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Liver cirrhosis is a major global health burden, with acute-on-chronic liver failure 
(ACLF) being a severe complication associated with high mortality. Systemic 
inflammation (SI) plays a crucial role in ACLF development, yet indicators for 
predicting disease progression remain limited. Enterococcus faecium (EF) has 
been implicated in bacterial translocation and SI, but its clinical relevance in ACLF 
remains unclear. We analyzed sera of 197 patients from a prospective observational 
study with acutely decompensated liver cirrhosis versus 234 healthy controls for 
the presence of EF DNA using RT-qPCR and cytokine analysis of serum samples. 
Overall, EF DNA was detected in 26% (n = 51, p = 0.001) of the patients, and only 
in 1.28% (n = 3, p = 0.001) in the control cohort. The positive patient samples were 
distributed as follows: 12% of patients were with stable decompensated cirrhosis 
(SDC), 5% of patients were with unstable decompensated cirrhosis (UDC) and 10% 
in patients were with ACLF. In the latter group, EF positivity significantly correlated 
with significant elevated leukocyte counts, increased C-reactive protein (CRP), 
Interleukin-6, and increased bilirubin, Aspartate Aminotransferase (AST), as well 
as creatinine levels. These findings suggest that the translocation of EF or its 
DNA, into the systemic circulation may reflect increased intestinal permeability, 
which is thought to be a key driver of SI and subsequent organ failure in ACLF. 
Taken together, our findings demonstrate that the presence of EF DNA in serum 
may contribute to the pathophysiological cascade of ACLF by promoting SI and 
organ dysfunction, particularly affecting renal function. We therefore propose 
and hypothesize that the presence of EF DNA in patients’ serum could serve as 
an indicator of intestinal barrier dysfunction and further underscores the critical 
role of the gut-liver axis in the development and progression of ACLF.
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Introduction

Cirrhosis is the common end stage of most chronic liver diseases. 
Complications of cirrhosis are responsible for over 2.0 million deaths 
worldwide every year and rank as the 11th most common cause of 
death globally, and the ninth leading cause in Central Europe (1). The 
transition from compensated to decompensated liver cirrhosis is a 
hallmark of disease progression, however, predictors to assess the risk 
of decompensation in individual patients from routine diagnostics are 
lacking. Depending on the grade of decompensation, the one-year 
mortality rate varies between 1 and 57% over the course of disease. A 
dreaded course of acute decompensation is acute-on-chronic liver 
failure (ACLF), a fatal disease with rapid deterioration, with no 
effective treatment options available. Half of the patients with acute 
decompensation from liver cirrhosis develop ACLF, and ∼40% of 
these die within 28 days (2–7). The pathogenesis of ACLF is poorly 
understood. Various precipitating events are believed to induce 
dysfunction or failure of the liver and other organs. The PREDICT 
study uncovered three clinical courses of acutely decompensated liver 
cirrhosis that showed distinct pathophysiology (8). First pre-ACLF 
patients did not initially meet CLIF ACLF criteria at decompensation 
but developed ACLF within 3 months, with high 3-month and 1-year 
mortality. Second, patients with unstable decompensated cirrhosis 
(UDC) required ≥1 readmission. Third, stable decompensated 
cirrhosis (SDC) patients did not develop ACLF and had much lower 
mortality. Beyond portal hypertension, the grade and trajectory of 
systemic inflammation (SI) distinguished the groups Pre-ACLF and 
ACLF patients had high-grade and worsening SI, while UDC and SDC 
patients showed low-grade SI—steady in UDC, improving in 
SDC. The PREDICT study emphasized the need to identify factors 
driving SI exacerbation and biomarkers to predict progression after 
acute decompensation (4, 8). Bacterial infections are the most 
prevalent triggering factor for ACLF in the western world, occurring 
in up to 37% of cases and are more commonly observed as a 
precipitating event in patients with ACLF compared to those without 
ACLF (3, 6, 9). The bacterial infections most frequently associated 
with ACLF triggers include spontaneous bacterial peritonitis (SBP), 
pneumonia, and urinary tract infections (UTI). In many cases, these 
infections are caused by Gram-positive bacteria, such as Staphylococcus 
aureus, Enterococcus faecalis, and Enterococcus faecium (EF), as well 
by Gram-negative bacteria, including Escherichia coli, Klebsiella 
pneumoniae, and other Enterobacteriaceae (3, 9, 10).

One of the key exogenous factors implicated in the development of 
ACLF in individuals with liver diseases is bacterial translocation. This 
process involves the passage of bacterial components, such as pathogen-
associated molecular patterns (PAMPs) and bacterial metabolites, 
across a compromised intestinal barrier. The disruption of the epithelial 
barrier enables bacterial components to enter the bloodstream, 
potentially triggering SI and exacerbating liver dysfunction (3, 10–14). 
Recent gut microbiome studies have shown that bacteria of the genus 
Enterococcus including EF and other oral bacterial species such as 
Streptococcus oralis were significantly enriched in the gut of patients 
with liver cirrhosis (10, 15). The increased abundance of Enterococcus 
spp. has been linked to an elevated Model for End-Stage Liver Disease 
(MELD) score and higher Child-Pugh scores, as well to organ failure 
in affected patients (15). Additionally, Enterococcus spp. have been 
found to be more abundant in patients with liver cirrhosis who have 
died (15). The presence of PAMPs and bacterial metabolites, 

particularly from EF, may act as triggers for kidney dysfunction and 
failure. Excessive SI in ACLF patients can result in the activation and 
dysfunction of the innate immune system, which is challenged by 
increased PAMPs and damage-associated molecular patterns (DAMPs) 
(16, 17). SI leads to cell and tissue immunopathology, contributing to 
hepatic and extrahepatic organ failure, including the kidneys (17, 18). 
In addition to the effects of PAMPs, several cytokines can mediate 
dysfunction of the intestinal barrier (19, 20): TNFα, IFNγ, and 
interleukin (IL)-1β are among the most extensively studied cytokines 
that promote increased intestinal permeability (20–22). Understanding 
the role of SI and the impact of specific bacterial species, such as EF, on 
organ dysfunction particularly kidney dysfunction is crucial for 
developing targeted therapies to prevent or mitigate organ failure in 
progressive liver diseases and ACLF.

The aim of the present study was to investigate the prognostic 
significance of the detection of EF DNA in the serum of patients with 
acute decompensation of liver cirrhosis, with a particular focus on its 
association with systemic inflammation and organ dysfunction, 
including the development of ACLF. To this end, serum samples from 
197 patients were analyzed as part of a prospective cohort study on 
acute decompensation and ACLF. Clinical markers of systemic 
inflammation, organ failure, and relevant cytokines were characterized 
and correlated with EF DNA detection.

Materials and methods

Patients

A total of 197 patients that entered the prospective ACLF-I cohort 
study (observational study for the characterization of the pathogenesis 
of ACLF) between November 2020 and April 2023 and were included in 
this study (7). Patients with decompensated liver cirrhosis, age between 
18 and 80 years, were eligible to enter the study. Hepatocellular 
carcinoma outside MILAN criteria, other malignancy, or severe 
congenital/acquired immune deficiency (e.g., HIV, immunosuppressive 
therapy in transplant recipients or rheumatologically diseases) and 
pregnancy were exclusion criteria. Demographic, laboratory and clinical 
characteristics are systematically recorded in a digital patient register 
(OSSE) (23, 24) from the clinical care data in cooperation with the 
Institute for Medical Informatics and the Data Integration Center at the 
Goethe University Hospital, Frankfurt (DIZ). Serum samples were 
collected on the day of study inclusion (baseline) and during follow-up. 
ALCF was classified according to the CLIF score and the European 
Association for the Study of the Liver (EASL)-CLIF criteria (17, 25). 
Alcohol-related liver cirrhosis was defined by a reported daily drinking 
average above 20 g/dL in their patient history. A cohort of healthy 
individuals (n = 234) was added as a control group. Of these, 200 samples 
were provided by the DRK Blood Donation Service Baden-Württemberg/
Hessen, Frankfurt am Main, Germany, and 34 samples were obtained 
from healthy volunteers at Frankfurt University Hospital. Prior to 
participation, all participants gave their written informed consent.

Ethics approval

This study was performed in accordance with the declaration of 
Helsinki and approved by the local ethics committee (ethics vote no. 
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20–653). All patients gave their written informed consent prior to 
entering the study.

Blood sampling and data collection

Clinical data, laboratory data and serum samples were obtained 
at baseline and follow-up (obtained at each visit during a 3-month 
follow-up). Routine laboratory diagnostics include liver function tests 
differential white blood cell count (WBC), C-reactive protein (CRP), 
drinking behavior, smoking behavior, gastrointestinal bleeding, 
ascites, therapeutic paracentesis, albumin treatments, diabetes and 
diabetes treatment, transjugular intrahepatic portosystemic shunting 
(TIPS), hepatitis, viral infections, renal failure, respiratory failure, 
circulatory failure, data on bacterial and/or fungal infection 
development. Laboratory data and biological samples were obtained 
at each visit during a 3 month follow up.

Processing of blood samples and serum 
isolation

Serum samples (9 mL) were taken from patients and healthy 
individuals and subjected to centrifugation. Serum samples were 
centrifuged at 1.400 x g for 10 min at 4 °C and the supernatant was 
taken, aliquoted and stored at −80 °C until further use.

Bacterial DNA isolation and quantification

Genomic DNA was isolated from 250 μL serum using the 
QIAmp® DNA Blood Mini Kit (Qiagen, Germany, Cat# 51104) 
according to the manufacturer’s manual under sterile conditions 
within a laminar flow cabinet. Prior to each extraction, the flow 
cabinet was decontaminated using a two-step disinfection procedure: 
initially with 2% Incidin Plus (Ecolab), which was applied for 15 min. 
to eliminate a broad spectrum of microorganisms, followed by 80% 
ethanol to remove residual disinfectant and enhance surface sterility. 
Subsequently, the cabinet was exposed to ultraviolet (UV) light for 
30 min. to ensure additional decontamination under sterile 
conditions. To monitor for potential bacterial DNA contamination, 
two negative extraction controls (columns processed without serum) 
were included in the DNA extraction steps. The isolated DNA was 
eluted in 35 μL Elution Buffer (EB) and DNA concentration and 
purity were assessed using a NanoDrop® ND-2000 spectrophotometer 
(Thermo Fisher Scientific).

Bacterial strains and culture conditions

The following bacterial isolates were used in this study: E. faecium 
(DSM# 20477), E. coli Dh5α and E. coli JM109 (Promega Corp. 
Madison, US cat# L2005). The bacterial strains were pre-cultured from 
−80 °C glycerol stocks on either lysogeny broth (LB)- agar plates 
(LB-Agar Lennox, Carl Roth GmbH + Co. KG, 37 gL−1) or on 
Trypticase soy yeast extract medium (TSYM) agar plates (30 gL−1 Carl 
Roth Trypticase soy broth, 2.0 gL−1 Carl Roth Yeast Extract, 15 gL−1 
Sigma-Aldrich Agar). The bacteria were incubated at 37 °C on agar 

plate’s prior application. All bacteria used in this study are listed in 
Supplementary Table S1.

Cloning of 16S rDNA gene fragments in 
pGEM-t-easy vector for real 
time-quantitative PCR standards

For the quantification of EF 16S rDNA, a sequence fragment of 
the 16S rDNA of EF were cloned into the pGEM-T vector (26, 27) and 
the corresponding plasmids were used to establish real-time-
quantitative PCR (RT-qPCR) standard curves. Briefly, a standard PCR 
was performed using a 50 μL PCR- GoTaq™ green master mix 
(Promega Corp. Madison, US cat# M712) containing 1 μL of EF 
DNA. For the 16S rDNA gene amplification EF specific primers were 
used: forward primer E. faecium_qPCR_16SF (5′-GCGGC 
TCTCTGGTCTGTAAC-3′), reverse primer E. faecium_qPCR_16SR 
(5′- TAAGGTTCTTCGCGTTGCTT-3′), amplifying ∼254 bp from 
the 16S rDNA gene of EF. The amplified PCR products were checked 
on 1.5% agarose gel and the PCR products were cut out and purified 
with the QIAquick® Gel Extraction Kit (Qiagen, Cat# 28704). The 
purified PCR products were ligated into the pGEM-T vector 
(Promega, Madison, WI, US cat#A137A) using Promega T4 DNA 
Ligase (Promega Corp. Madison, US cat# M180A) and transformed 
into E. coli JM109 competent cells (Promega, Madison, WI, US cat# 
A1380) according to the manufacturer’s manual instructions. Clones 
were picked and checked for the correct insert by using the M13 
forward and reverse primers and sequencing of the PCR products by 
Sanger-Sequencing (EUROFINS, Ebersberg, Germany).

Quantification of EF in serum samples via 
RT-qPCR

The abundance of EF in serum samples was measured by 
RT-qPCR using the above mentioned primers: E. faecium_qPCR_16SF, 
reverse primer E. faecium_qPCR_16SR, amplifying ∼254 bp from the 
16S rDNA gene of EF From each sample 2 μL DNA were subjected to 
quantitative RT-qPCR using QuantiNova® SYBR® Green PCR master 
mix (Qiagen, Germany, Cat# 208054). For quantification two-step 
quantitative RT-qPCRs was performed on an Applied Biosystems 
StepOnePlus Real-Time PCR System (Applied BioSystems, Waltham 
MA, United States), with the following settings: initial cycle 95 °C for 
2 min., followed by 40 cycles of 95 °C for 5 s. (denaturation) and 60 °C 
for 10 s. (combined annealing/extension). All samples were run in 
triplicate. Negative controls included nuclease-free water (no-template 
control, NTC) and eluted DNA from the negative extraction controls 
(columns processed without serum; NC). These controls were 
included in each RT-qPCR reaction to monitor for contamination (28, 
29). To avoid cross-contamination, RT-qPCR reactions were prepared 
in a separate room and under a different laminar flow hood than those 
used for DNA extraction. RT-qPCR efficiency was evaluated using a 
standard curve generated from fivefold serial dilutions (in triplicate) 
of plasmid DNA (pGEM-T vector) containing the respective 
E. faecium 16S rDNA gene fragment, or genomic DNA from 
E. faecium. The calculated amplification efficiencies ranged from 87 to 
107%, with correlation coefficients (R2) between 0.91 and 0.98. 
Relative gene expression was quantified using the 2^−ΔΔ Ct method, 
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normalized to the 16S rDNA gene expression levels of the standards 
(30). All primers used in this study are listed in Supplementary Table S2.

16S rDNA gene sequencing of positive 
serum DNA samples

For RT-qPCR samples that were tested positive for EF DNA, the 
PCR products were extracted and purified using the QIAquick® PCR 
Purification Kit (Qiagen, Germany, Cat# 28104), following the 
manufacturer’s instructions. For molecular identification through 
Sanger sequencing, 15 μL of the purified PCR product DNA was 
premixed with 2 μL of primer (final concentration 10 pmol/μL). For 
16S rDNA gene sequencing the following primer was used: E.faecium_
qPCR_16SF (5’-GCGGCTCTCTGGTCTGTAAC-3′) amplifying 
∼254 bp from the 16S rDNA gene of EF. The premixed sequencing 
samples were sent to Eurofins for Sanger-sequencing using the 
TubeSeq service (Eurofins Genomics Europe, Ebersberg, Germany).

Quantification of cytokine levels in serum 
samples with Luminex® human discovery 
assays

To determine the concentration of inflammatory cytokines, present 
in the serum samples we measured the cytokine concentration of 11 
different cytokines IFN-gamma (BR29), IL-1 alpha/IL-1F1 (BR38), IL-1 
beta/IL-1F2 (BR28), IL-1ra/IL-1F3 (BR30), IL-2 (BR43), IL-6 (BR13), 
IL-10 (BR22), IL-18/IL-1F4 (BR78), Lymphotoxin-alpha/TNF-beta 
(BR45), MIF (BR53), TNF-alpha (BR12) in all serum samples of the 
patients by using Luminex® Discovery Assay (Bio-Techne GmbH Cat# 
LXSAHM-16). The cytokine measurements were performed on a 
BioPlex 200 system powered by Luminex® xMAP™ Technology and 
xPONENT software V4.3 according to the manufacturer’s manual.

Correlation analysis and random forest 
analysis

Prior to correlation analysis and random forest analysis, data 
normalization and scaling were performed using log transformation 
(base 10) and auto scaling (Z-transformation of each variable). 
Kendall or Spearman rank correlation tests were conducted to evaluate 
the features of interest. To determine the significance of each clinical 
variable, its contribution to the clinical phenotype, and its association 
with the presence of EF DNA, Random Forest analyses were 
performed using 500 trees for supervised classification. These analyses 
were carried out with the R software and the MetaboAnalyst package 
(31–33). The mean decrease in accuracy was calculated as a measure 
of each variable’s importance and subsequently plotted.

Statistical analysis and modelling of clinical 
data

All variables were plotted as single data point or expressed as median 
(interquartile range) and were compared between the EF positive (EF+) 
and EF negative (EF-) groups, organized by the respective stratification 

classes (SDC, UDC and ACLF). In violin plots quartiles are denoted as 
dotted black lines, medians are denoted as joined lines. Prior to statistical 
analysis, a normality test was conducted. Normally distributed data were 
analyzed using a t-test for univariate analysis. Influence of EF and disease 
stages (SCD, UCD and ACLF) on different endpoints was investigated 
with the full model two-way ANOVA followed by a post-hoc Tukey test 
(HSD-test). For non-normally distributed data the Kruskal-Wallis test 
was used. Chi-square tests or Fisher’s exact test was performed to 
compare aetiologies and types of acute decompensation as well as to 
compare the frequency of EF in patients and controls. p-values ≤ 0.05 
were considered to be statistically significant. Statistical calculations and 
plots of cytokine intensities and clinical lab values for all individual 
patients were performed and created using GraphPad Prism version 9.5.1 
for Windows (GraphPad Software, San Diego, California, United States).1

Results

Patients’ characteristics

In total, blood samples of 197 patients who were prospectively 
enrolled in the above mentioned observational cohort were analyzed. 
Of these, 135 patients were male (69%) and 62 females (31%), average 
age 59 years (± 12). A control cohort, totaling 234 healthy individuals, 
consisted of 98 men (42%) and 136 women (58%), average age 41 years 
(± 16). Demographic and baseline characteristics of the patient cohort 
are depicted in Table  1. The classification of the patients’ clinical 
course (based on the PREDICT study criteria) identified 83 patients 
(42%) with SDC, of whom 28% were EF+ and 72% were EF-. 
Additionally, 49 patients (25%) were categorized with unstable 
decompensated cirrhosis (UDC), with 18% EF+ and 82% EF-. 
Furthermore, 65 patients (33%) developed acute-on-chronic liver 
failure (ACLF) within 3 months of hospital admission, with 29% EF+ 
and 71% EF- (Figure 1A). The prevalence of bacterial infections at 
baseline did not differ significantly between EF+ and EF- patients.

Analysis of serum samples reveal 26% 
positivity for EF DNA by RT-qPCR

From the patients with acute decompensation of liver cirrhosis, 
sera of 51 patients (∼26%) were positive for EF DNA (EF+; by 
RT-qPCR), while sera of 146 patients (74%) were negative for EF DNA 
(EF-; Figure 1B). In contrast, only 3 samples (1.3%) from the control 
cohort were EF+ (p-value = 0.001; Supplementary Figure 1). In the 
three EF+ cases from the control cohort, the frequency of EF DNA 
reached up to 1.93 × 104 copies of the 16S rDNA gene, corresponding 
to a theoretically estimated abundance of approximately 3.2 × 103 EF 
CFUs, assuming 6 copies of the 16S rDNA gene per EF cell (34). In the 
patient cohort, EF DNA was detected at abundances of up to 3.5 × 105 
copies of the 16S rDNA gene, corresponding to approximately 
5.8 × 104 EF CFUs, based on an estimated six copies of the 16S rDNA 
gene per EF bacterial cell (34). Among EF+ patients, 23 (45%) were 
classified with having SDC, 9 (18%) classified with UDC, and 19 

1  www.graphpad.com
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(37%) developed ACLF (Figure 1C). In the EF- group, 60 patients 
(41%) had SDC, 40 (27%) had UDC, and 32 (46%) were categorized 
with ACLF (Figure 1D). Of the 65 ACLF patients, 19 (29%) were EF+, 
with no significant differences in ACLF grades 1 to 3 between EF+ and 
EF- patients (data not shown). RT-qPCR analysis revealed significantly 
lower CT values in ACLF patients (mean CT=35.80) compared to 
those with SDC (mean CT=37.48, p< 0.0001) and UDC (mean 
CT=36.81, p= 0.0254; Supplementary Figure 2), indicating a higher 
abundance of EF 16S rDNA in their serum samples.

Comparison of classical microbiological 
diagnostics and RT-qPCR detection of EF 
DNA

To assess the concordance between conventional microbiological 
diagnostics and molecular detection of EF DNA, we compared results 
from standard clinical specimens—blood cultures, urine samples, and 
VRE swab tests—with serum-based RT-qPCR results obtained from the 
same patient cohort (n=51). Classical microbiological analyses identified 
EF in a total of 7 patients: 1 in blood culture, 5 in urine samples, and 7 in 
VRE swabs (note that some patients had multiple positive specimen 
types). In contrast, RT-qPCR targeting the 16S rDNA of EF detected 
bacterial DNA in 51 out of 51 patients, indicating a substantially higher 
sensitivity. A Chi-square test confirmed that this difference is highly 
statistically significant (χ2 = 64.68, p< 0.0001), supporting the conclusion 

that RT-qPCR is markedly more sensitive than classic microbiological-
based diagnostic methods in this cohort (Supplementary Figure 3).

Comparison of aetiologies and portal 
hypertension

A chi-square analysis revealed a significant difference in the 
distribution of liver disease aetiologies between EF+ and EF- patients 
with ACLF (p= 0.0008), indicating a potential link between the 
underlying cause of liver disease and the detection of EF DNA in serum 
(Supplementary Figure 4A). Additionally, there was a significantly (p= 
0.0254) higher proportion of EF+ patients with ACLF presented with 
portal hypertension compared to EF– patients. This finding suggests a 
potential association between the presence of Enterococcus faecium DNA 
and advanced portal hypertension in ACLF (Supplementary Figure 4B).

EF DNA positivity correlates with elevated 
leukocyte counts, CRP and IL-6 indicating 
enhanced inflammatory response

The analysis of inflammation-related markers between EF+ and EF- 
patients stratified by disease phenotype revealed significant differences 
in leukocyte counts, CRP, and IL-6 levels (Figure 2). Leukocyte counts 
were the highest in ACLF EF+ patients, followed by ACLF EF- patients. 

TABLE 1  Baseline characteristics of patients at study enrollment.

Diseases phenotype SDC UDC ACLF

Patients total n = 197 n = 83 (42%) n = 49 (25%) n = 65 (33%)

Age, years, mean ±SD years 57.66 ± 13.12 62.17 ± 11.57 56.43 ± 11.8

Male (n, %) 61 (73%) 32 (65%) 42 (65%)

Female (n, %) 22 (27%) 17 (35%) 23 (35%)

Enterococcus faecium DNA + (n, %) 23 (28%) 9 (18%) 19 (29%)

Enterococcus faecium DNA (n, %) 60 (72%) 40 (82%) 46 (71%)

ACLF grades

pre-ACLF - - 23 (35%)

ACLF-1 - - 17 (26%)

ACLF-2 - - 14 (22%)

ACLF-3 - - 11 (17%)

Laboratory Data

Sodium (mmol/L) 136.46 (119–149) 136.14 (123–144) 136.51 (125–157)

Serum creatinine (mg/dl) 1.08 (0.36–3.65) 1.22 (0.33–4.99) 1.95 (0.44–6.75)

Bilirubin (mg/dl) 0.2 (0.2–31.3) 3.09 (0.7–22.0) 14.54 (0.4–40.7)

ALT (Units/L) 45.39 (8–279) 44.45 (7–279) 37.19 (11–279)

AST (Units/L) 97.31 (20–502) 74.38 (12–318) 69.38 (20–318)

y-GT (Units/L) 146.23 (13–918) 114.23 (8–556) 96.89 (8–891)

ALP (Units/L) 191.92 (46–806) 173.26 (46–806) 172.36 (64–806)

CRP (mL/L) 2.83 (0.04–12.97) 3.41 (0.13–18.06) 2.67 (0.2–8.95)

Albumin (g/L) 3.15 (1.7–4.5) 3.03(1.8–4.30) 3.09 (1.8–4.3)

INR 1.43 (0.9–3.43) 1.53 (0.98–2.81) 2.05 (0.96–8.61)

Leucos (cells/L) 6.91 (1.09–17.04) 6.27 (0.69–19.46) 11.29 (3.04–26.25)
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Both ACLF groups exhibited significantly higher leukocyte levels 
compared to UDC and SDC patients (p≤ 0.0001 and p≤ 0.005, 
respectively; Figure 2A). Among UDC patients, EF+ individuals tend 
to show elevated leukocyte counts relative to EF- patients, with 
significant enhanced leucocytes in ACLF EF+ compared UDC EF- 
patients (p≤ 0.0001; Figure 2A). In contrast, SDC patients had the lower 
leukocyte counts and showed no significant differences between the 
SDC EF+ and EF- group but a significant difference could be observed 
between SDC EF- and ACLF EF+ (p≤ 0.005) as well as SDC EF+ and 
ACLF EF- (p≤ 0.05; Figure 2A). These results underscore a possible link 
between EF DNA positivity and SI, particularly in patients with 
advanced disease stages such as ACLF and UDC. C-reactive protein 
(CRP) levels (Figure 2B) followed a similar trend. ACLF EF+ patients 
had the highest median CRP concentrations compared to EF+ and EF- 
SDC patients (p< 0.005; Figure 2B). Among UDC patients, there was 
no significant difference between EF+ and EF- individuals (p≥ 0.05). In 
the SDC group, CRP levels remained low overall, with no significant 
differences between EF+ and EF- patients (Figure 2B). As shown in 
Figure 2C, IL-6 levels were markedly elevated in ACLF EF+ patients, 
who exhibited the highest median concentrations among all liver 

disease phenotypes IL-6 levels in ACLF EF+ patients were significantly 
higher than those in SDC EF+ patients (p≤ 0.05). Additionally, IL-6 
levels were significantly elevated in ACLF EF− patients compared to 
both SDC EF+ and SDC EF− patients (p < 0.05; Figure 2C). Among all 
groups, SDC EF+ patients had the lowest IL-6 levels, with no significant 
differences between EF+ and EF- individuals in the SDC category 
(Figure 2C). These observations point to a potential link between IL-6 
elevation and EF DNA positivity in more advanced stages of liver 
disease. Overall, the data support the idea that EF DNA may contribute 
to an intensified SI response, particularly in UDC and ACLF patients.

Liver dysfunction markers increase with 
disease severity and are the highest in EF+ 
ACLF patients

Our analysis of liver inflammation markers revealed significant 
variations in plasma bilirubin and AST levels across disease phenotypes 
and EF DNA status (Figure 3). Plasma bilirubin levels (Figure 3A) were 
markedly elevated in ACLF EF+ patients, who showed the highest 

FIGURE 1

Detection of E. faecium DNA in sera from patients with unstable/stable decompensated cirrhosis or ACLF. (A) Overview over the patient cohort 
(n = 197) stratified according to the PREDICT study guidelines into stable decompensated cirrhosis (SDC), unstable decompensated cirrhosis (UDC) 
and acute-on-chronic liver failure (ACLF) and presence/absence of E. faecium (EF) DNA. The cohort included 83 patients with SDC, 49 with UDC and 
65 patients with ACLF. (B) Real time -quantitative PCR (RT-qPCR) results of serum samples from the patient cohort classified into EF DNA-positive (EF+) 
and EF DNA-negative (EF-) groups. (C) EF DNA-positive patients and (D) EF DNA negative patients characterized (in %) across the different disease 
classes: SDC, UDC and ACLF.
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concentrations across all groups. Statistically significant differences were 
observed between ACLF EF+ and other subgroups, including SDC EF+, 
SDC EF-, UDC EF+, and UDC EF- (p≤0.05 to p ≤ 0.005; Figure 3A). 

These findings suggest that bilirubin elevation is primarily driven by 
disease severity rather than EF DNA status. Serum AST levels (Figure 3B) 
were less different between the groups with UDC EF+ patients showing 

FIGURE 2

E. faecium DNA positivity is associated with elevated leukocyte count, CRP, and IL-6, indicating intensified inflammation in advanced cirrhosis stages. Plasma 
levels of Leucocyte count (A), CRP (B) and IL-6 (C). Significant differences were observed between patients who were E. faecium (EF) DNA negative (EF-) 
and those who were EF DNA positive (EF+), across the following patient groups: stable decompensated cirrhosis (SDC), unstable decompensated cirrhosis 
(UDC) and acute-on-chronic liver failure (ACLF), indicated by asterisk (*p< 0.05, ***p< 0.005, ****p< 0.0001). p-values were determined using one-way 
ANOVA with Kruskal-Wallis test or with FDR and Benjamin Hochberg correction (Figure 2c). Color codes: turquoise = EF-; red = EF+.
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the highest levels which were significantly elevated compared to SDC 
EF+ patients (p≤ 0.05; Figure 3B). However, no significant differences 
were detected between EF+ and EF- patients within the same phenotype. 
The findings related to liver function emphasize the link between liver 
dysfunction markers and disease severity, particularly in ACLF patients. 
While EF DNA presence does not independently alter bilirubin or AST 
levels within each disease stage, it may contribute to worsening liver 
function in more advanced phenotypes such as UDC and ACLF.

EF DNA positivity is associated with 
elevated creatinine levels and with 
worsened kidney function in ACLF patients

Analysis of plasma creatinine levels revealed a correlation EF DNA 
detection in patient sera and kidney function (Figure 4). Creatinine 
concentrations were the highest in ACLF EF+ patients compared to most 
other subgroups including SDC EF-, SDC EF+ and UDC EF- groups, 
indicating more severe kidney dysfunction in this group (p≤ 0.0001 to p 
≤ 0.005). Additionally, creatinine levels in ACLF EF- patients were 
significantly higher than those in SDC EF+ and SDC EF- groups (p≤ 
0.005), further underscoring the impact of disease severity on renal 
function (Figure 4). Among the SDC and UDC groups, creatinine levels 
were relatively lower and showed no statistically significant differences 
between EF+ and EF- patients. These findings indicate that the presence 
of EF DNA is associated with worsened kidney function in patients with 
ACLF, while its impact is less evident in earlier stages of liver disease. 
Despite marked differences in creatinine levels, sodium and potassium 
concentrations remained consistent across all patient groups (data not 
shown). These results indicate that the presence of EF DNA is associated 
with more severe kidney dysfunction, particularly in ACLF patients, 
where SI and renal impairment are most pronounced.

FIGURE 3

E. faecium DNA positivity is linked to altered liver function markers: elevated bilirubin and AST across cirrhosis stages. The clinical parameters 
associated with liver function include plasma levels of Bilirubin (A) and Aspartate Aminotransferase (AST) (B). Significant differences between E. faecium 
(EF) DNA-negative (EF-) and EF DNA-positive (EF+) patients, as well as among the patient groups—stable decompensated cirrhosis (SDC), unstable 
decompensated cirrhosis (UDC), and acute-on-chronic liver failure (ACLF)—are indicated by asterisks (*p< 0.05, **p< 0.005, ***p< 0.0005, 
****p< 0.0001). p-values were determined using one-way ANOVA with the Kruskal-Wallis test. Color codes: turquoise = EF-; red = EF+.

FIGURE 4

E. faecium DNA positivity is associated with elevated creatinine 
levels, indicating worsened kidney function across cirrhosis stages. 
Shown are serum levels of Creatinine. Significant differences 
between patients classified as E. faecium (EF) DNA negative (EF-) and 
EF DNA positive (EF+), as well as between the respective patient 
groups—stable decompensated cirrhosis (SDC), unstable 
decompensated cirrhosis (UDC), and ACLF (acute-on-chronic liver 
failure)—are indicated by asterisk (**p< 0.005; ****p< 0.0001). 
p-values were determined using one-way ANOVA with Kruskal-
Wallis test. Color codes: turquoise = EF-; red = EF+.
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Association between EF DNA positivity and 
clinical parameters

We additionally examined how the presence of EF DNA relates to 
clinical data and its possible contribution to the development of 
ACLF. To do this, we used Random Forest and correlation analyses on 
a subset of 106 patients from our clinical dataset to assess how EF 
DNA affects different clinical parameters. Supplementary Figure 5A 
presents the top 25 clinical parameters most closely associated with 
EF DNA positivity within this cohort. Notably, serum levels of 
Macrophage Inhibitory Factor (MIF) emerged as the most significant 
clinical predictor of ACLF, showing a statistically significant 
correlation (p = 0.013). Additionally, while IL-18, platelet count, IL-1β, 
albumin, IFN-γ, IL-10, IL-1α, IL-6, bilirubin, serum creatinine, IL-1ra, 
INR, and MELD score were positively correlated with ACLF 
development, these associations did not reach statistical significance. 
In contrast, markers such as GGT, TNF-β, TNF-α, AST, ALT, 
hemoglobin, and hematocrit showed negative correlations with ACLF 
development, though these correlations were also non-significant. 
(Supplementary Figure  5A). We  also examined which laboratory 
parameters were linked to the presence of EF DNA using the random 
forest classification, identifying Macrophage Inhibitory Factor (MIF), 
platelet count and sodium as most important predictors 
(Supplementary Figure 5B).

Effect of EF DNA positivity on the 
cumulative stay in hospital

Cumulative hospital days were stratified by disease stage (SDC, 
UDC, ACLF) and Enterococcus faecium DNA status. Within each 
disease class (SDC, UDC, ACLF), no significant differences in 
cumulative hospital stay were observed between EF- and EF+ 
patients (Supplementary Figure 6A). However, a clear trend was 
noted in the ACLF group, where EF+ patients showed longer 
cumulative hospital stays compared to EF- cases. Overall, 
cumulative hospitalization was primarily determined by disease 
severity, with ACLF patients experiencing the longest stays 
regardless of EF status (Supplementary Figure 6A).

Effect of EF DNA positivity on the length of 
hospital stay

The length of hospital stay was assessed across disease stages 
(SDC, UDC, ACLF) in relation to EF DNA status. No significant 
differences were found between EF- and EF+ patients within any 
disease class. In ACLF, EF+ cases showed a tendency toward longer 
hospital stays compared to EF- cases, although this trend did not reach 
statistical significance (Supplementary Figure 6B).

Discussion

Enterococcus faecium is increasingly recognized as an important 
factor in liver disease and liver failure, primarily due to its role in 
infections that can worsen patient conditions. In patients with liver 
cirrhosis or ACLF, EF is found in infections such as spontaneous 

bacterial peritonitis and/or bloodstream infections, and has been 
linked to high rates of septic complications, which significantly can 
impact patient outcomes (35, 36). This study aimed to evaluate 
serum levels of E. faecium (EF) DNA in patients with liver disease, 
specifically investigating its association with systemic inflammation 
and organ dysfunction, as well as its potential as a biomarker for 
disease severity in decompensated cirrhosis and ACLF. A key finding 
was that EF DNA was detectable in approximately 26% of patients 
with decompensated liver cirrhosis, while it was almost absent in 
healthy individuals (around 1.3%), highlighting a potential link 
between EF DNA presence and advanced liver disease. These 
findings support the hypothesis that translocation of EF DNA into 
the bloodstream may contribute to SI and organ dysfunction in 
patients with decompensated cirrhosis and ACLF, potentially serving 
as an early marker of disease progression and severity. The 
characteristics of our patient cohort align closely with those of the 
CANONIC cohort (17), which originally defined the ACLF criteria 
using the CLIF-SOFA score to assess organ failure. Among ACLF 
patients, the distribution of EF DNA status was fairly similar, with 
37% testing EF DNA-positive and 32% testing EF DNA-negative. 
However, inflammatory parameters such as leukocyte counts, IL-6, 
and CRP increased progressively with disease severity and were the 
highest in ACLF patients, particularly those who were EF 
DNA-positive (EF+), suggesting bacterial translocation and systemic 
inflammation (SI) as key factors in ACLF pathophysiology (10, 15, 
36–38). The increased leukocyte count suggests an active immune 
response, likely triggered by bacterial translocation, while elevated 
bilirubin and AST indicate hepatic injury. The pro-inflammatory 
cytokine IL-6 stood out as the key cytokine, significantly elevated in 
EF+ ACLF patients, which reinforces its involvement in immune 
dysregulation and its potential as a disease marker (37, 39–43). This 
is in agreement with earlier studies linking IL-6 to SI, hepatic 
decompensation, and renal impairment in cirrhosis and ACLF 
patients (8, 20, 21, 42, 44, 45). Hepatic injury markers, like bilirubin 
followed a similar pattern, with significantly higher levels in EF+ 
ACLF patients, further confirming the association between disease 
severity and organ dysfunction (7, 45–48). Moreover, the presence 
of EF DNA was associated with significant increased portal 
hypertension in ACLF patients, indicating a compromised intestinal 
barrier integrity and enhanced microbial translocation (49–51). This 
aligns with current research noting that cirrhosis and portal 
hypertension promote bacterial translocation via a so called “leaky 
gut,” which in turn enhances SI (12, 50, 52, 53). Moreover, increased 
IL-6 levels are associated with SI, disease progression, and bacterial 
infections, all of which are known to worsen outcomes in patients 
with ACLF (45, 54, 55). However, and most interesting, our study 
identified a novel and robust association between EF DNA positivity 
and impaired kidney function in ACLF patients. Serum creatinine 
levels were elevated in EF+ ACLF patients compared to all other 
subgroups, suggesting dysfunction not explained solely by liver 
disease severity in ACLF patients (45, 46, 56). This finding points 
toward a potential role of EF in the development or exacerbation of 
kidney injury in ACLF, highlighting EF DNA as a potential indicator 
for kidney- dysfunction and intestinal barrier failure. While sodium 
and potassium levels remained stable across groups, the rise in 
creatinine in EF+ patients underscores kidney involvement as a 
critical and novel finding. In ACLF, renal dysfunction frequently 
presents as acute kidney injury (AKI) and may advance to 
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hepatorenal syndrome (HRS), with inflammatory mechanisms 
playing a central role in this progression (13, 57, 58). (59, 60). 
Moreover, the cytokine storm characteristic of ACLF—dominated by 
elevated levels of IL-6 and TNF-α—leads to endothelial injury, 
glomerular damage, and diminished renal perfusion, compounding 
the deterioration of renal function (61–63).

The presence of EF and its association with the observed cytokine 
profiles suggest a link to progressive immune and organ dysfunction 
(42, 45, 49, 64). Our data therefore supports the use of IL-6, along with 
leukocyte count, CRP, bilirubin, and serum creatinine, as potential 
biomarkers to monitor disease progression and the inflammatory 
burden associated with EF DNA positivity in patients with 
decompensated cirrhosis and ACLF (36, 65–69).

To ensure the reliability of our RT-qPCR results and exclude the 
possibility of DNA contamination, stringent negative controls were 
implemented throughout the workflow. DNA extraction was 
performed under sterile conditions in a disinfected laminar flow 
cabinet using a validated chemical and UV-based decontamination 
protocol (28, 29). The detection of EF DNA in serum may have 
immunological relevance, as bacterial DNA acts as a potent 
pro-inflammatory stimulus. Unmethylated CpG motifs in bacterial 
genomes are recognized by Toll-like receptor 9 (TLR9), triggering 
innate immune responses and cytokine release, including TNF-α 
and IL-6 (70, 71). Although the pro-inflammatory potential of EF 
DNA has not been extensively studied, it likely exhibits similar 
effects, especially in the context of intestinal barrier dysfunction 
and bacterial translocation. Clinically, EF or its DNA in 
extraintestinal sites has been linked to systemic inflammation, 
immune activation, and adverse outcomes in patients with liver 
disease and critical illness (72, 73). These findings support the 
concept that translocated EF DNA may function as a microbial-
associated molecular pattern (MAMP), contributing to systemic 
inflammation in acute decompensation and ACLF. Moreover, the 
markedly higher detection rate of EF DNA by RT-qPCR compared 
to conventional microbiological diagnostics, such as blood cultures 
and swab tests suggests that molecular approaches may serve as 
more sensitive indicator of clinically relevant bacterial translocation. 
The limited detection by culture-based methods likely reflects their 
focus on active infections or colonization, whereas RT-qPCR 
identifies a broader range of patients with translocated microbial 
DNA. This diagnostic discrepancy highlights the potential utility of 
serum-based molecular diagnostics for improving the detection of 
subclinical microbial translocation and its inflammatory 
consequences in liver disease.

Our findings show that renal failure in ACLF is not merely a 
consequence of hepatic decline but a parallel and immune-driven 
pathology, particularly intensified by EF DNA positivity. The inclusion 
of inflammatory markers such as IL-6 and neutrophil activation 
profiles alongside classical renal function markers like creatinine 
could provide earlier identification of high-risk patients and can help 
to guide to more targeted interventions (74–77).
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