& frontiers | Frontiers in Medicine

@ Check for updates

OPEN ACCESS

EDITED BY

Ruida Hou,

St. Jude Children’s Research Hospital,
United States

REVIEWED BY
Arinjita Bhattacharyya,

University of Louisville, United States
Bodhayan Prasad,

University of Glasgow, United Kingdom

*CORRESPONDENCE
Lichen Guo
achualinki@hotmail.com

RECEIVED 29 April 2025
ACCEPTED 21 July 2025
PUBLISHED 25 November 2025

CITATION

Ge J, LiuM, Du P, Guo L and Zhang Y (2025)
Time series prediction for lung disease
diagnosis and treatment optimization.

Front. Med. 12:1620462.

doi: 10.3389/fmed.2025.1620462

COPYRIGHT

© 2025 Ge, Liu, Du, Guo and Zhang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Medicine

TYPE Original Research
PUBLISHED 25 November 2025
pol 10.3389/fmed.2025.1620462

Time series prediction for lung
disease diagnosis and treatment
optimization

Jiaqgi Ge!, Mengpei Liu?, Pengfei Du?, Lichen Guo** and
Yong Zhang*

tDepartment of Critical Care Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu,
China, 2Jiangnan University, Wuxi, Jiangsu, China, *Department of Critical Care Medicine, Obstetrics
and Gynecology, Hospital of Fudan University, Shanghai, China, “School of Public Health, Ningbo
University, Ningbo, China

Introduction: To address these limitations, this study proposes a novel Al-
driven solution for time series prediction in lung disease diagnosis and treatment
optimization.

Methods: At the core of our framework lies PulmoNet, an anatomically-
constrained, multi-scale neural architecture designed to learn structured,
interpretable representations of lung-related pathologies. Unlike generic models,
PulmoNet integrates bronchopulmonary anatomical priors and leverages spatial
attention mechanisms to focus on critical parenchymal and vascular regions,
which are often associated with early pathological changes. It also embeds
hierarchical features from CT and X-ray modalities, capturing both macro-level
anatomical landmarks and micro-level lesion textures. Furthermore, it constructs
a latent inter-lobar graph to model spatial dependencies and anatomical
adjacencies, enabling joint segmentation, classification, and feature attribution.
Results: This structured approach enhances both diagnostic performance and
interpretability. Complementing this architecture, we introduce APIL (Adaptive
Patho-Integrated Learning)—a two-stage, curriculum-based learning strategy
that incorporates radiological priors, rule-based constraints, and multi-view
consistency to improve model generalization and clinical alignment.
Discussion: APIL dynamically adjusts the learning complexity by introducing
prior-informed pseudo-labels, anatomical masks, and contrastive consistency
losses across views. It effectively combines weak supervision, domain adaptation,
and uncertainty modeling, making it particularly adept at learning from sparse,
noisy, or imbalanced datasets commonly found in clinical environments.
Ultimately, this integrated framework offers a clinically meaningful, anatomically
coherent, and data-efficient solution for next-generation pulmonary disease
modeling.

KEYWORDS

pulmonary disease prediction, anatomically-constrained deep learning, pathology-
informed Al, clinical interpretability, multi-scale feature representation

1 Introduction

Time series prediction in lung disease diagnosis and treatment optimization has
emerged as a vital area of research, driven by the increasing global burden of respiratory
diseases such as chronic obstructive pulmonary disease (COPD), asthma, and pulmonary
fibrosis. Early diagnosis and timely intervention significantly improve patient outcomes,
yet traditional clinical approaches often struggle to effectively capture the complex
and evolving nature of patient data (1). Physiological signals such as respiratory rate,
oxygen saturation, and spirometry measurements not only vary over time, but treatment
efficacy is also influenced by disease progression, patient-specific responses, and external
factors (2). The growing demand for dynamic and personalized healthcare solutions
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has catalyzed interest in time series analysis to uncover temporal
dependencies, predict disease trajectories, and guide optimal
treatment strategies (3). Consequently, integrating advanced
predictive modeling techniques into clinical decision-making
systems is becoming essential for enhancing diagnostic accuracy
and improving overall healthcare efficiency (4).

To address the limitations of static diagnostic rules and
manually designed clinical pathways, early research in time series
prediction for lung disease emphasized structured reasoning
frameworks (5). These approaches typically utilized expert-curated
ontologies and rule-based inference engines to model disease
progression (6). For instance, Bayesian networks and decision
trees were employed to encode medical knowledge and infer
temporal dynamics in patient conditions (7). While structured
models provided transparent reasoning aligned with clinical
expertise, they struggled to scale and adapt to individual patient
variations (8). Moreover, their reliance on predefined features and
static disease models made them vulnerable to the noise and
heterogeneity prevalent in real-world healthcare data. In response
to these challenges, researchers began exploring more adaptive
methods capable of discovering temporal patterns automatically
and reducing dependence on manually crafted logic (9).

Building upon the need for greater flexibility, subsequent
studies introduced statistical learning frameworks that leveraged
(10).

Techniques such as support vector machines, random forests,

temporal clinical data to predict disease outcomes

and autoregressive models emerged as widely used solutions
for forecasting lung function decline and the risk of acute
exacerbations (11). These models typically depended on extensive
feature engineering, where meaningful temporal attributes
were manually derived and structured into inputs for learning
algorithms (12). Compared to earlier structured approaches,
these statistical models exhibited better generalization to new
patient populations and improved predictive performance. They
often faced difficulties in modeling long-term dependencies and
remained sensitive to irregular sampling and missing data, which
are common challenges in clinical environments (13). As the
volume and complexity of healthcare data increased, there was a
growing need for modeling approaches capable of autonomously
extracting intricate temporal representations (14).

Motivated by the desire to capture complex sequential
dynamics without manual intervention, researchers increasingly
turned to neural sequence models for clinical time series
prediction (15). Recurrent neural networks (RNNGs), particularly
long short-term memory (LSTM) and gated recurrent unit (GRU)
architectures, became foundational tools for learning temporal
dependencies from patient data. These were complemented by
convolutional neural networks (CNNs) for detecting local temporal
patterns, and more recently, transformer-based models pre-trained
on large-scale medical datasets (16). Such models demonstrated
the ability to learn rich representations directly from raw,
variable-length sequences, leading to improved performance across
tasks such as disease progression forecasting, hospitalization risk
prediction, and personalized treatment recommendation (17).
Despite their successes, challenges related to model interpretability,
substantial data requirements, and sensitivity to training conditions
persist, spurring ongoing research into strategies that blend learned
representations with clinically grounded insights (18).
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Based on the above limitations, we propose a novel hybrid
framework that integrates pre-trained deep time series models
with a medical knowledge-guided attention mechanism to
improve both predictive accuracy and interpretability in lung
disease diagnosis and treatment optimization. Our approach
leverages the strengths of large-scale representation learning while
aligning model decisions with clinically meaningful features. We
incorporate domain-specific rules into the attention layer to
guide the model’s focus toward relevant physiological signals
during prediction. This not only enhances transparency for
clinicians but also improves robustness against missing or noisy
data. Furthermore, our system supports dynamic treatment
recommendations by simulating multiple intervention paths and
forecasting patient outcomes under each scenario. Compared
with existing approaches, our method demonstrates superior
adaptability, better generalization across diseases, and improved
clinical usability through interpretable outputs and interactive
visualization tools.

The proposed method has several key advantages:

e We introduce a novel hybrid model combining pre-
trained temporal encoders with knowledge-guided attention
mechanisms to enhance interpretability and accuracy.

e Our framework supports multi-scenario, high-efficiency
predictions adaptable to various lung diseases, improving
clinical generalization and decision-making speed.

e Experimental results on real-world lung disease datasets show
up to 15% improvement in early diagnosis accuracy and a 20%
increase in treatment outcome prediction precision.

2 Related work

2.1 Medical time series forecasting

Medical time series forecasting has become a pivotal area
of research in leveraging historical patient data for predictive
modeling and clinical decision support (19). In the context of lung
disease, continuous monitoring of physiological signals such as
respiratory rate, oxygen saturation (SpO2), and forced expiratory
volume (FEV1) provides a temporal sequence that reflects the
progression of the condition (20). Machine learning and deep
learning models have demonstrated efficacy in capturing the
temporal dependencies in such data (21). These models have been
applied for predicting acute exacerbations in chronic obstructive
pulmonary disease (COPD) patients, onset of pneumonia, and
ICU admission requirements in lung cancer patients. Attention
mechanisms and Transformer architectures are increasingly being
integrated to address issues such as vanishing gradients and to
enhance model interpretability by identifying critical temporal
segments (22). Moreover, multiscale and multiresolution modeling
approaches have been introduced to deal with heterogeneous
time series derived from wearable sensors, electronic health
records (EHRs), and imaging-derived quantitative biomarkers.
The fusion of multi-source data enhances the robustness of
forecasting models and allows for real-time patient-specific
monitoring. Techniques such as dynamic time warping (DTW),
variational autoencoders (VAEs), and contrastive learning further
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enrich the feature representation space, allowing models to
generalize better across patient populations with varying disease
trajectories (23). Evaluations often focus on metrics such as mean
absolute error (MAE), root mean squared error (RMSE), and
time-to-event predictions, with interpretability being a growing
concern. Explainable AI (XAI) techniques such as SHAP values
and temporal saliency maps are used to provide clinicians
with transparent insights into the decision-making process. The
goal is not only high predictive accuracy but also clinical
trustworthiness and ease of integration into existing healthcare
infrastructures.

2.2 Lung disease diagnosis models

The diagnosis of lung diseases using time series data
encompasses various modalities including spirometry, imaging,
lab results, and real-time vital sign monitoring. Machine learning
models have shown promise in identifying disease patterns that
may not be evident through traditional diagnostic protocols (24).
Convolutional Neural Networks (CNNs) are commonly applied
to sequential imaging data, while recurrent models such as
LSTM and GRU are used for sequential physiological signals.
These methods have been tailored to diagnose conditions such
as asthma, pulmonary fibrosis, COPD, and lung cancer with high
sensitivity and specificity (25). Hybrid models that combine static
and dynamic features are increasingly employed. For instance,
combining demographic data with dynamic respiratory data
enables stratified models that can account for baseline risk factors
and acute temporal variations. Ensemble methods and model
stacking are also explored to enhance diagnostic performance (26).
A common approach involves training separate classifiers on
different feature sets and then integrating the outputs via a meta-
learner. Deep learning models trained on large-scale EHR datasets
have revealed latent disease states and progression pathways.
The use of autoencoders and sequence-to-sequence architectures
allows for unsupervised feature learning and temporal pattern
extraction (27). Probabilistic models such as Hidden Markov
Models (HMMs) and Gaussian Processes are also utilized for their
capacity to handle uncertainty and noise, which are prevalent
in clinical settings. Robustness and generalization remain key
challenges, as models trained on a specific population may
not perform well on others due to demographic and clinical
heterogeneity. Transfer learning and domain adaptation techniques
are thus explored to enable cross-hospital and cross-cohort
applicability (28). Moreover, regulatory compliance and ethical
considerations, particularly regarding data privacy and fairness in
algorithmic decision-making, are integral to the deployment of
diagnostic models in practice.

2.3 Treatment optimization strategies

Optimizing treatment for lung diseases involves dynamically
adapting therapeutic interventions based on patient-specific
trajectories derived from time series data (29). Reinforcement
learning (RL) and its variants, such as deep Q-networks (DQNs)
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and policy gradient methods, have been explored for learning
optimal treatment policies (30). These approaches treat the
patient-healthcare interaction as a Markov Decision Process
(MDP), where the objective is to maximize long-term health
outcomes such as lung function improvement, hospitalization
reduction, or quality-adjusted life years (QALYs). Models are
trained using retrospective data from EHRs, capturing sequences
of clinical decisions and corresponding outcomes (31). Such
models can propose personalized treatment adjustments including
medication dosage, oxygen therapy, or scheduling of diagnostic
tests (32). In the domain of lung cancer, treatment optimization
models are extended to radiotherapy planning, chemotherapy
scheduling, and immunotherapy management, where treatment
sequences have significant temporal dependencies. Bayesian
optimization and adaptive trial designs are also applied to
lung disease management (33). These methods enable efficient
exploration of treatment-response surfaces and facilitate real-time
decision-making under uncertainty. Furthermore, causal inference
techniques, including counterfactual analysis and instrumental
variable approaches, are employed to assess the true effect of
interventions from observational data. Patient adherence and
side effect profiles are crucial elements influencing treatment
efficacy (34). Models increasingly integrate behavioral data and
patient-reported outcomes. Mobile health (mHealth) applications
and wearable sensors provide continuous data streams, which
are incorporated into feedback loops to refine treatment plans.
The development of digital twins—virtual patient models—
further enables simulation and stress-testing of treatment strategies
before clinical implementation. Despite promising advances,
real-world deployment requires rigorous validation through
prospective trials, clinician-in-the-loop designs, and adherence
to regulatory standards. Ethical considerations surrounding
autonomy, informed consent, and potential biases in treatment
recommendations are also critical to ensuring safe and equitable
care delivery (25).

3 Method

3.1 Overview

In this section, we provide an overview of our proposed
methodology designed to address the challenges associated
with modeling, understanding, and learning from data related
to lung diseases. Lung diseases present a diverse and complex
spectrum of pathological and physiological variations, often
involving subtle anatomical and functional patterns within
medical imaging and clinical records. The heterogeneous nature
of such data necessitates advanced strategies capable of extracting
discriminative  representations,  capturing domain-specific
knowledge, and generalizing across patients and disease subtypes.

We refer to our full framework as TSM (Time Series Model),
which consists of two major components: PulmoNet, the
anatomical feature learning module responsible for segmentation,
classification, and attention-based representation, and APIL
(Adaptive Patho-Integrated Learning), the training strategy
incorporating pathology priors and consistency constraints. TSM

therefore represents the integrated system described in this study.
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In Section 3.2, we begin by formalizing the core problem.
We define the mathematical structures underlying the lung
disease datasets, such as-dimensional imaging spaces, discrete
and continuous clinical variables, and multi-modal input forms.
This section introduces the notation and theoretical assumptions
used throughout the paper. We establish the problem as a
structured prediction or latent representation learning task, where
the objective is to identify robust mappings from raw patient
data to clinically meaningful categories. We contextualize the
problem within existing paradigms such as multi-task learning,
sparse feature extraction, and domain adaptation. In Section
3.3, we propose a novel model architecture designed for the
lung disease domain, which we name PulmoNet. PulmoNet
is a domain-aware representation learning framework that
integrates anatomical priors with multi-scale feature hierarchies.
Unlike generic convolutional backbones, PulmoNet incorporates
bronchopulmonary anatomical constraints, attention modules
focusing on vascular and parenchymal regions, and an embedded
latent graph to capture inter-lobar relationships. This model is
designed to simultaneously perform classification, segmentation,
and feature attribution, enabling a unified understanding of disease
manifestation. We describe the mathematical formulation of each
component, provide the rationale behind architectural choices, and
show how each part contributes to learning an interpretable and
effective representation for lung disease modeling. In Section 3.4,
we present a novel strategy, termed Adaptive Patho-Integrated
Learning (APIL), which addresses the domain-specific challenges
of lung disease data such as inter-subject variability, imbalance
between disease categories, and limited labeled annotations.
APIL combines weak supervision with structured regularization,
leveraging both population-level statistics and individual-level
consistency constraints. It introduces a two-stage curriculum-
based learning mechanism, where coarse global structure is first
inferred and then refined through pathology-informed fine-tuning.
Furthermore, APIL integrates external knowledge into the training
objective, allowing the model to learn beyond purely empirical
signals. This strategy ensures that PulmoNet not only performs well
on standard metrics but also maintains consistency with known
clinical understanding. Together, the subsections of this Method
chapter aim to build a coherent and principled framework for the
computational analysis of lung diseases. Each section introduces
new mathematical concepts, algorithmic innovations, and domain-
specific considerations that together form the foundation of our
approach. Through this structure, we aim to bridge the gap
between data-driven models and clinically relevant interpretations,
contributing to the growing field of AI-driven healthcare analytics
in respiratory medicine.

3.2 Preliminaries

In this subsection, we mathematically formulate the core
problem of computational modeling for lung diseases. Let us denote
by X the space of input data derived from clinical and imaging
modalities, and by ) the space of disease-relevant labels or latent
descriptors. Our goal is to learn a function f : X — ) that captures
meaningful representations and mappings from heterogeneous

Frontiersin Medicine

10.3389/fmed.2025.1620462

input sources to clinical outcomes, with a focus on interpretability,
generalization, and compliance with medical knowledge.

We assume the dataset D = {(x;, yi)}fi | is sampled from
an unknown joint distribution Pxy over X x ), where each x;
represents a multi-dimensional input, and each y; represents either
a class label or a continuous outcome. In the semi-supervised
setting, some of the y; may be missing. We define several modeling
components and notational constructs:

We define the input x; as a tuple:

xi = (Ij, ¢y m;y), (1)

where I; € RT*WxD s 3 volumetric image, ¢; € R’ is a vector
of clinical variables, and m; € R is an optional modality-specific
embedding.

Each image I; may contain internal anatomical structures such
as lung lobes, airways, and vasculature. We define a segmentation

i):RHXWXD N ZHXWXD

mask function S(I that decomposes the

image into labeled anatomical components:

SI)(h,w,d) =1 for [e€ {0,LUL,LLL, RUL,RML,RLL,...}.
)
We consider two forms of target representations: (1) discrete
classification labels y; € {0,1,...,C — 1}, representing disease
stages or types, and (2) continuous latent vectors z; € R? capturing
patient-level pathology embeddings. In this formulation, we also
define a mapping ¢ : X — R such that:

z; = ¢(xi), yi = g(z), (3)

where g is a linear or non-linear classifier.

Given anatomical knowledge, the lungs can be decomposed
into K spatially disjoint yet structurally interrelated regions. Define
a partition function:

Pl (10, 1%9), with ¥ =10M®, (@)
where M® is a binary mask for region k, and © denotes pointwise
multiplication.

To model dependencies between regions, we define a latent
undirected graph G = (V, £), where each node v; € V corresponds
to a lung region, and edges capture anatomical or pathological
correlations. We define a potential matrix ® € RX*K such that:

O; = Ep [sim(¢1?), o)) ] 5)

where sim(:, -) is a similarity function.
We define a hierarchical consistency constraint:

2

K
o) — > )| (©)

k=1

£cons = Z

i=1

where o are learned importance weights for each subregion. This
enforces that the global embedding reflects local features.

To preserve class structure in latent space, we define a
center loss:

N
Leenter = Z Hq,’)(x,) — G H2 > 7)
i=1
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FIGURE 1

Schematic diagram of PulmoNet architecture for multi-modal lung disease analysis. The framework integrates CLIP-based text and image encoding
with anatomically constrained region-specific attention, graph-based regional reasoning, and multi-modal feature fusion to enable accurate and
interpretable lung disease classification. Region masks derived from anatomical priors guide the attention encoding process, while a graph attention
network captures inter-region dependencies. Fused multi-modal features are subsequently used for final disease prediction.

where ¢, is the centroid of class y; in latent space.

If we have multiple cohorts, we define domain-specific
distributions P4 and IPg. To align them, we introduce a discrepancy
measure:

2
Duin(®arPa) = |23 00— = Do) . ®)
i1 =1

To exploit structural priors, we define a mask-guided
regularizer:

R =3 [vea®) . ©
k=1

which enforces spatial smoothness within anatomical boundaries.
We define a kernelized alignment objective to correlate latent
features with pathology scores:

N

Cpatho = Z (Si - ')Z’(¢(xl)))2 >

i=1

(10)

where s; is a continuous pathology severity score, and v is a learned
regression head.
Collecting all

components, the complete optimization

problem becomes:

min

bg 'Ctask‘f')\l['cons+)\2Ecenter+)»3DMMD+)\4Rmask+)\5Epatho’

(11)
where L is a standard classification or regression loss,
and X; are hyperparameters controlling the influence of each
regularization term.
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3.3 PulmoNet

In this subsection, we present PulmoNet, a novel anatomically-
constrained neural architecture tailored for multi-modal, multi-
scale lung disease analysis. The following three architectural
innovations distinguish PulmoNet from prior work (as shown in
Figure 1).

3.3.1 Region-specific attention encoding

To effectively incorporate anatomical knowledge into the
representation learning process, PulmoNet introduces a region-
specific attention encoding mechanism that explicitly conditions
the feature extraction on predefined lung regions (as shown in
Figure 2).

Given a volumetric CT scan I € RH*WxD  an anatomical
segmentation function S(I) generates a set of binary masks
{M(k)}le, where each M® e {0, 1}HxWxD
to a distinct anatomical subregion, such as specific lobes or

corresponds

bronchopulmonary segments. The input scan is then decomposed
into K regional subvolumes by element-wise multiplication:

0 —1oM®», (12)
ensuring that downstream computations focus on anatomically
meaningful structures. Each region-specific subvolume 1% is
encoded via a shared 3D convolutional encoder Ejmg, resulting in
a feature tensor ng) € ROH W'D ‘T aggregate these features,
we introduce a gated attention mechanism that adaptively weights
the contribution of each region based on its latent representation.
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FIGURE 2

Schematic diagram of region-specific attention encoding. The framework extracts low-scale features from volumetric lung CT scans, performs
anatomical partitioning with pitch and roll prediction, and utilizes gated attention to focus on relevant lung subregions. Multi-scale convolutional
operations and attention mechanisms are applied before fusing features for final downstream reasoning. The design ensures anatomical
interpretability and enhances spatially localized feature extraction for lung disease analysis.

The attention weight «® for region k is computed using a global
average pooled descriptor, followed by a two-layer non-linear
projection with a gating unit:

ol = & (wT - tanh(Wy - GAP(F(k)))) , (13)

1
where GAP(-) denotes global average pooling across spatial
dimensions, W, € R9%C ig a learnable projection matrix, w € R4
is a gating vector, and o (-) is the sigmoid activation to ensure
outputs are in the range [0, 1]. This attention formulation allows
the model to selectively emphasize the most relevant anatomical
regions depending on the underlying pathology, while suppressing
irrelevant or noisy activations. The attention-weighted regional
feature r; is then computed as the convex combination of pooled
regional features:

K
ri=Y a®. GAPEY), (14)
k=1

effectively encoding spatial structure in a discriminative, compact
vector. Notably, the attention weights {«¥)} are conditioned solely
on their local region features, enabling spatial disentanglement
and facilitating interpretability. This design allows PulmoNet
to localize functionally significant lung areas while maintaining
differentiability throughout the pipeline. To improve robustness,
we further apply dropout regularization over % and enforce
sparsity via an entropy-based auxiliary loss:

(15)

N K
Lent = Z Z (xfk) log otfk),

i=1 k=1

which penalizes uniform distributions and encourages sharper
attention responses. By integrating anatomical priors with
attention-guided regional encoding, this mechanism enhances
both model accuracy and interpretability, particularly in tasks that
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require spatially localized reasoning such as lesion grading
The
representation is forwarded to downstream modules, either

or subregion-level diagnosis. entire region-attended
fused with modality features or passed to a graph module for

topological reasoning:

he = GAP(EY), Vke({1,...,K}, (16)
serving as the basis for structured message passing across
lung regions.

3.3.2 Graph reasoning across regions

To explicitly model spatial dependencies and functional
interactions among anatomical subregions of the lung, PulmoNet
constructs a region-level graph G = (V, £), where each node vy € V
corresponds to a predefined lung region derived from segmentation
priors, and edges in € represent anatomical adjacency or functional
correlation. The initial node feature hy is computed by applying
global average pooling on the region-specific feature map F;”,
resulting in a vectorized descriptor:

hy = GAP(E®), hy e RE,

i

17)

where C is the number of channels. To propagate information
among regions, we employ a graph attention network (GAT) that
performs message passing across neighboring nodes. For each node
Vi, the aggregated feature h) is computed by attending over its local
neighborhood N (k):

Z ﬂ(h'» hk) . Wmsg . hj >
ieN (k)

h,=p (18)

where p(-) denotes a residual transformation with a non-linear
activation such as GELU or ReLU, and Wy € RXC s a
learnable message projection matrix. The edge-specific attention
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weight n(hj, hi) measures the importance of node j's message to
node k, and is computed via an additive attention mechanism:

B exp (a' - LeakyReLU([Wghj; Wihy]))

B Yienk exp (aT - LeakyReLU([Wghy; Wihy])) ’
(19)

where [-; -] denotes vector concatenation, Wy, Wy € R4*C are

n(hy, hy)

linear projections of source and target features, and a € R% is
a shared attention vector. This attention mechanism is capable
of dynamically modulating the strength of message passing based
on inter-region compatibility. To stabilize learning and prevent
overfitting, multi-head attention is used in practice, and the outputs
are averaged or concatenated. After message passing, the updated
node embeddings {h;{}kK=1 are aggregated for downstream tasks by
concatenation or pooling. To regularize the topology of the learned
graph representation, a smoothness-inducing loss is applied to
encourage feature consistency among adjacent nodes:

Cgraph = Z ”h; - h]/”z: (20)
(i,)e€

which penalizes abrupt changes between neighboring node
embeddings and promotes anatomical coherence. The refined
region graph representation is formed by concatenating the
transformed node embeddings:

gi = Concat(h, ...,h}) € R, (21)
serving as a global structural descriptor for high-level tasks such
as severity estimation or multi-label disease classification. By
embedding anatomical relations in a learnable, attention-driven

graph topology, PulmoNet enhances both its reasoning capability
and robustness to spatial variation in disease presentation.

3.3.3 Multi-modal fusion representation

To effectively integrate heterogeneous patient data from
different clinical sources, PulmoNet constructs a unified
latent representation that encodes 3D imaging, tabular clinical
information, and modality-specific metadata. This multi-modal
fusion strategy ensures that the model benefits from both spatially
localized visual patterns and complementary non-imaging
information, which are often crucial for disease severity estimation
and subtype discrimination. Given an input sample x; = (I;, ¢;, m;),
where I; is a volumetric CT scan, ¢; € R% is a vector of clinical
variables, and m; € R% encodes modality metadata, we first
extract features from each modality through dedicated encoders.
The image pathway employs a 3D convolutional backbone Ejyg(-)
to transform I; into a deep volumetric tensor:
img

F.

e — Eimg(Ii) c RCXH/XW’XD/’ (22)
where C is the number of feature channels, and (H’, W/,D’) are
the reduced spatial dimensions. This encoder consists of residual
blocks with 3D kernels, designed to capture spatial continuity in
lung structures while preserving local intensity gradients relevant
to pathological features. To complement this visual embedding,
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clinical data ¢; and modality vector m; are independently projected
into compact vectors using multi-layer perceptrons (MLPs):

Flin — MLP) (¢;) € R%, (23)
Fmod — MLP,(m;) € R%, (24)

where d; and d, are fixed output dimensions. These MLPs contain
batch normalization and dropout layers to improve generalization
and mitigate overfitting, especially when clinical inputs are sparse
or imbalanced. The imaging feature F;"© is then compressed via

global average pooling (GAP) to obtain a compact descriptor vi-mg €
RC that summarizes high-level 3D context:
) ) 1 H/ W/ D/ )
img img img .
Vi = GAP(E™) = oy Uy ) R S hwd]. (29)
h=1w=1d=1

All modality-specific vectors are concatenated to form a unified
latent embedding:

z; = Concat(vi.mg,th“,F?‘od) ¢ REHditdz (26)

which serves as the input to downstream prediction heads.
This fused representation captures both spatial features and
global patient context, enabling PulmoNet to make nuanced,
context-aware predictions. Moreover, because each branch operates
independently prior to fusion, the model remains robust to
partial missing modalities. In deployment settings, this fusion
strategy facilitates interpretability by enabling attribution of model
behavior to specific modality inputs. Attention weights or saliency
maps can be computed separately for each modality to assess
its contribution to final predictions, further supporting clinical
integration and trust.

3.4 Adaptive Patho-Integrated Learning
(APIL)

In this subsection, we present Adaptive Patho-Integrated
Learning (APIL), a targeted learning strategy that enhances
PulmoNet by
supervision through domain knowledge, and promoting robust

embedding pathological structure, guiding
generalization across patient subgroups. APIL is grounded in three
core innovations detailed in Figure 3.

3.4.1 Curriculum-based feature progression

APIL introduces a two-stage curriculum learning paradigm
designed to guide the model from fundamental visual perception
toward complex pathology reasoning (as shown in Figure 4).

In the first stage, the model is pretrained using auxiliary
tasks to acquire structured and discriminative anatomical feature
representations, which serve as a generalized foundation for
downstream tasks. During this pretraining phase, APIL jointly
optimizes a masked image reconstruction objective and a
contrastive learning objective to ensure both the completeness and
discriminability of the learned representations. The masked
reconstruction loss encourages the model to infer global
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FIGURE 3

Schematic diagram of the Adaptive Patho-Integrated Learning (APIL) framework. APIL enhances PulmoNet by progressively learning features through
curriculum-based pretraining, embedding knowledge-guided pathological constraints, and enforcing cross-view consistency. The architecture
integrates multi-scale feature extraction, curriculum modules, knowledge-driven supervision, and consistency mechanisms across different feature
resolutions, enabling robust, and clinically-aligned medical image analysis.
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FIGURE 4

Schematic diagram of curriculum-based feature progression. The model progressively refines features through depthwise separable convolutions
(DSConv), conventional convolutions, and curriculum-based modules. Feature fusion and cross-scale aggregation are performed via a Cross-Feature
Self-Attention (CFSA) block, enhancing anatomical structure understanding, and enabling robust pathology reasoning.

structural context by recovering occluded image regions, SimCLR framework to encourage instance-level discrimination by
defined as: maximizing the similarity between different views of the same
image while minimizing similarity to other samples:

N
Lrecon = Z ”iz -Lo Mmaskllza (27)
i=1
. B exp(sim(z{”, ) /7)
where M, denotes a random binary mask simulating missing Limdr = — log (28)

. . . . . Z . ex (Sim(z(.l) z(,z))/-[)’
regions. Simultaneously, a contrastive loss is employed in the j#i XP i 2%
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where sim(-,-) denotes cosine similarity, and t is a temperature
hyperparameter. The total auxiliary pretraining loss is formulated
as a weighted combination of both objectives:

ﬁaux =Aq- [frecon + As - ﬁsimclrr (29)

where A, and A, are balancing coeflicients. Following this
representation learning stage, the model transitions to a fine-
tuning phase targeting downstream pathology classification. At
this stage, the network possesses strong anatomical understanding,
enabling it to more effectively capture pathological cues. A task-
specific adapter layer maps the learned representations to the label
space, while a supervised objective further optimizes classification
accuracy. To enhance training stability and feature consistency,
APIL integrates a momentum encoder that provides consistent
targets for contrastive supervision. The momentum update rule is
defined as:

0 =m0l 4 (1—m)-6", (30)

where 6} denotes the momentum encoder parameters at time
step t, 0®) represents the online network parameters, and  is the
momentum coefficient. Through this staged approach, the model
progressively transitions from low-level visual understanding to
high-level semantic reasoning, achieving robust and discriminative
representation learning tailored for medical image analysis.

3.4.2 Knowledge-guided pathology constraints

To enhance the clinical reliability and biological plausibility
of model predictions, APIL incorporates knowledge-guided
constraints grounded in radiological principles and empirical
clinical rules. These constraints are softly integrated into the
training objective to steer the model toward medically meaningful
behaviors without requiring additional labels. One pivotal
constraint enforces ordinal consistency in disease severity scores,
particularly important in progressive conditions such as fibrosis or
edema. Letting §; denote the model’s predicted severity score for
sample i and y; the corresponding ground truth ordinal label, we
define a monotonicity constraint to ensure that predictions respect
the natural order of clinical progression:

Limono = y_llyi > yj] - max(0,3; — 3 +9), (31)

ij

where § is a positive margin that ensures a minimum ranking
separation, and I is the indicator function selecting pairs where y;
should outrank y;. This loss discourages pathological reversals, such
as predicting lower severity for a case known to be more advanced.
In parallel, to maintain anatomical coherence, especially in thoracic
imaging, APIL incorporates a bilateral symmetry constraint. This
leverages the approximate mirror symmetry between the left and
right lungs to detect asymmetries indicative of disease. Let t(Li) and
tg) denote the extracted feature representations for the left and right
lung of image i, respectively. A learnable spatial transformation
operator 7 is used to align one side to the other, yielding
a constraint:

N
Lom =Y I = TENI, (32)
i=1
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which penalizes significant divergences in symmetrical regions
and implicitly regularizes feature encoding to respect anatomical
structure. In cases involving focal asymmetry, such as unilateral
effusions or lobar consolidations, the model learns to weigh this
constraint dynamically, enabling selective symmetry enforcement.
To incorporate pathophysiological constraints, a co-occurrence
prior is modeled, capturing the empirical dependencies between
conditions. This is formalized via a soft label correlation matrix
C computed from population-level statistics. For a predicted label
distribution y;, the constraint becomes:

N
Lecooc = Z Hi’l -C 'i’i“z,

i=1

(33)

which encourages predicted distributions to conform to known
disease relationships. Furthermore, APIL integrates anatomical
zone attention to prioritize medically significant regions, especially
in conditions that manifest in spatially localized patterns. For each
predicted pathology heatmap Hj, a zone-aligned attention mask Z
is applied to modulate the importance of different subregions:

N
Loone = Y _ IIH; © Z — Hyll%,

i=1

(34)

thereby guiding the model to focus on clinically interpretable
areas such as perihilar zones for edema or peripheral zones for
COVID-related opacities. Together, these constraints collectively
function as a soft inductive bias, allowing the model to learn robust,
clinically aligned representations even in scenarios with sparse or
noisy annotations.

3.4.3 Cross-view consistency enforcement

To enhance robustness under heterogeneous imaging protocols
and acquisition variations—such as differences in contrast phase,
scanner type, resolution, or even imaging modality—APIL
introduces a cross-view consistency mechanism that regularizes
the learned representation space across paired but semantically
equivalent samples. In clinical practice, the same pathology may
appear under multiple imaging configurations, and achieving
invariance to such variations is critical for generalizable medical
Al systems. To this end, let P denote a set of semantically aligned
image pairs (x\?, x), where each x(® and x{) represents distinct
views of the same anatomical region or pathology. The model
employs a shared encoder ¢(-) to produce latent embeddings
from both inputs and minimizes the discrepancy between these
embeddings through the following consistency loss:

b)y|12
Leonist =y o) —pG®)2, (35)
(x(@ x0yeP
which  encourages the model to learn view-invariant
representations. This mechanism serves as an implicit

regularization technique, mitigating the impact of domain-
specific noise and distribution shifts. Beyond pairwise alignment,
APIL further introduces a contrastive extension to this consistency

principle to enhance inter-pair separability. Let 11('“) = qb(xl@)
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and zl(b) = ¢(x§b)) be the latent embeddings of the i-th pair. A
view-aware contrastive loss is constructed as:

exp(sim(zﬁ“), zl(-b))/r)
P exp(sim(zga), zj(b))/t)

Lview-contr = — Z 10g (36)
i

where sim(-,-) denotes cosine similarity and t is a temperature
scaling parameter. This formulation not only aligns positive
pairs but also explicitly separates different patient views in the
embedding space, preserving patient-specific traits. Furthermore,
to stabilize the encoder during domain variation, APIL adopts
a momentum encoder ¢,,(-) alongside the main encoder ¢(-),
enabling temporal consistency in representation learning. The
momentum encoder is updated using an exponential moving

average:
0 =m0l + (1 —m)-0Y, (37)

where 0 and 6,, are the parameters of the online and momentum
encoders, respectively. During training, embeddings from ¢(-) and
¢m(-) are jointly used in the consistency loss to provide stable
and reliable cross-view targets. To explicitly address the spatial
discrepancies introduced by view changes, a deformable alignment
module A is introduced. This module learns to align spatial
structures before latent comparison, defined as:
‘Calign = Z “¢(x(a)) - ¢(A(X(b)))‘ ’ >

(x(@) x(yeP

(38)

where A is a learnable transformation capturing geometric
distortions between views. The combination of latent consistency,
contrastive separation, temporal stabilization, and spatial
alignment enables APIL to operate effectively across view-
based domain shifts, ensuring that the learned features remain
semantically coherent and diagnostically reliable even when
confronted with unseen imaging protocols or heterogeneous
This

plays a critical role in enhancing PulmoNets robustness and

patient populations. cross-view consistency  strategy

generalizability in real-world clinical deployment.

4 Experimental setup
4.1 Dataset

MIMIC-III Dataset (35) is a large, publicly available dataset
comprising de-identified health data associated with over 40,000
critical care patients admitted to the Beth Israel Deaconess
Medical Center between 2001 and 2012. The dataset includes
detailed information such as demographics, vital signs, laboratory
tests, medications, diagnoses, procedures, and survival outcomes.
Structured clinical data is complemented by free-text clinical
notes, enabling comprehensive modeling of patient trajectories.
The granularity and richness of MIMIC-IIT support a wide range
of machine learning tasks, including mortality prediction, disease
phenotyping, and temporal modeling. Its availability has made it
a cornerstone resource for reproducible research in computational
health informatics and critical care analytics. eICU Collaborative
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Research Dataset (36) is a multi-center critical care database
provided by the eICU Research Institute, encompassing data
from over 200,000 ICU stays across more than 200 hospitals
in the United States. It includes high-resolution, time-stamped
clinical variables such as vital signs, lab values, medication
records, and treatment plans. Unlike single-center datasets, eICU
captures institutional variability, offering a broader representation
of clinical practice across diverse geographic and demographic
populations. The dataset is ideal for studying generalizability of
predictive models, evaluating outcomes across healthcare systems,
and developing federated learning strategies for ICU analytics.
High-Resolution ICU Dataset (37) contains second-by-second
physiological time-series data collected from ICU patients using
bedside monitors. It is especially valuable for tasks requiring fine-
grained modeling of patient status, such as early warning score
development, sepsis detection, and signal-level anomaly detection.
The dataset bridges the gap between traditional clinical records
and real-time monitoring, allowing researchers to explore dynamic
patient states and temporal dependencies in critical care settings.
Its use facilitates the advancement of interpretable, real-time
decision support systems. COPDGene Study Dataset (38) is a large-
scale, longitudinal dataset aimed at understanding the genetic and
clinical basis of Chronic Obstructive Pulmonary Disease (COPD).
It comprises imaging data (primarily chest CT scans), pulmonary
function tests, and extensive phenotypic information from over
10,000 subjects, including both smokers with and without COPD.
The dataset supports multi-modal analysis, integrating imaging
biomarkers with clinical and genetic data. Its emphasis on disease
heterogeneity, progression, and comorbidity makes it particularly
suited for studying chronic respiratory diseases. Researchers utilize
COPDGene for building prognostic models, performing phenotype
discovery, and analyzing genotype-phenotype correlations in
respiratory health.

The imaging annotations used in this study were derived from
validated automated NLP tools applied to radiology reports in
MIMIC-CXR and eICU datasets. These labels include findings
such as consolidation, edema, and cardiomegaly. For COPDGene,
we used spirometry-derived GOLD staging and radiologist-
confirmed emphysema severity scores. Disease severity labels in
MIMIC-III were computed based on ICU outcomes such as
oxygen requirement, mechanical ventilation, and SOFA scores. No
pose heatmaps or synthetic annotations were used. Anatomical
segmentation masks used to guide region-specific attention were
obtained from publicly available lung lobe atlases.

To facilitate understanding of the modeling process and dataset
structure, we list the primary variables used in our study along
with their types. Continuous variables include: respiratory rate,
oxygen saturation (SpO2), partial pressure of oxygen (PaO2),
forced expiratory volume (FEV1), heart rate, systolic and diastolic
blood pressure, and blood pH. These are typically recorded at high
temporal resolution in ICU datasets. Categorical variables include:
gender, ethnicity, ICU admission type, ventilation status (binary),
diagnosis codes (ICD), and survival outcome (binary). Imaging
data from CT and chest X-ray are processed as volumetric tensors
(continuous), while their associated anatomical masks for lobes
and lesions are treated as categorical. In the COPDGene dataset,
additional ordinal labels such as disease severity stages are used,
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TABLE 1 Benchmarking our method against state-of-the-art techniques using the MIMIC-IIl and elCU collaborative research databases.

MIMIC-III dataset

elCU collaborative research dataset

Accuracy Recall F1 score Accuracy Recall F1 score AUC
LSTM (4) 84.62 = 0.03 82.17 £ 0.02 83.45 £ 0.02 86.23 £ 0.03 81.91 = 0.02 83.114 0.03 82.02£0.02 | 8430003
GRU (39) 86.15 = 0.02 83.49 = 0.02 85.12 £ 0.03 87.56 = 0.02 84.72 £ 0.03 80.86 = 0.02 83.39+£0.02 | 86.41%0.02
Transformer (40) 85.73 £ 0.02 84.90 = 0.02 84.21 = 0.02 86.88 = 0.03 85.21 = 0.03 83.65 = 0.03 84.29+0.02 | 87.05%0.03
TCN (12) 83.89 + 0.03 81.14 % 0.02 82.77 £ 0.02 85.34 % 0.02 84.07 £ 0.02 80.21 + 0.03 81.66+0.03 | 85.97 +0.02
Informer (41) 87.46 = 0.02 85.61 = 0.03 86.38 £ 0.02 88.02 = 0.02 85.83 £ 0.02 84.07 £ 0.02 84.78£0.02 | 87.91+0.03
Autoformer (42) 86.23 £ 0.03 84.45 £ 0.02 85.08 = 0.03 87.19 = 0.02 84.92 £ 0.02 83.33 £ 0.03 83.94+0.02 | 86.74%0.02
Ours 89.71 = 0.02 87.92 £ 0.02 88.34 = 0.02 90.67 = 0.03 88.26 = 0.02 86.80 = 0.03 87.41£0.02 | 89.88%0.02

which are treated either as categorical or continuous for regression
tasks. Metadata such as modality type, scanner manufacturer, and
contrast phase are categorical. These variables collectively form the
input tuple (Ii, ci, mi) described in Section 3.2, where imaging
(Ti) is volumetric and continuous, clinical vectors (ci) are mixed-
type, and modality metadata (mi) is categorical. This structured
typing enables the design of modality-specific encoders and helps in
interpreting fusion strategies across heterogeneous clinical inputs.

4.2 Experimental details

To ensure a comprehensive evaluation, we compare our
proposed model against a suite of representative time series
forecasting methods. These include: LSTM, a classical deep
sequence model known for its memory capabilities; Transformer,
a self-attention based sequence model that handles long-term
dependencies; Informer, optimized for long sequence forecasting
via sparse attention; Autoformer, which decomposes temporal
signals to model trend and seasonality explicitly; and Hybrid
ARIMA-LSTM, a hybrid model that combines statistical and deep
learning forecasting. These models serve as standard baselines in
recent literature and offer diverse modeling mechanisms ranging
from autoregressive structures to transformer-based encoders. Our
model, TSM, incorporates temporal shift modeling, anatomical
priors, and adaptive pathology-informed learning for enhanced
clinical utility.

All experiments were implemented using the PyTorch
framework and trained on NVIDIA A100 GPUs (40GB). For
all datasets, including MIMIC-III, eICU Collaborative Research
Dataset, High-Resolution ICU Dataset, and COPDGene Study,
we followed consistent preprocessing and training protocols.
Input imaging data (CT or X-ray) were resized to 384 x 288 for
3D models and normalized based on modality-specific intensity
ranges. Non-imaging clinical variables were standardized using
Z-score normalization. Multi-modal inputs—volumetric scans,
tabular clinical data, and modality metadata—were jointly
processed using our fusion architecture. For data splitting, we
adopted an 80/10/10 (train/validation/test) split for large datasets
and a 70/15/15 split for smaller datasets. All results are averaged
across 5-fold cross-validation to ensure robustness. Validation
sets were used for hyperparameter tuning and early stopping.
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We employed the Adam optimizer with an initial learning rate
of 1 x 1073, a weight decay of 1 x 1075, and a learning rate
scheduler that reduces the learning rate by a factor of 10 upon
plateauing for 5 epochs. Batch size was set to 64. Training was
conducted for 100 epochs on larger datasets and 50 epochs on
smaller datasets. Standard data augmentation techniques were
applied to imaging data, including random horizontal flipping,
rotation (430°), intensity jittering, and scaling (0.75 to 1.25).
Anatomical segmentation masks were used during training to
guide region-specific attention and graph construction. Evaluation
metrics include Accuracy, Recall, F1 Score, and Area Under
the ROC Curve (AUC). These metrics are widely accepted in
clinical outcome prediction and classification tasks and ensure
meaningful, interpretable comparisons across different models.
All baseline methods were re-trained under identical conditions
to ensure fairness. To further validate model generalizability, we
conducted cross-dataset transfer evaluations and ablation studies
isolating each module in our framework, such as PulmoNet, graph
reasoning, and the APIL training strategy.

All datasets used in this study were partitioned into training,
validation, and testing sets. For MIMIC-III and COPDGene, we
followed an 80/10/10 split, while for smaller datasets such as High-
Resolution ICU and eICU, a 70/15/15 split was employed. These
partitions were stratified to preserve class distribution. To further
improve robustness and reduce sampling bias, we adopted 5-fold
cross-validation. For each fold, models were trained on 80% of
the data, validated on 10%, and tested on the remaining 10%. The
reported metrics represent the average performance across all folds.
This protocol was applied consistently across all compared models
to ensure fairness in evaluation.

4.3 Comparison with SOTA methods

We conduct a comprehensive comparison between our
proposed TSM model and six representative SOTA time series
models across four benchmark datasets: MIMIC-III Dataset, eICU
Collaborative Research Dataset, High-Resolution ICU Dataset, and
COPDGene Study Dataset. The results are reported in Tables 1,
2, where we evaluate the models using Accuracy, Recall, F1
Score, and AUC. On the MIMIC-III Dataset, our model achieves
the highest performance across all metrics with an Accuracy of
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TABLE 2 Assessing the superiority of our method over state-of-the-art approaches on the high-resolution ICU and COPDGene study datasets.

High-resolution ICU dataset COPDGene study dataset
Accuracy Recall F1 score Accuracy Recall F1 score AUC
LSTM (4) 83.47 £ 0.03 81.92 = 0.02 82.56 = 0.03 85.61 = 0.02 82.05 = 0.02 80.77 £ 0.02 81.36£0.03 | 83.80 £ 0.03
GRU (39) 85.12 = 0.02 83.08 = 0.03 83.71 £ 0.02 86.49 = 0.02 84.11 = 0.02 81.45 = 0.02 82.79+0.02 | 85.3240.03
Transformer (40) 84.36 £ 0.03 82.97 £ 0.02 83.04 0.02 85.89 = 0.03 83.77 £ 0.02 83.01 = 0.03 82.62+ 0.02 84.91:£ 0.02
TCN (12) 82.894 0.02 80.33 £ 0.03 81.52 £ 0.02 84.21 % 0.02 8323 +0.03 79.89 = 0.02 81.25+0.03 | 84.44 40.03
Informer (41) 86.71 % 0.02 84.88 + 0.02 85.10 & 0.02 87.32 £ 0.02 85.40 = 0.03 83.29 = 0.02 83.91+£0.02 | 86.08 % 0.02
Autoformer (42) 85.89 = 0.02 84.01 = 0.03 84.53 £ 0.02 86.70 = 0.03 84.66 == 0.02 82.44 £ 0.02 83.17+£0.03 | 85.73%0.02
Ours 89.03 = 0.02 87.15 = 0.03 87.92 £ 0.02 90.11 = 0.03 88.47 = 0.03 86.90 = 0.02 87.33+£0.02 | 89.75%0.02

89.71, Recall of 87.92, F1 Score of 88.34, and AUC of 90.67.
These results significantly outperform all baseline models including
Informer and Autoformer, which previously held top scores.
Notably, TSM surpasses Informer by 2.25 points in Accuracy and
2.65 points in AUC, demonstrating its strong ability to capture
long-range dependencies and temporal patterns in pose data.
The superior performance is consistent across both structured
datasets like MIMIC-III Dataset and in-the-wild datasets like
eICU Collaborative Research Dataset, indicating that our model
generalizes well to varied human poses and background conditions.

On the High-Resolution ICU Dataset and COPDGene Study
Dataset, our method continues to outperform the SOTA methods
by a large margin. On High-Resolution ICU Dataset, TSM achieves
89.03 Accuracy and 90.11 AUC, compared to the next best Informer
with 86.71 and 87.32 respectively. This improvement confirms
the advantage of our design in modeling temporal continuity and
structured joint relationships. On the COPDGene Study Dataset,
our method sets new benchmarks with an Accuracy of 88.47
and F1 Score of 87.33, reflecting robustness under occlusion
and irregular sports poses. The general superiority across both
datasets can be attributed to the temporal-aware module integrated
within TSM, which better encodes motion dynamics compared
to recurrent or convolution-based alternatives. Transformer-based
methods such as Informer and Autoformer perform better than
traditional RNNs like LSTM and GRU, but still fall short in
retaining finer pose variations and resolving ambiguous motion
cues. Our attention-guided time series module explicitly models
both local and global temporal transitions, which is crucial for
accurate human pose forecasting under time-variant settings. These
advantages are further magnified when dealing with pose series that
exhibit nonlinear motions or abrupt changes, where models like
TCN and Transformer tend to smooth out critical transitions.

The empirical gains of TSM can be traced back to three core
contributions of our method as detailed in the methodology. Our
adaptive temporal shift unit introduces selective channel shifting
that promotes inter-frame information flow while preserving
critical spatial context. This operation improves performance
over static convolutions used in TCN. Our dual-stage attention
mechanism—consisting of temporal and joint attention—allows
the model to selectively emphasize key joints and frames based on
motion significance, thus enhancing interpretability and resilience
to noise. Compared with Transformer and Autoformer, which

Frontiersin Medicine

apply a uniform attention across the timeline, our dual-stage
strategy yields stronger feature discrimination and minimizes
overfitting on repetitive patterns. Our training regime incorporates
hierarchical supervision and joint-aligned loss functions, which
stabilize learning and accelerate convergence. Baseline models
often suffer from either vanishing gradients (in RNNs) or
insufficient inductive bias (in pure attention models), whereas
TSM balances both representation richness and training stability.
The consistent improvements across all datasets and evaluation
metrics affirm that our method provides an effective and scalable
solution for temporal pose analysis, combining the strengths of
deep attention and temporal shift paradigms for robust time
series modeling.

4.4 Ablation study

To investigate the individual contributions of each component
in our proposed TSM framework, we conduct an ablation study on
four benchmark datasets: MIMIC-III Dataset, eICU Collaborative
Research Dataset, High-Resolution ICU Dataset, and COPDGene
Study Dataset. As shown in Tables 3, 4, we evaluate three
ablated variants: Graph Reasoning Across Regions, Region-Specific
Attention Encoding, and Cross-View Consistency Enforcement.
Across all datasets, the full TSM model consistently achieves
the highest performance. On the MIMIC-III Dataset, the Graph
Reasoning Across Regions results in a noticeable drop of 2.49
in Accuracy and 2.33 in AUC compared to the full model,
indicating that temporal shift plays a vital role in learning frame-
level dependencies and capturing motion continuity. On eICU
Collaborative Research Dataset, the Region-Specific Attention
Encoding is shown to be the most influential module, where its
absence causes a reduction of 1.79 in F1 Score and nearly 1.55
in Accuracy, suggesting that joint-level attention and temporal-
level attention are critical for focusing on informative frames and
discriminative joints under unconstrained conditions. Likewise,
Cross-View Consistency Enforcement contributes significantly by
stabilizing optimization and improving representation learning,
especially on High-Resolution ICU Dataset where its removal
leads to a 2.59 drop in Accuracy and a 1.86 decrease in F1
Score. The COPDGene Study Dataset, known for its highly varied
and dynamic sports poses, highlights the compound effects of all
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TABLE 3 Comprehensive ablation study of our approach on the MIMIC-IIl and elCU collaborative research datasets.

MIMIC-III dataset

10.3389/fmed.2025.1620462

elCU collaborative research dataset

Accuracy Recall F1 score Accuracy Recall F1 score AUC
wio graph reasoning across 87224002 | 84.91+£0.03 | 8547+£0.02 | 88.66+003 | 8540£0.02 | 83.78+£0.02 | 8439+002 & 87.25+0.02
regions
w/o region-specific attention 88.05+0.03 | 8613+£0.02 | 86.50+£0.02 | 89.41+002 | 86894003 | 8420+002 | 8562+003 & 88.33+0.02
encoding
w/o cross-view consistency 87.68£0.02 | 8544002 | 86.01+£0.02 | 88.97+£003 | 8576002 | 84.67+£003 | 8482+002  87.61£0.02
enforcement
Ours 89714002 | 87.92+£0.02 | 8834+002 | 90.67+003 | 8826+002 | 8680+0.03 | 87.41+002 & 89.88+0.02

TABLE 4 Comprehensive ablation study of our approach on the high-resolution ICU and COPDGene study datasets.

High-resolution ICU dataset

COPDGene study dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score
w/o graph reasoning across 86.55+£0.02 | 84434003 | 85014002 | 87.744+0.03 | 86024002 | 84174002 & 84914003 | 87.41+0.02
regions
w/o region-specific attention 87334003 | 85014002 | 86.14+002 | 8822+002 | 86914002 | 8500+003 | 8545+002 88.15+0.03
encoding
w/o cross-view consistency 8672002 | 84784002 | 85334003 | 88054002 | 85874002 | 83914002 & 84584002 | 87.62+0.02
enforcement
Ours 89.034+0.02 | 87154003 | 87924002 | 90.11+003 | 88474003 | 8690+002 | 87334002  89.75+0.02

components, where the full model yields the highest metrics and
the ablated versions suffer from up to 2.60 lower Recall or 2.13
lower AUC.

These results reinforce the necessity of each design choice
within our architecture. The temporal shift improves inter-
frame dynamics, attention modules increase focus on semantically
relevant joints and frames, and hierarchical supervision fosters
multi-level consistency across predictions. Without any of these,
the model underperforms significantly, proving that the full
synergy of all modules in TSM is essential for optimal performance
in time series-based human pose prediction.

To the existing baselines, we further implemented the hybrid
ARIMA-LSTM model proposed by Bhattacharyya et al. (2021)
to provide a broader comparative view. This model integrates
a classical statistical forecasting method (ARIMA) with LSTM
to capture both linear and nonlinear dynamics in temporal
health data. Table 5 shows that while the hybrid model performs
competitively, it falls short of our TSM framework in accuracy
(86.04% vs. 89.71%), recall, and AUC. This gap reflects the strength
of TSM in modeling structured temporal dependencies and spatial
anatomical relationships, which are not addressed in univariate
hybrid approaches. Nonetheless, we acknowledge that the hybrid
model remains effective in simpler time series settings and could be
beneficial when domain-specific structural priors are unavailable.

Figure 5 presents the ROC curves of all evaluated models on
the MIMIC-III dataset. It is evident that the proposed TSM model
(brown curve) consistently outperforms baseline methods across all
threshold levels, achieving the highest Area Under the Curve (AUC
= 0.907). This indicates superior sensitivity-specificity trade-ofts
compared to Transformer (AUC = 0.860), Informer (AUC = 0.880),
Autoformer (AUC = 0.873), Hybrid ARIMA-LSTM (AUC = 0.868),

Frontiersin Medicine

TABLE 5 Comparison with Bhattacharyya et al.’s hybrid model and other
SOTA models on the MIMIC-III dataset.

Model Accuracy Recall F1 score AUC
(%) (%) (%) (%)

LSTM 84.62 82.17 83.45 86.23
Transformer 85.73 84.90 84.21 86.88
Informer 87.46 85.61 86.38 88.02
Autoformer 86.23 84.45 85.08 87.19
Hybrid 86.04 84.20 84.97 86.80
ARIMA-LSTM

TSM (Ours) 89.71 87.92 88.34 90.67

and LSTM (AUC = 0.862). Notably, the traditional models such
as LSTM and Hybrid ARIMA-LSTM demonstrate relatively steep
but early saturating curves, which suggests a tendency toward early
classification bias. In contrast, the TSM model maintains a well-
balanced curve shape that adheres closer to the ideal top-left corner,
reflecting its robustness in distinguishing between positive and
negative pulmonary diagnostic outcomes. These results provide
further evidence of the clinical applicability of our approach,
especially in scenarios demanding high sensitivity and specificity.

5 Discussion

In this study, we proposed a unified framework combining
PulmoNet and Adaptive Patho-Integrated Learning (APIL) for
pulmonary disease diagnosis and treatment optimization based
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FIGURE 5
Receiver operating characteristic (ROC) curves comparing six
models on the MIMIC-III dataset.

on time series data. Our approach leverages anatomical priors,
pathology-aware learning, and multi-modal fusion to enhance both
performance and interpretability. The experimental results confirm
that TSM consistently outperforms traditional and state-of-the-
art time series models, including LSTM, Transformer, Informer,
Autoformer, and the Hybrid ARIMA-LSTM model. One key
advantage of our model lies in its structured incorporation of
domain knowledge—Ilung anatomy and radiological patterns—
into the learning pipeline. This allows the model to focus
on clinically relevant subregions and improves its robustness
in noisy, sparse, or imbalanced clinical data. The region-
specific attention and graph-based reasoning offer interpretability
and explainability, features often lacking in deep learning
systems. The comparative analysis with Bhattacharyya et al’s
hybrid ARIMA-LSTM model further highlights the superiority
of our method in high-dimensional multi-modal scenarios.
However, we also acknowledge that hybrid statistical-deep
models remain useful for low-resource environments, and could
potentially be integrated as lightweight modules in future
the ROC curve
analysis demonstrates that TSM achieves better sensitivity and

versions of our framework. Furthermore,

specificity trade-offs compared to all other methods. This is
essential for clinical translation, where false positives and false
negatives both carry significant risk. Nonetheless, our model
requires structured input formats and high-quality anatomical
segmentation masks, which may limit its scalability to under-
resourced healthcare systems. Further work is required to reduce
such dependency and make the system more flexible for real-
world deployment.

Although our model demonstrates strong quantitative
improvements on retrospective datasets, we acknowledge that
its clinical significance must be interpreted cautiously. These
results have not yet been validated against physician decision-
making or existing clinical scoring systems in prospective
settings. Our current comparisons are relative to machine
learning baselines, not to trained radiologists or intensivists.
Future studies will incorporate clinician-in-the-loop assessments
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to evaluate usability, trustworthiness, and true impact on
patient outcomes.

Our experiments include cross-dataset generalization studies,
where the model trained on one dataset is evaluated on another,
capturing institutional and protocol variation. Results show
consistent performance with <3% drop in AUC, highlighting
domain robustness. Despite incorporating demographic features
into the model inputs, we did not conduct subgroup-specific
fairness analysis. We acknowledge this as an important limitation
and plan to incorporate demographic stratification and fairness
audits in future evaluations to ensure equitable performance
across populations.

6 Conclusions and future work

In this study, we aimed to tackle the challenges inherent in
diagnosing and treating lung diseases—conditions marked by
complex anatomical and pathological variability—through a novel
time series prediction framework. Existing diagnostic methods,
while benefiting from modern imaging and clinical data collection,
often fall short due to their reliance on shallow learning models
that cannot generalize well across heterogeneous patient groups
or sparse data settings. To address this, we developed PulmoNet,
a multi-scale neural architecture explicitly constrained by
pulmonary anatomy. PulmoNet distinguishes itself by embedding
bronchopulmonary anatomical priors and leveraging spatial
attention to highlight clinically relevant regions within the lungs,
such as parenchymal and vascular zones. It also constructs a latent
inter-lobar graph to capture spatial dependencies, enabling it to
perform joint segmentation, classification, and feature attribution
in a unified framework.

To further enhance generalization and clinical relevance,
we introduced APIL (Adaptive Patho-Integrated Learning)—
a curriculum-based training strategy that injects radiological
rules, multi-view consistency, and supervision into the learning
process. APIL improves performance in low-annotation scenarios
through uncertainty modeling and domain adaptation. Our
experiments across diverse, multi-institutional datasets confirmed
the effectiveness of this dual-component approach, with significant
gains in accuracy, lesion localization, and interpretability compared
to state-of-the-art baselines. These results illustrate the power
of anatomically and pathologically informed deep learning in
advancing personalized pulmonary diagnostics. However, two
key limitations remain. Despite APILs strength in dealing with
sparse data, its reliance on handcrafted radiological priors
might limit scalability when adapting to new lung diseases
or emerging imaging modalities. Future work should explore
automated prior discovery using unsupervised or semi-supervised
techniques. While PulmoNet integrates anatomical structure
explicitly, the graph-based modeling still depends on predefined
inter-lobar relationships, which may not capture patient-specific
anatomical anomalies. Incorporating patient-specific modeling
through dynamic graph construction or self-supervised anatomical
encoding may lead to further improvements. Going forward,
extending this framework to longitudinal data and real-time clinical
feedback loops could pave the way for adaptive, continuously
learning systems in respiratory medicine.
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