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Compare the prognosis of
pancreatic cancer patients with
different treatment modalities
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methods to build predictive
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Background: Pancreatic cancer (PC) is highly refractory to most treatments.
Multimodal treatment, combining several types of therapies, is likely to benefit
PC patients. However, it remains unclear which multimodal treatment is most
effective and how to predict outcomes from different combinations. This study
compared overall survival among PC patients receiving chemotherapy alone
(C), immunotherapy combined with chemotherapy (Cl), radiotherapy combined
with chemotherapy (CR), and triple-combination therapy (CRI). A machine
learning-based predictive model between monomodal and multimodal therapy
was established using 3 years of clinical follow-up data.

Methods: We retrospectively analyzed 125 cases of PC patients treated at Yixing
People’s Hospital from January 2014 to June 2024 (C, n = 50; CI, n = 38; CR,
n = 18; CRI, n = 19). The group CI, CR and CRI were merged and defined as
multiple modalities (MM) group (n = 75), while the group C was defined as
single modality (SM) treatment group (n = 50). Kaplan-Meier plots estimated the
overall survival rate of each group and the survival rate of the SM group and the
MM group. Cox proportional hazard models identified key prognostic factors,
including cytokines and inflammation mediators. Four machine learning models,
including logistic regression (LR), support vector machine (SVM), random forest
(RF), and Extreme Gradient Boosting (XGBoost) were used to build predictive
models. SHapley Additive exPlanations (SHAP) identified significant contributors
to treatment outcomes.

Results: Multimodal treatments significantly improved PC prognosis
(P = 0.0025). Univariate and multivariate Cox regression analysis showed
that interleukin-2 (IL-2) was a protective factor, while neutrophil-to-lymphocyte
ratio (NLR) was a risk factor. This study evaluated and compared the predictive
performance of four machine learning models using the classifiers such as area
under curve (AUC), accuracy and F1 score, etc. In the binary classification task,
RF and XGBoost models both achieved good performance compared with the
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other two machine learning methods. In addition, SHAP analysis also proved
that IL-6 contributed the most to the machine learning models.

Conclusion: PC patients may benefit from more intensive multimodal therapies,
which provides novel insights into predicting PC survival prognosis and
highlights the potential of machine learning in biomarker identification and

disease prognosis.

KEYWORDS

pancreatic cancer, multimodal therapies, prognostic markers, machine learning,

prediction model

1 Introduction

Pancreatic cancer is a highly fatal malignancy, often diagnosed
at an advanced stage with limited treatment efficacy (1). Despite
recent therapeutic advancements, the prognosis for pancreatic
cancer remains poor, highlighting the urgent need to develop
new biomarkers and predictive models for early diagnosis, precise
treatment, and survival prediction (2, 3). The early diagnosis of
pancreatic cancer usually relied on imaging and hematological
indicators, but the sensitivity and specificity of these methods
were limited, and it was difficult to meet clinical needs (4).
Moreover, pancreatic cancer patients exhibited variable responses
to treatment, and there was a current lack of prognostic indicators
to predict treatment outcomes (5, 6). Therefore, the search for
new biomarkers and the use of computer science methods for
comprehensive analysis has become one of the hot spots of
pancreatic cancer research.

In the treatment of pancreatic cancer, combined treatment
modalities have been shown to be superior to single treatment
approaches with significantly improved survival rates, enhanced
disease control rates, as well as reduced tumor burden.
A systematic review and network meta-analysis showed that
combined chemotherapy regimens based on gemcitabine or
5-FU were effective in advanced pancreatic cancer, especially
the regimen combining gemcitabine with 5-FU derivatives,
which was superior to the regimen combined with platinum
drugs (7). A single-center study on elderly patients with
advanced pancreatic cancer found that the median overall
survival in the combined chemotherapy group was 8.2 months,
significantly higher than the 4.7 months in the single-drug
chemotherapy group, and the median progression-free survival of
the combined chemotherapy group was longer (8). However,
clinical outcomes remain highly heterogeneous, and it is
unclear which patients derive the most benefit from each
therapeutic approach. Moreover, the underlying molecular
determinants of treatment sensitivity remain largely unclear,
posing a major challenge for optimizing therapeutic strategies in
pancreatic cancer.

In recent years, with the advancement of molecular biology
technology and the development of data science, the application
of machine learning in the medical field has gradually increased.
Machine learning can mine potential rules from a large number
of medical data, and help clinicians make more accurate decisions
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by building predictive models, especially in the early diagnosis
of diseases, prognosis assessment and individualized development
of treatment plans. In particular, machine learning algorithms
such as Support Vector Machines (SVM), Random Forest (RF),
and XGBoost had demonstrated strong performance in processing
medical data due to their efficiency, accuracy, and robust non-linear
fitting capabilities (9).

Immunoinflammatory factors played an important role in
the prognosis of pancreatic cancer, with their levels fluctuating
according to treatment and disease progression (10, 11). Dynamic
monitoring of these factors can enhance prognostic accuracy.
Elevated levels of pro-inflammatory and immunosuppressive
factors were generally associated with poorer outcomes, while
anti-tumor immune responses correlate with better prognosis
(12). For instance, IL-2 has been shown to promote antitumor
immunity by activating cytotoxic T lymphocytes and NK cells,
and high IL-2 levels are generally associated with favorable
outcomes in several malignancies. At the same time, IL-2 also
drives expansion of regulatory T-cells (Tregs) and can lead
to effector T cell exhaustion or toxicities, thus limiting its
therapeutic benefit (13). In pancreatic ductal adenocarcinoma
(PDAC), elevated IL-2 levels are associated with better prognosis
and enhanced antitumor immunity, and that IL-2-based co-
culture with human peripheral blood mononuclear cells (PBMCs)
significantly improves dendritic cell (DC) tumor infiltration and
T-cell activation, providing a promising strategy to optimize
DC-based immunotherapy for PDAC (14). IL-4 and IL-13 are
reported to promote pancreatic cancer progression via Type
II IL-4 receptor signaling, which enhances tumor proliferation,
invasion, and immune escape in pancreatic cancer (15). IL-6
family plays a central role in sustaining this pro-tumorigenic
inflammation. Accumulating evidence indicates that IL-6 signaling
not only enhances cancer cell proliferation and survival but
also contributes to stromal activation and immune suppression
(16). Preclinical studies indicate that targeted inhibition of IL-
6 may enhance the efficacy of anti-PD-L1 in PDAC (17). IL-
17A and IL-17B were two subtypes closely related to pancreatic
cancer in the IL-17 family (18). IL-17B enhanced the invasion
and metastasis ability of pancreatic cancer cells by activating IL-
17RB and its downstream ERKI1/2 signaling pathway (19). In
pancreatic cancer, the expression level of interferon gamma (IFN-
y)-related genes was closely related to the patient’s prognosis.
Highly expressed IFN-y-related genes (such as STAT1) were
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associated with disease-specific survival (DSS) and extended total
survival (OS) of pancreatic cancer patients (20). The NLR, or
neutrophil-to-lymphocyte ratio could be an independent indicator
of poor prognosis in patients with unresectable pancreatic
cancer (21). Combining multiple immunoinflammatory factors
(e.g., IL-2, IL-4) with NLR can improve prognostic prediction
accuracy (22).

In addition, many clinical studies had shown that B2
microglobulin (B2-MG), lactate dehydrogenase (LDH) played an
important role in predicting the prognosis of pancreatic cancer.
B2-MG was a marker of various tumors, and the increase in its
level was usually associated with an increase in tumor load and
poor prognosis. In colorectal cancer, low 32-MG mRNA expression
was a powerful predictor of lymph node metastasis and/or poor
prognosis (23). While there is limited evidence supporting p2-
MG as a standalone prognostic marker for pancreatic cancer, its
combination with serological markers, such as high preoperative
levels of serum tumor markers such as glycan carbohydrate antigen
19-9 (CA19-9), carcinoembryonic antigen (CEA), and cancer
antigen 125 (CA125), is associated with worse tumor differentiation
and shorter overall survival. LDH has been generally considered to
be a sign of high tumor burden, and the increase in its level was also
associated with a high risk of solid tumor death (24). Therefore,
how to comprehensively analyze the expression information of
different biomarkers through machine learning technology and
build an efficient survival prediction model has become an
important direction of pancreatic cancer prognosis research.

This study aims to explore the prognostic biomarkers of
pancreatic cancer patients by using clinical data such as immune
factors and hematological indicators, combined with machine
learning algorithms. We used four commonly used machine
learning models-LR, SVM, RE, and XGBoost to predict patient
survival, and based on these models assessed the impact of different
treatment modalities on patient survival. By constructing accurate
prognostic models, we aim to provide clinicians with personalized
treatment plans and a robust foundation for future research.

2 Data and methods

2.1 Study population

The Ethics Committee of Yixing People’s Hospital approved
the study (Approval No. 20258085-01), which was in accordance
with the Declaration of Helsinki (Revised 2013). A total of
177 PC patients hospitalized in the Department of Oncology
of Yixing People’s Hospital from January 2014 to June 2024,
were included in the study. The inclusion criteria for this
study were: (1) cytologically or
metastatic pancreatic cancer; (2) The chemotherapy regimens
for the four groups were limited to AG or FOLFIRINOX,
immunotherapy was limited to PD-1/PD-L1 inhibitors, and

histologically confirmed

radiotherapy was limited to intensity-modulated radiotherapy.
Among them, immunotherapy was administered concurrently with
chemotherapy; the treatment sequence was first chemotherapy
(regardless of whether
followed by radiotherapy; the treatment cycle and dose were
both based on the CSCO Pancreatic Cancer Diagnosis and

combined with immunotherapy),
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Treatment Guidelines; (3) patients with complete clinical

information and available cutoff points for recurrence
and mortality; and (4) patients without severe infections,
autoimmune diseases, and other comorbidities. Patients will
be excluded from the study if they have severe cardiac, hepatic
and renal comorbidities or incomplete medical data (more
than 20% missing data), who were not treated according
to the prescribed treatment plan or patients with multiple

primary cancers.

2.2 Data collection and analysis

Baseline data of all patients were retrieved and recorded
from the hospital information system (HIS), including basic
information such as age, gender, and tumor histochemical
type; inflammation-related markers such as IL-2, IL-4, IL-6,
IL-17, and IFN-y in the first visit; and tumor markers such
as CA19-9, CEA, alpha-fetoprotein (AFP); serum biochemical
markers such as NLR, LDH, B2-MG levels. The follow-
up endpoint was OS, defined as the duration from the
patient’s first treatment to death or making the last follow-
up date, with a follow-up cut-off date of September 23, 2024.
Baseline data including 14 variables were included in the
statistical analysis (Table 1). We divided the population into
two groups based on the age cutoff of 65, with one group
being those aged 65 and above and the other being those
aged below 65. The CI (chemotherapy + immunotherapy),
CR (chemotherapy + radiotherapy), CRI
(chemotherapy + radiotherapy + immunotherapy) groups were
merged to form the Multiple Modalities (MM) group (n = 75),
whereas the group C (chemotherapy alone) was designated as

and

the Single Modality (SM) treatment group (n = 50). Numerical
differences between two groups were assessed by the Chi-square
test or Fisher’s exact test for categorical variables, while the t-test
and Kruskal-Wallis H test or Mann-Whitney U test were used
for continuous variables. The threshold for significance was
P = 0.05. Data analyses were performed using Python, Version
3.8.8.

As shown in Table 1, baseline characteristics between the
monomodal and multimodal groups were compared using
both traditional hypotheses testing by calculating P-values and
standardized mean differences (SMDs). Reporting both P-values
and SMDs is beneficial because they provide different but
complementary information about research results. P-values assess
statistical significance, indicating the likelihood of an observed
difference being due to chance. There were no significant
differences in inflammatory-related markers, tumor markers, and
serum biochemical markers between the two groups. All P-values
were greater than 0.05. SMDs, on the other hand, quantify the
size of the effect, independent of sample size. Ideally, an SMD
value < 0.1 is considered a small difference, an SMD > 0.1
and < 0.2 is a moderate difference, and an SMD > 0.2 is a
substantial difference (25). In some cases (IL-4, IL-6, IL-17, NLR
and CA19-9), a result with a P-value > 0.05 and an SMD > 0.2
indicates that while the difference between two groups is not
statistically significant, it may still represent a small to moderate
effect that is practically important. This situation often arises due
to an insufficient sample size.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1629324
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Fan et al.

TABLE 1 Baseline demographic and clinical characteristics.

10.3389/fmed.2025.1629324

SMin=50 M n-75 S

Gender, n (%) 1.000 0.034
Female 30(60%) 40(53.33%)

Male 20(40%) 35(46.67%)

Age (years), n (%) 0.879 0.132
>65 9(18%) 25(33.33%)

<65 41(82%) 50(66.67%)

Histologic type, n (%)

Adenocarcinoma 35(70%) 40(53.33%) 0.924 0.126
Non-adenocarcinoma 15(30%) 35(46.67%)

Laboratory test, median (IQR)

IL-2 (ng/L) 1.66 & 1.25 1.69 £ 1.30 0.922 0.018
IL-4 (ng/L) 347 £2.34 412 £ 3.40 0.202 0.225
IFN-y (U/L) 22.57 +20.83 22.22 £ 24.08 0.930 0.016
IL-6 (ng/L) 54.68 £ 96.51 135.10 £ 358.04 0.066 0.307
IL-17 (ng/L) 43.66 & 36.62 31.68 4 28.48 0.052 0.365
NLR 0.66 & 0.14 0.69 £ 0.14 0.160 0.257
LDH (IU/L) 235.07 4 184.82 223.97 £175.05 0.736 0.062
$2-MG (mg/L) 2.61 £2.15 3.30 £ 1.56 0.053 0.013
CEA (ng/mL) 32.15+£77.90 30.86 & 116.28 0.941 0.138
AFP (ng/mL) 3.00£1.83 2.73 £2.06 0.443 0.074
CA19-9 (U/L) 2201.76 £ 7535.19 1728.18 & 5024.37 0.695 0.366

2.3 Prediction model construction and
validation

elucidate the
relationship between different treatment modalities and survival

To analyze prognostic biomarkers and

in pancreatic cancer patients, four common machine learning
algorithms were used. Initially, LR was chosen as the baseline
model to explore the relationship between biomarkers and patient
survival using its linear nature. As a traditional classification
algorithm, logistic regression is suitable for dealing with medical
data with binary classification problems and is able to quantify
the importance of features by estimating regression coefficients.
Secondly, SVM is applied to establish decision boundaries. SVM
maximizes the classification interval by finding the optimal
hyperplane, and is able to effectively deal with non-linear
relationships between features and adapt to complex patterns in
pancreatic cancer prognostic data. Additionally, RF algorithm,
as an integrated learning method, improves the stability and
robustness of the model by integrating multiple decision trees to
reduce overfitting. Each decision tree is trained on a subset of the
data, and the final prediction is made by voting, which makes the
random forest better able to cope with high-dimensional feature
data. Lastly, XGBoost, an advanced Boosting Tree algorithm, was
implemented. XGBoost iteratively trains the model and corrects
errors from previous rounds, thereby significantly improving
accuracy and generalization. It is particularly adept at handling
large-scale datasets and exhibits strong resistance to noise.

Frontiers in Medicine

These algorithms were chosen based on their general
application to medical data and their ability to handle high-
dimensional data and classification problems. By training these
four models on the same dataset, it is possible to provide
diverse solutions for prognostic prediction of clinical pancreatic
cancer patients. We used PyCharm (version 3.8.10), combined
pandas, numpy, scikit-learn, imbalanced-learn, matplotlib and
other common libraries for four machines The learning model (LR,
SVM, RE, XGBoost) was modeled and evaluated, among which the
XGBoost model additionally used the XGBoost library. To alleviate
the class imbalance problem, we uniformly use the SMOTE method
from the imbalanced-learn library to resample the training data.
The modeling process uses scikit-learn pipeline, which integrates
normalization processing and classifier construction. In order to
minimize the impact of uneven data distribution on the model
evaluation results, the stability and accuracy of the generalization
ability assessment of the model are improved by randomly splitting
the overall dataset into training and test sets with a ratio of 7:3.
Models are fitted on the training set and their generalization
performance is evaluated on an internal independent test set.

2.4 Model evaluation

In order to comprehensively assess the performance of each
machine learning model in prognosis prediction of pancreatic
cancer patients, multiple evaluation metrics were used. These
metrics can reflect the accuracy and stability of the models from
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different perspectives. The receiver operating characteristic (ROC)
curve and area under curve (AUC) value were employed as
critical evaluation standards. We also employed accuracy, the
most commonly used metric for classification model evaluation,
measured the proportion of correct predictions made by the model.
To integrate Precision and Recall, the F1 Score was used as a
balanced evaluation criterion. It represents the harmonic mean
of precision and recall and is especially suitable for imbalanced
classification problems. Model evaluation indicators include AUC,
ROC, Accuracy, Specificity, Sensitivity (Recall), Precision, F1 Score,
Average Precision (AP). Model evaluation indicators were provided
and implemented by scikit-learn. Model visualization, including
ROC, Precision-Recall (PR) curves and confusion matrix diagrams
were drawn by matplotlib.

2.5 Model interpretability

Interpretability of machine learning models was crucial in
medical research because it not only helped to improve the
transparency of the model, but also helped clinicians understand
the basis of the model’s predictions. This was particularly important
in prognostic analyses of complex diseases like pancreatic cancer,
where explaining the model’s decision-making process is crucial for
clinical application. SHAP values (Shapley Additive Explanations),

Patients with metastatic pancreatic
cancer confirmed by Cytology or
histology who had received multiple
systemic treatment modalities (n=177)

10.3389/fmed.2025.1629324

an interpretability method based on game theory, were employed
to quantify the contribution of each feature to individual predicted
outcomes. SHAP values reveal the positive or negative impact
of features on model predictions, thereby clarifying their role in
different outcomes. The SHAP package was used to analyze the
interpretability of each model, in which LR, REF, and XGBoost
generated a summary chart of SHAP values and a bar chart of the
importance of features.

The data collection, model construction, and evaluation
processes are shown in Figure 1.

3 Results

3.1 The prognosis of multimodal
combined treatment for patients with
advanced pancreatic cancer is
significantly better than that of
monomodal.

A total of 125 pancreatic cancer patients were included in this
study based on the predefined inclusion and exclusion criteria, with
32 patients surviving. The patients were divided into four treatment
modality groups and the survival time among four groups were

Excluded (n=52)
« had severe cardiac, hepatic and renal comorbidities(n=9)
« incomplete medical data (more than 20% missing data) (n=31)

Labeledﬂataset
125 data, 14 features

‘|e patients with multiple primary cancers(n=4)
« Patients who were not treated according to the prescribed
treatment plan(n=38)

Variable selection
(14 Variables)

Univariate and
multivariate regression

Dataset split Train:Test (7:3)
single modality Vs multiple modalities.

Training set (n=87)

Model fitting and

Prediction models

‘ Testing set (n=38)

parameter tunning
(LR/SVM/RF/XGBoost)

(5 Variables)

Model evaluation

Model comparisons

|

Prediction models for
multimodal therapy

Model interpretation:
SHAP

FIGURE 1
Flow chart of study population selection and model construction.
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TABLE 2 Univariate Cox analysis.

Variables

Modality 0.3006-0.7775 0.0027

Age 1.010 0.9890-1.031 0.3553
Gender 1.080 0.7243-1.609 0.7067
Histology 0.6389 0.4268-0.9563 0.02946

L2 0.6192 0.5169-0.7416 1.92 x 1077
L4 0.8864 0.8270-0.9500 0.0007
IFN-y 0.9830 0.9728-0.9932 0.0011

L6 1.001 1.001-1.002 0.0001

IL17 1.034 1.026-1.042 3.61 x 10718
NLR 14.61 3.116-68.46 0.0007

LDH 1.003 1.002-1.004 6.21 x 10710
CEA 1.000 0.9987-1.002 0.7743

AFP 0.9799 0.8806-1.090 0.7087
CA19-9 1.000 0.99996-1.000 0.8838
B2-MG 0.9632 0.8536-1.087 0.5433

compared. Initially, an univariate Cox regression analysis (Table 2)
indicated that treatment modality could serve as a protective
factor (HR = 0.48, 95% CI = 0.30-0.78, P = 0.0027), suggesting
that multimodality could significantly improve the prognosis of
patients with late-stage pancreatic cancer. Kaplan-Meier (KM) plot
indicated that combined treatment modality was associated with
better survival in advanced PC patient (P = 0.00054). The median
survival time of the four groups was: CRI = 510 days, CI = 300 days,

10.3389/fmed.2025.1629324

CR = 255 days, and C = 210 days, respectively (Figure 2A).
For multiple comparisons, the RIC group had significantly better
prognosis than other groups (CRI vs. CI: P = 0.0128; CRI vs. CR:
P = 0.0069; CRI vs. C: P = 0.0003). Next, we combined CR, CI
and CRI as multimodal treatment groups. In comparison with
monomodal treatment group (chemotherapy alone), multimodal
treatment could significantly extend the survival of PC patients
(P < 0.0025) (Figure 2B). Thus, we found that the prognosis of
the CRI group was better than the other three treatment methods,
with the longest median survival time and a statistically significant
difference.

3.2 Multivariate Cox analysis of clinical
meaningful variables affecting the
prognosis of PC patients

Initially, we reviewed the clinical data of patients, conducted
univariate analysis, and combined with literature research on
prognostic factors of pancreatic cancer, finally including 11
biological indicators (IL-2, IL-4, IL-6, IL-17, IFN-y, NLR, LDH,
CEA, AFP, CA19-9, B2-MG). The univariate Cox regression
analysis indicated that histology, IL-2, IL-4, IFN-y, IL-6, IL-17,
NLR, LDH were associated with prognosis of PC (P < 0.05)
(Table 2). Next, we conducted a multivariate Cox analysis to
identify independent factors associated with prognosis of PC. In
addition to treatment modality, forest plot demonstrated that five
variables, IL-2, IL-6, IL-17, NLR and LDH were screened with
statistical significance (P < 0.05) (Figure 3). Moreover, IL-2 was
prognostic protective factor (HR = 0.64, P < 0.01), while NLR was
prognostic risk factor (HR = 5.21, P < 0.05).

A Cl
hemotherapy
Chemotherapy Chemotherapy :
s Chemotherapy e +Immunotherap)"i- +Radiotherapy == +Radiotherapy

+lmmunotherapy

P=0.00054

Survival Probability
o
(4]
o

o
N
a

Cvs. CRI  P=0.00031
Clvs. CRI P=0.01278

0.001 CR vs. CRI P=0.00687

0 250 500 750 1000

Time (days)

Number at risk

group=C{ 50 13 0 0 0
% group=Cl{ 38 21 12 2 0
& group=CR{ 18 9 3 0 0
group=CRI{ 19 17 9 7 4
0 250 500 750 1000

Time

FIGURE 2

curves.

n__events median 95% CI
1.00 C=50 34 210 180-270
Cl=38 33 300 180-570
CR=18 16 255  210-600
CRI=1916 510 420-1080
0.75

KM plots four different treatment groups in PC patients. (A) KM curve of OS in the four groups among C (Chemotherapy), Cl (Chemotherapy plus
Immunotherapy), CR (Chemotherapy plus Radiotherapy) and CRI (trial modal therapy). (B) KM curve of OS between monomodal and multimodal
groups. Median survival time and confidence interval distribution among different treatment modalities groups were labeled alongside the KM

B
== Single Modality === Multiple Modalities
1.00
[ n_events median 95% CT]
SM=50 34 210 180-270
MM=75 65 390  300-480)
0.75

P=0.0025

Survival Probability
o
()]
o
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0.00
0 250 500 750 1000
Time (days)
Number at risk
@ group=MM{ 75 47 24 9 4
s
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Hazard Ratio
Variables HR (95% Cl) P value
Modality n=125 03280 . . <0.001
y (0.1884-0.5709) :
. _ 1.0306
Histology n=125 (0.6311-1.6830) —— 0.9041
- 0.9878
IL-4 n=125 (0.9112-1.0709) b 0.7658
- 0.9875
IFN-y n=125 (0.9746-1.0006) » 0.0621
_ 1.0011
IL-6 n=125 " (4 0004-1.0019) 0.0041
— 1.0355
IL-17 =125 (4.0265-1.0445) " <0.001
_ 5.2087
NLR n=125 (1 .0277-26.3993) 0.0463
_ 1.0014
LDH n=125 (1.0003-1.0025) 0.0165
# Events: 99; Global p-value (Log-Rank): 8.9481e-26
AIC: 652.18; Concordance Index: 0.86 02 05 1 2 5 10 20
FIGURE 3

Multi-factor random forest diagram in PC patients.

3.3 Machine learning model construction
and evaluation for binary classification
tasks

Based on the multivariate Cox analysis of the treatment
mode, a total of five metrics were included in this study,
including three immunological metrics (L-2, IL-6, IL-17) and three
clinical biochemical parameters (NLR, LDH). All variables were
standardized before model training to improve model convergence
efficiency. Four machine learning models (LR, SVM, RE and
XGBoost) were employed to establish the corresponding prognostic
prediction models for binary classification and compare the
differences in the classification performance of different machine
learning models for unimodal versus bimodal plus trimodal
therapy. All the model performance parameters were summarized
in Table 3. As a result, ensemble methods based on tree models
demonstrated a clear advantage in classification performance.
Overall, XGBoost model achieved the best overall discriminative
ability on the test set, with an AUC of 0.783 and an accuracy of
78.9%. It exhibited particularly strong performance in specificity
(85.7%) and precision (81.8%), indicating its high reliability in
identifying patients receiving single-modality treatment while
effectively controlling false positives. Meanwhile, the Random
Forest model achieved the highest sensitivity (82.6%), showing
superior ability to identify multi-modality treatment patients—
an important feature for minimizing missed diagnoses in clinical
practice. Both ensemble models yielded F1 scores above 80%,
reflecting a favorable balance between precision and recall.

A particularly noteworthy aspect of this experiment is
the insight into model generalization ability, revealed by the
comparison between training and testing performance. As shown
in Figure 4, RF and XGBoost achieved exceptionally high AUCs
of 0.99 and 0.97 during model training, indicating strong fitting
capability. On the test set, their AUCs decreased to 0.77 and 0.78,
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TABLE 3 Model performance on the test set.

Podels LR SVM | RF  XGboost
AUC

0.800 0.722 0.771 0.783
Accuracy 0.658 0.632 0.763 0.789
Specificity 0.600 0.400 0.792 0.857
Sensitivity (Recall) 0.696 0.783 0.826 0.783
Precision 0.727 0.667 0.792 0.818
F1 Score 0.711 0.720 0.809 0.800
Average precision (AP) 0.853 0.830 0.848 0.857

yet both maintained acceptable discriminative power. Precision-
recall curve analysis further demonstrated that XGBoost attained
both high AUC (0.78) and average precision (0.86) on the test
data, achieving the optimal balance between discrimination and
classification accuracy, thus highlighting its potential as a clinical
predictive tool.

contrast, LR,
generalization (AUC =

In although showing relatively stable
0.80), exhibited limited classification
efficiency (accuracy 65.79%, F1 = 71.11%), underscoring the
inherent limitations of linear models in capturing complex non-
linear relationships. The SVM performed the worst overall, and
its combination of high sensitivity (78.26%) and low specificity
(40%) suggested a strong bias toward predicting multi-modality
treatment, resulting in excessive false positives and restricting its
clinical applicability.

As illustrated in Figure 5, the confusion matrix analysis further
supports these findings. The RF model demonstrated the most
balanced classification behavior, maintaining high true positive and
true negative rates with a notably lower misclassification rate. The
performance of the XGBoost model was comparable, achieving
high specificity without compromising sensitivity. These results are
consistent with the prior metric analyses, confirming the robustness

and reliability of tree-based ensemble algorithms in handling
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complex clinical data. The above results indicated that the RF and
XGBoost models, which were based on decision tree integration,
showed significant advantages in dealing with high dimensional
and unbalanced clinical data. They were especially effective in
striking a better balance between sensitivity and specificity, which
was significantly better than that of the traditional LR and SVM
models.

3.4 Explanatory nature of model
parameters

To systematically evaluate the relative importance of each
clinical feature in predicting the treatment mode (SM vs. MM) of
pancreatic cancer, we conducted an explanatory analysis of four
machine learning models using SHAP method. There are some
differences in the feature contribution ranking of each model, but
it also reveals key consistency rules. SHAP plots revealed that the
proinflammatory cytokine IL-6 was dominant in most models.
Among the three models with good discriminant performance, LR,
RF and XGBoost, IL-6 was identified as the predictor with the
highest contribution, and its average SHAP value was particularly
prominent in the LR model (0.615). This agreement across models
suggests that the systemic inflammatory response represented by
IL-6 is a stable and robust biological feature that distinguishes
treatment modalities in patients (Figure 6).

IL-17 and NLR are important auxiliary discriminant indicators,
and their importance is model-dependent. IL-17 remained in
the top three features in LR, RF and XGBoost models, which
confirmed its key role in the tumor immune microenvironment.
NLR became the primary feature in the SVM model, and made
a significant contribution in LR and RF models, suggesting that
systemic inflammatory burden is also a prediction dimension that
cannot be ignored.
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It is worth noting that the decision logic of different algorithms
differs significantly. The XGBoost and RF models with the best
performance both gave higher weights to IL-6 and IL-17, and the
decision logic was clear and consistent with biological cognition.
In contrast, the SVM model generally has a low absolute value of
feature importance (the highest NLR is only 0.086), and its ranking
(NLR > IL-2 > IL-17 > IL-6) is quite different from other models,
which echoes its relatively low discriminative performance in this
task. This suggests that it may not effectively capture the most
important prognostic signal in the data.

Furthermore, LDH was consistently judged to be the
least contributing feature across all models, indicating that
it provides much less predictive information than specific
immune inflammatory indicators in this specific treatment mode
discrimination task. Altogether, in the binary classification tasks
performed using the four machine learning models, IL-6 and IL-17
are the most critical biomarkers driving the decision of prognosis
prediction models.

4 Discussion

To date, finding effective biomarkers to objectively assess the
prognosis of pancreatic cancer patients remains a prominent issue
in clinical research (26, 27). Existing markers commonly used for
screening and diagnosing pancreatic cancer, such as CA19-9, suffer
from insufficient specificity and sensitivity in early diagnosis (21,
28). This limitation leads to many patients being diagnosed at
middle or late stages of the disease. Therefore, there is an urgent
need for new prognostic markers to address this deficiency. Based
on the established inclusion and exclusion criteria, a total of 125
PC patients were enrolled in this study. Their inflammation-related
indexes, tumor markers, and serum biochemistry at the time of
their first treatment in our hospital were collected. Cross-sectional

frontiersin.org


https://doi.org/10.3389/fmed.2025.1629324
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Fan et al.

LR
16
14
=
5 9 6
] 12
K]
o
[
2
= L 10
2 7
r8
6
SM MM
Predicted label
RF
18
16
= 10 5
%)
14
E 12
L]
Q
2 L 10
= F8
= 4
r6
T L4
SM MM
Predicted label
FIGURE 5

Confusion matrix of the test set

comparative analysis revealed that prognosis improved with more
comprehensive treatment modalities. Previous studies indicate
that the combined application of various anti-pancreatic cancer
treatment modes can synergistically enhance therapeutic effects
and improve patient prognosis through different mechanisms, but
there was still no detailed research on prognostic markers for
various treatment modalities. Our findings may have important
clinical implications for identifying patients who could benefit
from chemotherapy alone or from model-guided therapy, and for
elucidating the underlying molecular mechanisms.

Machine learning models can process large amounts of high-
dimensional clinical data to provide personalized prognostic
assessments for patients. In this study, four machine learning
algorithms were used to construct predictive models based on
the survival times of pancreatic cancer patients undergoing four
different treatment modalities. The goal was to improve predictive
accuracy and reliability and guide clinical practice. From the
perspective of algorithmic characteristics, the superior performance
of tree-based ensemble models likely arises from their strong
capacity to capture complex feature interactions. In contrast,
traditional models, constrained by their linear nature, failed to
fully exploit the intricate patterns within the data, resulting in
inferior performance. The high specificity of the XGBoost model
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makes it particularly suitable for clinical scenarios where false
positives must be strictly controlled, such as precision medical
resource allocation. Conversely, the high sensitivity of the Random
Forest model provides distinct advantages in disease screening and
early intervention. However, the performance gap between training
and testing phases observed in ensemble methods underscores the
necessity of monitoring model complexity and data suitability to
prevent overfitting in clinical applications.

SHAP analysis revealed that inflammatory cytokines such as
IL-6 and IL-17 contributed most significantly in tree models—
a finding consistent with known biological mechanisms—thereby
validating their ability to identify key prognostic biomarkers.
Our finding indicates that specific inflammatory pathways in
the tumor microenvironment, rather than general tumor burden
indicators, are the core biological basis for differentiating the
treatment patterns of pancreatic cancer patients, which provides an
important theoretical basis for the development of individualized
In conclusion, this comprehensive multi-dimensional evaluation
confirms that tree-based ensemble learning methods possess
significant advantages in pancreatic cancer treatment mode
classification tasks. Among them, XGBoost demonstrates the best
overall performance and strongest potential for clinical translation.
These findings provide a reliable algorithmic foundation for clinical

frontiersin.org


https://doi.org/10.3389/fmed.2025.1629324
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Fan et al. 10.3389/fmed.2025.1629324
A SHAP Summary Plot (Beeswarm) SHAP Feature Importance (Bar)
| High
L6  jo—
o
IL-17 i E
NLR -+ £
L2 = 8
LDH |
LR Low
00 25 50 75 100 125 150 175
B High
IL-2 : § IL-2
IL-17 B 1 LT 8 gl 17
o
IL-6 £ e
LDH
svm | LPH
-0.1 0.0 0.1 0.2 0.3
C High
I i-c. | -
NLR £ nir I - -
ILA7 - ¢ | 17 I - =
©
IL2 £l e
LoH Lov [ >
RF Low
03 02 -01 00 01 02 03 04 0.00 0.02 0.04 0.06 0.08 0.10
D High
L6 Ty 0202020202022 =
ILA7 £ [ 117 I o
>
NLR e | R I
L2 £l
LDH LDH 0.070
L
-1.0 05 0.0 0.5 1.0 15 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
SHAP value (impact on model output) mean(|SHAP value|) (average impact on model output magnitude)
FIGURE 6
SHAP plots and feature importance bar charts of four models. (A) SHAP plots and feature importance bar charts of LR model. (B) SHAP plots and
feature importance bar charts of SVM model. (C) SHAP plots and feature importance bar charts of RF model. (D) SHAP plots and feature importance
bar charts of XGboost model.

prognosis prediction and lay the groundwork for developing
individualized treatment decision-support systems. Future research
should focus on expanding the dataset, refining feature engineering,
and validating model effectiveness and practicality in real-world
clinical settings.

It is well documented that chemotherapy and radiotherapy
can improve the effectiveness of immunotherapy by increasing
tumor antigen expression and stimulating anti-tumor immune
responses. Chemotherapy and radiotherapy, traditionally regarded
as cytotoxic treatments, are now recognized as potent inducers of
immunogenic cell death (ICD), leading to the release of tumor-
associated antigens and neoantigens. Consequently, the tumor
microenvironment may shift from an immunosuppressive “cold”
state to a more active inflamed “hot,” making it more susceptible
to immune-mediated attack (29). Accumulating evidence suggests
inflammatory cytokines can either promote or inhibit tumor
progression depending on the cancer context, influencing processes
like angiogenesis, proliferation, and immunosuppression (30).
Circulating cytokines derived from the tumor microenvironment
reflect tumor-associated inflammatory activity and can serve as
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minimally invasive biomarkers for cancer detection and prognosis
(31). Serum IL-17 levels affect prognosis by influencing the
tumor microenvironment (32). Studies showed that the combined
use of anti-IL-17A antibody and gemcitabine can induce Ml
polarization of macrophages and enhance anti-tumor response
(33). Therefore, blockade of IL-17 has been shown to modulate
the immunosuppressive tumor microenvironment and IL-17
may act as a determinant of differential response between
chemotherapy alone and bimodal treatment strategies combined
with chemotherapy and immunotherapy.

However, this study has some limitations. As a single-center
retrospective study, it included a relatively small number of eligible
pancreatic cancer patients. Future work should increase the sample
size to revalidate the conclusions drawn in this study.

5 Conclusion

In conclusion, our study constructed a practical tool to
assist in prognostic determination for pancreatic cancer patients
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receiving different treatment modalities, based on routine clinical
laboratory indices using an artificial intelligence approach. This
comprehensive multi-dimensional evaluation confirms that tree-
based ensemble-learning methods possess significant advantages
in pancreatic cancer treatment mode classification tasks. Among
them, XGBoost demonstrates the best overall performance and
strongest potential for clinical translation. These findings provide
a reliable algorithmic foundation for clinical prognosis prediction
and lay the groundwork for developing individualized treatment
decision-support systems. Future research should focus on
expanding the dataset, refining feature engineering, and validating
model effectiveness and practicality in real-world clinical settings.
This tool can provide personalized prognostic assessments for each
patient. During treatment, clinicians can use this predictive model
to make more rational decisions and adjust treatment plans to
achieve better outcomes.
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