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Unraveling brucellosis: advances
in pathogenesis, diagnostic
strategies, therapeutic
innovations, and public health
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Brucellosis remains one of the most impactful zoonotic diseases worldwide,
posing major socioeconomic and public health challenges, particularly in
low- and middle-income countries. This review presents recent progress in
understanding the pathogenesis of Brucella species, emphasizing the role of
key adhesins—SP29, SP41, BigA, BigB, BamA, BmaB, BmaC, Bp26, BtaF, and
BtaE—in host-pathogen interactions that drive adhesion, invasion, and immune
evasion. We also critically assess current diagnostic approaches, including
conventional culture techniques, serological assays, and emerging molecular
platforms, which offer improved sensitivity and specificity. Current treatment
regimens involve extended antibiotic combinations—typically doxycycline with
rifampin or streptomycin—and may include surgical intervention in complicated
cases. Additionally, the integration of nanotechnology-based drug delivery and
traditional Chinese medicine offers promising adjunctive therapies. Although
several animal vaccines exist, no approved vaccine is currently available for
human use. Novel vaccine platforms, including live vectors, DNA subunits, and
nanoparticle-based formulations, are under development. Finally, we address
the disease’s broad socioeconomic impact—ranging from livestock losses to
healthcare burdens—and highlight ongoing challenges, such as diagnostic
limitations, antimicrobial resistance, underreporting, and barriers to vaccine
development. A One Health approach, alongside translational research and
integrated surveillance, is vital to advancing prevention and control strategies
for this neglected zoonosis.
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1 Introduction

Brucellosis is a globally significant zoonotic disease that continues to pose serious
public health, veterinary, and socioeconomic challenges. It is caused by gram-negative,
facultative intracellular coccobacilli of the genus Brucella, which infect a wide range
of domestic and wild animals and can be transmitted to humans through direct
contact with infected animals or the consumption of contaminated animal products,
especially unpasteurized dairy products (1, 2). In many developing regions, brucellosis
remains endemic, placing considerable burdens on public health systems and agricultural
economies due to decreased productivity, increased abortion rates in livestock, and chronic
illness in humans (3).
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The genus Brucella includes several species with varying
host preferences and pathogenic potential. Among these, Brucella
melitensis (B. melitensis), Brucella abortus (B. abortus), Brucella suis
(B. suis), and Brucella canis (B. canis) are of particular concern to
human health. B. melitensis is considered the most virulent and is
most frequently associated with human brucellosis, particularly in
endemic regions such as the Middle East, the Mediterranean basin,
parts of Asia, and Latin America (4, 5). The genus includes three
highly pathogenic species—B. abortus, B. melitensis, and B. suis—
which primarily infect livestock. Among these, B. melitensis is the
most virulent in humans and is responsible for the majority of
severe brucellosis cases worldwide (3, 6). Most cases occur in the
Mediterranean, Central Asia, the Middle East, South Asia, North
Africa, and Latin America (7, 8).

Brucella relies on cyclic glucans, the VirB type IV secretion
system, and modified lipopolysaccharides (LPSs) for invasion and
replication, as it lacks conventional virulence factors (9, 10).
Compared with other gram-negative bacteria, its LPS elicits a
limited immune response (6, 11). Additionally, genomic islands
and outer membrane proteins (e.g., BacA, SagA, BmaC, BetB, BtaE,
MucR) play pivotal roles in pathogenicity (1).

The clinical manifestations of brucellosis range from
asymptomatic to severe and include prolonged fever, night
sweats, joint pain, fatigue, weight loss, abdominal discomfort,
and hepatosplenomegaly, with complications such as endocarditis
and neurological disorders (12–14). Neurobrucellosis is a rare
but severe complication of human brucellosis that presents
significant diagnostic and therapeutic challenges. Its clinical
spectrum includes neurological and psychiatric manifestations
such as meningitis, meningoencephalitis, myelitis, psychosis,
personality changes, and persistent fatigue-like syndromes. These
symptoms often mimic other infectious or autoimmune disorders,
leading to frequent misdiagnosis or delayed treatment (15, 16).
Effective treatment typically requires prolonged, multi-agent
therapy—commonly combining ceftriaxone, doxycycline, and
rifampin—with durations of several months (17, 18). Relapse
remains a concern even after extended courses, highlighting
the necessity for sustained clinical vigilance and follow-up (19).
Given the condition’s varied presentations and potential for
chronic morbidity, clinicians—especially in endemic or high-risk
occupational settings—must maintain a high index of suspicion.

Various Brucella species infect animals such as cattle, sheep,
goats, and dogs (20, 21), with human infections commonly
arising from contact with infected livestock or the consumption
of unpasteurized dairy products (7, 22). Transmission occurs
primarily through the ingestion of raw dairy products, contact with
infected tissues, or inhalation of airborne particles (14), whereas
human-to-human transmission is rare (23).

Conjunctival exposure also represents an important
transmission route, particularly when infectious particles
contaminate the eyes of individuals assisting with animal
parturition. Several studies have documented that mucosal
exposure during birthing practices and veterinary procedures
significantly increases the risk of human infection (24, 25). In
addition, nosocomial transmission has been reported, placing
healthcare and laboratory workers at elevated risk of accidental
infection through handling of clinical specimens or cultures.

Hospital-based outbreaks have highlighted that even limited
exposure can result in secondary transmission if biosafety
protocols are not maintained (26, 27). Such exposures, especially
in laboratory environments, can lead to serious outbreaks if
biosafety protocols are not strictly followed. For this reason,
culture handling and diagnostic procedures involving Brucella
should be performed under Biosafety Level 3 (BSL-3) conditions,
with the use of biological safety cabinets and appropriate personal
protective equipment to minimize occupational hazards (28, 29).

Brucellosis pathogenesis involves complex interactions
between bacteria and the host immune system (30). Brucella
species are highly adaptable to evade immune responses,
facilitating persistent infections (30). Once inside the host, Brucella
survives and proliferates within macrophages, enabling widespread
dissemination (31, 32). Its ability to manipulate host processes such
as autophagy and apoptosis is central to persistence and replication
(32, 33), making the intracellular environment a significant barrier
to effective vaccine and therapeutic development.

Brucellosis diagnosis has traditionally relied on serological tests
and culture methods; however, these methods can be limited by
atypical clinical presentations and irregular bacterial distributions
(34, 35). Advances in molecular diagnostics, such as polymerase
chain reaction (PCR) and whole-genome sequencing (WGS), offer
more rapid and accurate detection, thereby facilitating earlier
treatment and improving patient outcomes (36, 37).

Although several therapeutic options exist, the emergence
of antibiotic-resistant Brucella strains has become a growing
concern (38, 39). Reducing disease transmission by eliminating
potential animal carriers, especially cattle, may help control disease
spread (40). Current treatment regimens typically involve multiple
antibiotics, but treatment failure and relapse are still common,
highlighting the need for novel therapeutic strategies (41). For
optimal clinical outcomes, careful selection of effective antibacterial
agents and appropriate treatment protocols is essential (42).

Despite advances in diagnosis and management, brucellosis
continues to present substantial public health challenges.
This review aims to explore disease pathogenesis, diagnostic
methods, and therapeutic approaches, with a particular focus on
transmission routes. Strengthened collaboration among public
health authorities, clinicians, and veterinary professionals is
essential to enhance prevention and control strategies and better
understand the global impact of brucellosis.

2 Pathogenesis and adhesins of
Brucella spp.

Brucella spp. can overcome various host defense mechanisms
during the early stages of infection, during which the bacterial
survival rate is approximately 10% (43). These pathogens have
evolved sophisticated strategies to evade immune responses and
can infect a range of cell types, including phagocytic cells such
as macrophages and dendritic cells, as well as non-phagocytic
cells such as epithelial cells and placental trophoblasts. Red
and white blood cells (RBCs and WBCs), although not sites of
replication, contribute to bacterial dissemination (31). A hallmark
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of Brucella pathogenicity is its ability to survive and replicate within
macrophages, leading to chronic infections (44).

In animals, particularly cattle, sheep, and goats, Brucella
infection is strongly associated with reproductive disorders such
as abortion, retained placenta, orchitis, and infertility, which
represent major veterinary and economic concerns (22, 45, 46). By
contrast, in humans, spontaneous abortion is relatively uncommon;
instead, brucellosis more frequently results in systemic and focal
complications such as osteoarticular disease, endocarditis, and
neurobrucellosis (47–50). This contrast underscores the divergent
pathogenic outcomes and host-pathogen interactions between
animal and human infections.

The internalization of Brucella into macrophages involves
a zipper-like mechanism. Virulent strains preferentially enter
through lipid rafts, whereas avirulent strains undergo phagocytosis,
resulting in lysosomal fusion and degradation. This finding
underscores the importance of lipid raft-mediated entry for
intracellular survival during early infection (51, 52). Once inside
the host cell, Brucella resides in membrane-bound vesicles
known as Brucella-containing vacuoles (BCVs) (9, 43). These
phagosomes evolve through stages, initially fusing with early
endosomes to form early BCVs (eBCVs), which express markers
such as early endosome antigen 1 (EEA1), Rab5, and transferrin
receptor (TfR). Subsequently, fusion with late endosomes produces
late BCVs containing lysosomal-associated membrane protein 1
(LAMP1), Rab7, and Rab-interacting lysosomal protein (RILP)
(Figure 1A) (53).

In avirulent strains, these BCVs typically merge with lysosomes,
where they are exposed to reactive oxygen species (ROS), nitric
oxide (NO), and lysosomal antimicrobial peptides, ultimately
leading to bacterial degradation (9, 54, 55). Conversely, smooth
LPS Brucella strains evade lysosomal fusion. They achieve this
by secreting muramidase and expressing SegA, a protein that
blocks the maturation of eBCVs into degradative compartments
(56). The type IV secretion system (T4SS) is also key to avoiding
immune detection and enabling intracellular survival. Replicative
BCVs (rBCVs) emerge through fusion with the endoplasmic
reticulum (ER), where they acquire ER markers such as calnexin
and calreticulin, where Brucella replicates and evades immune
responses (Figure 1B) (52). Further adaptation leads to the
formation of autophagic BCVs (aBCVs), which are marked by
the expression of autophagy-related proteins such as ULK1, Beclin
1, and ATG14L, allowing long-term intracellular persistence (57).
Once macrophages fail to control infection, they undergo lysis,
releasing Brucella into adjacent tissues and facilitating systemic
spread (58).

Brucellar adhesins play pivotal roles in host cell invasion.
Although Brucella spp. lack fimbrial adhesin loci and do not
form pilus-like structures under electron microscopy, several
non-fimbrial adhesins that mediate adherence to host cells have
been identified (59). A graphical overview of these adhesins
and their receptor interactions is presented in Figure 2. The
diagram highlights how distinct adhesins mediate attachment to
a variety of host cell types, including epithelial cells, erythrocytes,
osteoblasts, and placental trophoblasts. By exploiting host receptors
such as sialic acid-containing proteins, fibronectin, vitronectin,
hyaluronic acid, and type I collagen, Brucella ensures successful

adhesion and invasion, which are critical for intracellular survival
and dissemination.

Hemagglutination assays using RBCs have identified lectin-like
adhesins. Rocha-Gracia et al. (60) reported that B. abortus and
B. melitensis agglutinate erythrocytes from various species via a
29 kDa surface protein (SP29). Neuraminidase treatment reduced
SP29 binding to rabbit RBCs, suggesting that it interacts with sialic
acid receptors. In B. melitensis, SP29 likely functions as a D-ribose-
binding periplasmic protein precursor. While this species can infect
erythrocytes in murine models (61), further work is needed to
define the in vivo role of SP29.

SP41 was the first Brucella adhesin characterized in vitro (62).
Antibodies against SP41 reduced B. suis adhesion to HeLa cells, and
deletion of the ugpB gene—which is implicated in SP41 function—
also diminished adhesion. Binding was inhibited by neuraminidase,
highlighting a role for sialic acid residues. However, in B. ovis,
ugpB deletion has no effect on adhesion or survival in macrophages
or HeLa cells (63). Notably, the ugpB gene is functional in B.
ovis but differs slightly from its homolog in B. suis. The lack of
O-polysaccharide chains in B. ovis may indicate that alternative
adhesins predominate.

The bigA gene, located on chromosome 1 of B. abortus (54),
facilitates adherence to MDCK and Caco-2 cells. Czibener et al.
(64) reported that this outer membrane adhesin, which contains an
immunoglobulin-like domain, is essential for adherence. Deleting
the pathogenic island BAB1_2009–2012 reduced adherence to
HeLa cells. The BAB1_2009 gene encodes BigA, which has
a BIg-like domain found in invasin/intimin family adhesins
(65). Preincubating bacteria with antibodies against this domain
significantly decreased the number of intracellular bacteria in
HeLa cells (64). Overexpression of BigA enhanced adhesion and
invasion in polarized epithelial cell lines by promoting contact with
cell–cell junctions and inducing cytoskeletal rearrangements. The
same locus also expresses BigB (BAB1_2012) (66), and the �bigB
mutation significantly reduced the number of intracellular bacteria
in HeLa and polarized MDCK cells during early infection stages.
Recombinant BigB, like BigA, alters the cytoskeleton and affects
focal adhesion locations. The BAB1_2011 gene encodes PalA, which
is necessary for BigA and BigB expression, highlighting the role of
the genomic island in Brucella adherence.

One study investigated Brucella Bp26 as an in vitro adhesin and
reported that it elicits significant antibody responses in infected
individuals (67). Bp26, which is approximately 250 amino acids
long and contains a poorly understood motif (DUF541), interacts
with type I collagen, soluble vitronectin, and soluble fibronectin
but not with laminin. Its role in Brucella cell attachment and in
vivo infection effects remains unclear. B. suis 1330 contains the
monomeric autotransporter proteins BmaA and BmaB, encoded
by BR0173 and BR2013, which are smaller than BmaC. Compared
with wild-type strains, mutants lacking BmaB are removed more
quickly from the spleen of BALB/c mice, suggesting that BmaB
plays a role in chronic infection (68). A recent study by Bialer et al.
(69) indicated that the bmaB locus in B. abortus and the bmaA
and bmaC loci in B. melitensis may be pseudogenes, although some
reports suggest that Bma proteins may have functional roles in
certain B. suis strains. BmaA, BmaB, and BmaC likely contribute
to bacterial attachment to various cell types, indicating diversity
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FIGURE 1

A comparative analysis of phagocytosis and exocytosis. (A) The intracellular development of an avirulent Brucella strain, highlighting the formation of
eBCVs and late BCVs that eventually merge with lysosomes for bacterial degradation. (B) The progression of a virulent Brucella strain, showing
evasion of lysosomal fusion and replication within the ER, followed by host cell lysis and dissemination to other tissues.

FIGURE 2

Adhesins of Brucella spp. and their host cell interactions. This schematic illustrates the major Brucella adhesins (SP29, SP41, BigA, BigB, BmaA, BmaB,
BmaC, Bp26, BtaE, and BtaF) and their interactions with host cell types and receptors. Adhesins facilitate binding to epithelial cells, red blood cells,
osteoblasts, and placental trophoblasts via host molecules such as sialic acid–containing proteins, fibronectin, vitronectin, hyaluronic acid, fetuin,
and type I collagen. These adhesion mechanisms contribute to tissue tropism, colonization, and the intracellular persistence of Brucella, representing
key steps in pathogenesis.
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in Brucella spp. adhesins and potential host preferences. The
discovery of BmaB also suggests its involvement in cell division,
generating a new pole (69).

The autotransporter adhesin (AT) is essential for bacterial
adhesion to mammalian cells (70). Brucella possesses five AT
adhesins: type I monomeric ATs OmaA and BmaC (71), type
II trimeric ATs BtaE and BtaF (72, 73), and the inverted AT
adhesin BigA (64). BmaC specifically binds fibronectin (71),
whereas BtaE and BtaF bind hyaluronic acid (72, 74). Mutants
lacking these adhesins exhibit reduced adhesion to epithelial
cells but maintain wild-type macrophage replication. In mice,
these mutations are reversed when AT adhesins are administered
intragastrically or nasally, indicating their role in mucosal adhesion.
Some pathogens, such as BigA, exploit eukaryotic cell junctions
to breach mucosal barriers (75). A double mutant of B. suis
btaE btaF is more attenuated than a single mutant, suggesting
complementary virulence roles (76). BtaF also shields B. suis
from serum bactericidal action (72). BmaC, BtaE, and BtaF are
localized near the cell pole (71, 74) and form a binding pole
with G1 phase Brucella cells (77). In planktonic cultures, Brucella
produces these adhesins in limited amounts, resulting in effective
gene transcription during interactions with human cells. Several
AT-encoding genes are regulated by VjbR (78) and MucR (79,
80), whereas btaE expression in B. abortus is controlled by a
complex regulatory network (81, 82). Brucella AT-type adhesins
may have multiple functions (82), necessitating cross-species and
strain studies using mutants with gene disruptions to clarify their
role in pathogenicity.

3 Diagnosis of brucellosis

Timely and accurate diagnosis is critical for the effective
treatment and control of brucellosis. Current diagnostic tools
include a range of serological, culture-based, and molecular
methods. Serological assays, such as the Rose Bengal test and
ELISA, offer rapid screening capabilities but can be limited in
both sensitivity and specificity. Blood culture remains the gold
standard for definitive diagnosis; however, it is time-consuming
and may yield false negatives, particularly in patients who have
already begun antibiotic therapy. Molecular approaches, including
PCR and WGS, offer faster detection of Brucella DNA and
are particularly valuable when traditional methods fall short.
These complementary techniques collectively increase diagnostic
accuracy, guide treatment decisions and improve patient outcomes.
The following section outlines both current and emerging
diagnostic approaches for brucellosis in humans and animals.

Recent advances in proteomics are reshaping brucellosis
research and its applications in diagnosis, prevention, and control.
In clinical microbiology, MALDI-TOF MS has emerged as a
powerful tool for rapid, species-level discrimination of Brucella
(e.g., B. abortus vs. B. melitensis) based on whole-cell proteomic
fingerprints. The continuous expansion of spectral databases
for highly pathogenic bacteria is closing gaps that previously
limited diagnostic coverage, while machine-learning approaches
applied to spectral data are further improving the classification of
closely related species (83–85). Large-scale LC–MS/MS proteomic
analyses are also generating serum biomarker panels capable of

distinguishing acute from chronic brucellosis, with network-based
and machine-learning methods offering promising candidates for
future clinical assays (86, 87). In addition, immuno-proteomics
has identified type IV secretion system components and outer-
membrane proteins with high diagnostic sensitivity and specificity,
and the design of multi-epitope fusion proteins from proteome-
mined antigens is advancing serological testing while reducing the
problem of LPS cross-reactivity (88, 89).

On the prevention and control side, proteomic prioritization of
conserved outer-membrane proteins (e.g., Omp16, Omp25/BP26)
supports the development of next-generation vaccines, including
mRNA and outer-membrane vesicle (OMV)-based platforms, with
OMV proteomes revealing multiple protective antigens (90, 91).
Finally, pan-proteomic studies of reference and field isolates using
label-free quantitation are identifying conserved stress-responsive
proteins as potential biomarkers for surveillance and intervention,
while innovations such as magnetics-assisted MALDI workflows
point toward future culture-independent detection strategies for
high-risk pathogens including Brucella (92, 93). These advances in
proteomics complement conventional diagnostic modalities and
highlight the ongoing evolution of brucellosis diagnostics;
the following subsections detail the established culture-,
serology-, and molecular-based methods that remain central to
routine practice.

3.1 Culture methods

Accurate identification of Brucella species—the causative
agents of zoonotic brucellosis—relies on isolation of the pathogen
from blood, bone marrow, or other tissues (37). The success of
culture-based detection varies according to disease stage, sample
type, prior antimicrobial exposure, and culture technique used (94).
Despite its limited sensitivity, culture remains the most definitive
method of diagnosis (95). Innovations such as advanced incubators
and the Ruiz-Castañeda biphasic culture system have improved
biosafety and fostered more reliable bacterial growth. When
performed promptly upon clinical suspicion, peripheral blood
cultures are crucial for confirming the diagnosis, with reported
sensitivities ranging from 10% to 90% (14, 96). These cultures are
especially valuable when serological results are inconclusive (97).
The techniques used include manual culture, lysis-based systems
(98), clot cultures, and automated platforms—each contributing to
increased sensitivity and faster detection (99).

During early infection, the bacterial load in the bloodstream is
typically low and may be missed if the sample size is insufficient.
To maximize diagnostic yield, it is recommended that two
or three separate peripheral blood cultures be obtained (100).
As brucellosis progresses, the bacterial burden often decreases,
complicating pathogen isolation (101). Given the slow growth rate
of Brucella, culture protocols must be extended to accommodate
delayed detection (102). In severe cases, traditional culture methods
may require incubation for up to 7 days, whereas automated
systems may detect growth within 5 days (103). The American
Society for Microbiology and the World Health Organization
advocate for a 1-month incubation period for blood culture bottles,
although this recommendation can pose logistical and financial
challenges (104).
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Within 24 h of infection, an estimated 25%−35% of patients
may exhibit dissemination of Brucella beyond the bloodstream.
Cultures may also be performed from bone marrow, urine, liver
biopsies, lymph nodes, and cerebrospinal fluid and incubated at
35 ◦C in 5% CO2 for up to 2 weeks (105). Confirming the
identity of Brucella species is essential for mitigating biosafety
risks. Classic identification methods include phage lysis testing,
oxidative metabolism assays, and agglutination with monospecific
antisera (37). Owing to the limitations of conventional culture,
serological testing can be employed to increase sensitivity. In
recent years, matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (MALDI-TOF MS) has emerged as a
rapid, non-phenotypic identification method (106, 107). However,
prior genomic validation is needed to ensure accuracy (39). Many
laboratories now apply MALDI-TOF MS by directly introducing
broth from positive cultures into the matrix (108, 109). Brucella
organisms are safely inactivated via 100% ethanol prior to protein
extraction, minimizing the risk of laboratory exposure (110).

MALDI-TOF MS has been used to identify Brucella reference
strains from synthetic blood cultures (111). A refined Vitek MS
database—including 590 protein spectra from 84 Brucella isolates—
facilitates discrimination between Brucella and Ochrobactrum
species, as well as accurate identification of B. abortus, B. melitensis,
and B. suis. Further validation using wild-type isolates from diverse
geographic and host sources is necessary. While the cost per sample
with MALDI-TOF MS is relatively low, the initial investment and
operational expenses can restrict access in endemic regions with
limited resources (110).

Brucella species are among the most common causes of
laboratory-acquired infections and are capable of causing outbreaks
if proper containment measures are not enforced (112). Laboratory
workers face significant risk due to the aerosolized particles
generated during specimen handling. The routes of infection
include inhalation, mucosal exposure, ingestion, and percutaneous
entry. Reported infection rates among clinical laboratory staff
range from 10% to 100%, influenced by pathogen load and
laboratory safety standards (113, 114). Early-phase blood cultures,
if misinterpreted by Gram staining, can lead to diagnostic errors
due to Brucella’s subtle morphology (115).

Inadequate biosafety protocols, particularly in resource-limited
settings, increase the risk of laboratory-acquired infections (116).
For example, one Turkish laboratory reported an 18% infection
rate among staff, with an annual risk of 8% (116). Effective
communication between clinicians and microbiologists is essential
to ensure proper identification and handling of suspected Brucella
samples. Until a diagnosis is confirmed or ruled out, all
potentially hazardous samples should be managed with heightened
containment and stored appropriately to prevent accidental
exposure (117).

3.2 Serological methods

The primary diagnostic tools for brucellosis include culture,
serological assays, and molecular techniques (3, 104). Given
the nonspecific clinical presentation of brucellosis, laboratory

confirmation is essential (118). Although serological methods are
widely employed for identifying Brucella infections, their accuracy
can be affected by limited sensitivity, cross-reactivity with other
pathogens, and the need for well-equipped laboratories (3). In
low-resource settings or in areas with lower disease prevalence,
serological testing remains the cornerstone of diagnosis because
of its relative simplicity, affordability, and high negative predictive
value (104). Nonetheless, interpreting serological results can be
challenging and sometimes inconclusive (118).

Common serological assays for diagnosing human brucellosis
include the serum agglutination test (SAT), Rose Bengal test (RBT),
Coombs test, and enzyme-linked immunosorbent assay (ELISA),
which are generally ranked in the following order: ELISA > RBT
> SAT > Coombs test (119). Compared with SAT or RBT, ELISA
offers greater sensitivity (120–122). The performance of ELISA
depends on the specific immunoglobulin detected. For example,
Araj et al. (122) reported 91% sensitivity for IgG and 100%
sensitivity for IgM, both with 100% specificity. In contrast, Memish
et al. (123) reported lower IgG sensitivity (45.5%) but similarly
high specificity (97.1%); IgM showed 79% sensitivity and 100%
specificity. Overall, the combined ELISA results had a sensitivity
of 94.1% and a specificity of 97.1%. Xu et al. (124) reported a
sensitivity of 88.37% for IgG and 74.42% for IgM, matching the
sensitivity of SAT. When the IgG and IgM data were combined, the
sensitivity increased to 98.84%, whereas the specificity decreased
to 84.13% (121, 125). These results suggest that while ELISA has
excellent sensitivity (119), its reduced specificity may limit its
standalone diagnostic utility (126).

As the disease progresses, IgG antibodies may become non-
agglutinating (127). The Coombs test helps detect blocking
antibodies in such cases, although it is infrequently used owing to
its technical demands and the requirement for trained personnel.
Alternatively, the Brucellacapt test detects both agglutinating
and non-agglutinating antibodies (120) and may serve as a
practical replacement for the Coombs test (120, 128). Xu et al.
(124) demonstrated the increased specificity of Brucellacapt for
diagnosing human brucellosis. Ardic et al. (129) reported a
sensitivity of 97.3%, specificity of 55.6%, positive predictive value
of 90%, and negative predictive value of 83.3% at a 1:160 titer.
The test performance varied depending on the disease stage. A
titer of 1:160 was considered optimal by Xu et al. (124), while
increasing the threshold to 1:320 reduced the sensitivity. Although
Brucellacapt can help detect chronic brucellosis (120), it may yield
negative results in some chronic cases (124). An effective serological
diagnostic strategy requires a highly sensitive test followed by a
confirmatory assay (130). Xu et al. (124) reported that ELISA, with
a sensitivity of 98.84% and a negative predictive value of 98.15%,
is effective for rapid screening, especially in endemic regions.
Brucellacapt offers excellent specificity and positive predictive
value, making the combination of ELISA and Brucellacapt highly
beneficial for diagnosing brucellosis in resource-limited and high-
burden settings.

The RBT is a rapid, card-based agglutination assay that detects
both agglutinating and non-agglutinating antibodies, yielding
qualitative results (104). Performing RBT with serum dilutions
can improve the specificity for samples initially testing positive
(131, 132). However, false-positive results may occur due to factors
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such as hemolyzed serum, prior exposure, non-specific antibody
binding, or cross-reactivity. This is particularly problematic in
low-endemic areas, where the reduced positive predictive value of
serological testing may lead to unnecessary follow-up, increased
healthcare costs, and patient anxiety (133). Test accuracy can also
be influenced by the disease stage, immune status of the host,
and specific Brucella species involved. Laboratory-related errors
further highlight the need for proper training and stringent quality
assurance practices (104).

Because of the complexity of Brucella antigenic structures,
various immunological approaches are employed for diagnosis
(37). Whole-cell antigens are used in indirect fluorescent antibody
tests (134). Most serological assays target antibodies against smooth
LPS or cytosolic proteins. The immune response to smooth
LPS—common to smooth Brucella species—results in sequential
production of IgM (first week) and IgG1 (second week), followed
by IgG2 and IgA (third week) (104). Misdiagnosis may occur
with species such as B. canis, which lack O-polysaccharides,
complicating detection in human infections (135). To address
these diagnostic limitations, Loubet et al. (133) conducted a
retrospective study at the French National Reference Center for
Brucella, analyzing 3,587 serum samples from June 2012 to June
2023. Among these cases, 148 were confirmed brucellosis cases.
Although individual tests exhibited high sensitivity and specificity,
the diagnostic accuracy improved significantly when the assays
were combined. The best-performing algorithm—using RBT,
Brucellacapt, and ELISA for IgM and IgG—achieved a sensitivity
of 90.5% and specificity of 99.7%. These findings underscore the
importance of integrated diagnostic strategies and the need for
continued innovation in testing methods.

In animals, brucellosis is primarily diagnosed via serological
assays such as RBT, complement fixation tests (CFTs), and ELISA
(136). Although these tests effectively detect Brucella-specific
antibodies, their reliability diminishes in chronic infections, when
antibody titers often fall below detectable levels (137). Furthermore,
Brucella’s ability to survive intracellularly enables the pathogen
to evade immune detection, complicating serological diagnosis
(138). As a result, seronegative carriers—infected animals that
do not produce detectable antibodies—pose a serious challenge
for disease control, as they can still transmit the infection to
other animals and humans (139). To address these diagnostic
gaps, molecular techniques such as PCR should be used alongside
serological methods to detect and manage brucellosis accurately in
both humans and animals.

3.3 Molecular methods

Molecular diagnostic technologies, particularly PCR, have
gained significant prominence in the detection and identification
of Brucella species (138). PCR offers high sensitivity and specificity,
enabling the detection of Brucella DNA in various biological
samples, including blood, milk, tissues, and semen (136). Unlike
serological tests, which detect host antibody responses, PCR
directly targets Brucella DNA, making it particularly valuable for
identifying infections in seronegative individuals and animals.

Among the molecular targets, the insertion sequence IS711 is
widely utilized because of its specificity for the Brucella genus (140).
PCR assays based on this gene have demonstrated high diagnostic
utility, especially in cases where culture fails or serological tests
yield negative results. For example, Hinić et al. (141) demonstrated
that IS711-based PCR could detect Brucella DNA in wild boars
even when traditional isolation methods were unsuccessful and
serological tests were negative. The ability of PCR to amplify
DNA from a variety of sample types underscores its importance
in endemic regions where rapid and accurate diagnosis is critical.
This is particularly relevant in scenarios where serological tests are
limited by low sensitivity or delayed antibody responses (133).

Several outer membrane protein (OMP) genes, including omp2,
omp31, and omp28 (Bp26), which serve as additional targets for
PCR-based detection, have also been identified through molecular
diagnostics (142, 143). Although 16S rRNA and IS711 remain
widely used for Brucella identification, some studies have raised
concerns regarding IS711′s variability and occasional deletions
in certain strains, which may affect assay sensitivity. Another
widely used marker is the bcsp31 gene, which encodes a highly
immunogenic membrane protein and has been validated for
reliable species identification (142, 144, 145). Multiple PCR-based
techniques, including conventional PCR, real-time PCR, multiplex
PCR, nested PCR, and PCR-enzyme immunoassays in microplate
formats, have been developed to increase diagnostic performance
(104). Multiplex PCR is particularly advantageous, as it allows
for simultaneous detection and differentiation of field strains and
vaccine strains such as S19, RB51, and Rev.1 in a single assay
(146, 147).

In recent years, loop-mediated isothermal amplification
(LAMP) has emerged as a promising alternative to PCR. LAMP
offers several advantages, including rapid amplification, visual
detection of results, and minimal equipment requirements—
typically only a constant-temperature heat source such as a 63 ◦C
water bath. This method eliminates the need for gel electrophoresis
and produces results in under 1 h, making it highly suitable for field
diagnostics and use in low-resource settings (148). Its affordability
and ease of use make it an attractive option for point-of-care testing
in brucellosis-endemic regions.

Sequencing-based technologies also contribute to an
improved understanding of Brucella epidemiology. Whole-
genome sequencing and other genetic analyses have elucidated
the mechanisms underlying strain variation, virulence, and
evolutionary relationships (149, 150). Such data are critical for
advancing vaccine development and refining diagnostic targets
(151). However, the high cost and technological demands of
next-generation sequencing limit its widespread application,
especially in low-income countries where brucellosis is often
endemic (150, 152, 153).

Emerging molecular innovations aim to overcome these
barriers. Magnetic nanoparticle-based DNA biosensors have shown
potential for rapid and highly specific detection of Brucella DNA.
These biosensors employ frequency-mixing magnetic detection
and DNA hybridization, enabling the identification of low DNA
concentrations within minutes—even in field conditions (138,
154). Additionally, immuno-surface plasmon resonance biosensors
have been developed to detect Brucella without the need for
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DNA amplification. These portable, cost-effective devices offer
a detection threshold as low as 2.8 bacteria/ml, presenting a
promising solution for decentralized testing (155).

Despite the increasing availability of molecular tools,
traditional culture and serological methods remain the standard
diagnostic approaches for brucellosis in many settings. However,
the diagnosis remains challenging because of the disease’s non-
specific symptoms, which often resemble those of other febrile
illnesses and can result in delayed or missed diagnoses (156). The
lack of pathognomonic clinical signs, combined with the risk of
false-negative serological results in early or atypical presentations,
highlights the need for improved diagnostic awareness (95, 157).
Education of clinicians and health workers, especially in endemic
areas and among at-risk populations, is critical for enhancing early
recognition and response to brucellosis (158).

4 Pathways of brucellosis transmission

In addition to implementing accurate diagnostic strategies,
identifying and disrupting the transmission pathways of brucellosis
to effectively control and prevent the disease is imperative (159).
Brucellosis is primarily a zoonotic disease transmitted from
animals to humans, although human-to-human transmission—
while rare—has also been documented (160). Although the latter
route is less common, both pathways contribute to the persistence
and potential expansion of brucellosis, emphasizing the need for
comprehensive preventive measures (Figure 3).

Zoonotic transmission typically occurs through direct contact
with infected animals or their secretions, especially during the
handling of aborted fetuses, placental tissues, or birth fluids.
Occupational exposure is a significant risk factor, particularly
for farmers, veterinarians, abattoir workers, and laboratory
personnel. Inhalation of infectious aerosols—especially in confined
environments such as laboratories and livestock facilities—is
another important mode of transmission (161, 162). Moreover, the
ingestion of unpasteurized milk, cheese, and other dairy products
derived from infected animals remains a major source of human
brucellosis, particularly in endemic regions where food safety
regulations are inadequately enforced (162).

Although infrequent, human-to-human transmission via
several mechanisms has been reported. These include vertical
transmission across the placenta, breastfeeding, sexual contact,
and iatrogenic exposure through contaminated blood transfusions
or bone marrow transplantation (160). Aerosol transmission has
also been implicated in clinical and laboratory settings under
specific conditions (96). Although such cases are uncommon, the
wide array of possible transmission routes expands the pool of
susceptible individuals and necessitates vigilance across multiple
sectors of public health and clinical care.

A diverse range of animals serve as reservoirs for Brucella
species, including cattle (B. abortus), goats and sheep (B.
melitensis), swine (B. suis), camels, dogs (B. canis), poultry, and
numerous wildlife species (163). These hosts play crucial roles
in maintaining the endemicity of brucellosis and facilitating its
transmission to humans. Human infection is not restricted by age
or sex; however, young and middle-aged adults are most frequently
affected by increased occupational and environmental exposure

(164). Pregnant women and newborns also remain vulnerable,
given the potential for transplacental transmission and perinatal
complications (165, 166).

5 Brucellosis treatment regimens

Brucellosis treatment has evolved significantly since the mid-
19th century. Early therapeutic attempts—dating back to 1855—
included quinine, colchicine, and ampicillin, followed by the
use of salicylates, ichthyol, iodine, immune sera, and early
vaccines. However, these treatments often lack efficacy and are
associated with considerable toxicity (162). Sulfonamide drugs
were introduced in 1936, marking the beginning of antimicrobial
therapy for brucellosis, although the results have been inconsistent
(9). The addition of streptomycin in the late 1940s, used alone or
combined with oral sulfadiazine, also failed to achieve consistently
successful outcomes (161).

Subsequent studies demonstrated that combination antibiotic
therapy produced significantly better results than monotherapy,
reducing relapse rates and improving overall efficacy (161). In 1971,
the World Health Organization (WHO) recommended a 3-week
treatment course comprising tetracycline and streptomycin. This
protocol was revised in 1986 to recommend a 6-week regimen of
doxycycline and rifampicin or a 2 to 3-week course of tetracycline
plus streptomycin, which has become the standard treatment
approach for human brucellosis (167). Today, the cornerstone of
brucellosis treatment remains antimicrobial therapy, particularly
the use of dual antibiotics such as doxycycline (100 mg twice
daily for 6 weeks) in combination with either streptomycin (1 g
intramuscularly daily for 2–3 weeks) or rifampicin (600–900 mg
daily for 6 weeks) (167, 168). The choice of regimen depends
on the disease severity, patient comorbidities, and the presence
of focal complications such as osteoarticular involvement or
neurobrucellosis, which may require extended or adjusted courses
of therapy.

Effective treatment is critical not only for resolving infection
but also for minimizing the risks of chronic disease, relapse,
complications, and transmission (Figure 4). Prompt therapy can
reduce the incubation period, accelerate symptom relief, and
lower both morbidity and mortality rates (169, 170). In addition
to standard antibiotic regimens, adjunctive approaches—such as
surgical intervention for severe cases, traditional Chinese and
integrative medicines to enhance the immune response, and
nanotechnology-based therapies for targeted drug delivery—are
increasingly explored. These strategies underscore the importance
of individualized treatment plans tailored to disease severity,
comorbidities, and available resources. This section reviews each
modality, outlining its key benefits and limitations.

5.1 Antimicrobial drug therapy

As no licensed vaccine exists for human brucellosis, antibiotic
therapy remains the cornerstone of treatment (171). The
intracellular nature of Brucella, particularly its residence within
reticuloendothelial cells and bone, poses significant challenges for
effective antibiotic penetration (172). Consequently, combination
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FIGURE 3

Transmission Pathways of Brucellosis. The diagram illustrates the major transmission routes of Brucella spp. from animals to humans, including direct
contact with infected animals, ingestion of unpasteurized dairy products, inhalation of contaminated aerosols, and exposure through mucous
membranes or broken skin. It also highlights less common human-to-human transmission pathways such as transplacental transfer, breastfeeding,
sexual contact, blood transfusion, and organ transplantation. Understanding these routes is critical for developing effective prevention and control
strategies.

URE 4FIG

Treatment strategies for human brucellosis. A schematic overview showing the main therapeutic approaches for human brucellosis, including
antimicrobial drug therapy, surgical intervention, traditional Chinese medicine, and emerging nanotechnology-based therapies.

antimicrobial regimens that can penetrate macrophages and
maintain efficacy in acidic environments are standard practices
(173–175). Earlier monotherapies, including tetracycline, rifampin,
and quinolones, had limited success, with high relapse rates;
for example, ciprofloxacin alone was associated with an 83%

recurrence rate (176). The WHO first recommended combination
therapy in 1976, advocating for a 6-week course of rifampin
and doxycycline (177), with other common regimens, including
doxycycline plus streptomycin, rifampin, or trimethoprim-
sulfamethoxazole (176). While 6-week treatments are generally
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recommended to reduce relapse (171), recent evidence suggests
comparable outcomes with 4-week regimens using doxycycline,
streptomycin, and hydroxychloroquine (178), potentially offering
shorter, safer treatment options.

The current WHO and CDC guidelines endorse dual or
triple antibiotic regimens (41). Triple therapy can reduce Brucella
DNA levels more significantly (179). It is associated with higher
rates of adverse effects, lower adherence, and increased risk of
resistance (180). Injectable aminoglycosides such as gentamicin
or streptomycin, often part of triple therapy, require parenteral
administration and can limit feasibility in outpatient settings.
Recent studies, including one conducted in Saudi Arabia,
reported no significant differences in cure rates between dual
and triple therapies (181). A 2025 study by Alsowaida et al.
(41) further confirmed that dual therapy is equally effective but
better tolerated, making it more cost-effective and preferable for
most patients.

Despite these advances, several challenges remain. Routine
antibiotic susceptibility testing is often bypassed due to safety
risks to laboratory personnel and a lack of standardized testing
protocols (182). Some antibiotics lack approval or defined
breakpoints by the EUCAST or CLSI, complicating treatment
decisions. High rifampicin resistance in regions with endemic
tuberculosis, along with 5%−16% relapse rates, further complicates
management (183–185). Severe cases involving osteoarticular
infections, neurobrucellosis, or endocarditis require intensive
therapy (186). Tetracyclines are contraindicated in young children
and lactating women (187), and fluoroquinolones should not be
used as monotherapy due to high relapse rates (188–190). While
doxycycline remains the preferred agent, resource-limited settings
may require alternative tetracyclines. Distinguishing relapse from
reinfection remains a diagnostic challenge, emphasizing the need
for timely and appropriate therapy (191). Antimicrobial therapy
offers high cure rates and structured protocols but must be
balanced against recurrence risk, side effects, and the emergence of
resistance (175–178).

5.2 Surgical treatment

Surgical intervention is an important adjunct to antimicrobial
therapy in cases where medical management alone is insufficient or
when complications arise. In Brucella endocarditis, early antibiotic
treatment combined with valve surgery significantly improves
prognosis, reduces mortality, and enhances quality of life (192,
193). A study by Keshtkar-Jahromi et al. (194) involving 308
patients revealed that combining surgery with medical therapy
lowered mortality from 32.7% to 6.7%. Surgery is indicated in cases
of advanced heart failure, hemodynamic instability, prosthetic valve
endocarditis, persistent bacteremia, valve dysfunction, local abscess
formation, sinus tracts, and vegetation ≥30 mm—or >10 mm if
highly mobile—despite adequate antimicrobial therapy (195, 196).
For example, Hong et al. (197) reported a case where antibiotic
therapy initially managed a small vegetation (<10 mm), but
progression to mitral valve dysfunction required delayed surgical
intervention. Postoperative antibiotic therapy was continued for 6
weeks, followed by lifelong prophylaxis.

In Brucella spondylodiscitis, long-term antibiotic therapy
is the primary treatment, although surgery may be necessary
in 3%−29% of cases (198, 199). Indications for surgical
intervention include neurological deficits, large paravertebral
or epidural abscesses unresponsive to medical therapy, spinal
instability, or deformity (200, 201). While limited data exist
on the surgical management of Brucella spondylitis, studies
suggest that spinal instrumentation can be safely employed in
infected patients without impeding bacterial eradication (201–
203). Jiang et al. (204) suggested the combination of surgery
with antibiotics such as rifampin and doxycycline. However,
Katonis et al. (201). noted that chemotherapy alone is often
effective and that surgery should be reserved for refractory or
complicated cases. Surgical management is particularly beneficial
for patients with extensive intervertebral disc damage, vertebral
collapse, neurological deterioration, or spinal deformities.
Postsurgical care necessitates extended antibiotic courses,
typically exceeding 6 months, to prevent relapse and ensure
full recovery.

5.3 Nanotechnology-based therapies

Despite the efficacy of conventional antimicrobial regimens,
brucellosis frequently relapses owing to the ability of Brucella
spp. to persist intracellularly within macrophages. This persistence
impedes immune clearance and restricts antibiotic penetration
(205). Nanotechnology offers a promising approach to overcome
these limitations by enhancing drug delivery, reducing recurrence,
and addressing antimicrobial resistance (206). NPs possess unique
physicochemical properties that facilitate membrane penetration
and enable targeted disruption of bacterial metabolic pathways
(207, 208). NPs may function as intrinsic antimicrobials or act as
delivery vehicles—referred to as nanobiotics or nanoantibiotics—
for traditional antibiotics (207). Inorganic NPs with antimicrobial
activity are termed nanobacteriocides, while those used to transport
drugs are known as nanocarriers (207). These systems can bypass
common resistance mechanisms, such as poor intracellular access
and bacterial efflux pumps, which limits the effectiveness of
standard antimicrobial agents (207, 209).

Several nanocarrier systems—such as solid lipid NPs,
liposomes, chitosan-based NPs, niosomes, and their combinations
with sodium alginate—have demonstrated potential for improving
treatment outcomes in patients with brucellosis (210). For
example, hydroxychloroquine and doxycycline delivered via
solid lipid NPs combined with cadmium telluride quantum dots
exhibited enhanced efficacy and may reduce relapse rates (211). In
a study by Hosseini et al. (205), compared with free doxycycline,
doxycycline-loaded solid lipid NPs reduced the intracellular
burden of B. melitensis in macrophages by 3.5 logs, supporting
their potential for preventing recurrence.

Codelivery strategies further improve outcomes. Curcumin,
which has pH-sensitive antimicrobial activity, can potentiate
doxycycline under acidic conditions (212). El-Essa et al. (213)
assessed pH-responsive chitosan-sodium alginate NPs loaded with
doxycycline and a curcumin-loaded niosome hydrogel in guinea
pigs infected with B. melitensis biovar 3. This dual nanoformulation
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reduced the splenic bacterial load to 19 ± 3.0 log CFU, whereas it
was 640.66± 4.3 log CFU in the untreated controls. Polyanhydride-
based NPs encapsulating doxycycline and rifampicin have also
shown promise. Lueth et al. (206) reported that these NPs, ranging
from 162.8 to 326.8 nm in size, with polydispersity indices of 0.1–
0.13 and zeta potentials of −1.56 to −21.2 mV, provided extended-
release delivery. Over 5 days, they eradicated B. melitensis from
infected macrophages and significantly reduced liver bacterial
counts in BALB/c mice. Notably, no significant difference was
observed between animals treated with daily free drugs and those
treated weekly with nanoformulations, suggesting similar efficacy
with a reduced dosing frequency.

The use of gentamicin, a potent but nephrotoxic antibiotic, can
be enhanced via the use of nanocarriers (214, 215). Poly(lactic–
coglycolic acid) (PLGA) microparticles and NPs (∼1 μm and
∼299 nm, respectively), which are coencapsulated with gentamicin
and bis(2-ethylhexyl) sulfosuccinate sodium salt, reduce splenic
infection by 3.23 logs and achieve 50% eradication in mice without
renal toxicity (216). Poly(amidoamine) (PAMAM) dendrimers—
water-soluble, hyperbranched polymers (1–15 nm, 30–200 kDa)—
are another promising platform (217, 218). These nanocarriers
(generations G0–G5) can deliver drugs or genetic material (219).
Gentamicin-loaded G4 dendrimers modified with polyethylene
glycol produced NPs with a diameter of 51.23 nm, a zeta potential
of −8.8 mV, and a 0.2 polydispersity index. Enhanced intracellular
drug release can be achieved via glutathione-mediated mechanisms
and efflux pump inhibition (220).

Overall, nanoblass-based strategies—including microspheres,
dendrimers, chitosan particles, and PEGylated formulations—offer
targeted delivery, reduce toxicity, and improve efficacy for treating
brucellosis. These advancements could revolutionize brucellosis
therapy in both human and veterinary medicine by overcoming
current limitations in antibiotic delivery and persistence (212).

5.4 Traditional Chinese medicine

Traditional Chinese medicine (TCM) has long been utilized for
the treatment of infectious diseases in China and is increasingly
gaining recognition for its potential role in managing brucellosis
(159, 221). One of the most well-documented examples of TCM’s
therapeutic potential is artemisinin, derived from Artemisia annua,
which has been adopted globally as a first-line treatment for malaria
(221). Moreover, herbal formulations have demonstrated efficacy
in alleviating symptoms and reducing hospital stays in patients
with viral infections such as SARS and COVID-19 owing to their
immunomodulatory and anti-inflammatory effects (222–224).

In the context of brucellosis, TCM is often employed as an
adjunct to antibiotic therapy to enhance treatment outcomes,
minimize side effects, and reduce the risk of antimicrobial
resistance (225, 226). Zhang et al. (227) identified ten medicinal
herbs that are frequently used to treat brucellosis: Gan Cao (GC),
Dang Gui (DG), Fu Ling (FL), Chen Pi (CP), Bai Shao (BS), Chuan
Xiong (CX), Bai Zhu (BZ), Huang Qi (HQ), Dang Shen (DS), and
Di Huang (DH). These herbs exhibit a range of pharmacological
activities, including analgesic, antioxidant, antibacterial, antiviral,

immunoregulatory, and hepatoprotective effects. Notable examples
include the antiarthritic activity of GC (228), the antifibrotic
action of DG (229), the antidiabetic effects of FL (230), and
the antiatherosclerotic and anticancer potential of CX (231). BZ
enhances spleen function (232), HQ and DS are known for their
nephroprotective effects (233, 234), and DH has demonstrated
antitumor properties (235).

The therapeutic effects of TCM are attributed to bioactive
compounds within the plants, some of which may have direct
activity against Brucella spp. (236). Wen et al. (237) evaluated
the antibacterial properties of ten ethanol extracts from herbs
used in Malaysian Chinese medicine against B. melitensis.
Using disc diffusion assays, four extracts—Coptis chinensis, Radix
paeoniae rubra, Galla chinensis, and Cortex phellodendrin—showed
inhibitory activity, with minimum inhibitory concentrations
(MICs) ranging from 3.75 to 30 mg/ml. These findings suggest the
potential utility of these herbs as prophylactic or therapeutic agents
against brucellosis.

Coptis chinensis (Huanglian) is particularly noteworthy for its
antimicrobial potency. Kim et al. (238) demonstrated that ethanol
extracts of C. chinensis and its major constituents—berberine
and palmatine—exhibited inhibitory activity against B. abortus
at concentrations of 1,000 μg/ml and 100 μg/ml, respectively.
However, the extracts and isolated compounds had limited
effects on the intracellular survival and replication of Brucella
within RAW 264.7 macrophages, indicating that while they are
bacteriostatic, their intracellular efficacy may be restricted. Further
exploration by Xuan et al. (239) highlighted the antiadhesive
potential of emodin, an anthraquinone compound derived from
traditional herbs. Emodin significantly reduced B. abortus entry
into macrophages and decreased bacterial adhesion at the highest
non-cytotoxic dose. These effects were associated with reduced
ERK1/2 phosphorylation and F-actin polymerization, suggesting
disruption of host-pathogen interactions. Although emodin does
not inhibit Brucella growth directly, its ability to modulate host cell
signaling implies a promising adjunctive role.

The therapeutic potential of Caryopteris mongolica root extract,
which is used in traditional Mongolian medicine, was evaluated in
vivo by Tsevelmaa et al. (240) BALB/c mice were treated for 21
days with doxycycline (2 mg/day), a combination of doxycycline
(1 mg/day) and C. mongolica extract (20 mg/day), or the extract
alone. Compared with the controls, all the treatment groups
presented significant reductions in splenic bacterial loads, with
the combination therapy providing enhanced efficacy. The extract
alone reduced the splenic bacterial burden by 1.47 log units,
supporting its synergistic potential in brucellosis therapy and the
possibility of lowering antibiotic doses to mitigate resistance.

Collectively, Chinese herbal medicines, including compound
formulations and monomeric constituents, display diverse
antibacterial mechanisms (241). These include limiting bacterial
gene expression, modulating immune responses, and reducing
the release of proinflammatory mediators. Ongoing research
into TCM-derived compounds is driving the development of
novel therapeutics, particularly those against antibiotic-resistant
pathogens (242). By elucidating the molecular interactions
between herbal bioactives and bacterial or host targets, TCM
offers a complementary strategy to conventional antibiotic
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therapy—one that may help curtail resistance, enhance treatment
efficacy, and provide alternative or adjunctive options in
brucellosis management.

6 Vaccination

Vaccination remains a cornerstone in the control and
prevention of animal brucellosis, with significant implications for
public health (243–246). Live attenuated vaccines such as B. abortus
S19 and RB51 for cattle and B. melitensis Rev.1 for small ruminants
are widely employed in various countries. However, these vaccines
pose notable challenges, including the risk of accidental human
infection and adverse effects in animals, particularly abortion
in pregnant livestock (245, 247–249). Furthermore, standard
serological tests used to detect Brucella infections cannot reliably
differentiate between vaccine and field strains or detect antibodies
specific to RB51 (250). In contrast, molecular methods such as PCR
provide higher specificity and can distinguish between vaccine and
wild-type strains (147).

At present, no vaccines are approved for human use.
The potential for severe side effects makes current animal
vaccines unsuitable for human application (251). This has
spurred research into safer and more effective human vaccine
candidates. Despite their importance in reducing zoonotic
transmission, current animal vaccines have limitations, including
short-term efficacy, hypersensitivity reactions, and interference
with serodiagnosis (252). For example, while the S19 vaccine offers
temporary protection, it requires frequent boosters and may elicit
hypersensitivity. Other experimental vaccines, such as B. abortus
84-C and M-104, are generally safe but can cause severe side effects
in some individuals (37, 40).

An emerging strategy for vaccine development involves the use
of genetically engineered live vectors derived from nonpathogenic
bacteria or viruses that express immunogenic Brucella antigens
(253). Examples include Lactococcus lactis (254), Escherichia coli
(255), Salmonella enterica (256), and Semliki Forest virus (257).
These vectors have been shown to infect a variety of cell types
and express antigens intracellularly, promoting robust immune
responses (253). One such example is the Flu-BA vaccine, which
employs recombinant influenza viruses (H5N1 as the prime and
H1N1 as the booster) to deliver OMP 16 and ribosomal protein
L7/L12, with the aim of protecting cattle against B. abortus (258,
259).

Subunit vaccines, which are composed of purified antigens
such as Omp31, BP26, and L7/L12 or outer membrane vesicles,
offer a safer alternative to live vaccines. These compounds have
shown immunogenicity in murine models but often require strong
adjuvants and multiple doses to achieve protective immunity (175).
Among the subunit approaches, DNA vaccines have garnered
significant interest. These vaccines encode antigenic components of
Brucella and stimulate both humoral and cellular responses. They
are inherently safe, contain CpG motifs for immune stimulation,
and do not require complex storage conditions (76, 260).

DNA vaccines for brucellosis frequently target genes essential
for Brucella’s intracellular survival and virulence, including
bvrR/bvrS (261), Cu-Zn superoxide dismutase (262), ribosomal
L7/L12, Brucella lumazine synthase (BLS) (76), Omp31 and
Omp25 (263), BCSP31 (264), SP41 (265), and ribosomal protein

L9 (266). These antigens have been shown to elicit protective
immune responses in animal models challenged with virulent
strains such as B. abortus S19 and 2308 and B. melitensis 16 M
and Rev.1 (264, 265). DNA vaccine development holds promise
for overcoming limitations associated with current live attenuated
vaccines (261, 264, 267). However, despite their potential, DNA
vaccines generally elicit weaker immune responses in humans than
in animal models—particularly in mice—underscoring the need for
improved delivery systems and optimized codon usage to increase
their efficacy (252).

NP-based vaccine delivery has shown promise in enhancing
immune responses. In animal models, NPs containing Brucella
antigens effectively elicit IgM, IgA, and IgG responses and promote
T-helper 1 (Th1) and T-helper 17 (Th17) cell-mediated immunity
(3, 268). However, NP-based vaccines are not yet recommended for
human use because of concerns about antigen loading efficiency,
immune activation capacity, and potential toxicity or disease
transmission risks (269, 270). Strategies that integrate LPS and
oligosaccharide antigens into poly(lactic-co-glycolic acid) (PLGA)
NPs have demonstrated enhanced antibody production, offering
significant protective benefits in animal models (271).

The use of recombinant peptides in vaccine design represents
another innovative approach to brucellosis prevention. These
peptides provide a safer and more targeted alternative to traditional
vaccines, avoiding the risks of abortion and diagnostic interference
associated with live attenuated vaccines such as Rev.1 (272).
One promising candidate, rBtuB-Hia-FlgK, has demonstrated the
capacity to enhance CD4+ and CD8+ T-cell responses to Brucella
antigens (273). Compared with attenuated vaccines, recombinant
peptide vaccines could achieve protective efficacy while offering
improved safety profiles for use in both livestock and humans.

The successful development of a human brucellosis vaccine
necessitates a comprehensive understanding of Brucella
pathogenicity and host immune interactions. Although
DNA vaccines are particularly suited for inducing cell-
mediated immunity, they must overcome limitations related
to immunogenicity in humans (274). Innovative strategies such
as codon optimization, advanced delivery systems, and adjuvant
formulations are being explored to improve their efficacy (275).
Additional techniques—including transposon mutagenesis,
the creation of green fluorescent protein-tagged strains, gene
knockouts, and high-throughput bacterial imaging—are being
employed to identify and evaluate novel vaccine targets (276).

Ultimately, vaccine candidates must demonstrate efficacy in
preclinical models (e.g., mice and non-human primates) and
undergo rigorous safety and immunogenicity testing before they
can be approved for human use. Although clinical trials in humans
remain challenging, the integration of genomics, immunology, and
nanotechnology is paving the way for next-generation brucellosis
vaccines that could be safer, more effective, and more broadly
applicable (251).

7 Socioeconomic burden associated
with brucellosis

Brucellosis imposes a significant socioeconomic burden
worldwide, particularly in regions where livestock farming is a
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primary source of income. In animals, the disease leads to direct
economic losses through decreased productivity, reproductive
failure, abortion, and reductions in milk and meat yields (277).
These losses are further compounded by expenses related to control
strategies, including diagnostic testing, veterinary care, vaccination
programs, culling of infected animals, and the implementation of
stringent biosecurity measures (278, 279). In addition to animal
health, brucellosis represents a major public health concern.
Infected individuals often experience non-specific but debilitating
symptoms such as fever, fatigue, arthralgia, and prolonged illness
(280), which can significantly impair work capacity and reduce
economic productivity. The associated costs of medical diagnostics,
long-term antibiotic therapy, and follow-up care place financial
strain on both affected individuals and healthcare systems (281).

The economic impact extends to international trade and food
security. The presence of brucellosis in livestock populations
limits market access for animals and animal-derived products
(282). Several countries, including Australia, the United States,
and New Zealand, have enacted strict regulations regarding the
import and export of livestock to prevent the spread of infectious
diseases (283). Consequently, brucellosis outbreaks can result in
trade restrictions, disrupting the global market for cattle and
related commodities (284, 285). Preventive measures are critical
to curbing transmission, especially given the zoonotic potential
of brucellosis through the consumption of unpasteurized dairy
products and undercooked meat. Ensuring food safety through
proper hygiene practices, including pasteurization and effective
disease surveillance systems, is essential (286). Compliance with
international food safety standards not only mitigates the spread
of brucellosis but also helps maintain public confidence in food
production systems (287).

In addition to affecting humans and domestic animals,
brucellosis poses ecological risks by impacting wildlife populations,
particularly in regions where wild and domesticated animals
share habitats. Wildlife species such as elk and bison can act as
reservoirs for the disease, perpetuating transmission cycles and
complicating eradication efforts (288). These infections can alter
wildlife population dynamics by reducing reproductive success
and increasing mortality rates (289). In summary, brucellosis is a
multifaceted disease with profound socioeconomic consequences.
Addressing these challenges requires a holistic, One Health
approach involving coordinated efforts across veterinary, medical,
environmental, and regulatory sectors to effectively control and
mitigate its widespread impact.

8 Challenges and future directions

Brucellosis remains a critical public health and veterinary
concern globally, particularly in regions where animal husbandry
is intensive and healthcare infrastructure is limited. The disease
is notoriously difficult to diagnose owing to its non-specific
clinical presentation, which often mimics other febrile or
inflammatory illnesses, leading to delayed or misdiagnosed cases.
Such diagnostic ambiguity contributes to prolonged illness,
increased morbidity, and the potential for ongoing transmission
(290). The zoonotic nature of brucellosis further complicates

control efforts, as transmission can occur through the consumption
of unpasteurized dairy products, direct contact with infected
animals, or inhalation of contaminated aerosols—placing high-
risk groups such as farmers, veterinarians, abattoir workers, and
consumers at continual risk (277, 291, 292).

In endemic regions, disease control is hindered by inadequate
healthcare infrastructure, insufficient veterinary coverage, a lack
of public awareness, and poor surveillance systems (293, 294).
The growing issue of antibiotic resistance in Brucella spp.
adds another layer of complexity, threatening the efficacy
of current therapeutic regimens and highlighting the urgent
need for new antimicrobial strategies (42, 295). Addressing
these multifaceted challenges necessitates a comprehensive and
collaborative One Health approach that integrates human, animal,
and environmental health. Priorities should include improved
disease surveillance, public health education, and expanded access
to healthcare and veterinary services, particularly in resource-
limited settings.

Historic eradication programs offer valuable insights for
guiding future brucellosis control strategies. In the European
Union, coordinated efforts that combined mass vaccination,
test-and-slaughter protocols, strict animal movement controls, and
mandatory dairy pasteurization enabled many member states to
secure official brucellosis-free status (296). In the United States,
the longstanding National Brucellosis Eradication Program
has virtually eliminated bovine brucellosis, with occasional
spillover cases persisting only in wildlife reservoirs such as
in the Greater Yellowstone Area (297, 298). New Zealand
offers another exemplar: a national campaign initiated in the
1970s, featuring compulsory herd testing, slaughter of reactors,
movement restrictions, and farmer compensation, culminated in
the country being officially declared brucellosis-free (299–301).
These programs demonstrate that elimination is attainable when
surveillance and vaccination are coupled with compensation
frameworks, rigorous enforcement, and sustained political
engagement. Embedding these successful models within a
modern One Health framework is key to adapting eradication
strategies to the socioeconomic and infrastructural challenges of
endemic regions.

Future research must delve deeper into the molecular
mechanisms underlying Brucella pathogenesis, particularly
Brucella’s ability to evade host immune responses by modulating
key cellular processes such as autophagy and apoptosis (302).
Omics technologies, including genomics and proteomics, hold
promise for identifying novel virulence factors and vaccine
candidates that could inform next-generation immunization
strategies (303, 304). The emergence of antimicrobial resistance
underscores the need for innovative therapeutics, including the use
of monoclonal antibodies, host-directed therapies, and repurposed
drugs with enhanced activity against Brucella (305). Moreover,
combining conventional antibiotics with emerging modalities
such as bacteriophage therapy may provide synergistic effects and
improve clinical outcomes (306).

Public health and veterinary professionals play vital roles in
advancing brucellosis control through education, early detection,
and disease reporting. The application of the One Health
concept is pivotal for successful management, encompassing
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livestock immunization, animal hygiene, wildlife monitoring,
and intersectoral collaboration (307, 308). During outbreaks,
rapid interventions such as livestock quarantine and movement
restrictions are essential to limit disease spread. In healthcare
settings, clinicians must maintain a high index of suspicion for
brucellosis in patients with compatible symptoms and relevant
exposure histories (309–311). Enhanced food safety practices—
including pasteurization, safe processing of dairy and meat
products, and rigorous monitoring systems—are indispensable
for reducing transmission risk. Historical accounts, such as the
restriction of unpasteurized milk during wartime to prevent
brucellosis among British soldiers, underscore the importance of
stringent food safety regulations (312). Laboratory and veterinary
personnel working with Brucella cultures should receive adequate
biosafety training and utilize personal protective equipment to
minimize occupational risk.

Although no vaccine is currently approved for human use,
significant progress has been made in the development of novel
animal vaccines, including vector-based, recombinant, DNA, and
subunit vaccines. These strategies aim to reduce disease incidence
in animal reservoirs and indirectly curb zoonotic transmission.
Continued research and investment are needed to optimize these
candidates for broader application and eventual translation into
human use.

9 Conclusions

Brucellosis remains a persistent global health threat at
the crossroads of human, animal, and environmental health.
Its chronic nature, diagnostic ambiguity, and intracellular
persistence—driven by immune-evasive mechanisms such as
low-immunogenic LPS and specialized adhesins—complicate
detection and treatment, particularly in resource-limited settings.
While molecular diagnostics and novel biosensors show promise,
conventional serology still dominates in endemic areas despite
its limitations. Prolonged antibiotic regimens face challenges
such as high relapse rates and increasing resistance. Emerging
therapies, including nanotechnology-based delivery systems,
host-targeted approaches, and traditional phytomedicines, offer
promising alternatives. Preventive efforts have largely focused
on animal vaccination, yet the lack of a human vaccine remains
a significant gap. Advances in DNA, subunit, and vector-based
vaccines show potential but require further development and
validation. Tackling brucellosis demands a One Health approach—
integrating medical, veterinary, and environmental strategies.
Strengthening diagnostics, expanding access to care, and fostering
cross-sector collaboration are essential for reducing the global
burden. Continued innovation and coordinated policy efforts are
critical to transforming scientific progress into sustainable public
health solutions.

Author contributions

AA: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Methodology, Resources, Validation,
Visualization, Writing – original draft, Writing – review &
editing. AE: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Supervision, Validation,
Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this article.
The researchers would like to thank the Deanship of Graduate
Studies and Scientific Research at Qassim University for financial
support (QU-APC-2025).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Dadar M, Tiwari R, Sharun K, Dhama K. Importance of brucellosis control
programs of livestock on the improvement of one health. Vet Q. 41:137–
51. doi: 10.1080/01652176.2021.1894501

2. Moriyón I, Blasco JM, Letesson JJ, De Massis F, Moreno E. Brucellosis
and one health: inherited and future challenges. Microorganisms. (2023)
11:2070. doi: 10.3390/microorganisms11082070

Frontiers in Medicine 14 frontiersin.org

https://doi.org/10.3389/fmed.2025.1629008
https://doi.org/10.1080/01652176.2021.1894501
https://doi.org/10.3390/microorganisms11082070
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Almuzaini and Elbehiry 10.3389/fmed.2025.1629008

3. Qureshi KA, Parvez A, Fahmy NA, Abdel Hady BH, Kumar S, Ganguly A, et al.
Brucellosis: epidemiology, pathogenesis, diagnosis and treatment–a comprehensive
review. Ann Med. (2023) 55:2295398. doi: 10.1080/07853890.2023.2295398

4. Jennings GJ, Hajjeh RA, Girgis FY, Fadeel MA, Maksoud MA, Wasfy MO, et al.
Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg. (2007)
101:707–13. doi: 10.1016/j.trstmh.2007.02.027

5. Laine CG, Johnson VE, Scott HM, Arenas-Gamboa AM. Global
estimate of human brucellosis incidence. Emerg Infect Dis. (2023)
29:1789. doi: 10.3201/eid2909.230052

6. Shin IS, Roh SG, Gill BC, Kim YS, Hwang KW. Assessment of brucellosis-
causing pathogens with an emphasis on the prevalence of Brucella melitensis in
the Republic of Korea: insights from a decade of pathogen surveillance (2014–
2023), a retrospective study. Osong Public Health Res Perspect. (2024) 15:489–
96. doi: 10.24171/j.phrp.2024.0134

7. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV.
The new global map of human brucellosis. Lancet Infect Dis. (2006)
6:91–9. doi: 10.1016/S1473-3099(06)70382-6

8. Khoshnood S, Pakzad R, Koupaei M, Shirani M, Araghi A, Irani GM, et al.
Prevalence, diagnosis, and manifestations of brucellosis: a systematic review and
meta-analysis. Front Vet Sci. (2022) 9:976215. doi: 10.3389/fvets.2022.976215
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