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Objective: In computer-aided medical diagnosis, precise skin lesion
segmentation is crucial for the early detection and treatment of skin cancer.
However, challenges such as unclear lesion boundaries, low contrast, and
varying lesion shapes make accurate segmentation a difficult task. To address
these challenges, we propose DMFF-Net, a multi-scale, multi-attention feature
fusion network based on DeeplabV3, designed to improve the accuracy of skin
lesion segmentation.

Methods: DMFF-Net integrates several advanced modules to enhance
segmentation performance. The network incorporates a Global Grid Coordinate
Attention Module (GGCAM), which effectively fuses spatial and channel
features to capture the complex relationships between local and global
information. Additionally, a Multi-Scale Depthwise Separable Dilated Convolution
(MDSDC) module is employed to strengthen multi-scale feature extraction,
thereby preventing resolution degradation during convolution. A Mid-High
Level Feature Fusion (MHLFF) module is also introduced to refine critical
feature representations and suppress irrelevant information, thereby improving
segmentation accuracy.

Results: The proposed network was evaluated on four publicly available
datasets: ISIC 2016, ISIC 2017, ISIC 2018, and PHZ. The results show that DMFF-
Net significantly outperforms existing advanced methods. Specifically, it achieves
MloU values of 89.31%, 91.47%, and 86.93% on the ISIC 2016, ISIC 2017, and
ISIC 2018 datasets, respectively. Furthermore, the network achieves accuracy
values of 95.62%, 97.33%, and 94.78%, and F1 scores of 96.93%, 94.91%, and
93.61%, respectively, demonstrating its robustness and effectiveness in skin
lesion segmentation.

Conclusion: The DMFF-Net model, with its multi-scale feature fusion and
attention mechanisms, substantially improves skin lesion segmentation by
preserving crucial spatial details and improving feature representation. Its
superior performance on multiple datasets highlights its potential as a powerful
tool for skin lesion diagnosis and provides an important reference for future
advancements in medical image segmentation.
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1 Introduction

Skin cancer is one of the most common malignancies
worldwide. Malignant melanoma accounted for approximately 20%
of the more than 1.5 million new instances of skin cancer that were
reported globally in 2020 (1). Over recent decades, the incidence of
malignant melanoma has steadily increased. However, despite the
increasing rates of skin cancer, early diagnosis and treatment have
shown relatively high success rates (2). Recent studies indicate that
the five-year survival rate for early-stage melanoma can exceed 95%
with timely treatment, further highlighting the crucial role of early
intervention in skin cancer management. Skin cancer encompasses
various types, and in its early stages, the morphological features
are often subtle, making it difficult to accurately identify with
the naked eye (3). As a result, dermatologists frequently rely on
dermoscopy for early diagnosis. Notably, dermoscopy, a non-
invasive imaging technique, has proven to improve diagnostic
accuracy (4, 5). However, even experienced physicians may
sometimes make subjective judgments or errors when interpreting
dermoscopic images (6), and the manual diagnostic process can
be time-consuming. To address these challenges, Computer-Aided
Diagnostic (CAD) systems have been introduced for skin cancer
diagnosis. Many of these systems rely on accurate segmentation
of skin lesions to identify affected areas in images. Medical
image segmentation has been revolutionized recently by Artificial
Intelligence (AI) technologies, particularly machine learning and
deep learning. These technologies exhibit greater accuracy and
efficiency than conventional segmentation techniques. A notable
example is the widespread application of CAD systems in
medical image segmentation, which has significantly improved
dermatologists’ ability to analyze dermoscopic images (7).

Many machine learning methods were used to identify and
categorize skin lesions; however, their feature extraction skills
were restricted, and they frequently required manually created
features. In contrast, deep learning techniques automatically
extract and optimize features without manual intervention. By
training on labeled data, these techniques autonomously learn
high-level features, significantly improving the accuracy of skin
lesion segmentation. For example, the U-Net design, which is
based on an entire convolutional network, was presented by
Ronneberger et al. (8) and has shown great promise in segmenting
medical images. Subsequent research further developed the U-
Net model, leading to variants such as U-Net++ (9) and UNet3+
(10). These improved models, especially U-Net++, effectively
integrated features from different levels, constructing richer and
more precise feature maps by carefully combining fine-scale
differences in features. The DeepLabV3+ model, developed by
Chen etal. (11), expanded upon the original DeepLabV3 by adding
a straightforward and effective decoder module. This extension
significantly improved segmentation accuracy, particularly in
the fine details of object edges. Their model also thoroughly
explored the Xception architecture and utilized depthwise separable
convolutions to enhance the Atrous Spatial Pyramid Pooling
(ASPP) and decoder modules, forming a balanced encoder-decoder
network in terms of speed and performance. As well, Zhao et al.
(12) introduced the Pyramid Scene Parsing Network (PSPNet),
incorporating global contextual data via a pyramid pooling module,
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which allows for more efficient use of global context and improves
the network’s capacity to comprehend complex scenes. Chen et al.
(13) proposed a network called TrUNet, combining the advantages
of Transformers and Convolutional Neural Networks (CNN). By
using Transformer and Res2Net as two branches of the encoder,
TrUNet aims to extract rich global information to achieve precise
segmentation of lesion areas in medical images. Sun et al. (14)
presented LCAMIix, an innovative approach for data augmentation
in medical image segmentation. This approach mixes two images
and their superpixel-based segmentation masks, integrating local
and contour-aware strategies to improve segmentation accuracy.
Besides the methods mentioned above, other studies have also
focused on effective segmentation of skin lesions, as discussed in
references (15-22), and have demonstrated promising results.

Although these techniques have yielded impressive outcomes
in skin lesion segmentation, the task continues to be difficult
because of issues like indistinct lesion boundaries, poor contrast,
and irregular lesion shapes (23, 24). Moreover, existing CNNs have
several significant limitations when addressing these issues. Firstly,
fixed atrous rates lose fine boundary details; secondly, redundant
feature channels are not adaptively weighted; lastly, pooling layers
insufficiently model long-range dependencies, causing information
loss.

In the study, a multiscale and multiattention feature fusion
network, based on DeepLabV3 and referred to as DMFF-Net,
is proposed to overcome obstacles in skin lesion segmentation
operations. The method includes several key components: First, a
Middle-High-Level Feature Fusion (MHLFF) module is introduced
to enhance the networks capability of understanding complex
scenes by integrating middle-level and high-level features. Second,
the design of a Global Group Coordinate Attention Module
(GGCAM) is employed in the decoder stage, following middle-
high-level feature fusion, to generate attention maps utilizing
global spatial information from the feature maps. That input
feature maps are weighted using these attention maps, thereby
improving feature representation. In addition, inspired by the
ASPP module (25, 26), multi-scale feature fusion (27-30), and
depthwise separable convolutions, the focus is on enhancing
feature extraction while reducing computational complexity (31,
32). A Multi-Scale Depthwise Separable Dilated Convolution
(MDSDC) module is incorporated in the encoder stage to extract
features at various spatial scales. Unlike traditional convolutional
networks that increase the receptive field by stacking multiple
convolution layers, MDSDC significantly expands the receptive
field by employing different dilation rates, while maintaining
image resolution. This is critical for capturing a broader range
of contextual information. Furthermore, global average pooling
is combined to obtain global features from the entire image
and integrate them with local features, helping the network
better understand the relationships between different parts of
the image and the whole. Most importantly, the output features
from the multi-scale depthwise separable dilated convolution are
concatenated along the channel dimension, with channel and
spatial attention mechanisms applied to adjust the weights in
both spatial and channel dimensions, enabling more accurate
segmentation decisions. Four accessible skin disease datasets—ISIC
2016, ISIC 2017, ISIC 2018, and PH2—have been used in extensive
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experimental evaluations of the proposed DMFF-Net. Compared
with State-Of-The-Art (SOTA) techniques, ablation trials have
confirmed its efficacy. Here is a summary of the main contributions
of the work:

1. Multi-scale feature integration for boundary preservation:
By fusing low-level, mid-level, and high-level features,
DMFE-Net effectively captures both global semantic
context and fine lesion boundaries, particularly in
challenging cases with blurry edges, low contrast, or
irregular lesion shapes.

2. GGCAM: We introduce GGCAM in the decoder stage to
refine feature representation by generating global attention
maps. This design enhances critical lesion features while
suppressing irrelevant background, leveraging both average
and max pooling to capture comprehensive global context.

3. MDSDC: To balance performance and computational
efficiency, MDSDC expands the receptive field using
depthwise separable convolutions with varying dilation
rates. This enables effective multi-scale feature extraction
with significantly reduced parameters and FLOPs compared
to traditional ASPP.

4. MHLFF: We design MHLFF to selectively combine mid-
level local details with high-level semantic information.
This
robustness against background noise while retaining

complementary fusion mechanism improves

lesion details.

On four popular segmentation of skin tumor datasets, the
experimental findings showed that our approach performed
competitively when weighed against SOTA techniques and current
mainstream methods.

The rest of the sections of this work are organized as follows:
In addition to discussing current challenges and examining the
use and advancements of attention mechanisms in medical image
segmentation, Section 2 provides an overview of the state of
research on skin lesion segmentation. The network design proposed
in this study is described in detail in Section 3, emphasizing
key techniques and novel features. The effectiveness of this
study is demonstrated in Section 4, which presents experiments
and comparative analyses with existing methods to validate the
performance and efficiency of the proposed approach. Based on
the findings in Section 4, Section 5 provides a more thorough
analysis and summary of the proposed method, pointing out
current limitations and outlining potential improvements. Finally,
Section 6, the last part, concludes the work by highlighting the main
contributions and findings of the research.

2 Relate work

2.1 Skin lesion segmentation

Accurate skin lesion segmentation is essential for patient
diagnosis and care. The process requires a clear distinction between
diseased regions and healthy skin. Traditionally, segmentation
relied on various machine learning methods, including active
contour models, thresholding methods (33-35), support vector
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machines (36), and edge detection techniques. However, these
approaches were often limited by the complexity of image
preprocessing and postprocessing, particularly in cases where the
contrast between lesions and normal skin was low, which frequently
resulted in imprecise segmentation boundaries.

To overcome these limitations, researchers introduced
segmentation algorithms based on deep CNNs. These algorithms
demonstrated superior performance with the segmentation of
healthcare pictures without the need for extensive preprocessing,
effectively improving the precision of segmenting skin lesions and
providing more reliable clinical decision support for doctors. Long
et al. (37) developed an image segmentation technique based on
Fully Convolutional Networks (FCNs). The FCNs™ design allowed
this method to handle input images of any size, thereby enhancing
its applicability and broadening its range of applications. Also, the
optimization of the network structure reduced redundancy and
increased operational efficiency. Nevertheless, this segmentation
strategy might sacrifice some image details, indicating that there
was room for improvement in terms of segmentation accuracy.
Ronneberger et al. (8) introduced the U-Net model, which is
built upon a FCN. This model had significant application value
in the field of medical image segmentation. The U-Net model’s
structure comprised two parts: an encoder and a decoder. The
encoder was responsible for extracting image features through
downsampling to generate multiple feature maps, while the
decoder reconstructed the spatial information of the image
through upsampling to produce the final segmentation map. The
main advantage of this model lies in its effective utilization of
global positional information and contextual information, allowing
U-Net to train efficiently even with a limited number of samples.
The U-Net model has proven its worth in various medical image
segmentation tasks, including the precise segmentation of neurons,
cellular tumors, and HeLa cells. SkinNet (38) was a novel network
architecture that improved upon the classic U-Net model. While
maintaining the original model’s strengths, it carefully designed
the encoder structure. Specifically, SkinNet adopted the concept
of expanded convolutions in the encoder part, which effectively
increased the receptive field of each convolution kernel, enabling
the network to capture a broader context. This design not only
enhanced the networKs ability to extract image features but
also helped improve the model’s recognition and segmentation
performance of complex structures. Gu et al. (39) presented an
innovative Context Encoder Network (CE-Net) that focuses on
capturing detailed information and maintaining spatial feature
integrity. The architecture comprises three primary components: a
feature encoding module, a context extraction unit, and a feature
decoding module. ASCU-Net, which was suggested by Tong et
al. (40), segmented skin lesions using the idea of triple attention
processes. These three attention processes worked together to help
the network concentrate on more pertinent parts of the target.

In conclusion, the introduction of deep learning technology
has brought revolutionary changes to the field of medical
image segmentation. From the early techniques based on FCNs
to the innovation of the U-Net model and the subsequent
improvements with structures like SkinNet and ASCU-Net, these
CNN-based algorithms have not only significantly improved
segmentation accuracy but also simplified both the preprocessing
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and postprocessing complexities. In particular, the application of
the U-Net model and its variants in skin lesion segmentation has
provided strong technical support for accurate medical diagnosis
and treatment. However, skin lesion segmentation still faces several
challenges, including the irregular shape, varying sizes, low color
contrast, and blurry boundaries of the lesion areas. These challenges
have yet to be fully resolved. Therefore, this study proposes
the multi-scale fusion network, DMFF-Net, aimed at effectively
addressing these issues and providing more precise segmentation
results, thus offering stronger technical support for the automated
diagnosis and treatment of skin lesions.

2.2 Attention mechanism

Recently, attention mechanisms have advanced considerably in
computer vision, with various techniques like channel attention,
spatial attention, and self-attention (41, 42) gaining widespread
use in image analysis and comprehension. Channel attention
mechanisms allocate weights to each channel’s feature map,
emphasizing their relevance to basic information, allowing the
network to pay more attention to feature maps rich in information.
By calculating the feature correlations of every pixel in the spatial
domain, spatial attention mechanisms concentrate on creating
spatial-dimensional information and identifying significant details
in a picture. The use of attention processes in the segmentation of
medical images has greatly increased segmentation accuracy and
efficiency. Particularly in learning context information, attention
mechanisms can capture the intrinsic relationships between
features and selectively enhance important information, thus
optimizing the dependency relationships between spatial and
channel dimensions. For instance, the Squeeze-and-Excitation (SE)
module (42) is a widely used attention module that enhances
the network’s representational ability by explicitly modeling the
dependencies between channels. The Bottleneck Attention Module
(BAM) (43) is another simple yet effective attention module that
can be used in conjunction with any feedforward convolutional
neural network. It builds hierarchical attention at the bottleneck
and infers attention maps via two distinct pathways (channel
and spatial). Furthermore, the attention module created by Wei
et al. (44), which automatically focuses on skin lesion features
and suppresses irrelevant artifacts while extracting multi-scale
discriminative features, is one example of a mixed-domain
attention mechanism that combines the benefits of channel and
spatial attention. FAT-Net was first presented by Wu et al. (45),
who included an auxiliary transformer branch to capture global
contextual information and substantial dependencies for skin
lesion segmentation. TransUNet, a model that combines CNNs and
transformers to efficiently collect local characteristics and global
contextual information, respectively, was proposed by Chen et al.
(46).

Previous that
incorporating attention mechanisms into CNNs can substantially

studies have consistently demonstrated
enhance segmentation accuracy. Building on and synthesizing
previous research, the GGCAM was developed. This module
integrates multi-dimensional global information with attention

weights, amplifying essential features to enhance segmentation
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performance. Furthermore, the MDSDC module was introduced,
which extracts features across multiple scales and applies both
channel and spatial attention mechanisms. By separately weighting
these features, the MDSDC module effectively captures critical
multi-scale feature information,

contributing to improved

segmentation accuracy.

3 Proposed method
3.1 DMFF-Net module framework

The DMFF-Net model introduced in this study is aimed at
addressing several key challenges in skin lesion segmentation,
including fuzzy lesion borders, poor contrast, and the irregularity
of lesion areas. As illustrated in Figure 1, our model has three
main modules: the MDSDC module, the GGCAM module, and
the MHLFF module. It is mainly composed of an encoder and
a decoder. Firstly, the MHLFF module has been integrated into
the original DeepLabV3 model. This module enhances the model’s
ability to understand and represent complex scenes by fusing mid-
level and high-level features. Following the combination of mid-
level and high-level features in the decoder stage, the GGCAM
module was created and implemented. Using the global data from
the feature maps’ spatial dimensions (height and breadth), this
module creates attention maps. To improve feature representation
even more, these attention maps are then used to weight the input
feature maps.

What’s more, the MDSDC module was introduced in the
encoder stage, which extracts features at different spatial scales.
Unlike traditional methods that increase the receptive field by
stacking multiple convolutional layers, the MDSDC module
effectively expands the receptive field by using different dilated
rates while maintaining the image resolution. This is crucial for
capturing a broader context. Finally, the model uses channel
attention and spatial attention mechanisms to weight channel and
spatial features, respectively, capturing multi-scale key information
and thereby improving the accuracy of skin lesion segmentation.

3.2 Multi-scale depthwise separable
dilated convolution module

By integrating channel and spatial attention mechanisms and
using depthwise separable convolutions with different dilation
rates, the MDSDC module seeks to improve feature representation.
For complicated visual tasks like semantic segmentation and object
detection, this architecture is critical for gathering both extensive
and detailed contextual information in images. Figure 2 provides
an illustration of the architecture.

Firstly, our MDSDC architecture employs five parallel
convolutional branches for multi-scale feature extraction. Each
branch is configured with a different dilation rate to expand the
receptive field and capture varying spatial information. The first
branch uses a 1x1 convolution kernel to maintain the spatial scale
and directly extract features. The second branch utilizes a 3x3
convolution kernel with a dilation rate of 6 to moderately expand
the receptive field. The third branch employs a 3x3 convolution
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The proposed DMFF-Net architecture primarily consists of two main parts: the encoder and the decoder. Specifically, it includes three key modules:
the MDSDC, the GGCAM, and the MHLFF.
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kernel with a dilation rate of 12 to further expand the receptive
field and capture broader contextual information. The fourth
branch uses a 3x3 convolution kernel with a dilation rate of 18 to
provide the widest receptive field. The fifth branch applies global
average pooling to extract global contextual features, enhancing the
model’s understanding of the overall layout. After these processes,
the feature maps have the shape H x W x C. The Concat function
is used to concatenate the different outputs along the channel
dimension, resulting in a comprehensive feature map. Let the input
feature map be X € RHXWxC \where H, W, and C are the height,
width, and number of channels, respectively. The outputs of the
five branches can be mathematically described as follows:

OP, :flxlCunv(X)
OPy3,4 = f3xscompw (X, 1 = [6,12,18]) (1)
OPs =fupsumple (flxlconv (fuvgfpaol(X)))

Floature = Concat (opl, OP,, OP3, OP;, 0p5> )
Output = fix1Conv (Ffeature) (3)

where X denotes the input feature map with dimensions H x W x
C, and OP; signifies the outcome of each distinct operation, r is
the dilation ratio, and fs,g—poor is the average pooling operation.
The concatenation of various outputs in the channel dimension is
known as the Concat function. Lastly, the final output feature map’s
shape remains H x W x C.

Two different kinds of attention mechanisms are then used to
calibrate the combined feature map. To get the global features for
each channel, the channel attention mechanism first applies global
average pooling to the combined feature map. It then uses two
fully linked layers with Sigmoid and ReLU activation functions,
respectively, to learn the importance weights for each channel.
Channel weighting is achieved by multiplying these weights by the
original feature map on a per-channel basis.

L, H W

Fayg = Hx W ; ; Hep v
we = o (FCy (ReLU (FC1(Fay)))) ®)
F = w.oF (6)

where F(i, j) represents the value of the feature map at position i,
j» FC; and FC, are the two fully connected layers, o denotes the
Sigmoid activation function, and w, is the importance weight for
each channel. © represents element-wise multiplication, and F.. is
the feature map after channel weighting.

To create the spatial feature map, the spatial attention
mechanism applies global pooling to the combined feature map
along the channel dimension. It then uses a Sigmoid activation
function and a 1 x 1 convolution to learn the importance weights for
every spatial position. Spatial weighting is achieved by multiplying
these weights element-wise by the original feature map.

Fypatial = [AvgPool(F), MaxPool(F) | 7)
ws = o (Convixi (Fypaial) (8)
F,=w,OF ©)
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where [-,-] denotes the concatenation operation, resulting in the
spatial feature map Fypariq, and F/ is the feature map after spatial
weighting.

Finally, the output feature maps from the channel attention
and spatial attention mechanisms are fused through element-wise
addition. The fused feature map is then combined with the original
merged feature map through element-wise summation to integrate
and enhance the relevant features. The enhanced feature map is
subsequently processed through a 1 x 1 convolution layer for
dimensionality reduction and integration, resulting in the final
output feature map Foytpyr-

Ffused = F; =+ F; (10)
Foutput = Convyx (Ffused) (11)

where Fjysq is the feature map obtained by fusing the channel and
spatial features after weighting.

3.3 Global group coordinate attention
module

Due to the traditional CNNs facing challenges in capturing
global information across both spatial dimensions—height and
width—when handling complex visual tasks, which limits their
feature representation capabilities. Moreover, the importance of
features varies across different channels and spatial locations, and
conventional convolution operations are unable to dynamically
adjust the significance of these features, making it difficult to
highlight the most critical ones. Therefore, the proposed GGCAM
aims to utilize the global information of feature maps in the spatial
dimensions to generate attention maps. These attention maps
are then used to weight the input feature maps, enhancing their
representation capability. The specific structure of this module is
illustrated in Figure 3. For the input feature map F, its dimensions
are B x C x H x W. The feature map is divided into G groups
based on the number of channels C, with each group containing
C/G channels. The grouped feature maps are represented as:

Fe = {F1,F,...,Fg}, F, € REX(C/GHXW (12)

where F(i, j) represents the value of the feature map at position (i, j),
indicating the feature response or activation at that specific spatial
location. And B is the batch size, C is the number of channels, and
H and W are the height and width of the feature map, respectively.

For each grouped feature map F,, global average pooling and
global max pooling are performed separately along the height and
width directions, resulting in pooling outputs for both height and
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The structure diagram of the GGCAM shows circles with “+" to represent addition operations and circles with “x" to indicate multiplication operations.
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where nggh and nggw represent the results of average pooling along
the height and width dimensions, respectively, while anaxh and
Fyuax, represent the results of max pooling along the height and
width dimensions, respectively.

Additionally, a shared convolution layer is applied to process
each grouped feature map. This convolution layer consists of
two 1 x 1 convolution layers, batch normalization, and a ReLU
activation function. First, we perform convolution operations on
the pooling results:

Ffonvl = RelU (BN (COIllel (Fg"gh + Fg"“xh))) (17)
F¢ ., = ReLU (BN (Conviy1 (Fiyg, + Fax,)))  (18)

where BN is the batch normalization operation. Then, the outputs
of the convolution layers are summed, and the Sigmoid activation
function is applied to generate the attention weights in the height
and width directions:

Ai = U(F‘fonvl) (19)
Aﬁ’ = a(chanvZ) (20)

where o is the Sigmoid activation function.
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In addition, the generated attention weights Ai and AS, are
applied to the input grouped feature map Fy, performing weighting
in the height and width directions, respectively, to obtain the
weighted feature maps F‘i ,, and FS, . Finally, the attention
weights are expanded in the height and width directions to match
the dimensions of the input feature map, resulting in the final
output feature map. In this way, by grouping and applying global
information weighting across the spatial dimensions, the enhanced
feature map Foypyr is ultimately generated.

F , =AlOF (21)
F, = A5, O F, (22)
Fgutput = Fﬁ_w + Fﬁ’_W (23)

where F‘Z_W and F5, ,, represent the weighted feature maps in
the height and width directions, respectively, and Foyspus is the
enhanced output feature map.

3.4 Middle-high-level feature fusion
module

To capture rich semantic and contextual information, facilitate
feature sharing across different layers of the network, and enhance
the network’s learning ability and generalization capabilities, we
fuse the image features from the seventh layer and the final layer
of the backbone network. As shown in Figure 4. Specifically, the
mid-level features F,, from the seventh layer are input into the F;
module, which processes them using a 1 x 1 convolution followed
by batch normalization to produce output OP;. Simultaneously, the
high-level features F;, from the final layer are processed in the F,
module, where a 1 x 1 convolution is applied for dimensionality
reduction, followed by upsampling and a 3 x 3 dilated convolution
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FIGURE 4
The structure diagram of the MHLFF illustrates the integration of features from different levels

with a dilation rate of 2, concluded by batch normalization to yield 4. PH? dataset: Includes 200 skin lesion images and is
output OP;. frequently used to assess the generalization ability of models
The outputs OP; and OP; are then combined through element- in lesion diagnosis tasks.

wise addition to effectively merge the strengths of both mid-level
and high-level features. Finally, the fused output undergoes ReLU
activation to produce the final output F,, . This integrated process
enhances the networK’s ability to capture complex semantic and 4.2 Experience details
contextual details, improving performance across various visual

tasks. All experiments were conducted on a workstation equipped
with the PyTorch deep learning framework and an NVIDIA

OP; = BatchNorm (Conlel(Fm)) (24)  GeForce RTX 3080 GPU. The model was trained for 180 epochs

OP, = BatchNorm (25) with a batch size of 8 and an input image resolution of 512x512.

We used stochastic gradient descent (SGD) with a momentum of
0.9 and an initial learning rate of 7x 10~3, which was decayed using
a polynomial learning rate schedule to ensure stable convergence.
F,i+n = ReLU(Fgyseq) (27)  To improve generalization, we applied several data augmentation
strategies, including random horizontal and vertical flipping as

where Fy, represents the image features from the seventh layer, also  well as random cropping. These settings ensured both stable

known as mid-level features. and Fj, represents the image features  optimization and increased robustness against overfitting.
from the final layer, also known as high-level features.

(Convsys, dilation—2 (Upsample (Convy 1 (Fp))))
Ffused = OPl + OPZ (26)

4 Experience 4.3 Evaluation metrics and loss function

4.1 Dataset Mean Intersection over Union (MIoU), pixel-wise Accuracy
(Acc), F1 score, Mean Recall (MRecall), and Precision are the five
Four publicly accessible datasets from the International Skin ~ primary assessment metrics used in this work, which are in line with
Imaging Collaboration (ISIC) were used in this study to assess our  the methodology of the majority of medical picture segmentation
methodology: ISIC 2016 (47), ISIC 2017 (48), ISIC 2018 (49), and  techniques. The following are the formulas used to calculate these
the PH? dataset (50). While Figure 5 displays some photos and the ~ metrics:
label maps that correlate to them. These tests assessed how well the

suggested approach performed in tasks involving the segmentation Acc = TP+ 1N (28)
of skin lesions. TP+ TN + FP + FN
1Y TP,
1. ISIC 2016 dataset: includes 379 test images in JPEG format MIoU = — Z —_— (29)
C e N ~— TP; + FP; + FN;
and 900 training images. i=1
2. ISIC 2017 dataset: consists of 600 test photos, 150 validation Recall — TP (30)
photos, and 2,000 training photos. TP + FN
3. ISIC 2018 dataset: The 2,596 RGB images in this dataset, .. P
) o ) ] ) Precision = ——— (31)
which is intended for skin lesion segmentation, are TP + FP
randomly divided into 70% for training, 10% for validation, Fle32. Precision - Recall (32)
and 20% for testing. Precision + Recall
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FIGURE 5

Example images of skin lesions and their corresponding label images from the ISIC dataset

Where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively. The
values of all evaluation metrics range from 0 to 1, with values closer
to 1 indicating better segmentation performance and values further
from 1 indicating poorer performance.

In addition, the loss function for the binary classification
segmentation module in this work was Binary Cross-Entropy
(BCE) loss (51). As shown in Equation 33, this loss function is
especially appropriate for binary classification problems since it
quantifies the difference between the true labels and the anticipated
class. The goal of the training process was to reduce this loss
function in order to improve the binary classification accuracy of
the model. Furthermore, the model parameters were updated using
the Adam optimization algorithm, which iteratively optimized the
loss value for better segmentation performance. The following is
the definition of the BCE loss:

N

L— _% 3" [yilog(pi) + (1 — ) log(1 — p)]
i=1

(33)
where £ is the Binary Cross-Entropy loss value, N is the total
number of samples, y; is the true label of the i sample (0 or 1),
and p; is the probability that the model predicts the i sample as
the positive class.

4.4 Comparing with SOTA methods

We compare the proposed method with other recent CNN-
based skin lesion segmentation techniques to show its effectiveness.
Specifically, we replicated, trained, and comprehensively evaluated
seven models on three different datasets. To ensure the reliability
and representativeness of the results, the performance of the
models was evaluated by quantitative metrics and visual inspection.
Accurate quantitative metrics were used to assess segmentation
performance, while visualization illustrated the effectiveness of
each model in processing skin lesion images. The following
table summarizes the quantitative results for each dataset, with
the best values highlighted in bold and the next best values
underlined. In addition, the visualization comparison graph depicts
the segmentation results of each method along with ground truth
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annotations. Moreover, in the visualized result plots, the problem
areas of each network model in the segmentation result plots are
marked with red circles or boxes. This multidimensional analysis
allows for a visual assessment of the strengths and weaknesses
of each model and highlights the competitive advantages of the
proposed models on different datasets.

4.4.1 Performance on ISIC 2016 dataset

Table 1 reports the segmentation performance of DMFF-Net
and seven SOTA methods on the ISIC 2016 dataset. Overall, DMFF-
Net achieves the best performance across almost all metrics, with
an mloU of 89.31%, accuracy of 96.93%, and F1 score of 95.62%.
Compared with DCSAU-Net, the strongest competing baseline,
DMFF-Net improves mIoU and accuracy by 4.19% and 1.01%,
respectively. Notably, DMFF-Net attains the highest precision
(95.03%) and demonstrates a strong balance between recall
(93.53%) and F1, which indicates its ability to accurately capture
lesion boundaries while reducing false positives. These results
confirm that DMFF-Net not only surpasses classical architectures
such as U-Net and U-Net++, but also maintains clear advantages
over more recent SOTA approaches (e.g., EGEUNET, MALUNET,
and DCSAU-Net), particularly in terms of segmentation accuracy
and robustness.

Furthermore, Figure 6a shows the segmentation results on the
ISIC 2016 test dataset. In comparison to MALUNET and FPN, the
segmentation outputs of DMFF-Net were shown to be closer to the
genuine labels. Interestingly, DMFF-Net outperformed DCSAU-
Net in addressing unclear lesion regions and irregular boundaries.
It is possible to conclude that DMFF-Net performed better in
the skin lesion segmentation job on the ISIC 2016 test dataset
by combining the quantitative results in Table 1 with the visual
comparisons in Figure 6a.

4.4.2 Performance on ISIC 2017 dataset

Table 2 summarizes the segmentation results of DMFF-Net
and seven baseline models on the ISIC 2017 dataset. DMFF-Net
consistently achieves the best performance across all five evaluation
metrics. In particular, DMFF-Net reaches an mIoU of 91.47%,
which is 6.35% higher than DCSAU-Net, the strongest competing
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TABLE 1 Skin lesion segmentation performances of different networks on ISIC 2016.

10.3389/fmed.2025.1633209

No. Method MioU (%) Acc (%) F1 (%) MRecall (%) Precision (%)
1 Unet 84.98 96.68 91.51 93.13 91.33
2 Unet++ 84.64 96.44 91.13 92.41 91.92
3 DeeplabV3+ 85.09 96.42 91.42 94.11 90.49
4 FPN 85.29 96.77 91.56 93.41 91.43
5 EGEUNET 84.01 95.14 91.31 89.08 93.66
6 MALUNET 82.61 94.81 90.48 86.01 95.43
7 DCSAU-Net 85.12 95.92 91.59 90.69 94.12
8 DMFF-Net(Ours) 89.31 96.93 95.62 93.53 95.03
The bold values indicate the best performance among the compared methods. The underlined values denote the second-best performance among the compared methods.
original-Image Ground-Truth~ Unet Unet++ FPN  DecplabVi+ EGEUNET MALUNET DCSAU-Net DMFF-Net(Ous)

original-image Ground-Truth ~ Unet

) it
TDDDDDDGUE
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a. b.
FIGURE 6
Visual comparison with different methods on ISIC 2016 (a) and 2017 (b) datasets.
TABLE 2 Skin lesion segmentation performances of different networks on ISIC 2017.

[\[o} Method MioU (%) Acc (%) F1 (%) MRecall (%) Precision (%)
1 Unet 80.01 96.64 87.43 86.53 90.23
2 Unet++ 82.94 96.90 88.79 88.88 90.46
3 DeeplabV3+ 78.58 96.13 86.89 90.62 85.23
4 FPN 81.52 96.61 87.21 89.07 87.45
5 EGEUNET 78.07 96.10 87.68 83.02 92.90
6 MALUNET 76.80 95.58 86.88 87.41 86.35
7 DCSAU-Net 88.32 95.33 91.49 91.69 95.12
8 DMFF-Net(Ours) 91.47 97.33 94.91 95.17 95.76

The bold values indicate the best performance among the compared methods.

baseline. It also records the highest accuracy (97.33%), F1 score
(94.91%), mean recall (95.17%), and precision (95.76%). Compared
with classical networks (e.g., U-Net and U-Net++), DMFF-Net
yields an improvement of over 8% in mloU, demonstrating
its superior ability to capture fine-grained lesion boundaries.
Moreover, the balanced gains in both recall and precision indicate
that DMFF-Net not only reduces false negatives but also minimizes
false positives, ensuring reliable segmentation across diverse lesion
appearances.

Moreover, Figure 6b shows a visual comparison of a number
of common atypical skin lesions. Unlike other models, DMFF-
Net integrates mid-level and high-level feature fusion with a
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mechanism that generates attention maps using global information
in the spatial dimension. This mechanism effectively assigns
weights and enhances feature representation. What’s more, DMFF-
Net aggregates both global and local information while controlling
the receptive field for feature extraction. These characteristics
enable the model to handle finer details, particularly in segmenting
blurred edges, allowing for cleaner and more distinct extraction
of edge features. Notably, DMFF-Net outperformed other SOTA
models in segmenting lesion areas. Overall, the segmentation
results of DMFF-Net are more aligned with the original
annotated images, demonstrating superior expressiveness and
robustness.
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4.4.3 Performance on ISIC 2018 dataset

The ISIC 2018 dataset is larger and more diverse than ISIC 2016
and 2017, including a broader spectrum of lesion categories and
presenting greater segmentation challenges. After retraining on this
dataset, the results in Table 3 demonstrate that DMFF-Net delivers
the most competitive performance across all evaluation metrics.
Specifically, DMFE-Net achieves an mIoU of 86.93%, surpassing
the strong baseline DCSAU-Net by 5.37%. It also records the best
F1 score (93.61%), mean recall (92.49%), and precision (93.30%),
confirming its superior ability to balance sensitivity and specificity.
Although the overall accuracy is slightly lower than U-Net++ and
DeepLabV3+, DMFF-Net’s consistently higher mIoU and F1 show
that it captures lesion boundaries more accurately, a critical factor
in medical image segmentation.

Figure 7a presents graphic examples to give a more intuitive
demonstration of the segmentation findings across several models
on the ISIC 2018 dataset. Images with uneven lesion regions
and hazy boundaries are displayed in the first and second
rows. As illustrated, the proposed method demonstrates superior
performance in handling irregular and blurred boundaries, largely
due to the introduction of the mid-level and high-level feature
fusion module, which enables precise extraction of edge detail
features. The third and fourth rows present cases involving hair
occlusion. With the use of the MDSDC module and GGCAM
module, the model can perform weighted extraction of both
channel and spatial features, effectively fusing feature information
along the height and width dimensions. As shown in the images,
our method also outperforms others in addressing hair occlusion,
further validating the robustness and accuracy of the model.

Overall, thanks to the introduction of these innovative modules,
our method significantly outperforms other SOTA models on
the ISIC 2018 dataset, particularly in handling complex, blurred
boundaries.

4.5 Cross-dataset assessment

The ISIC 2017 and PH? datasets were used as testing platforms
for cross-dataset validation in order to assess the DMFF-Net
model’s generalization ability. To find the ideal parameters, the
model was initially trained and verified using the ISIC 2017 dataset.
The model was then tested on the PH? dataset to evaluate its
generalization performance.

For the purpose of ensuring a comprehensive evaluation,
the performance of other models, including FAT-Net (45), EIU-
Net (52), DCSAUNet (53), EGEUNet (54), and MALUNet (55),
was compared. FAT-Net integrates a transformer branch crafted
to efficiently capture extensive dependencies and global context.
The model utilizes a memory-optimized decoder along with a
feature adaptation module that strengthens feature fusion across
adjacent layers by emphasizing relevant channels and minimizing
background noise, ultimately enhancing segmentation outcomes.
On the other hand, throughout its different stages, EIU-Net
leverages inverse residual blocks and Efficient Pyramid Squeeze
Attention (EPSA) blocks as essential components within its
encoder. These blocks are designed to enhance feature extraction
by selectively focusing on relevant spatial and channel information,
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enabling the model to more effectively capture complex details
in medical imaging tasks. By integrating these advanced modules,
EIU-Net aims to improve the overall accuracy and robustness of
the segmentation process. ASPP and soft pooling techniques are
applied for downsampling after the final encoder, while feature
maps from different decoders are integrated to obtain multi-scale
information, further enhancing skin lesion segmentation accuracy.

In contrast, our DMFF-Net model builds upon these models
by incorporating the extraction of channel and spatial feature
information, along with fusion and importance weighting in both
height and width directions, achieving comprehensive information
extraction. Comparative analysis of the predicted segmentation
images post-training (as shown in Figure 7b) reveals that our
DMFE-Net model retains details and handles edges more closely
to the original annotated images. These findings confirm the
model’s effectiveness in addressing the complexities of skin lesion
segmentation, demonstrating its strength in accurately capturing
subtle lesion features.

Besides, to enhance the interpretability of the network and
visualize the regions of interest at different stages, particularly
within the encoder and decoder, we performed attention heatmap
visualizations on the features captured by the final layers of both
the encoder and decoder. The results are shown in Figure 8. As
illustrated in (d), the attention map from the encoder highlights
its focus on the boundary regions of the skin lesions. This suggests
that the encoder plays a crucial role in improving the network’s
ability to capture the edges of the lesions, thereby enabling more
accurate delineation of lesion boundaries. Building upon this, (c)
demonstrates the attention map of the final layer of the decoder.
By integrating the fine-grained feature capturing of the lesion
boundaries in the encoder with the feature extraction of the internal
lesion regions in the decoder, the model ultimately achieves a
complete segmentation of the lesion area.

4.6 Ablation experiment

In experimental design, the comparison of individual
components within an algorithm is crucial for accurately
evaluating their contributions to overall performance (56). As
such, a series of incremental ablation experiments was performed
to evaluate the impact of each component within the proposed
network, using the ISIC 2017 dataset to systematically analyze its
contributions to overall performance. DeeplabV3 was initially used
as the baseline model, with different modules—such as GGCAM,
MDSDC, and MHLFF—progressively introduced as the primary
feature extraction components. By progressively adding these
modules, their influence on the network’s general effectiveness was
observed through analysis of the resulting performance variations.
This approach provided valuable insights into the individual
contributions of each module in optimizing the network and
enhancing segmentation accuracy.

Table 4 and Figure 9a illustrate the segmentation performance
and visual results of different models. The baseline model
represents the segmentation performance of the original
DeepLabV3, while model 1 indicates the network performance
and segmentation results after adding the MHLFF module to
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TABLE 3 Skin lesion segmentation performances of different networks on ISIC 2018.

Method MloU (%) Acc (%) F1 (%) MRecall (%) Precision (%)
1 Unet 74.36 94.15 82.98 90.25 79.50
2 Unet++ 79.07 95.21 85.07 87.95 85.11
3 DeeplabV3+ 77.86 95.06 85.48 92.09 81.61
4 FPN 76.21 94.73 84.57 90.44 82.74
5 EGEUNET 78.34 94.18 87.85 86.46 89.29
6 MALUNET 76.10 93.54 86.43 84.47 88.47
7 DCSAU-Net 81.56 94.84 88.54 89.25 91.39
8 DMFF-Net(Ours) 86.93 94.78 93.61 92.49 93.30

The bold values indicate the best performance among the compared methods.

original-Image G DeeplabV3+  EGEUNET ~MALUNET  DCSAU-Net DMFF-Net(Ours)
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FIGURE 7

(a) Visual comparison with different methods on the ISIC 2018 dataset. (b) Cross-validation visualization comparison on ISIC 2017 and PH? datasets.
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DeeplabV3

the baseline. Model 2 shows the performance after adding the
MDSDC module to model 1, and model 3, which incorporates
the GGCAM module added to model 2, represents the final model
proposed in this study. As shown in Table 4 and Figure 9a, in
the first row of experiments, the original image contains slight
hair occlusion with blurred and irregular lesion edges. Although
the evaluation metrics of the baseline model are higher than
those of model 1, the segmentation results of both models still
show a significant gap compared to the Ground Truth (GT).
This may be due to their limited performance in handling hair
occlusion and irregular lesions. However, with the addition of
the MDSDC and GGCAM modules—in models 2 and 3—the
evaluation metrics improve progressively, and the segmentation
results increasingly resemble the GT. This indicates that the
MDSDC and GGCAM modules have stronger abilities to extract
complex edge information and process blurred areas. Similarly, in
the third row of experiments in Figure 9a, although the original
image contains slight hair occlusion and has highly blurred
lesion edges, the lesion shape is relatively regular. As a result, the
segmentation results from all models are generally similar to the
GT. However, model 3 performs better in extracting fine details
along the blurred edges, providing a more accurate restoration of
the details.

In the second and fourth rows of Table 4, where the original
image edges are also blurred, the performance of the models
progressively improves from the baseline to model 3, especially in
the extraction of edge details, showing significant advantages. It
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is worth noting that Table 4 shows a reduction in both parameter
count and computational complexity for models 1, 2, and 3
compared to the baseline. The lowest parameter count is 4.52M,
and the FLOPs is 29.47G. However, despite the reduction in
parameter count, the overall computational complexity remains
relatively high. Thus, future research could focus on reducing
computational complexity and further lightening the model,
making it more suitable for resource-constrained environments.
To further verify the independent contribution of each module,
we conducted single-module ablation experiments under the
same setting (Table 5). Replacing ASPP with MDSDC slightly
reduces MIoU, ACC, and F-score (89.19%, 96.05%, and 94.9%)
compared with ASPP (90.96%, 97.2%, and 95.12%), but the
number of parameters and FLOPs drops markedly to 4.522, M
and 29.479, G, demonstrating that MDSDC can effectively decrease
computational cost while maintaining comparable accuracy.
When MHLFF and GGCAM are individually added to the
baseline, MHLFF yields similar accuracy but significantly fewer
parameters and FLOPs (4.522, M , 29.47, G), whereas GGCAM
achieves more noticeable accuracy gains (MIoU 91.34%, ACC
97.68%, and F-score 97.1%) with reduced computational overhead.
Combining the two modules delivers superior performance in
both accuracy (MIoU 91.05%, ACC 97.21%) and efficiency (4.520,
M, 29.47, G), verifying the complementarity of GGCAM and
MHLFEF: the former enhances global semantic context, while the
latter strengthens multi-scale feature fusion, jointly improving
segmentation performance and reducing computational cost.
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(d)

FIGURE 8

decoder, and (d) attention heatmap from the final layer of the encoder.

Comparison of different attention maps extracted at various stages: (a) input image, (b) GT image, (c) attention heatmap from the final layer of the
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TABLE 4 Comparison of ablation experiments for the main module in the DMFF-Net, where Params is the number of parameters and FLOPs is Floating
Point Operations. Mark the best result in red font and the Baseline is DeepLabV3.

Model MioU (%) c (%) F1 (%) Params (M) FLOPs (G)
Baseline 89.34 96.08 95.31 6.870 38.59
Modell 89.19 96.05 94.90 4522 29.47
Model2 90.9 97.18 95.1 6.470 31.48
Model3 91.47 97.33 94,91 4520 29.47

The underlined values denote the second-best performance among the compared methods. Red-colored values indicate the best performance.

In summary, the experimental results demonstrate that the
proposed model has significant advantages in feature extraction
when dealing with lesions that have blurred and irregular edges.
The model excels in handling complex lesion boundaries and
blurred regions, showing stronger competitiveness. In the future,
by focusing on lightweight model design, the efficiency and
practical potential of the model could be further enhanced.
Although our ablation experiments are conducted on skin lesion
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segmentation, the complementary effects of GGCAM and MHLFF
suggest broader applicability. Specifically, GGCAM enhances
global context modeling to address blurred lesion boundaries,
while MHLFF focuses on multi-level feature fusion to preserve fine
structural details. Such challenges are not unique to dermatology
but also appear in other medical imaging tasks, such as brain
tumor segmentation in MRI, lung nodule detection in CT, and
breast lesion analysis in mammography. Therefore, the synergistic
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FIGURE 9
(a) Visualization comparison of ablation experiments on the ISIC 2017 dataset. (b) Qualitative comparison between DMFF-Net and TransUNet on PH2
images with severe artifacts.

Ground-Truth  DMFF-Net(Ours) TransUNet

TABLE 5 Single-module ablation study on ISIC dataset.

Baseline 89.34 96.08
Baseline+ASPP 90.96 97.20
Baseline+MDSDC 89.19 96.05
Baseline+ MHLFF 89.19 96.05
Baseline+ GGCAM 91.34 97.68
Baseline+ GGCAM+MHLFF 91.05 97.21

design of GGCAM and MHLFF has the potential to be generalized
to a wider range of medical image segmentation problems that
require both accurate boundary delineation and robust small-
lesion detection. In future work, we plan to further explore this
generalization by validating the modules on cross-domain datasets
from multiple imaging modalities, which may provide deeper
insights into their transferability and robustness in diverse clinical
applications.

4.7 Robustness to hair occlusion:
DMFF-Net vs. TransUNet

In order to further evaluate the robustness of DMFF-Net
in challenging scenarios, we compared it with TransUNet on
dermoscopic images containing severe artifacts such as hair
occlusion and irregular illumination (Table 6). Quantitative results
demonstrate that DMFF-Net achieves higher mIoU (91.47%
vs. 90.51%), F-score (94.91% vs. 94.88%), recall (95.17% vs.
94.69%), and precision (95.76% vs. 95.51%), indicating superior
segmentation reliability under artifact interference. Although
TransUNet has fewer FLOPs (25.35G vs. 29.47G), its parameter
count (105.28M) is significantly higher than that of DMFF-Net
(4.25M), making our model more lightweight and efficient.
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95.31 6.870 38.59

95.12 6.870 38.593

94.90 4522 29.479

94.91 4522 29.47

97.10 6476 31.481

95.10 4520 29.47
Visual comparisons (Figure 9b) further confirm this

observation: while TransUNet often struggles to delineate lesion
boundaries when hair artifacts are present, DMFF-Net preserves
clearer and more accurate lesion contours, demonstrating stronger
robustness to occlusion and lighting variation.

5 Discussion and limitations

In the work, a multi-scale and multi-attention feature
termed DMFF-Net, was developed based
on DeepLabV3 to overcome the complex obstacles in skin
tasks. Through the integration of
several innovative designs, DMFF-Net achieved outstanding

fusion model,

lesion segmentation
performance across multiple publicly available skin lesion datasets,
exhibiting significant advantages over existing mainstream
networks.

Firstly, the experimental results clearly indicated that DMFF-
Net exhibited notable robustness when handling skin lesion areas
with complex shapes and irregular sizes. Unlike traditional single-
scale convolutional networks, DMFF-Net effectively expanded the
receptive field by introducing a MDSDC, allowing it to capture
a broader range of contextual information. This was especially
evident in cases where lesion boundaries were blurry or had
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TABLE 6 Performance comparison between DMFF-Net and TransUNet on the ISIC 2017 dataset.

10.3389/fmed.2025.1633209

No. Model MloU ACC F1 Rec. Prec. RETET FLOPs
1 TransUNet 90.51 98.65 94.88 94.69 95.51 105.28 25.35
2 Ours 91.47 97.33 94.91 95.17 95.76 4.250 29.47

Red-colored values indicate the best performance.

low contrast. Traditional networks rely on fixed receptive fields,
which complicates the task of balancing detailed information with
global structure, leading to suboptimal segmentation performance.
In contrast, our network combined multi-scale convolution
with attention mechanisms, significantly improving segmentation
accuracy. Secondly, GGCAM in DMFF-Net enhanced the network’s
ability to understand spatial dimension information by generating
attention maps. Compared to existing networks, the GGCAM
module more accurately captured and emphasized critical global
features, avoiding the redundancy or loss of key information
common in traditional methods. This design helped DMFF-Net
better handle complex background interference in skin lesion
segmentation, improving the model’s balance between local detail
and global semantic information.

Despite DMFF-Net’s outstanding performance on multiple
skin lesion datasets, there are still some limitations that require
further improvement. Firstly, the complex network structure
increases computational complexity and the number of parameters.
Compared to classic models like U-Net and DeepLabV3, our
network, due to the inclusion of multi-scale feature extraction
and attention modules, may experience reduced performance
under limited computational resources. In future research, our
goal is to decrease the total parameters by adopting model
compression and lightweight design techniques to improve the
network’s applicability. Additionally, although DMFF-Net has
made significant improvements in handling blurry edges and
irregularly shaped skin lesions, some segmentation errors still
remain. As noted by Wang et al. (57), blurry edges and irregular
shapes are common challenges in image segmentation. Future
work could incorporate stronger edge detection mechanisms to
further improve segmentation accuracy in these areas. Another
limitation worth noting is the lack of diversity in current datasets
representing real-world conditions. Although we achieved good
results on the ISIC series datasets, these datasets do not fully
represent all types of skin lesions encountered in clinical practice.
Therefore, future studies will need to incorporate more diverse
large-scale datasets, combined with transfer learning and self-
supervised learning techniques, to further confirm and improve the
model’s resilience in practical scenarios.

6 Conclusion

In the work, we present an innovative network for feature
fusion that employs multi-scale and multi-attention mechanisms,
DMFF-Net, which is proposed, targeting the precise identification
of skin lesion boundaries. The introduction of MHLFF and
GGCAM modules enables the network to effectively integrate
global and local feature information in the decoder stage,
significantly enhancing its ability to segment complex skin lesions.
Moreover, the MDSDC module improves the networK’s capacity
to capture contextual information across multiple scales while
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preserving feature integrity at different levels. By combining global
average pooling with channel and spatial attention mechanisms,
DMFF-Net achieves a balanced integration of global and local
features, further improving segmentation accuracy and robustness.
Comprehensive experimental results on four public datasets,
ISIC 2016, ISIC 2017, ISIC 2018, and PH?, demonstrate that
DMFF-Net outperforms existing methods in the task of skin
lesion segmentation, proving its ability to address challenges
like indistinct lesion boundaries and irregular shapes. Through
comparative experiments with other methods, we further verified
the advantage of DMFF-Net in terms of accuracy. In the coming
years, we intend to further decrease the number of parameters in
the network while preserving segmentation accuracy. Our goal is
to improve the model’s capability to identify data with significant
edge blurring and irregular lesion shapes, thereby enhancing both
the accuracy and performance of the segmentation process. In
addition, considering the practical clinical need for deployment
on portable and resource-constrained devices, we plan to explore
lightweight optimization strategies such as model quantization
and pruning. These efforts will enable DMFF-Net to achieve
efficient real-time inference on edge devices, thereby extending its
potential application from research settings to real-world clinical
environments.
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