering improved sensitivity and specificity.

Conclusion: In this preliminary exploratory study, integrating MRI radiomics with
clinical data appeared to improve prediction of neurological recovery in TSS.
These findings suggest that radiomics may enable objective, high-dimensional
assessment of spinal cord pathology and potentially support individualized
surgical decision-making, although further validation in larger, multicenter
prospective cohorts is required.

KEYWORDS

thoracic spinal stenosis, MRI radiomics, machine learning, neurological recovery,
predictive

Introduction

Thoracic spinal stenosis (TSS) is a relatively rare cause of spinal cord compression, often
resulting from ossification of the ligamentum flavum or the posterior longitudinal ligament
in the thoracic spine (1). It frequently leads to thoracic spinal cord dysfunction, and severe
cases require surgical decompression (1). Many clinical studies focus on predicting outcomes
for TSS or thoracic spinal cord lesions, but most rely on single-factor assessments with limited
predictive dimensions (2). With the widespread use of MRI, research attention shifts to T2
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intramedullary high signal intensity (ISI) and its quantitative
assessment. Kim et al. validate a similar conclusion using the signal
intensity ratio (SIR): a lower SIR correlates with a higher postoperative
JOA recovery rate, and the preoperative JOA score itself also acts as a
positive prognostic indicator (3). Hitchon reports Increased signal
intensity on T2-weighted MRI images correlated with lower Frankel
and JOA scores compared to those without (4).

These studies establish the foundation for combined imaging—
clinical assessments. However, feature dimensionality remains low,
largely relying on visually measurable morphological parameters (such
as spinal canal diameter or the number of compressed segments) or a
single grayscale index. This approach fails to capture the potential
textural heterogeneity in the lesion. Additionally, generalizability remains
limited—most analyses still use traditional single-factor or multivariate
regression methods, lacking comprehensive machine learning
frameworks. Nevertheless, previous cutting-edge research in spinal
disorders demonstrates radiomics’ potential (5-9). For example, one
multicenter study combines MRI radiomics and deep learning features
to predict postoperative upper-limb muscle strength recovery in spinal
cord injury patients, reporting an AUC near 0.89 on the test set (10).

Researchers therefore need high-throughput radiomic features and
multi-algorithm machine learning to comprehensively quantify the most
stenotic level of the thoracic spinal canal, increasing the accuracy and
clinical utility of outcome predictions on a larger scale. This study
addresses that gap by using radiomic features from T2 axial MRI to build
an integrated prediction model. Given the single-center and retrospective
design, our work should be regarded as a preliminary exploratory
analysis, providing early evidence to support individualized risk
stratification and surgical decision-making in thoracic spinal stenosis.

Methods
Study population

From January 2012 to April 2022, 106 patients (49 men and 57
women) undergo surgical treatment at our hospital. Inclusion criteria
are: (a) a clinical diagnosis of thoracic spinal canal stenosis with surgery
led by a senior orthopedic surgeon; (b) availability of preoperative
MRJ; (c) high-quality images without motion artifacts; and (d)
preoperative and long-term (>3 years) follow-up modified Japanese
Orthopedic Association (mJOA) scores. (e) Standardized posterior
thoracic laminectomy with instrumentation is performed by a single
senior spine surgeon. Exclusion criteria include (a) a history of thoracic
surgery and (b) a history of other diseases (spinal cord tumor, multiple
sclerosis, spinal cord sclerosis, spinal cord injury, or motor neuron
disease). We collect clinical data on age, sex, and duration of symptoms.
We assess neurological impairment using the JOA. Participants divide
into a poor-outcome group (postoperative JOA < 16) and a good-
outcome group (postoperative JOA > 16), because a postoperative JOA
under 16 still indicates severe residual deficits (11, 12).

Extraction of MRI parameters

T2-weighted intramedullary high signal intensity (ISI) usually

reflects intramedullary abnormalities from spinal cord
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compression. We evaluate it both qualitatively and quantitatively.
ISI severity is classified into three levels: 0 for no signal change, 1
for mild and fuzzy high signal, and 2 for obvious and easily
discernible bright signal (13, 14). In this study, we group ISI
presence or absence into two categories due to sample-
size considerations.

We use the spinal cord compression ratio to quantify how
flattened the spinal cord appears in the compressed segment. The
standard definition is: Spinal cord compression ratio = Minimum
sagittal (Anterior-Posterior) diameter of the spinal cord at the
compressed segment/Maximum transverse (Left to Right) diameter.
A smaller ratio indicates a more flattened cord.

Image preprocessing

All patients undergo MRI on a 3 T scanner in the head-to-
supine position. We apply a standardized MRI preprocessing
pipeline to reduce inter-image variability: (1) Resample images to
ensure consistent resolution (2). Pre-crop the images around the
spinal cord centerline to maintain uniform dimensions (3).
Normalize image intensities to keep identical tissue types at
consistent intensities. SCT (version 4.0.0)! is applied for
above process.

ROI segmentation

On axial T2 images, we identify the most severely stenotic level,
selecting that slice and adjacent slices as the region of interest (ROI).
Because the intramedullary lesion (ISI) area is often small with unclear
boundaries, we choose the entire compressed spinal cord cross-section
as the ROL Under the supervision of a senior spine surgeon, two
independent spine surgeons verify the level. We use the intraclass
correlation coefficient (ICC) to assess intra- and inter-observer
reliability. Initially, one investigator delineates the ROI. Another
investigator with over 10 years of neurosurgical experience then
randomly selects 30 cases to independently re-delineate, both
investigators remaining blinded to each other’s results. Using these 30
cases, we calculate ICC to measure consistency. We retain only
radiomic features with ICC above 0.9 in both datasets for
further analysis.

Radiomics feature extraction

We carry out feature extraction using the Pyradiomics module.
We enhance the range of derived images using filters such as the
Laplacian of Gaussian and wavelets. All radiomics features fall into
seven categories: shape-based features, first-order features, gray-level
dependence matrix (GLDM) features, gray-level size zone matrix
(GLSZM) features, neighboring gray-tone difference matrix

1 https://github.com/neuropoly/spinalcordtoolbox
2 https://github.com/Radiomics/pyradiomics
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(NGTDM) features, gray-level run-length matrix (GLRLM) features,
and gray-level co-occurrence matrix (GLCM) features. The radiomics
features are uploaded in Supplementary material 1.

Feature selection

We use a rigorous approach to identify features most pertinent to
thoracic spinal cord injury. First, a U-test (p < 0.05) pinpoints features
with significant differences between the spinal cord injury group and
the spinal cord concussion group. We exclude features with ICC under
0.9 at this stage. This strategy trims the number of features while
preserving predictive power.

To address multicollinearity, we perform Spearman correlation
analysis, examining inter-feature correlations. We label feature pairs
with a correlation coefficient >0.9 or < — 0.9 as strongly correlated
and retain only the feature with superior diagnostic performance.
Next, we use the minimum redundancy maximum relevance
(mRMR) method to select the top 20 most important features.
Finally, we apply the least absolute shrinkage and selection operator
(LASSO) logistic regression to refine the feature set, imposing a
penalty coefficient during variable selection and arriving at a more
robust subset.

Model construction

We use multiple machine learning algorithms (Random Forest,
Bayesian, Neural Network, Decision Tree, Generalized Linear Model,
and Support Vector Machine) on the selected radiomics features,
employing SMOTE to balance the classes. To evaluate each classifier’s

10.3389/fmed.2025.1633633

performance, we generate receiver operating characteristic (ROC)
curves and calculate the area under the curve (AUC).

Statistical analysis

We perform all statistical analyses using Python-based libraries
(NumPy, Pandas, and SciPy, etc.). We use the AUC to measure
predictive model performance. We employ DeLong’s test for
comparing AUCs among different models to evaluate statistical
differences in performance metrics. Analysis code and scripts are
uploaded in Supplementary materials 2-4.

Results

The study flowgram is shown in Figure 1. We include 106 patients
with thoracic spinal canal stenosis in this study, dividing them into a
Good outcome group (63 patients) and a Poor outcome group (43
patients). Their mean ages are 48.44 + 10.39 years (Good) and
46.14 + 10.89 years (Poor), with no statistically significant difference
(p =0.137) (Table 1). The sex ratio is similar in both groups, and the
45.17 £ 10.10 months
43.32 £+ 11.90 months, respectively, with no significant difference. The

average follow-up durations are and
Poor group has a significantly longer symptom duration than the
Good group (1847 +6.70 vs. 13.84 +3.76 months, p < 0.001),
suggesting that persistent symptoms may correlate with worse
outcomes. On MRI, the Poor group shows a higher incidence of
intramedullary high signal (ISI) (p = 0.04). Regarding preoperative
neurological function, the Poor group’s baseline JOA score is distinctly

lower than that of the Good group (6.88 +1.12 vs. 8.13 + 1.67,

FIGURE 1

ROC curves and nomogram visualization

1.ROI segmentation 2.Feature extraction 3.Feature selection 4.Model Construction

Workflow of radiomics analysis and model construction. Step 1: Region of interest (ROI) segmentation of the most stenotic thoracic spinal cord level
on axial T2-weighted MRI. Step 2: Radiomics feature extraction from the segmented ROI. Step 3: Feature selection through reproducibility testing,
statistical filtering, and LASSO regression. Step 4: Model construction using machine learning algorithms, followed by performance evaluation with

QL
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TABLE 1 Patients’ demographics.

TABLE 2 Patients’ demographics in train set and test set.

10.3389/fmed.2025.1633633

Variable Good Poor (N = 43) P
(N = 63)

Age 48.44 £10.39 46.14 £ 10.89 P=0.137

Follow-up time p=0.196
45.17 £10.10 4332+ 11.9

(m)

Gender (male/ p=04

27/36 22/21

female)

Duration (m) 13.84 £ 3.76 18.47 £ 6.70 P <0.001

ISI (yes/no) 27136 27/16 P=0.04

JOA baseline 8.13+1.67 6.88+1.12 P <0.001

Compression rate 0.1951 £ 0.0621 0.1526 + 0.0639 P <0.001

JOA follow-up 16.56 + 0.5 11.38 +2.23 P <0.001

Variable Train (N = 85) Test (N = 21) P

Age (year) 47.93 £ 10.65 45.81 +10.50 p=0.207

Gender (male/ p=053
38/47 11/10

female)

Follow-up (m) 44.05 £ 10.40 45.95 £ 12.68 p=0.237

JOA baseline 7.68 + 1.60 7.38 + 1.56 p=0219

ISI (yes/no) 41/44 13/8 p=0262

Compression p=0.351

0.1791 £ 0.0644 0.1729 £ 0.0734

rates

Duration (m) 15.59 + 5.57 16.24 £5.91 p=0319

JOA follow-up 14.61 +2.88 13.81 £3.17 p=0.133

JOA outcomes p=0.08
54/31 9/12

(good/poor)

P <0.001). The Poor group also has a lower spinal cord compression
ratio (0.1526 + 0.0639 vs. 0.1951 + 0.0621, p < 0.001), indicating more
severe cord compression. At final follow-up, JOA scores differ
significantly as well (11.38 £ 2.23 vs. 16.56 + 0.50, p < 0.001).

We randomly assign all patients to a training set (85 cases) or a
test set (21 cases) at about a 4:1 ratio. Baseline demographics and
clinical characteristics do not significantly differ between sets
(Table 2). Both sets show comparable clinical distributions and
prognoses, meeting model development and validation needs.

Clinical model construction

JOA baseline, High intensity signal, duration and compression
rates are applied in clinical model construction. The cross validation
is shown in Figure 2. Table 3 summarizes different machine learning
algorithm. The best clinical model achieves an AUC of 0.731 on the
test set (SVM), with an accuracy of 66.7%, a sensitivity of 62.5%, and
a specificity of 69.2%. Figure 3 shows the ROC curves and AUCs for
each machine learning algorithm in the clinical model for the
test set.

LASSO regression results

Radiomics feature selection and radiomics
signature building

We extract a total of 1,198 radiomics features from thoracic
stenosis MRI data, including 234 first-order features, 286 GLCM
features, 182 GLDM features, 208 GLRLM features, 208 GLSZM
features, 65 NGTDM features, and 14 shape features (shown in
Figure 4). After validation, radiomics feature reproducibility is
satisfactory. We use the LASSO algorithm in the training set to find
the optimal regularization weight (1 = 0.0126), selecting 10 radiomics
features that predict outcomes in thoracic spinal canal stenosis, shown
in Figure 5. Figure 6 shows the coefficient distribution for these
features. The radiomics score uses this formula:

label = 0.3090601683388831 + +0.127998 * original_firstorder_
Kurtosis —0.077429 * original_firstorder_Minimum +0.114108 *

original_firstorder_RootMeanSquared —0.047303 *

Frontiers in Medicine

original_glem_Imc2-0.063017 * original_glem_SumEntropy +0.064179
* original_glrlm_LongRunLowGrayLevelEmphasis —0.059840 *
original_glrlm_RunEntropy =~ —0.031554  *
ShortRunEmphasis —0.016628 * original_glszm_GrayLevelVariance
+0.008884 * original_glszm_ZoneVariance +0.053577 * original_ngtdm_
Busyness —0.029125 * original_shape_Sphericity

original_glrlm_

Model construction

We build models using various machine learning algorithms
based on radiomics features alone, then compare their performance
(Table 4). The cross validation result is shown in Figure 7. Among
radiomics-based models, SVM demonstrates the best test-set
performance, with an AUC of 0.824, an accuracy of 78.1%, a
sensitivity of 73.3%, and a specificity of 82.4%. Figure 8 shows the
radiomics model’s ROC curves and AUCs in the training set (A) and
test set (B).

Radiomics-clinical model

Figure 9 compares the ROC curves of the clinical model, the
radiomics model, and the combined model in both the training set (A)
and test set (B). Each model uses its best-performing algorithm, and
the combined model merges them into a nomogram. Table 5
summarizes the clinical, radiomics, and combined models. In the
training set, the radiomics model yields the highest AUC and
significantly exceeds the clinical model, while the combined model
reaches an AUC of 0.872. In the test set, the combined model’s ROC
curve shows an AUC of 0.867, representing the best performance
overall. Figure 10 shows Calibration curves between three models in
train set (A) and test set (B). And Figure 11 shows DCA curves
between three models in train set (A) and test set (B).

Figure 12 presents the nomogram based on radiomics plus clinical
features, integrating both elements to predict individual surgical
outcomes. The above ROC analysis supports its effectiveness (Table 6).

Discussion

This study constructs multiple machine learning models using
T2 axial MRI radiomics features and clinical variables to predict
neurological recovery after surgery in thoracic spinal stenosis. The
combined model (radiomics + clinical) provides the best predictive

frontiersin.org
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FIGURE 2
Cross-validation performance of the clinical model.

TABLE 3 Comparison of machine learning performance of clinical model.

Model Accuracy AUC @ Sensitivity Specificity PPV Precision Recall F1 Threshold Task

0  SVM 0.753 0.764 0.457 0.960 0889 | 0.716 0.889 0457  0.604 0.538 Label-
train

1 SVM 0.667 0.731 0.625 0.692 0.556 | 0.750 0.556 0625  0.588 0.286 Label-
test

2 | KNN 0.788 0.865 0.486 1.000 1.000 | 02735 1.000 0486  0.654 0.600 Label-
train

3 | KNN 0.571 0.683 0.375 0.692 0.429 | 0.643 0.429 0375  0.400 0.400 Label-
test

4 | RandomForest 0.965 0.998 0.914 1.000 1.000 = 0.943 1.000 0914 0955 0.500 Label-
train

5 | RandomForest 0.619 0.615 0.250 0.846 0.500 | 0.647 0.500 0250  0.333 0.500 Label-
test

6 | ExtraTrees 0.588 1.000 0.000 1.000 0.000 | 0.588 0.000 0.000 | NaN 1.000 Label-
train

7 ExtraTrees 0.619 0.678 0.750 0.538 0.500 = 0.778 0.500 0750  0.600 0.200 Label-
test

8 | XGBoost 0.918 0.978 0.943 0.900 0.868 = 0.957 0.868 0943  0.904 0.335 Label-
train

9 | XGBoost 0.667 0.663 0.625 0.692 0.556 | 0.750 0.556 0.625 | 0.588 0.270 Label-
test

10 LightGBM 0.776 0.834 0.657 0.860 0767 | 0.782 0.767 0657  0.708 0.397 Label-
train

11 LightGBM 0.714 0.731 0.500 0.846 0.667 = 0.733 0.667 0.500 | 0.571 0.389 Label-
test
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FIGURE 3

Receiver operating characteristic (ROC) curves of different machine learning classifiers based on clinical features in the independent test set. Models
included Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Extra Trees, XGBoost, and LightGBM.
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Radiomics feature extraction results. (A) Distribution of extracted features across seven categories (first-order, GLCM, GLDM, GLRLM, GLSZM, NGTDM,
and shape). (B) Violin plots of p-values for different feature categories following univariate filtering, showing significant feature diversity across groups.
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power, achieving an AUC of 0.867 in the test set, surpassing models
that include only clinical or only imaging data. This finding
indicates that incorporating high-dimensional MRI quantitative
features with patient clinical information greatly enhances the
ability to discriminate between good and poor postoperative
neurological recovery, outperforming traditional empirical
assessments.

Frontiers in Medicine 06

In recent years, multiple studies in fields such as cervical spine
pathologies or spinal cord injuries verify that radiomics holds promise
for outcome prediction, treatment evaluation, and individualized
decision-making (10, 15-17). Consistent with those findings, our study
shows that radiomics-based modeling outperforms models relying solely
on clinical factors, and that merging radiomics and clinical data further
boosts the predictive capacity for postoperative neurological outcomes.
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FIGURE 5

Radiomics feature selection using least absolute shrinkage and selection operator (LASSO) regression. (A) Ten-fold cross-validation plot used to
determine the optimal A. (B) Coefficient profiles of radiomics features, with 10 non-zero features retained for model construction.
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radiomics signature.

015 0,10

Weights of selected radiomics features after LASSO regression. Bar plots show the relative contributions of the 10 retained features to the final

-0.05 0.00 0.05 0.10

Clinically, TSS prognosis usually depends on surgeon experience
and a few specific factors—such as preoperative symptom severity or
MRI findings—but these single-factor predictions have limited
accuracy (2). For instance, T2 intramedullary high signal is often
regarded as a marker of severe cord damage and an indicator for poor
outcome, but its predictive power varies across studies. Kozaki and
Yukawa report higher intensity is associated with worse outcomes (18,
19). But traditional MRI qualitative indicators fail to capture the
complete complexity of lesion properties, leading to suboptimal
preoperative risk stratification.

Our findings reveal that clinical factors alone (e.g., symptom
duration, preoperative JOA score) offer limited predictive accuracy for
TSS outcomes, whereas high-throughput radiomic features from MRI

Frontiers in Medicine

markedly enhance model discrimination. Radiomics extracts a
multitude of objective texture, shape, and grayscale distribution
features from standard MRI, capturing finer lesion details and spinal
cord heterogeneity that are imperceptible to the naked eye. These
high-dimensional, quantitative variables characterize intramedullary
changes and cord deformation more comprehensively than single
metrics like T2 high signal presence or maximum compression ratio.
We observe that a radiomics-based model raises the AUC to around
0.74 or higher, and that incorporating clinical data further boosts
performance to 0.867, significantly surpassing any single-factor
approach. This result implies that a multimodal model can detect the
complex combination of factors influencing outcomes, thereby
providing better predictive power than existing methods.
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TABLE 4 Comparison of machine learning performance of radiomics model.

Model_ Accuracy AUC Sensitivity Specificity PPV Precision Recall F1 Threshold Task
0 SVM 0.851 0.930 0.750 0913 0.840 0.857 0.840 0.750 0.792 0.378 Label-
train
1 SVM 0.781 0.824 0.733 0.824 0.786 0.778 0.786 0.733 0.759 0.351 Label-
test
2 KNN 0.770 0.846 0.500 0.935 0.824 0,754 0.824 0.500 0.622 0.400 Label-
train
3 KNN 0.531 0.629 0.067 0.941 0.500 0.533 0.500 0.067 0.118 0.600 Label-
test
4 RandomForest 0.865 0.946 0.821 0.891 0.821 0.891 0.821 0.821 0.821 0.412 Label-
train
5 RandomForest 0.562 0.447 0.200 0.882 0.600 0.556 0.600 0.200 0.300 0.540 Label-
test
6 ExtraTrees 0.797 0.870 0.607 0913 0.810 0.792 0.810 0.607 0.694 0.394 Label-
train
7 ExtraTrees 0.688 0.680 0.800 0.588 0.632 0,769 0.632 0.800 0. 0.352 Label-
706 test
8 XGBoost 0.973 0.997 0.929 1.000 1.000 0.958 1.000 0.929 0.963 0.437 Label-
train
9 XGBoost 0.531 0.376 0.067 0.941 0.500 0.533 0.500 0.067 0.118 0.711 Label-
test
10 | LightGBM 0.770 0.840 0.786 0.761 0.667 0.854 0.667 0.786 0.721 0.355 Label-
train
11 | LightGBM 0.594 0.543 0.267 0.882 0.667 0.577 0.667 0.267 0.381 0.481 Label-
test
]
0.8
X
1S} 4 R
ES 0.6
0.5 1
0.4 1
S\}M KILIN RandotlnF orest ExtralTrees XGéoost Light'GBM
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FIGURE 7
Cross-validation performance of radiomics-based models. ROC curves demonstrate performance of different machine learning classifiers in the
training set using radiomics features only.
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FIGURE 8
Performance of radiomics-based models. (A) ROC curves in the training cohort. (B) ROC curves in the independent test cohort. The SVM-based
radiomics model achieved the best predictive performance (test-set AUC = 0.824).
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FIGURE 9

Comparison of clinical, radiomics, and combined (nomogram) models. (A) ROC curves in the training set. (B) ROC curves in the test set. The combined
model integrating radiomics and clinical features achieved the best overall predictive performance (test-set AUC = 0.867).

TABLE 5 Comparative performance of clinical, radiomics, and combined models.

Accuracy AUC Sensitivity = Specificity PPV Precision Recall F1 @ Threshold

Clinic 0.737 0.783 0.792 0.712 0.559 0.881 0.559 0.792 0.655 0.306 Train
signature

Rad 0.750 0.835 0.750 0.750 0.581 0.867 0.581 0.750 0.655 0.319 Train
signature

Nomogram 0.816 0.902 0.875 0.788 0.656 0.932 0.656 0.875 0.750 0.322 Train
Clinic 0.750 0.708 0.333 0.929 0.667 | 0765 0.667 0.333 0.444 0.378 Test
signature

Rad 0.700 0.845 0.667 0.714 0.500 0.833 0.500 0.667 0.571 0.319 Test
signature

Nomogram 0.700 0.857 0.833 0.643 0.500 0.900 0.500 0.833 0.625 0.298 Test

Frontiers in Medicine 09 frontiersin.org



https://doi.org/10.3389/fmed.2025.1633633
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Zheng et al.

10.3389/fmed.2025.1633633

Fraction of positives

------ Perfectly calibrated
—=— Clinic Signature
—#— Rad Signature
—=— Nomogram

04 0.6
Mean predicted probability

0.8

FIGURE 10

Calibration curves of the clinical model, radiomics model, and combined nomogram model. (A) Training set. (B) Test set. The combined model
demonstrated the best agreement between predicted and observed outcomes.
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features alone.

Decision curve analysis (DCA) of the clinical model, radiomics model, and combined nomogram model. (A) Training set. (B) Test set. The nomogram
consistently provides a higher net clinical benefit across a wider range of threshold probabilities compared with models using clinical or radiomics
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Radiomics also shows clinical potential by offering objective
spinal cord injury assessment and individualized estimates of surgical
benefit. Subtle imaging differences often reflect various pathological
processes, such as intramedullary degeneration, inflammatory
edema, microhemorrhages, or local blood supply changes, which
single imaging signs or subjective observations frequently miss. By
modeling high-dimensional radiomics, clinicians can better quantify
the interplay among these pathological factors, identify high-risk
patients preoperatively, and optimize surgical timing and approach.

Moreover, radiomics easily integrates with artificial intelligence
algorithms, allowing for the creation of comprehensive decision-support
systems that merge imaging, clinical characteristics, and surgical
parameters. Compared to traditional regression models, machine
learning (e.g., random forests, SVMs, and neural networks) excels at
handling complex, nonlinear data, enabling more precise, individualized

Frontiers in Medicine

prognosis predictions for TSS patients. This is especially valuable for a
patient population prone to wide variability in postoperative functional
recovery and in need of timely interventions.

Compared with existing prediction methods, our combined
radiomics-based model offers multiple advantages and strong clinical
feasibility. First, radiomics analysis objectively extracts numerous
MRI features, reducing subjective bias and capturing subtle imaging
details relevant to spinal canal morphology, spinal cord compression,
and signal heterogeneity. Second, machine learning algorithms
incorporate this multidimensional information and uncover
nonlinear relationships between imaging biomarkers and clinical
data, improving predictive accuracy. Our findings confirm that a
multi-factor model outperforms any single-factor approach,
highlighting the potential of statistical learning in complex clinical
prediction tasks.
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FIGURE 12
Nomogram integrating radiomics signature and clinical signature for predicting postoperative neurological recovery in thoracic spinal stenosis. The
total points are calculated by summing the scores for clinical and radiomics predictors, which correspond to the estimated probability of poor
outcome.

TABLE 6 Delong test of three models.

Results Nomogram Nomogram Cohort
vs. clinic vs. rad

Good 0.003 0.308 Train ‘

Poor 0.001 0.009 Test ‘

Nonetheless, this study faces certain limitations:(1) Study Design:
This is a single-center retrospective study with a relatively small sample
size, which may limit model robustness and generalizability. Larger
datasets from multiple centers and regions would strengthen external
validation. Prospective, multicenter designs also help control
confounders and further validate clinical applicability. (2) ROI
Segmentation: We manually delineate the lesion region, which introduces
observer subjectivity. Although it ensures some accuracy, operator
variability still exists. Future studies may adopt semi-automated or fully
automated computer-assisted segmentation tools to reduce manual bias.

Conclusion

This preliminary study suggests that integrating T2 axial MRI
radiomics with clinical variables via machine learning may enhance the
prediction of postoperative neurological recovery in thoracic spinal
stenosis. While promising, these findings remain exploratory and require
external validation in larger, prospective, multicenter studies.
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