

#### **OPEN ACCESS**

EDITED BY Yulei Li

Hubei University of Arts and Science, China

REVIEWED BY

Mohammad A. Alshabeeb, King Abdullah International Medical Research Center (KAIMRC), Saudi Arabia Mariana B. Morais, Universidade de Lisboa, Portugal

\*CORRESPONDENCE
Hui Huang

☑ huihuang0916@csu.edu.cn

RECEIVED 17 May 2025 ACCEPTED 04 August 2025 PUBLISHED 18 August 2025

#### CITATION

Zhao C and Huang H (2025) Recurrent *SLCO1B1* and *SLCO1B3* mutations identified in three patients with Rotor syndrome. *Front. Med.* 12:1630360. doi: 10.3389/fmed.2025.1630360

#### COPYRIGHT

© 2025 Zhao and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Recurrent *SLCO1B1* and *SLCO1B3* mutations identified in three patients with Rotor syndrome

Chenyu Zhao<sup>1,2</sup> and Hui Huang<sup>2</sup>\*

<sup>1</sup>Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China, <sup>2</sup>Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China

**Background:** Rotor syndrome is a rare genetic disease inherited in an autosomal digenic recessive manner. It is caused by pathogenic mutations in both *SLCO1B1* and *SLCO1B3* genes, and characterized by predominantly conjugated hyperbilirubinemia.

**Methods:** Three Chinese patients clinically diagnosed with Rotor syndrome were included. Mutations in *SLCO1B1/3* genes were identified using whole-exome sequencing.

**Results:** They all carried the same homozygous c.1738C>T mutation in *SLCO1B1* and the c.481+22insLINE variant in *SLCO1B3*.

**Conclusion:** This study established a genetic diagnosis for the three patients and contributed to finding hotspot mutations in Rotor syndrome.

KEYWORDS

Rotor syndrome, SLCO1B1, SLCO1B3, mutation, hyperbilirubinemia

#### 1 Introduction

Rotor syndrome (RS, OMIM\*237450) is a rare and benign genetic disease characterized by low-grade, chronic or fluctuating, predominantly conjugated hyperbilirubinemia. It has no other features of hepatobiliary disorder (1, 2). The prevalence of RS is unknown but is very low (<1:1,000,000) (3). First described by Rotor and Florentin (4) in 1948, it is inherited in an autosomal recessive digenic manner. Biallelic pathogenic mutations in solute carrier organic anion transporter family member 1B1 (*SLCO1B1*) and *SLCO1B3* genes cause RS. Organic anion transporting polypeptide 1B1 (OATP1B1) and OATP1B3 are encoded by *SLCO1B1* and *SLCO1B3* genes, respectively. They serve as transporters for hepatic uptake of conjugated bilirubin. Inactivation of both proteins together leads to RS, which does not affect life expectancy and usually requires no treatment (1). To date, 51 mutations in *SLCO1B1* and 30 variants in *SLCO1B3* have been described in the Human Gene Mutation Database (HGMD; http://www.hgmd.cf.ac.uk/ac/index.php). In the present study, we reported three patients with RS and tested two disease-causing mutations: *SLCO1B1* (NM\_006446.5): c.1738C>T (p.R580\*) and *SLCO1B3* (NM\_019844.4): c.481+22insLINE.

#### 2 Materials and methods

#### 2.1 Patients and ethics

Three unrelated Chinese patients (numbered 1–3) were enrolled in this study. Patients 1, 2, and 3 were aged 14, 16, and 20 years, respectively. They were clinically diagnosed as RS

Zhao and Huang 10.3389/fmed.2025.1630360

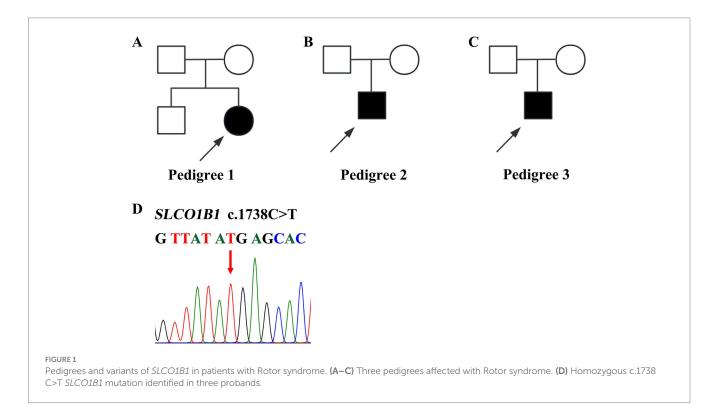
without other clinical comorbidities. They intermittently took S-adenosylmethionine or diammonium glycyrrhizinate for treatment. All patients or their guardians signed the written informed consent forms. This study was approved by the ethics committee of the Second Xiangya Hospital of Central South University.

#### 2.2 Variant analysis

Genomic DNA was isolated from peripheral blood by the Blood gDNA Miniprep Kit (Hangzhou Beiwo Meditech Co., Ltd., Hangzhou, China). Whole-exome sequencing (WES) was performed on the three probands using the MGISEQ-2000 platform (MGI Tech Co., Ltd., Shenzhen, China). WES and basic bioinformatics analyses, including read mapping and variant detection, were performed by AmCare Genomics Lab Limited (Guangzhou, China).

The methods for filtering WES data are as follows: (1) Variants from the databases (1000G, ExAC, esp6500, gnomAD) with a minor allele frequency of >5% were excluded. (2) Variants in untranslated regions and synonymous mutations were excluded. (3) The candidate pathogenetic variants in bilirubin metabolism-related genes were retained. (4) The interpretation of mutation pathogenicity was guided by the American College of Medical Genetics and Genomics (ACMG) guideline (5). The potential variant from WES was validated by Sanger sequencing.

#### 3 Results


This study included two male and one female patient, aged from 14 to 20 years. They were born to nonconsanguineous parents (Figures 1A-C) and presented with mild intermittent jaundice. The liver function test only showed predominantly conjugated

hyperbilirubinemia. No abnormalities were observed in viral serologies (HBV and HCV), hemolysis test, coagulation function, autoimmune liver disease-associated antibodies, immunoglobulin G, serum ceruloplasmin testing, or abdominal ultrasound examination. The major clinical manifestations of the three patients with Rotor syndrome are summarized in Table 1. The WES indicated that all patients harbored the same homozygous c.1738C>T mutation in *SLCO1B1* (Figure 1D) and c.481+22insLINE variant in *SLCO1B3*.

#### 4 Discussion

OATP1B1/3 are expressed in the hepatocyte basolateral membrane, which are also called SLCO1B1/3. They uptake endogenous substances, such as conjugated bilirubin, bile acids (BAs), eicosanoids, prostaglandins, and hormones. Unconjugated bilirubin (UCB) enters hepatocytes through passive diffusion and/or transporters, which may include OATP1B1/3. Uridine-diphospho glucuronosyl transferase 1A1 (UGT1A1) catalyzes the conversion of UCB to bilirubin glucuronides (BG) in the endoplasmic reticulum. BG is secreted into bile by ABCC2 and ABCG2. A substantial fraction of BG is rerouted by ABCC3 to the blood. It can be taken up by downstream hepatocytes via OATP1B1/3 transporters (2). In RS, the absence or dysfunction of the OATP1B1/3 may disrupt the uptake of BG (Figure 2), which causes predominantly conjugated hyperbilirubinemia.

The accurate diagnosis of RS is of paramount clinical importance, as it directly influences pharmaceutical safety by preventing unwarranted exposure to drugs that rely on functional OATP1B1/3 transporters for hepatic uptake and systemic clearance. The dysfunction of OATP1B1/3 transporters can profoundly impact numerous drug metabolisms, particularly statins, ezetimibe,



Zhao and Huang 10.3389/fmed.2025.1630360

TABLE 1 Clinical characteristics and mutations in SLCO1B1/3.

| Patient                                                                | 1               | 2               | 3               |
|------------------------------------------------------------------------|-----------------|-----------------|-----------------|
| Gender                                                                 | Female          | Male            | Male            |
| Age                                                                    | 14              | 16              | 20              |
| Symptoms                                                               |                 |                 |                 |
| Intermittent jaundice                                                  | +               | +               | +               |
| Laboratory data                                                        |                 |                 |                 |
| Hb (g/L)                                                               | 126             | 149             | 152             |
| ALT/AST (U/L)                                                          | 11.9/23.6       | 15.8/17.7       | 31.7/18.5       |
| TBIL/DBIL (µmol/L)                                                     | 76.1/48.3       | 108.9/70.7      | 129.2/100.6     |
| GGT (U/L)                                                              | 14              | 12.7            | 27.3            |
| Viral serologies (HBV and HCV)                                         | _               | _               | _               |
| Hemolysis test                                                         | _               | _               | _               |
| Ultrasound examination of the liver, gallbladder, pancreas, and spleen | N               | N               | N               |
| Genetic testing                                                        |                 |                 |                 |
| Mutation in SLCO1B1                                                    | c.1738C>T       | c.1738C>T       | c.1738C>T       |
| Mutation in SLCO1B3                                                    | c.481+22insLINE | c.481+22insLINE | c.481+22insLINE |

Hb, hemoglobin (normal range: 130–170 g/L); ALT, alanine aminotransferase (normal range: 9–50 U/L); AST, aspartate aminotransferase (normal range: 15–40 U/L); TBIL, total bilirubin (normal range: 3.4–17.1 μmol/L); DBIL, direct bilirubin (normal range: normal range: 0–6 μmol/L); GGT, gamma-glutamyl transpeptidase (normal range: 10–60 U/L); HBV, hepatitis B virus; HCV, hepatitis C virus; NA, not available; N, normal.

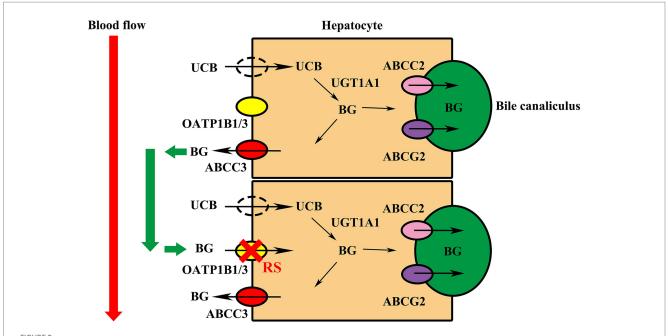



FIGURE 2
Schematic view of bilirubin transport by the hepatocyte in Rotor syndrome. In hepatic metabolism, UGT1A1 catalyzes the conversion of UCB to water-soluble BG within the endoplasmic reticulum. The generated BG is secreted into bile by ABCC2 and ABCG2 transporters, while a substantial fraction is rerouted to the bloodstream via ABCC3. Downstream hepatocytes can uptake BG from the circulation through OATP1B1/3 transporters. In RS, the absence or dysfunction of OATP1B1/3 transporters disrupts hepatic uptake of BG. UGT1A1, uridine diphosphate glucuronosyltransferase 1A1; UCB, unconjugated bilirubin; BG, bilirubin glucuronides; RS, Rotor syndrome.

methotrexate, irinotecan, cabazitaxel, sunitinib, and sartans (3, 6–8). They could exhibit significantly increased systemic exposure in RS patients. After a confirmed diagnosis of RS, clinicians can proactively select alternative drugs with minimal OATP dependency

and implement therapeutic drug monitoring (TDM) for high-risk agents.

The c.1738C>T is a nonsense variant in *SLCO1B1*, which was very strong evidence of pathogenicity (PVS1). The mutation is located in a

mutational hotspot (PM1). It has been reported in multiple clinical cases of RS (6, 9–12). Prediction software, specifically MutationTaster (13), predicted a deleterious effect of the variant (PP3). Therefore, according to ACMG guidelines, the variant is classified as a pathogenic mutation.

The c.481+22insLINE mutation in *SLCO1B3* is a long-interspersed element (LINE) insertion variant about 6.1 kb in size. It could affect normal editing of mRNA and cause abnormal skipping of exons (PS3) (10). It is a common mutation of RS in Asian populations (PM1) (10). The variant is not found in either the 1000G or EXAC databases (PM2). The patients carried both the homozygous c.1738C>T variant in *SLCO1B1* and the c.481+22insLINE mutation in *SLCO1B3*. The findings were consistent with the digenic recessive pattern of RS (PM3). Therefore, the variants were also classified as a pathogenic mutation.

This study provided evidence that the detected genetic mutations in *SLCO1B1* and *SLCO1B3* are common in Rotor syndrome, which is consistent with previous research (6, 9–12, 14). However, precise information on the frequencies of c.1738C>T (*SLCO1B1*) and c.481+22insLINE (*SLCO1B3*) mutations is limited. There is insufficient data to assess its distribution in RS and the general population. In resource-limited settings across East Asia, targeted PCR assays for the two mutations might be considered as a screening method for RS; however, validation in larger sample sizes is required.

In conclusion, RS is a rare inherited disorder that causes predominantly conjugated hyperbilirubinemia. Genetic testing is a useful tool for efficient diagnosis. This study supported that c.1738C>T in *SLCO1B1* and c.481+22insLINE in *SLCO1B3* are common pathogenic mutations in the East Asian RS patients.

### Data availability statement

The datasets for this article are not publicly available due to concerns regarding participant/patient anonymity. Requests to access the datasets should be directed to the corresponding author.

# **Ethics statement**

The studies involving humans were approved by the Ethics Committee of the Second Xiangya Hospital of Central South University. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants' legal guardians/next of kin.

#### References

- 1. Memon N, Weinberger BI, Hegyi T, Aleksunes LM. Inherited disorders of bilirubin clearance. *Pediatr Res.* (2016) 79:378–86. doi: 10.1038/pr.2015.247
- 2. Erlinger S, Arias IM, Dhumeaux D. Inherited disorders of bilirubin transport and conjugation: new insights into molecular mechanisms and consequences. *Gastroenterology.* (2014) 146:1625–38. doi: 10.1053/j.gastro.2014.03.047
- 3. Jirsa M, Knisely AS, Schinkel A, Kmoch S. Rotor syndrome In: MP Adam, J Feldman, GM Mirzaa, RA Pagon, SE Wallace and A Amemiya, editors. Genereviews Seattle, WA: University of Washington (1993)
- 4. Rotor AB, Florentin A. Familial nonhemolytic jaundice with direct van den Bergh reaction. *Acta Med Phil.* (1948) 5:37–49.

#### **Author contributions**

CZ: Software, Funding acquisition, Writing – original draft, Conceptualization, Project administration, Visualization, Methodology, Formal analysis. HH: Supervision, Data curation, Writing – review & editing, Resources, Validation.

# **Funding**

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by the Department of Science and Technology of Henan Province, China (Grant No. 252300421609).

# **Acknowledgments**

The authors would like to thank the patients for their participation.

#### Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

## Generative AI statement

The authors declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

#### Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- 5. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* (2015) 17:405–24. doi: 10.1038/gim.2015.30
- 6. Zhou D, Qi S, Zhang W, Wu L, Xu A, Li X, et al. Insertion of Line-1 retrotransposon inducing exon inversion causes a rotor syndrome phenotype. *Front Genet.* (2019) 10:1399. doi: 10.3389/fgene.2019.01399
- 7. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1b1: a genetically polymorphic transporter of major importance for hepatic drug uptake. *Pharmacol Rev.* (2011) 63:157–81. doi: 10.1124/pr.110.002857

Zhao and Huang 10.3389/fmed.2025.1630360

- 8. Shitara Y. Clinical importance of OATP1B1 and OATP1B3 in drug-drug interactions. *Drug Metab Pharmacokinet*. (2011) 26:220–7. doi: 10.2133/dmpk.DMPK-10-RV-094
- 9. Kim SR, Saito Y, Sai K, Kurose K, Maekawa K, Kaniwa N, et al. Genetic variations and frequencies of major haplotypes in SLCO1B1 encoding the transporter OATP1B1 in Japanese subjects: SLCO1B1\*17 is more prevalent than \*15. *Drug Metab Pharmacokinet*. (2007) 22:456–61. doi: 10.2133/dmpk.22.456
- 10. Kagawa T, Oka A, Kobayashi Y, Hiasa Y, Kitamura T, Sakugawa H, et al. Recessive inheritance of population-specific intronic line-1 insertion causes a Rotor syndrome phenotype. *Hum Mutat.* (2015) 36:327–32. doi: 10.1002/humu.22745
- 11. van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome
- by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest. (2012) 122:519–28. doi: 10.1172/jci59526
- 12. Kimura A, Kagawa T, Takei H, Maruo Y, Sakugawa H, Sasaki T, et al. Rotor syndrome: glucuronidated bile acidemia from defective reuptake by hepatocytes. Hepatol Commun. (2021) 5:629–33. doi: 10.1002/hep4.1660
- 13. Schwarz JM, Cooper DN, Schuelke M, Seelow D. Mutationtaster2: mutation prediction for the deep-sequencing age. *Nat Methods*. (2014) 11:361–2. doi: 10.1038/nmeth.2890
- 14. Cheng YY, Chang KC, Chen PL, Yeung CY, Liou BY, Chen HL. SLCO1B1 and SLCO1B3 genetic mutations in Taiwanese patients with Rotor syndrome. *J Formos Med Assoc.* (2023) 122:648–52. doi: 10.1016/j.jfma.2023.03.003