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Hemoglobin-to-red blood cell
distribution width ratio: a new
insight into cognitive protection
for obese individuals
Ruikai Xu, Zelin Wu and Zhonghua Liu*

Department of Rehabilitation, Zhongshan People’s Hospital, Zhongshan, Guangdong, China

Background and Objective: Aging and obesity are recognized as risk factors

for cognitive decline. Hemoglobin (Hb) reflects oxygen supply capacity, while

red blood cell distribution width (RDW) reflects levels of inflammation and

oxidative stress. The hemoglobin-to-red blood cell distribution width ratio

(HRR), by integrating the core physiological functions of Hb and RDW, can more

comprehensively reflect the common mechanisms affecting aging, obesity,

and cognitive function. The objective of this research was to explore the link

between the HRR and cognitive performance among the obese population.

Methods: This cross-sectional study used data from the National Health and

Nutrition Examination Survey (NHANES) and employed multiple regression

analysis, smooth curve fitting, and subgroup analysis to investigate the

relationship between HRR and cognitive function.

Results: 1,055 obese individuals aged ≥60 years participated in the study. After

adjusting for covariates, HRR was significantly positively correlated with DSST

scores (β = 14.45; 95% CI, 7.55–21.35) and total cognitive Z-scores (β = 1.53; 95%

CI, 0.40–2.67). HRR was significantly negatively correlated with low cognitive

function as assessed by DSST (OR = 0.04; 95% CI, 0.01–0.23). Compared

to individuals with lower education levels, those with higher educational

backgrounds showed a more pronounced positive correlation between HRR

and DSST scores.

Conclusion: Maintaining a higher HRR may be an important strategy for

protecting cognitive function in obese individuals aged ≥60 years.

KEYWORDS

hemoglobin, red blood cell distribution width ratio, cognitive function, obese, NHANES

1 Background

As humans age, there is often a decline in cognitive function, which significantly
increases the risk of developing mild cognitive impairment and eventually dementia (1).
In patients with dementia, cognitive impairment severely impacts quality of life and the
ability to live independently (2).

Cognitive impairment has become a major public health issue (3). By the middle of
the 21st century, it is projected that the number of individuals with cognitive impairment
in the United States will exceed 21 million, while the global number of dementia patients
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will surpass 150 million (3, 4). This growing trend will impose 
substantial burdens on individuals, society, and the economy (5). 

The relationship between obesity and cognitive impairment is 
particularly significant (6). Obesity increases the risk of developing 
Alzheimer’s disease, stroke-related dementia (6, 7). Obesity 
increases cognitive impairment risk via multiple mechanisms: 
High-fat diets trigger brain inflammation in areas like the 
hypothalamus and hippocampus, releasing inflammatory factors 
that damage neural structures (8–10). This process also causes 
lipid peroxidation, harming the blood-brain barrier (11). Insulin 
resistance in the brain impairs glucose use and synaptic function, 
while leptin resistance and ghrelin imbalance disrupt appetite 
control and reinforce rewards system sensitivity to fatty foods (12, 
13). These mechanisms together reduce gray matter volume in key 
brain regions, degrade white matter integrity, decrease blood flow, 
and weaken network connectivity, ultimately worsening cognitive 
decline and dementia risk (14, 15). 

As a core factor maintaining the homeostasis of cerebral 
oxygen supply, hemoglobin (Hb) participates in the regulation 
of cognitive function by regulating oxygen metabolism (16). 
When Hb levels decrease, the oxygen delivery through cerebral 
blood flow fails to match metabolic demands, which can induce 
functional impairment of brain cells and accelerate the progression 
of cognitive decline (16, 17). Red blood cell distribution width 
(RDW) is significantly correlated with systemic inflammatory 
response and oxidative stress levels, and these mechanisms are 
the common core pathophysiological pathways driving aging, 
obesity, and cognitive decline (18, 19). By integrating the oxygen 
supply regulatory function of Hb and the inflammation and 
oxidative stress signals reflected by RDW, hemoglobin-to-red 
blood cell distribution width ratio (HRR) constructs a multi-
dimensional association mechanism with aging, obesity, and 
cognitive function. As a composite biomarker integrating the 
core physiological functions of Hb and RDW, HRR can more 
comprehensively reflect the common mechanisms aecting aging, 
obesity, and cognitive function including inflammation, oxidative 
stress, abnormal oxygen metabolism, and nerve damage, thereby 
overcoming the limitation that a single biomarker can only reflect 
local pathophysiological processes (14). The HRR has shown 
promise in predicting various diseases, including depression (20), 
coronary artery disease (21), stroke (22), osteoporosis (23), and 
metastatic kidney cancer (24) in recent years. 

Notably, research on the HRR and cognitive function remains 
scarce, particularly among obese individuals aged ≥60 years. We 
hypothesize that in obese populations, higher HRR correlates 
with better cognitive performance, independent of confounders 
like age and comorbidities, potentially mediated by improved 
cerebral oxygenation and reduced systemic inflammation. This 
study explores HRR’s association with cognitive function in this 
group, examining whether elevated HRR acts as a cognitive 
protective factor–oering new insights into cognitive protection for 
obese older adults. 

Abbreviations: Hb, hemoglobin; RDW, red blood cell distribution width; 
HRR, hemoglobin-to-red blood cell distribution width ratio; NHANES, 
National Health and Nutrition Examination Survey; CERAD, Consortium to 
Establish a Registry for Alzheimer’s Disease; AFT, Animal Fluency Test; DSST, 
Digit Symbol Substitution Test; LCF, low cognitive function; BMI, body mass 
index; PIR, poverty-to-income ratio. 

FIGURE 1 

Flow chart of participants selection. 

2 Materials and methods 

2.1 Study population 

This study focused on the NHANES dataset from 2011 to 2014 
(25), with an initial inclusion of 19,931 participants. The NCHS 
Research Ethics Review Board approved all NHANES protocols of 
the survey (26). According to the NHANES database criteria, only 
individuals aged 60 years and above met the basic requirements 
for cognitive function testing. As shown in Figure 1, the study 
excluded participants with incomplete cognitive function test data 
(n = 16,997) and those with missing hemoglobin and red blood 
cell distribution width (RDW) data (n = 101). The remaining 
participants were classified into an obese population [Body mass 
index (BMI) ≥ 30 kg/m2 , n = 1,055] and non-obese individuals 
(BMI < 30 kg/m2 , n = 1,778). 

2.2 HRR calculation 

The HRR was calculated based on the ratio of hemoglobin 
to RDW (21). 

2.2.1 Cognitive function assessment 
Cognitive function was assessed using the following tests: the 

word learning and recall modules from the Consortium to Establish 
a Registry for Alzheimer’s Disease (CERAD), the Animal Fluency 
Test (AFT), and the Digit Symbol Substitution Test (DSST) (27). 
Overall cognitive function was assessed using standardized total 
Z-scores [Z = (x−µ)/σ], where x is the specific test score, µ is the 
mean, and σ is the standard deviation (28). Low cognitive function 
(LCF) was defined as the lowest quartile of the test scores (19, 29), 
with Z-scores ≤ 2 indicating low risk of low cognitive function and 
Z-scores > 2 indicating high risk (High Risk of LCF by Z) (27, 30). 

2.2.2 Covariates assessment 
The covariates gathered for this study encompassed a range of 

demographic and health-related factors, including sex, age, race, 
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TABLE 1 Basic characteristics of participants by hemoglobin-to-red blood cell distribution width ratio among the obese population aged ≥60 years. 

Characteristics Hemoglobin-to-red blood cell distribution width ratio (HRR) P-value 

Total Q1 (0.44–0.92) Q2 (0.92–1.01) Q3 (1.01–1.10) Q4 (1.11–1.43) 

N 1055 264 261 266 264 

Age (years) 68.65 ± 6.45 69.30 ± 6.34 68.47 ± 6.47 68.45 ± 6.78 68.38 ± 6.16 0.307 

Sex, (%) <0.001 

Male 452 (42.84%) 69 (26.14%) 81 (31.03%) 119 (44.74%) 183 (69.32%) 

Female 603 (57.16%) 195 (73.86%) 180 (68.97%) 147 (55.26%) 81 (30.68%) 

Race, (%) <0.001 

Mexican American 109 (10.33%) 22 (8.33%) 22 (8.43%) 31 (11.65%) 34 (12.88%) 

Other Hispanic 104 (9.86%) 21 (7.95%) 34 (13.03%) 28 (10.53%) 21 (7.95%) 

Non-Hispanic White 496 (47.01%) 86 (32.58%) 115 (44.06%) 135 (50.75%) 160 (60.61%) 

Non-Hispanic Black 315 (29.86%) 128 (48.48%) 87 (33.33%) 61 (22.93%) 39 (14.77%) 

Other races 31 (2.94%) 7 (2.65%) 3 (1.15%) 11 (4.14%) 10 (3.79%) 

Education level, (%) 0.007 

Less than high school 277 (26.26%) 76 (28.79%) 71 (27.20%) 78 (29.32%) 52 (19.70%) 

High school or GED 259 (24.55%) 74 (28.03%) 72 (27.59%) 53 (19.92%) 60 (22.73%) 

Above high school 519 (49.19%) 114 (43.18%) 118 (45.21%) 135 (50.75%) 152 (57.58%) 

Marital status <0.001 

Married/living with a partner 576 (54.60%) 122 (46.21%) 133 (50.96%) 154 (57.89%) 167 (63.26%) 

Living alone 479 (45.40%) 142 (53.79%) 128 (49.04%) 112 (42.11%) 97 (36.74%) 

Family PIR 2.51 ± 1.51 2.34 ± 1.42 2.36 ± 1.50 2.55 ± 1.54 2.79 ± 1.55 0.002 

BMI (kg/m2) 35.38 ± 5.33 36.63 ± 6.63 35.74 ± 5.38 34.84 ± 4.29 34.32 ± 4.44 <0.001 

Smoking habits, (%) 0.011 

Ever 522 (49.48%) 121 (45.83%) 122 (46.74%) 125 (46.99%) 154 (58.33%) 

Never 533 (50.52%) 143 (54.17%) 139 (53.26%) 141 (53.01%) 110 (41.67%) 

Alcohol use, (%) <0.001 

Yes 694 (65.78%) 149 (56.44%) 167 (63.98%) 180 (67.67%) 198 (75.00%) 

No 361 (34.22%) 115 (43.56%) 94 (36.02%) 86 (32.33%) 66 (25.00%) 

Diabetes, (%) <0.001 

Yes 349 (33.08%) 117 (44.32%) 90 (34.48%) 86 (32.33%) 56 (21.21%) 

No 647 (61.33%) 130 (49.24%) 157 (60.15%) 164 (61.65%) 196 (74.24%) 

Borderline 59 (5.59%) 17 (6.44%) 14 (5.36%) 16 (6.02%) 12 (4.55%) 

Hypertension, (%) <0.001 

Yes 768 (72.80%) 217 (82.20%) 191 (73.18%) 188 (70.68%) 172 (65.15%) 

No 287 (27.20%) 47 (17.80%) 70 (26.82%) 78 (29.32%) 92 (34.85%) 

Heart failure, (%) 0.002 

Yes 102 (9.67%) 40 (15.15%) 26 (9.96%) 21 (7.89%) 15 (5.68%) 

No 953 (90.33%) 224 (84.85%) 235 (90.04%) 245 (92.11%) 249 (94.32%) 

Coronary heart disease, (%) 0.883 

Yes 100 (9.48%) 25 (9.47%) 27 (10.34%) 26 (9.77%) 22 (8.33%) 

No 955 (90.52%) 239 (90.53%) 234 (89.66%) 240 (90.23%) 242 (91.67%) 

Stroke, (%) 0.027 

Yes 78 (7.39%) 30 (11.36%) 19 (7.28%) 16 (6.02%) 13 (4.92%) 

No 977 (92.61%) 234 (88.64%) 242 (92.72%) 250 (93.98%) 251 (95.08%) 

HB 13.72 ± 1.46 12.11 ± 0.99 13.34 ± 0.83 14.11 ± 0.76 15.31 ± 0.91 <0.001 

(Continued) 
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TABLE 1 (Continued) 

Characteristics Hemoglobin-to-red blood cell distribution width ratio (HRR) P-value 

Total Q1 (0.44–0.92) Q2 (0.92–1.01) Q3 (1.01–1.10) Q4 (1.11–1.43) 

RDW 13.74 ± 1.18 14.94 ± 1.30 13.76 ± 0.83 13.36 ± 0.68 12.92 ± 0.68 <0.001 

HRR 1.01 ± 0.15 0.82 ± 0.08 0.97 ± 0.03 1.06 ± 0.03 1.19 ± 0.06 <0.001 

CERAD 26.06 ± 6.22 25.42 ± 6.14 26.86 ± 6.04 26.26 ± 6.28 25.70 ± 6.36 0.04 

AFT 16.86 ± 5.46 14.89 ± 4.90 17.35 ± 5.56 17.38 ± 5.42 17.84 ± 5.47 <0.001 

DSST 46.11 ± 17.03 41.32 ± 16.94 46.37 ± 15.64 47.01 ± 17.10 49.73 ± 17.35 <0.001 

Total z score −0.00 ± 2.40 −0.75 ± 2.29 0.23 ± 2.35 0.18 ± 2.38 0.33 ± 2.43 <0.001 

Mean ± SD for continuous variables: the P-value was calculated by the weighted linear regression model; (%) for categorical variables: the P-value was calculated by the weighted chi-square 
test. N, number; PIR, the ratio of income to poverty, BMI, body mass index; Q, quartile; HRR, hemoglobin-to-red blood cell distribution width ratio; CERAD, the Consortium to Establish a 
Registry for Alzheimer’s Disease test; AFT, the Animal Fluency Test; DSST, the Digit Symbol Substitution Test. 

education level, marital status, poverty-to-income ratio (PIR), BMI, 
smoking habits, alcohol use, and self-reported medical conditions 
such as diabetes, hypertension, cardiovascular diseases, and stroke. 

2.3 Statistical analysis 

All analyses were performed using EmpowerStats and R 
software. Participants were grouped according to HRR quartiles, 
and t-tests and chi-square tests were used to assess continuous 
and categorical variables, respectively. Multiple regression models 
were used to evaluate the relationship between HRR, both as 
a continuous variable and by quartile, and cognitive function. 
A smooth curve fitting model was applied to explore the 
relationship between HRR and cognitive test scores, as well as low 
cognitive function. Additionally, subgroup analyses and interaction 
analyses were conducted based on stratified factors such as age and 
sex. A P-value of <0.05 was considered statistically significant. 

3 Results 

3.1 Baseline characteristics 

1,055 obese individuals aged ≥60 years were included, with a 
mean age of 68.65 ± 6.45 years. Among them, 57.16% were females, 
and 47.01% were non-Hispanic White. The mean hemoglobin-to-
red blood cell distribution width ratio (HRR) was 1.01 ± 0.15. 
The mean scores for the CERAD, AFT, DSST tests, and the total 
Z-score were 26.06 ± 6.22, 16.86 ± 5.46, 46.11 ± 17.03, and 
−0.00 ± 2.40, respectively. 

According to the CERAD, AFT, and DSST test scores, the cuto 
points for low cognitive function were 22, 13, and 34, respectively. 
Scores below these cuto points were considered to indicate low 
cognitive function (LCF), categorized as LCF by CERAD, LCF by 
AFT, and LCF by DSST. 

Baseline information based on HRR quartiles is presented in 
Table 1. Table 1 presents the BMI characteristics of the obese 
population aged ≥60 years stratified by HRR quartiles. The total 
obese population had a mean BMI of 35.38 ± 5.33 kg/m2 . Across 
HRR quartiles, BMI showed a decreasing trend: 36.63 ± 6.63 kg/m2 

in Q1 (HRR range: 0.44–0.92), 35.74 ± 5.38 kg/m2 in Q2 (HRR 

range: 0.92–1.01), 34.84 ± 4.29 kg/m2 in Q3 (HRR range: 1.01– 
1.10), and 34.32 ± 4.44 kg/m2 in Q4 (HRR range: 1.11–1.43). 
A statistically significant dierence in BMI among the HRR quartile 
groups was observed (P < 0.001). 

3.2 Association between HRR and 
cognitive function 

Table 2 and Table 3 collectively illustrate the association 
between the HRR and cognitive function, including cognitive test 
scores and low cognitive function, among obese individuals aged 
≥60 years across three regression models (Model 1: unadjusted; 
Model 2: adjusted for age, sex, and race; Model 3: fully adjusted for 
demographic, lifestyle, and comorbidity factors). 

For the CERAD test, Table 2 showed no significant association 
between HRR and CERAD scores in any model (all P > 0.05). 
Consistently, Table 3 revealed that the initial inverse association 
between HRR and CERAD-defined LCF in Model 1 (continuous 
HRR: OR = 0.28, 95% CI, 0.11–0.73, P = 0.0137) and Model 2 
(continuous HRR: OR = 0.22, 95% CI, 0.08–0.66, P = 0.0115) 
weakened in Model 3, with no significant correlation (continuous 
HRR: OR = 0.43, 95% CI, 0.13–1.39, P = 0.1887; P for 
trend = 0.0813). 

Regarding the AFT, Table 2 indicated a significant positive 
correlation between HRR and AFT scores in Model 1 (continuous 
HRR: β = 6.85, 95% CI, 3.53–10.17, P = 0.0003), which weakened 
after adjustment, becoming non-significant in Model 3 (β = 2.21, 
95% CI, −0.69 to 5.10, P = 0.1664). Parallelly, Table 3 showed 
that the initial inverse association between HRR and AFT-defined 
LCF in Model 1 (continuous HRR: OR = 0.07, 95% CI, 0.01– 
0.38, P = 0.0046) was attenuated in Model 3, with no significant 
association (continuous HRR: OR = 0.22, 95% CI, 0.04–1.22, 
P = 0.1148; P for trend = 0.1162). 

For the DSST, both tables demonstrated consistent and robust 
associations. Table 2 showed a significant positive correlation 
between HRR and DSST scores in Model 3 (continuous HRR: 
β = 14.45, 95% CI, 7.55–21.35, P = 0.0021; quartiles 2–4 vs. quartile 
1: all P < 0.05; P for trend = 0.0055). Correspondingly, Table 3 
revealed a significant inverse association between HRR and DSST-
defined LCF in Model 3 (continuous HRR: OR = 0.04, 95% CI, 
0.01–0.23, P = 0.0043; quartile 4 vs. quartile 1: OR = 0.29, 95% CI, 
0.14–0.58, P = 0.0081; P for trend = 0.0107). 
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TABLE 2 Association between HRR and cognitive test scores among the obese population. 

HRR CERAD AFT DSST Total Z score 

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value 

Model 1 

Continuous 2.55 (−1.02, 6.12) 0.1713 6.85 (3.53, 10.17) 0.0003 26.54 (17.26, 35.81) <0.0001 3.22 (2.02, 4.42) <0.0001 

Categories 

Quartile 1 Reference Reference Reference Reference 

Quartile 2 1.74 (0.01, 3.46) 0.0583 2.67 (1.21, 4.12) 0.0012 5.07 (1.17, 8.97) 0.0163 1.07 (0.41, 1.72) 0.0034 

Quartile 3 1.29 (−0.17, 2.75) 0.0947 2.69 (1.38, 4.01) 0.0004 6.63 (2.90, 10.37) 0.0016 1.09 (0.55, 1.63) 0.0005 

Quartile 4 1.38 (−0.32, 3.07) 0.1222 3.06 (1.80, 4.32) <0.0001 10.08 (5.83, 14.33) 0.0001 1.37 (0.80, 1.95) 0.0001 

P for trend 0.2412 0.0002 <0.0001 0.0001 

Model 2 

Continuous 3.28 (−0.76, 7.31) 0.1244 3.54 (−0.27, 7.35) 0.0806 21.75 (14.74, 28.76) <0.0001 2.45 (1.19, 3.71) 0.0008 

Categories 

Quartile 1 Reference Reference Reference Reference 

Quartile 2 1.68 (0.06, 3.30) 0.0535 2.07 (0.70, 3.43) 0.0068 3.31 (−0.18, 6.81) 0.0755 0.84 (0.26, 1.42) 0.0092 

Quartile 3 1.31 (−0.17, 2.80) 0.0952 1.70 (0.47, 2.94) 0.0126 4.38 (0.94, 7.81) 0.0201 0.78 (0.26, 1.30) 0.0076 

Quartile 4 1.71 (0.00, 3.42) 0.0620 1.80 (0.34, 3.27) 0.0243 8.17 (4.88, 11.45) 0.0001 1.08 (0.54, 1.63) 0.0007 

P for trend 0.1318 0.0733 <0.0001 0.0014 

Model 3 

Continuous 1.75 (−2.53, 6.03) 0.4413 2.21 (−0.69, 5.10) 0.1664 14.45 (7.55, 21.35) 0.0021 1.53 (0.40, 2.67) 0.0240 

Categories 

Quartile 1 Reference Reference Reference Reference 

Quartile 2 1.61 (0.11, 3.10) 0.0679 2.25 (1.00, 3.50) 0.0078 3.56 (0.71, 6.40) 0.0402 0.88 (0.35, 1.41) 0.0112 

Quartile3 1.10 (−0.29, 2.49) 0.1597 1.56 (0.48, 2.64) 0.0223 3.37 (0.56, 6.19) 0.0469 0.66 (0.22, 1.10) 0.0180 

Quartile 4 1.19 (−0.43, 2.81) 0.1889 1.37 (0.27, 2.46) 0.0403 5.75 (2.69, 8.81) 0.0062 0.78 (0.32, 1.24) 0.0104 

P for trend 0.3671 0.1625 0.0055 0.0215 

Model 1: no covariates were adjusted. Model 2: age, sex, and race were adjusted. Model 3: age, sex, race, education level, marital status, poverty-to-income ratio (PIR), body mass index (BMI), smoking habits, alcohol use, diabetes, hypertension, cardiovascular diseases, 
and stroke. Q, quartile; HRR, hemoglobin-to-red blood cell distribution width ratio; CERAD, the Consortium to Establish a Registry for Alzheimer’s Disease test; AFT, the Animal Fluency Test; DSST, the Digit Symbol Substitution Test. 
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TABLE 3 Association between HRR and low cognitive function among the obese population. 

HRR LCF by CERAD LCF by AFT LCF by DSST High risk of LCF by Z 

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

Model 1 

Continuous 0.28 (0.11, 0.73) 0.0137 0.07 (0.01, 0.38) 0.0046 0.02 (0.01, 0.06) <0.0001 5.26 (1.63, 16.97) 0.0093 

Categories 

Quartile 1 Reference Reference Reference Reference 

Quartile 2 0.68 (0.38, 1.23) 0.2153 0.44 (0.26, 0.74) 0.0048 0.48 (0.30, 0.78) 0.0057 2.18 (0.99, 4.78) 0.0616 

Quartile 3 0.58 (0.37, 0.91) 0.0236 0.44 (0.29, 0.67) 0.0007 0.43 (0.25, 0.73) 0.0047 2.08 (1.00, 4.33) 0.0595 

Quartile 4 0.55 (0.35, 0.89) 0.0210 0.34 (0.18, 0.63) 0.0018 0.23 (0.16, 0.35) <0.0001 2.11 (1.10, 4.06) 0.0335 

P for trend 0.0289 0.0037 <0.0001 0.0342 

Model 2 

Continuous 0.22 (0.08, 0.66) 0.0115 0.17 (0.03, 1.03) 0.0654 0.03 (0.01, 0.13) 0.0001 3.15 (0.68, 14.71) 0.1563 

Categories 

Quartile 1 Reference Reference Reference Reference 

Quartile 2 0.66 (0.34, 1.28) 0.2310 0.51 (0.27, 0.95) 0.0458 0.53 (0.28, 1.00) 0.0628 2.02 (0.88, 4.61) 0.1099 

Quartile 3 0.55 (0.34, 0.89) 0.0243 0.57 (0.37, 0.89) 0.0215 0.50 (0.26, 0.96) 0.0485 1.72 (0.77, 3.82) 0.1986 

Quartile 4 0.47 (0.27, 0.82) 0.0134 0.48 (0.24, 0.96) 0.0508 0.26 (0.14, 0.46) 0.0001 1.72 (0.84, 3.52) 0.1509 

P for trend 0.0202 0.0704 0.0007 0.2708 

Model 3 

Continuous 0.43 (0.13, 1.39) 0.1887 0.22 (0.04, 1.22) 0.1148 0.04 (0.01, 0.23) 0.0043 1.48 (0.28, 7.75) 0.6540 

Categories 

Quartile 1 Reference Reference Reference Reference 

Quartile 2 0.66 (0.34, 1.29) 0.2592 0.48 (0.26, 0.91) 0.0531 0.48 (0.22, 1.06) 0.1057 2.22 (0.95, 5.20) 0.1028 

Quartile 3 0.56 (0.33, 0.94) 0.0600 0.59 (0.39, 0.88) 0.0323 0.45 (0.22, 0.89) 0.0520 1.54 (0.71, 3.35) 0.3092 

Quartile 4 0.57 (0.33, 0.98) 0.0761 0.52 (0.28, 0.98) 0.0766 0.29 (0.14, 0.58) 0.0081 1.35 (0.63, 2.87) 0.4579 

P for trend 0.0813 0.1162 0.0107 0.9736 

Model 1: no covariates were adjusted. Model 2: age, sex, and race were adjusted. Model 3: age, sex, race, education level, marital status, poverty-to-income ratio (PIR), body mass index (BMI), smoking habits, alcohol use, diabetes, hypertension, cardiovascular diseases, 
and stroke. Q, quartile; HRR, hemoglobin-to-red blood cell distribution width ratio; CERAD, the Consortium to Establish a Registry for Alzheimer’s Disease test; AFT, the Animal Fluency Test; DSST, the Digit Symbol Substitution Test. LCF, low cognitive function. 
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With respect to total cognitive Z-scores, Table 2 found a 
significant positive association with HRR in Model 3 (continuous 
HRR: β = 1.53, 95% CI, 0.40–2.67, P = 0.0240; quartiles 2–4 
vs. quartile 1: all P < 0.05; P for trend = 0.0215). In contrast, 
Table 3 showed that the initial positive association between HRR 
and high risk of LCF by Z in Model 1 (continuous HRR: OR = 5.26, 
95% CI, 1.63–16.97, P = 0.0093) was attenuated in Model 3, with 
no significant correlation (continuous HRR: OR = 1.48, 95% CI, 
0.28–7.75, P = 0.6540; P for trend = 0.9736). 

Overall, these results indicate that HRR is stably associated 
with DSST-related cognitive performance in obese population, 
showing a positive correlation with DSST scores and an inverse 
correlation with DSST-defined LCF in fully adjusted models, 
while its associations with CERAD, AFT, and high risk of LCF 
by total cognitive Z scores are not robust after comprehensive 
covariate adjustment. 

Incidentally, We have conducted an analysis of the association 
between HRR and cognition in the non-obese (BMI < 30 kg/m2) 
populations. In Model 3, adjusted for covariates, there was no 

significant association between HRR and cognition in the non-
obese population. Specifically, no significant correlation was found 

between HRR and CERAD, AFT, DSST, or total Z score. The results 
were as follows: HRR and CERAD (β = −1.95; 95% CI, −4.46 

to 0.55), HRR and AFT (β = 1.16; 95% CI, −0.24 to 2.56), HRR 

and DSST (β = 3.30; 95% CI, −2.22 to 8.83), HRR and total Z 

score (β = 0.10; 95% CI, −0.57 to 0.76). Additionally, there was no 

significant association between HRR and LCF or high-risk groups. 
The specific results were: HRR and LCF by CERAD (OR = 1.69; 
95% CI, 0.62–4.59), HRR and LCF by AFT (OR = 0.83; 95% CI, 
0.34–2.03), HRR and LCF by DSST (OR = 0.40; 95% CI, 0.05–3.08), 
HRR and High Risk by Z (OR = 0.71; 95% CI, 0.22–2.32). 

The smooth curve for HRR and CERAD scores showed a 

turning point at HRR = 0.94 (Figure 2A and Table 4). To the left 
of this point, HRR was positively correlated with CERAD scores 
(β = 6.43; 95% CI, 0.79–12.06; P = 0.0256). The smooth curve 

for HRR and AFT scores showed a turning point at HRR = 1.01 

(Figure 2B and Table 4). To the left of this point, HRR was 

FIGURE 2 

Continued 
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FIGURE 2 

The non-linear associations between HRR and cognitive function. The solid red line represents the smooth curve fit between variables. Blue bands 
represent the 95% of confidence interval from the fit. (A) HRR and CERAD score; (B) HRR and AFT score; (C) HRR and DSST score; (D) HRR and total 
Z score; (E) HRR and LCF by CERAD; (F) HRR and LCF by AFT; (G) HRR and LCF by DSST; (H) HRR and High Risk of LCF by Z. 

positively correlated with AFT scores (β = 6.11; 95% CI, 2.40– 
9.82; P = 0.0013). The smooth curve for HRR and DSST scores 
showed a turning point at HRR = 0.75 (Figure 2C and Table 4). 
To the right of this point, HRR was positively correlated with 
DSST scores (β = 13.22; 95% CI, 6.80–19.63; P < 0.0001). HRR 
showed a linear relationship with total Z-scores (LLR = 0.056) and 
was positively correlated with total Z-scores (β = 1.16; 95% CI, 
0.28–2.05; P = 0.0101) (Figure 2D and Table 4). For low cognitive 
function: HRR did not show relationship with LCF by CERAD 
(Figure 2E and Table 4). HRR showed a linear relationship with 
LCF by AFT (LLR = 0.5), and in the LCF by AFT group, HRR was 
negatively correlated with the occurrence of low cognitive function 
(OR = 0.18; 95% CI, 0.06–0.57; P = 0.0035) (Figure 2F and Table 5). 
HRR showed a linear relationship with LCF by DSST (LLR = 0.324), 
and in the LCF by DSST group, HRR was negatively correlated with 
the occurrence of low cognitive function (OR = 0.17; 95% CI, 0.05– 
0.67; P = 0.0109) (Figure 2G and Table 5). In the High Risk of 
LCF by Z group, the smooth curve showed a positive correlation 

between HRR and high-risk low cognitive function, with a turning 
point at HRR = 0.94 (OR = 55.53; 95% CI, 1.47–2097.52; P = 0.0302) 
(Figure 2H and Table 5). 

3.3 Subgroup analyses 

To further assess the eect of HRR in the obese population 
on cognitive test scores and low cognitive function, stratified 
analyses were performed based on age, sex, education level, 
smoking, alcohol consumption, family poverty-to-income ratio, 
diabetes, and cardiovascular diseases as covariates. The obese 
population consisted of 1,055 participants (452 men and 603 
women), including 617 individuals aged <70 years and 438 aged 
≥70 years. In terms of education level, 277 had less than high 
school education, 259 had high school or GED, and 519 had more 
than high school education. Regarding family poverty-to-income 
ratio, 176 had a ratio ≤1, and 879 had a ratio >1. Among them, 
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576 were married or living with parents, while 479 lived alone; 
additionally, 522 had a history of smoking, 533 had never smoked, 
694 had a history of alcohol consumption, and 361 had no alcohol 
consumption. The population included 349 with diabetes, 647 
without diabetes, and 59 with borderline glucose tolerance; 768 had 
hypertension, 287 did not; 102 had heart failure, 953 did not; 100 
had coronary heart disease, 955 did not; and 78 had a history of 
stroke, 977 did not. In the stroke subgroup, HRR showed a stronger 
correlation with CERAD scores (P = 0.0119) (Figure 3A), AFT 
scores (P = 0.0108) (Figure 3B), and total Z-scores (P = 0.0033) 
(Figure 3D). In the high-education group, HRR was more strongly 
correlated with DSST scores (P = 0.0205) (Figure 3C). 

4 Discussion 

The study results show that in obese individuals, higher HRR 
is associated with better DSST performance and reduced likelihood 
of scoring below the cognitive impairment threshold. The results 
of the study suggest that HRR may have a positive eect on 
certain cognitive functions, particularly in areas like reaction time, 
attention, and working memory. This highlights the potential of 
HRR as a biomarker for cognitive function and a tool for identifying 
individuals at risk for cognitive decline. 

With the increase of age, obvious declines occur in multiple 
specific cognitive domains: processing speed continues to decline, 
aecting the performance of language fluency and other aspects; 
complex attention tasks such as selective attention and divided 
attention decline significantly, and working memory is aected 
by the slowdown of information processing; episodic memory 
and semantic memory decline; visual naming and verbal fluency 
decrease; visual construction ability reduces; abilities such as 
concept formation, abstract reasoning, mental flexibility and 
response inhibition in executive function decline (31, 32). The 
neurochemical properties and anatomical structure of the brain 
exhibit cumulative changes with age, with a significant decline 
in dopaminergic neuromodulation (32). The volume of gray and 
white matter gradually decreases, and the atrophy of polymodal 
cortical regions is particularly prominent, while the atrophy process 
of the hippocampus is accelerated by vascular factors (32). There 
are individual dierences in the senescent changes of brain 
structure, especially the significant dierences in the degree of age-
related contraction in regions such as the lateral prefrontal cortex, 
prefrontal white matter, and hippocampus (32). 

This study found that the protective eect of HRR on 
cognitive function was more pronounced in individuals with higher 
educational attainment, a result that can be theoretically explained 
by the mediating mechanism of cognitive reserve (33). In studies 
by Clare et al., educational level has been explicitly identified as a 
core component of cognitive reserve (33). Cognitive reserve buers 
the impact of neuropathological changes on cognitive function 
by optimizing brain network recruitment strategies or activating 
alternative cognitive pathways (34). Higher educational attainment 
is often associated with greater cognitive reserve, which amplifies 
the protective eects of physiological processes reflected by HRR– 
such as oxygen supply status and inflammation–on cognition 
through enhancing neurovascular coupling eÿciency or metabolic 
compensatory capacity (35). 
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In our study, a positive association between higher HRR and 
better cognitive performance was observed in obese individuals, 
but no such relationship was found in non-obese counterparts. 
This discrepancy may be attributed to the role of obesity in 
cognitive decline. Obesity is closely linked to various chronic 
diseases, and its negative impact on the brain is increasingly gaining 
attention (36). Obesity aects brain function and leads to cognitive 
decline through mechanisms such as neuroinflammation, oxidative 
stress, and alterations in the gut-brain axis (9, 36, 37). Anfal Al-
Dalaeen et al. pointed out that neuroinflammation, oxidative stress, 
and reduced local blood flow induced by obesity jointly aect 
the brain (36). These factors disrupt the metabolic functions of 
the hypothalamus and the hippocampus, ultimately leading to 
cognitive impairment (36, 38). Alyson A. Miller et al. further 
emphasized that systemic inflammation and increased free fatty 
acids caused by obesity can lead to local inflammation in the 
hypothalamus, which then aects cognitive-related brain regions, 
such as the hippocampus and amygdala, thereby exacerbating 
cognitive decline (38, 39). Sarah-Jane Leigh et al. reviewed 
the relationship between obesity, high-fat diets, and cognitive 
impairment, finding that changes in the gut microbiome, systemic 
and central nervous system inflammation, and alterations in the 
blood-brain barrier are key mechanisms in this process (10, 37). 

In our study, Model 3–adjusted for multiple covariates–still 
showed that higher HRR was positively associated with better 
cognitive performance, including higher DSST scores and reduced 
low cognitive function assessed by DSST, suggesting HRR could 
act as a biomarker for cognitive function in obese individuals. An 
increasing number of studies have shown a significant association 
between hemoglobin levels and cognitive function (40–44). Low 
hemoglobin levels have been identified as a potential risk factor 
for cognitive decline (42–48). Yi-Xuan Qiang et al. revealed that 
anemia is connected to a risk increase of more than 50% for all-
cause dementia, with brain structure changes being a potential 
contributing factor that aects cognitive abilities (49). Laura M. 
Winchester et al. pointed out that lower hemoglobin levels were 
significantly associated with cognitive decline, particularly in the 
domains of reaction time and reasoning abilities (48). Andrea L. 
C. Schneider et al. also found that lower hemoglobin levels were 
negatively correlated with cognitive domains such as processing 
speed, attention, and working memory, as assessed by the DSST 
(16). In patients suering from stroke, lower hemoglobin levels 
have been correlated with a higher likelihood of post-stroke 
cognitive impairment (50). Some studies have also found that 
higher hemoglobin levels in stroke patients are positively correlated 
with the maintenance of cognitive function (51). However, Raj 
C. Shah et al. highlighted that both very low and very high 
hemoglobin levels were associated with lower cognitive function, 
particularly in areas such as semantic memory and perceptual speed 
(52, 53). This suggests that hemoglobin may have a bidirectional 
eect on cognitive function. Despite these findings, some studies 
have not found a direct relationship between hemoglobin levels 
and cognitive function (16, 54, 55). Beydoun et al. found that in 
individuals with anemia, no significant association was observed 
between RDW and cognitive performance (54). By contrast, in non-
anemic populations, the association between RDW and cognition 
was more consistent (54). This lack of association with anemia may 
be attributed to the elevated RDW in anemic individuals within 
the sample, which potentially masked the independent eect of 
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FIGURE 3 

Subgroup logistic regression analysis for the association between HRR and cognitive scores. (A) HRR and CERAD score; (B) HRR and AFT score; 
(C) HRR and DSST score; (D) HRR and total Z score. 

hemoglobin (54). Chen et al.’s study recruited healthy old men 

from Taiwan, China, and used the Cognitive Abilities Screening 

Instrument Chinese version and the Wechsler Digit Span Task test 
for cognitive assessment (55). The study’s conclusions indicated 

that the association between hemoglobin levels and cognitive 

function was influenced by dierences in study populations and 

cognitive assessment methods (55). Schneider et al. found in their 

study on dierent hemoglobin concentrations that the sample 

size of individuals with high hemoglobin was relatively small (21 

men and 56 women), a limitation that compromised the statistical 
power of analyses examining associations between this group and 

cognitive function (16). In the prospective follow-up with a mean 

duration of 6 years, the study further revealed no significant 
associations between overall anemia or its subtypes and declines in 
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cognitive function (16). This result may be attributed to multiple 
factors: the relatively young baseline age of the study participants 
(mean age 57 years), the relatively short follow-up period, and the 
presence of attrition bias–those who were lost to follow-up were 
predominantly older individuals with lower educational attainment 
and multiple vascular risk factors (16). 

The influence of hemoglobin on cognitive function may 
be related to several mechanisms, such as chronic hypoxia, 
β-amyloid deposition, and neuroinflammation (52, 56). When 
hemoglobin levels are too low, cerebral blood flow cannot meet 
the oxygen demands, leading to impaired brain cell function and 
exacerbating cognitive decline (16, 17). Additionally, a reduction 
in erythropoietin receptor expression may worsen neural damage, 
further increasing the risk of cognitive decline (52). Dierent types 
of anemia may aect brain function through dierent mechanisms. 
For example, iron-deficiency anemia may impair cognitive function 
by interfering with key enzymes in brain cell metabolism (57), 
while vitamin B12 and folate deficiencies may exacerbate cognitive 
impairment by aecting the metabolism of homocysteine and 
acetylcholine (58). 

As a core component of HRR, RDW serves as an indicator 
of red blood cell volume heterogeneity (18). Studies have 
demonstrated that RDW is associated with inflammation, oxidative 
stress, and other factors, which play critical roles in cognitive 
decline (18, 19). Elevated RDW has been associated with various 
health conditions, and studies suggest it may also serve as a 
marker for cognitive dysfunction (54, 59, 60). Yi-Xuan Qiang 
et al. identified a link between RDW levels and the risk of 
developing Alzheimer’s disease, suggesting that RDW could serve 
as a valuable biomarker for monitoring cognitive decline (49). 
Laura M. Winchester et al. found that lower RDW was associated 
with poorer language reasoning and memory abilities (48). Kyoung 
Min Kim et al. pointed out that individuals with higher RDW had 
worse cognitive function and slower gait (61). 

The relationship between increased RDW and cognitive decline 
may be closely related to inflammatory responses (60). Chronic 
inflammation is one of the key mechanisms of cognitive decline. 
Systemic inflammation triggers amyloid deposition, activates 
microglia and astrocytes in the central nervous system, leading to 
neuroinflammation that damages neuronal structure and function, 
ultimately aecting cognitive function (62). Yuan Fang et al. 
found that peripheral inflammation, by disrupting the blood-brain 
barrier, activates inflammatory responses in the nervous system, 
further exacerbating cognitive impairment (59, 63). 

In summary, an increase in HRR reflects the body’s ability to 
resist factors such as systemic inflammation and oxidative stress. 
These mechanisms, acting together, contribute to the protection of 
cognitive function. 

5 Strengths and limitations 

This study provides evidence of HRR as a potential biomarker 
for cognitive health in obese populations. However, due to the 
cross-sectional design, longitudinal clinical trials are needed to 
further clarify the causal relationship. While multi-ethnic groups 
were included, Southeast Asian and other Asian populations were 
underrepresented. Using BMI to classify obesity has inherent 

limitations: it relies solely on height and weight, failing to 
distinguish muscle from fat, and cannot reflect true fat distribution 
in metabolically obese but normal weight individuals. BMI 
obesity thresholds also vary by ethnicity. Moreover, the failure to 
comprehensively assess obesity by integrating multi-dimensional 
indicators such as body fat percentage, waist circumference, and 
visceral fat area weakens the accuracy and generalizability of the 
research conclusions (64, 65). 

6 Conclusion 

This study suggest that HRR may serve as a potential 
biomarker for reflecting cognitive function status: individuals with 
higher HRR levels demonstrated better performance in cognitive 
assessments. This discovery indicates that maintaining a higher 
HRR could be a potential intervention strategy for protecting the 
cognitive abilities of obese populations. However, this conclusion 
still requires further validation through longitudinal studies with 
larger sample sizes, multicenter clinical trials, and exploration of 
action mechanisms to clarify the clinical application value of HRR 
as a target for cognitive protection. 
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