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Objectives: This study aimed to identify critical risk factors for acute kidney injury

(AKI) following cardiac surgery. By integrating patient data from the MIMIC-IV

database with large language models (LLMs) and machine learning algorithms,

we ensured the clinical relevance of the selected risk factors, providing robust

insights for the early identification and intervention of postoperative AKI.

Methods: Intensive care unit (ICU) data of patients from the MIMIC-IV database

undergoing cardiac surgery were analyzed. Lasso regression and random

forest algorithms were used to select significant predictive features from

high-dimensional data. Model evaluation involved 10-fold cross-validation

and metrics including accuracy, sensitivity, specificity, and the area under

the curve. To enhance clinical relevance, LLMs-simulated expert judgment in

cardiology and nephrology, which was further validated through discussions

with clinical experts.

Results: In the cohort consisting of 4,565 patients, a total of 113 important and

shared risk factors for AKI were identified, including variables such as anion gap,

arterial partial pressure of oxygen (PaO2), and fraction of inspired oxygen (FiO2).

Among these, 18 key variables were identified as postoperative AKI predictors

via machine learning and LLMs-simulated expert validation. These included

anchor age, Creatinine (serum), BUN (Blood Urea Nitrogen), Potassium (serum),

Sodium (serum), Lactic Acid, Troponin-T, Furosemide (Lasix), Vancomycin

(Random), Gentamicin (Trough), Albumin 5%, ART BP Mean, Cardiac Output

(thermodilution), Brain Natriuretic Peptide (BNP), Absolute Count - Lymphs,

Absolute Count - Monos, and Absolute Count - Neuts. The integration of

LLMs with machine learning algorithms proved effective in accurately identifying

clinically relevant risk factors.

Conclusion: The proposed risk prediction approach for postoperative AKI

following cardiac surgery, based on the collaborative analysis of machine

learning and large language models (LLMs), effectively identified and validated

key clinical risk factors. By simulating expert clinical reasoning, the LLMs

significantly enhanced the medical relevance of feature selection and improved

the clinical interpretability of the model. This approach provides a solid
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theoretical and practical foundation for the precise early identification and 

clinical intervention of postoperative AKI in cardiac surgery patients. 

KEYWORDS 

acute kidney injury (AKI), large language models (LLMs), lasso regression, random forest, 
MIMIC-IV database 

1 Introduction 

Acute kidney injury (AKI) is a common and serious clinical 
syndrome, especially among patients in the intensive care unit 
(ICU) (1). The occurrence of AKI not only significantly increases 
the patient’s hospitalization time and medical expenses, but is 
also closely related to high short-term and long-term mortality. 
According to statistics, the incidence of AKI in ICU patients can 
be as high as 40%–60%, with about 10%–15% of these patients 
requiring renal replacement therapy (RRT). Therefore, eectively 
preventing, diagnosing, and intervening in AKI promptly is of great 
significance for improving the early identification rate of AKI after 
cardiac surgery and optimizing clinical intervention (2). 

Currently, the diagnosis of AKI mainly relies on the increase 
in serum creatinine (SCr) levels and the decrease in urine volume 
(3). However, these traditional indicators have certain limitations. 
First, the increase in SCr usually lags behind the actual damage 
to renal function, resulting in the early identification of AKI not 
being timely enough. Second, urine volume is aected by many 
factors, such as fluid management and the use of diuretics such 
as furosemide, and it is challenging to accurately assess urine 
volume. In addition, traditional AKI risk scoring systems (such as 
the SOFA score and SAPS score) are based on linear regression 
model, which are diÿcult to fully capture complex non-linear 
relationships and high-dimensional data features (4). In recent 
years, the application of LLMs (large-scale language model) and 
machine learning technology in the medical field has gradually 
increased, especially in disease prediction and diagnosis (5). These 
technologies can eectively process and analyze structured data, 
mine complex patterns and potential relationships within the data, 
and thus provide support for clinical decision-making. Therefore, 
this study used LASSO and random forest machine learning 
methods combined with LLMs to analyze the influencing factors 
of AKI within 48 h after cardiac surgery, and employed LLMs to 
simulate the judgment of senior medical heart and kidney experts to 
improve the medical relevance of feature selection and the clinical 
interpretability of the model. 

2 Objects and methods 

2.1 Data source 

The MIMIC-IV database contains multidimensional clinical 
data of more than 60,000 ICU patients, covering the patients’ basic 
demographic characteristics, pathological diagnosis, treatment 
process, laboratory test results, drug use, imaging examinations, 

vital signs monitoring, and ICU treatment details (6, 7). All data 
are strictly de-identified to ensure the maximum protection of 
patient privacy and strictly comply with the privacy protection 
requirements of the United States Health Insurance Portability and 
Accountability Act (HIPAA). In this study, the data of patients who 
underwent cardiac surgery in the ICU were screened, focusing on 
the occurrence of postoperative AKI and its related risk factors. 
The included patient data included preoperative and intraoperative 
clinical indicators (see Table 1). 

The diagnosis of AKI is primarily based on the three stages 
defined by the Kidney Disease: Improving Global Outcomes 
(KDIGO) guidelines (see Table 2). 

2.2 Data extraction and processing 

Data from the MIMIC-IV database were collected, including 
age, gender, marital status, and death status; preoperative 
medication status, including medication time and dosage; and 
laboratory indicators such as serum creatinine, pulmonary 
capillary wedge pressure, mean arterial blood pressure, diastolic 
blood pressure, serum bicarbonate, anion gap, C-reactive 
protein, hematocrit, vancomycin level, blood oxygen saturation, 
phosphorus, sodium ion (serum), sodium ion (whole blood), 
body weight, total arterial carbon dioxide, red blood cells, arterial 
blood pH, chloride ion (serum), etc., (9, 10). This study extracted 
patient data within 48 h following cardiac surgery, including both 
patients who developed AKI and those who did not (11). For 
patients with AKI, staging was performed according to stages 1, 
2, and 3. To better predict the occurrence of postoperative AKI 
using preoperative clinical indicators, preoperative laboratory test 
results and medication information were extracted as predictive 
variables. Missing values for all variables were imputed using 
multiple imputation methods (12). 

This study cleaned the patient information extracted from 
the MIMIC database. To ensure data quality and consistency, 
Z-score standardization was used as a data preprocessing method 
to standardize clinical data from dierent sources and high 
dimensions, removing the impact of dimensions and ensuring the 
balanced contribution of each feature in model training. 

2.3 Building a random forest machine 
learning prediction model 

In the random forest analysis, the full set of preselected 
clinical variables—covering both potential confounders and key 

Frontiers in Medicine 02 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1618222
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1618222 November 3, 2025 Time: 20:38 # 3

Li et al. 10.3389/fmed.2025.1618222 

TABLE 1 Study subject selection criteria (8). 

Inclusion criteria Exclusion criteria 

Those who meet the AKI-related diagnostic 

requirements in the “Guidelines for the 

Management of AKI in the Perioperative 

Period and ICU” 

Kidney transplant recipient 

Patient age: 18–80 years People with cognitive 

impairment or mental illness 

Patient hospital stay > 48 h Those with kidney-related 

diseases or medical history 

Underwent heart surgery during ICU stay Family history 

TABLE 2 Definition and staging of acute kidney injury (AKI). 

Stage SCr criteria Urine output criteria 

Stage 1 Increase in 

SCr ≥ 0.3 mg/dL 

(≥ 26.5 µmol/L), or 

increase in SCr to ≥ 1.5 

times baseline 

Urine output < 0.5 mL/kg/h 

for ≥ 6 h 

Stage 2 Increase in SCr to ≥ 2 

times baseline 

Urine output < 0.5 mL/kg/h 

for ≥ 12 h 

Stage 3 Increase in SCr to ≥ 3 

times baseline, or 

SCr ≥ 4.0 mg/dL 

(≥ 353.6 µmol/L) 

No specific urine output 
threshold, or initiation of renal 

replacement therapy (RRT) 

predictors—was entered into the model without prior exclusion, 
allowing the algorithm to internally assess their relative importance. 
Random forests are well-suited for handling continuous (float-
type) data, particularly in capturing non-linear relationships and 
feature interactions. Unlike traditional linear models that rely on 
the assumption of linearity among features, random forests build 
multiple decision trees and aggregate their results, enabling the 
eective identification and modeling of complex patterns within 
continuous data. By randomly selecting subsets of features and 
samples during training, random forests reduce the need for strong 
assumptions or extensive preprocessing of float-type variables, 
thereby enhancing the model’s adaptability and predictive accuracy 
(13, 14). 

In addition, in terms of feature importance assessment, random 
forests can quantify the contribution of each feature to the 
prediction results, help identify key factors closely related to 
AKI risk, and thus provide strong support for clinical decision-
making (15). 

2.4 Building the LASSO prediction model 

The target variable in this study is closely associated with 
the occurrence of AKI. All candidate predictors, including 
potential confounders, were initially included simultaneously as 
multivariable inputs. Subsequently, Lasso regression was applied 
for variable selection. When dealing with high-dimensional data 
that contain numerous clinical features, Lasso regression serves 
as a commonly used feature selection method. By applying 
L1 regularization, it eectively identifies the features most 
relevant to the target variable. In datasets with redundant or 

irrelevant features, Lasso regression automatically shrinks the 
coeÿcients of less important variables to zero, thereby reducing 
model complexity and improving computational eÿciency. When 
applied to numerical data, Lasso regression can eectively assess 
the importance of continuous variables, demonstrating strong 
adaptability in high-dimensional settings. Its L1 regularization also 
helps prevent overfitting, a common issue in high-dimensional 
data, thus enhancing the model’s generalizability and maintaining 
robust predictive performance on new data. The predictive features 
selected through Lasso regression contribute to improved model 
accuracy. In the context of AKI risk prediction, identifying key 
variables closely related to AKI onset is of great clinical significance, 
as it supports early recognition and targeted intervention in 
clinical practice. In this study, Lasso regression was employed 
to identify clinical indicators associated with the occurrence of 
dierent stages of AKI following cardiac surgery. By optimizing 
the regularization parameter λ, the model achieves a balance 
between fitting performance and complexity. The selection of 
the λ value was optimized through cross-validation to achieve 
the best fitting eect and control the model complexity. During 
the training process, the hyperparameters of the Lasso regression 
model (including λ) were carefully tuned through grid search 
(GridSearchCV) or other optimization methods to ensure high 
prediction performance under the optimal configuration. 

In addition, to ensure that the label distribution of the 
training set and the test set is consistent, stratified sampling 
(stratify = y) is used to ensure that the proportion of each category 
in both is the same. 

2.5 Statistical analysis 

Continuous variables were summarized as median 
(interquartile range, IQR) and compared between AKI and 
non-AKI groups using the Mann–Whitney U test; if normally 
distributed by the Shapiro–Wilk test, they were reported as 
mean ± SD and compared with Student’s t-test. Categorical 
variables were presented as n (%) and compared using Pearson’s 
chi-square test (Fisher’s exact test when expected cell counts 
&lt;5). Two-sided P-values &lt;0.05 were considered statistically 
significant. Where appropriate, P-values were adjusted for multiple 
testing using the Benjamini–Hochberg false discovery rate 
(FDR) procedure. 

To estimate adjusted associations, we fitted multivariable 
logistic regression models with postoperative AKI (yes/no) as 
the dependent variable. Candidate predictors included those 
showing between-group dierences in univariate tests and those 
retained a priori for clinical plausibility and LLMs-simulated expert 
validation. The models were adjusted for potential confounders 
(age, sex, baseline serum creatinine, and type of cardiac surgery). 
Linearity in the logit for continuous predictors was assessed 
(locally weighted smoothed plots); when violated, variables were 
modeled using restricted cubic splines or clinically meaningful 
categories. Multicollinearity was evaluated using variance inflation 
factors (VIF), and predictors with VIF &gt;5 were excluded or 
combined. Missing data were handled via multiple imputation by 
chained equations (m = 5); regression estimates were pooled with 
Rubin’s rules. Because continuous predictors were z-standardized 
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during preprocessing, adjusted odds ratios (ORs) correspond to 
a 1-SD increase unless otherwise specified. Adjusted ORs with 
95% confidence intervals (CIs) were reported and visualized 
in a forest plot. 

2.6 LLMs - enhanced AKI risk mechanism 
analysis 

This study used large language models (LLMs) to simulate the 
thinking process of clinicians and deeply analyzed the relationship 
between the selected feature variables and the occurrence of 
AKI. LLMs systematically evaluated the correlation between 
preoperative indicators and postoperative AKI by deeply analyzing 
the physiological mechanisms of each variable and integrating 
clinical medical knowledge. Specifically, LLMs not only analyze 
the correlation between features through quantitative model, but 
also explain how these variables aect kidney function and the 
occurrence of AKI through qualitative reasoning. 

When analyzing each characteristic variable, LLMs first 
analyzed the mechanism of action of the variable in detail 
from a physiological perspective, combined with known medical 
knowledge. For example, advanced age, as one of the important 
factors aecting AKI, may lead to an increased incidence 
of postoperative AKI by reducing renal reserve function and 
increasing the risk of complications. Elevated preoperative serum 
creatinine reflects the impaired state of baseline renal function, 
suggesting that patients may have a higher risk of renal damage. 
In addition, the use of vancomycin has been identified as a drug-
induced nephrotoxicity mechanism, and a decrease in hematocrit 
may aect the oxygen supply to the kidneys, further aggravating 
the occurrence of AKI. 

Through positive and negative bidirectional demonstration of 
the above factors, the study found that the increased preoperative 
levels of these indicators were significantly positively correlated 
with the incidence of postoperative AKI (P < 0.05). At the same 
time, the pathways of widening of the anion gap (possibly related 
to undiagnosed metabolic acidosis) and increased inspired oxygen 
concentration (FiO2) (possibly reflecting the degree of preoperative 
lung dysfunction) have potential physiological explanations, but 
due to the lack of suÿcient clinical data support, these factors are 
still labeled as uncertain factors, and more clinical data are needed 
to further verify their role in the occurrence of AKI. 

For example, LLMs pointed out through the analysis of 
increased serum creatinine that the increase in serum creatinine 
reflects the state of renal failure, suggesting that patients may 
be at a higher risk of AKI. In addition, the impact of changes 
in serum potassium on electrolyte balance and the increased 
international normalized ratio (INR) that may cause bleeding and 
hypoperfusion, thereby increasing the risk of AKI, was further 
analyzed and confirmed by LLMs. In the risk assessment stage, this 
study combined machine learning algorithms (such as LASSO and 
random forest) with the results of LLMs analysis to rank the degree 
of influence of each variable on the occurrence of AKI to better 
identify and evaluate potential high-risk factors. 

In order to improve the reliability of the conclusions, this 
study used LLMs after memory reset to verify the analysis 
process multiple times. By resetting the model’s memory, it 

is ensured that the LLMs’s reasoning process is not disturbed 
by the previous analysis, thereby further verifying the logical 
rationality of the original conclusion. The model confirmed the 
rationality of the analysis process through verification feedback 
(the feedback was “yes”). In order to enhance the stability and 
consistency of the results, this study also performed consistency 
screening through two independent machine learning algorithms 
(LASSO and random forest) to ensure the consistency of the 
screened variables in dierent algorithms, thereby enhancing the 
reliability of the results. 

Large language models not only simulate the decision-making 
process of doctors, but also help analyze the mechanism of action 
of each variable. According to the degree of influence of the 
variable on the occurrence of AKI, LLMs provides corresponding 
intervention recommendations for each risk factor. Through this 
simulated decision-making process, LLMs can provide clinicians 
with more accurate risk assessments, thereby helping doctors make 
more scientific clinical decisions. 

2.7 Specific research methods for risk 
prediction of AKI after cardiac surgery 
based on large-scale language models 
(LLMs) 

With the rapid advancement of large language models (LLMs), 
particularly the emergence of cutting-edge models such as GPT-
4.5 and Gemini, new research pathways and tools have become 
available for biomedical data analysis. In this study, we propose a 
novel AKI risk prediction method for patients undergoing cardiac 
surgery, based on iterative validation across multiple LLMs. These 
models include both cloud-based LLMs (ChatGPT-4.5, ChatGPT-
4o, Google Gemini 2.5) and locally deployed LLMs (DeepSeek-
R1, Gemma 3 27B, Qwen 3 30B), which were used to simulate 
clinical reasoning by computationally mimicking the decision-
making processes of physicians. 

To systematically screen and validate predictors, an LLMs-
based consensus workflow was applied. Variables with concordant 
classifications from at least four LLMs were retained, with the 
majority label assigned as the final risk category, whereas those 
not meeting this criterion were deemed irrelevant. The resulting 
consensus list was exported as the final dataset for subsequent 
model development and interpretability analyses. All online queries 
in this study were automated through API interfaces, ensuring 
eÿcient and scalable data interaction. 

2.7.1 Prompt design for biological function 
analysis 

In order to ensure that LLMs can accurately analyze the 
relationship between changes in key clinical indicators before and 
during surgery (such as serum creatinine, blood urea nitrogen 
(BUN), sodium, potassium, etc.) and postoperative AKI, this 
study designed a precise prompt. The prompt requires LLMs to 
simulate the role of an expert in AKI risk assessment after cardiac 
surgery, analyze how changes (increase or decrease) in these clinical 
indicators aect the occurrence of postoperative AKI, and describe 
their mechanism of action in biological processes. To ensure the 
scientificity and objectivity of the analysis, the prompt clearly 
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requires LLMs to remain neutral. If the role of a clinical indicator is 
unclear, it will be marked as “unclear.” The specific contents of the 
prompt are as follows: 

“Assume that you are an expert in the field of AKI risk 
analysis after cardiac surgery and are well-versed in the impact 
of preoperative and intraoperative clinical indicators on the 
occurrence of postoperative AKI. Please analyze how changes 
(increase or decrease) in the following clinical indicators during 
surgery are related to the risk of postoperative AKI, and describe 
the specific biological processes by which they play a role. If the role 
of a clinical indicator is unclear, please mark it as “unclear.” The 
following is a list of clinical indicators: (list of clinical indicators).” 

2.7.2 Reducing hallucinations in LLMs output 
In order to solve the common illusion phenomenon in LLMs, 

that is, the model generates inaccurate or inconsistent content, a 
verification method based on iterative verification and similarity 
comparison is adopted. This method ensures the reliability and 
scientificity of each output through multiple verifications and 
comparisons of results. The specific verification steps are as follows: 

First, LLMs generate preliminary output based on the provided 
prompts, describing the relationship between changes in each 
clinical indicator and the risk of postoperative AKI. Then, the 
generated preliminary output is combined with the marker name 
to form a second input, requiring the model to re-evaluate its 
eectiveness. The prompts for verification are as follows: 

“Please evaluate whether the clinical indicator name and 
functional description in the input match reasonably. If reasonable, 
please answer “yes”; if not reasonable, please answer “no” and 
provide the correct biological role of the clinical indicator, 
especially its role in the occurrence of postoperative AKI. The 
specific input is as follows: (clinical indicator name) + initial 
results.” 

2.7.3 Compilation and synthesis of results 
After multiple verifications and iterations of the LLMs 

connection API, the final functional description of each clinical 
indicator was obtained, which clarified the role of each indicator 
in the occurrence of postoperative AKI. The verified results will 
be summarized to form a comprehensive assessment of the risk 
of postoperative AKI. This process ensures that reliable clinical 
indicator analysis can be used to predict the risk of AKI after 
cardiac surgery, provide accurate risk assessment, and provide 
a scientific basis for clinical decision-making (see Figure 1). 
A detailed workflow is provided in Supplementary materials. 

3 Results 

3.1 Patient extraction results and 
multi-model analysis 

In the MIMIC-IV database, there are 25,837 ICU patients 
who underwent surgery, with 6,247 undergoing cardiac surgery. 
After excluding 1,229 patients with preoperative AKI, the first 
hospitalization details were retained for patients with repeated 
admissions. Additionally, 453 patients who did not have AKI 

measurements within 48 h were excluded. Ultimately, 4,565 
patients were included in the study (see Figure 2). 

To identify clinical features strongly associated with the 
occurrence of AKI at dierent stages (Stage 1, Stage 2, Stage 3), 
independent predictive models were constructed for each AKI 
stage. All models were trained using only preoperative clinical 
variables to evaluate their importance in predicting AKI. 

To identify clinical features associated with dierent stages 
of AKI (Stage 1, Stage 2, Stage 3), we constructed separate 
prediction models for each stage. All models were developed using 
only preoperative clinical variables to ensure real-world clinical 
applicability and early risk prediction. Feature importance in the 
random forest models was quantified based on the contribution 
of each variable to decision tree splits. Higher importance 
scores indicated stronger predictive relevance. To ensure optimal 
model performance, the max_features parameter was fine-tuned. 
To reduce potential confounding, we selected the top-ranking 
features for each AKI stage and compared them using a Venn 
diagram to extract shared predictive variables across all three 
stages. These consistently important variables were considered 
common predictors of AKI, reflecting their robust predictive 
power across the clinical spectrum of AKI. Representative features 
included variables related to fluid therapy, electrolyte management, 
laboratory markers, medications, and hemodynamic parameters. 

In parallel, LASSO regression models were developed 
separately for each AKI stage. Using L1 regularization, these 
models eectively reduced high-dimensional feature spaces by 
shrinking the coeÿcients of irrelevant or redundant variables 
toward zero. This approach not only minimized overfitting but 
also enhanced model generalizability. Notably, as AKI severity 
increased, the number of significant predictors decreased, 
suggesting that advanced AKI stages can be predicted with fewer 
but more decisive variables. 

To further determine stage-independent predictors, the top 
features identified by the LASSO models for each stage were 
compared using Venn diagram analysis. The intersection revealed 
a set of core clinical indicators consistently associated with AKI 
across all stages. These features encompassed various domains, 
including fluid balance (e.g., Sodium Chloride 0.9% Flush, 
Potassium Chloride, Free Water), medication use (e.g., Propofol, 
Atorvastatin, Morphine Sulfate), laboratory results [e.g., Creatinine 
(serum), BUN, Lactic Acid, Chloride (serum)], and vital signs or 
respiratory parameters [e.g., Arterial Blood Pressure Mean, PEEP 
Set, Inspired O2 Fraction, Cardiac Output (thermodilution)]. The 
integration of these core indicators laid the foundation for robust 
and interpretable AKI risk prediction models applicable to the 
perioperative cardiac surgery setting. 

3.2 Model evaluation 

In order to evaluate the predictive performance of multiple 
machine learning model constructed in this study, the 10-fold 
cross-validation method was used. In each round of cross-
validation, the model was trained using the training set and 
evaluated on the validation set. Each round of the entire 10-
fold cross-validation process outputs the corresponding evaluation 
indicators, and finally, the overall performance and stability 
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FIGURE 1 

The process of querying the large language models (LLMs). 

of the model are obtained by averaging all 10-fold cross-
validation results. In order to comprehensively measure the ability 

of the model in predicting the occurrence of AKI, multiple 

standardized evaluation indicators were calculated, including 

accuracy, sensitivity, specificity, precision, as well as the receiver 

operating characteristic curve (ROC) and the area under the ROC 

curve (AUC). The AUC values are all greater than 0.85, and 

the model performance has high reliability, strong discrimination 

ability, and stable predictive performance in the AKI prediction 

task (see Figure 3 and Table 3). 
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FIGURE 2 

Flowchart of cohort selection from MIMIC-IV. 

3.3 Validation of clinical relevance of 
predictive factors using large language 
models (LLMs) 

In this study, a variety of advanced large language models 
(LLMs), including ChatGPT-4.5, ChatGPT-4o, Google Gemini 
2.5, DeepSeek-R1, Gemma 3 27B, and Qwen 3 30B, were used 
to conduct in-depth clinical validation of the predictive factors 
identified by the LASSO and random forest models. These LLMs, 
built on extensive medical knowledge and literature, independently 
evaluated and confirmed the clinical relevance of each predictive 
factor in relation to postoperative AKI following cardiac surgery. 

Through comprehensive analysis, the LLMs consistently 
indicated that certain predictive factors—such as 0.9% Sodium 
Chloride, 5% Dextrose, Acetaminophen, Activated Clotting Time, 
Acyclovir, Amiodarone, Arterial CO2 Pressure, Arterial O2 

Pressure, Atorvastatin, and Dexmedetomidine (Precedex)—though 
frequently used in clinical practice, lack a clear pathophysiological 
mechanism or direct association with the development of 

postoperative AKI. These variables were interpreted as indicators of 
routine clinical management or general drug administration rather 
than true causative or predictive factors of renal injury, and thus 
were excluded from the final model. 

To ensure the accuracy of prediction, the LLMs further 
confirmed 18 key clinical variables as being highly relevant to 
postoperative AKI. These variables are clinically meaningful and 
closely related to the biological mechanisms underlying AKI. 
Among the final predictive factors, age (anchor_age) was widely 
recognized as a fundamental demographic risk factor. With 
increasing age, renal structure and function decline, nephron 
number decreases, and glomerular filtration rate drops, reducing 
renal reserve capacity and making elderly patients more susceptible 
to postoperative AKI. 

In terms of metabolic and electrolyte indicators, serum 
creatinine and blood urea nitrogen (BUN) are essential markers 
of baseline renal function. Elevated levels often indicate pre-
existing renal impairment and serve as strong predictors of 
postoperative AKI. Additionally, serum potassium and serum 
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FIGURE 3 

The 10-fold cross-validation method (A) and receiver operating characteristic (ROC) curves of various models for predicting postoperative acute 
kidney injury (AKI) in cardiac (B). 

sodium abnormalities reflect electrolyte disturbances that may 
disrupt nephron function or contribute to further renal damage. 
Lactic acid elevation suggests tissue hypoperfusion or hypoxia, 
making it a sensitive marker of low organ perfusion. Elevated 
Troponin-T, frequently seen in perioperative myocardial injury, 
may reduce cardiac output and indirectly impair renal perfusion, 
thus exacerbating renal dysfunction. 

Regarding medication use, Furosemide (Lasix), a commonly 
used diuretic, can cause hypovolemia or tubular injury if 
administered excessively, making it an independent risk factor 
for AKI. Among antibiotics, both Vancomycin (Random) and 
Gentamicin (Trough) are well-documented nephrotoxic agents, 
and their use is significantly associated with increased AKI risk. 
In addition, inappropriate administration of Albumin 5% may 
indicate imbalances in fluid management strategies, indirectly 
reflecting a negative impact on renal perfusion. 

In the aspect of hemodynamic parameters, reduced arterial 
blood pressure mean (ART BP Mean) may lead to insuÿcient 
glomerular perfusion and is a direct trigger for AKI. Decreased 
cardiac output (thermodilution) indicates compromised cardiac 
function, which significantly aects renal perfusion. Brain 
Natriuretic Peptide (BNP), a sensitive biomarker of volume 
overload and heart failure, suggests postoperative volume 

imbalance or cardiac dysfunction and is indirectly associated with 
AKI development. 

For immune response markers, abnormal counts of 
lymphocytes (Absolute Count - Lymphs), monocytes (Absolute 
Count - Monos), and neutrophils (Absolute Count - Neuts) are 
commonly observed in postoperative inflammatory or infectious 
states. These indicate immune system activation, which plays 
a critical role in AKI pathogenesis. Persistent inflammation is 
thought to promote tubular damage and interstitial fibrosis, 
making changes in immune cell counts important indicators of 
AKI risk. Additional details are available in Supplementary Table 1. 

Through multi-model iterative analysis and verification, the 
use of LLMs in this study eectively ensured the clinical validity 
and scientific soundness of selected predictive factors. This 
validation process not only excluded variables lacking direct clinical 
significance but also confirmed a core set of features strongly linked 
to AKI, thereby enhancing the interpretability and reliability of the 
prediction model. Ultimately, this provides clinicians with a robust 
foundation for accurate AKI risk assessment, improving prevention 
and intervention strategies in the postoperative setting. 

To further quantify the statistical dierences in these clinically 
validated variables between the AKI and non-AKI groups, chi-
square tests were conducted for categorical variables. The analysis 
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TABLE 3 Model evaluation results. 

Model Accuracy Sensitivity Specificity Precision AUC (area under the curve) 

Random forest 0.76124 0.85247 0.72144 0.72144 0.87769 

Lasso regression 0.75781 0.73342 0.77124 0.77124 0.72144 

TABLE 4 Chi-square test table. 

Variable (unit) All 
patients 

All 
patients 

range 

Non-AKI 
group 

Non-AKI 
group 
range 

AKI 
group 

AKI group 
range 

Z/χ2 

value 
P-value 

anchor_age 67.00 18.00–91.00 66.00 20.00–91.00 68.00 18.00–91.00 30.99 < 0.001 

ART BP mean 71.75 32.00– 

297.00 

71.75 42.00–77.00 71.75 32.00–297.00 36.47 < 0.001 

Absolute count - Lymphs 1.32 0.00–42.25 1.32 0.00–29.96 1.32 0.00–42.25 4.10 0.043 

Absolute count - Monos 0.92 0.00–6.66 0.92 0.00–6.66 0.92 0.00–4.23 112.38 < 0.001 

Absolute count - Neuts 12.22 0.02–47.34 12.22 1.22–37.93 12.22 0.02–47.34 139.46 < 0.001 

Albumin 5% 0.00 0.00– 

1000.00 

0.00 0.00–500.00 0.00 0.00–1000.00 516.51 < 0.001 

Arterial blood pressure mean 72.95 15.00– 

150.00 

72.95 15.00– 

150.00 

72.95 18.00–149.00 2.81 0.093 

BUN 37.24 2.00–186.00 37.24 2.00–163.00 37.24 4.00–186.00 90.96 < 0.001 

Brain natiuretic peptide 

(BNP) 
12332.69 244.00– 

68544.00 

12332.69 254.00– 

61696.00 

12332.69 244.00– 

68544.00 

4.31 0.038 

Cardiac output 
(thermodilution) 

5.11 3.03–8.07 5.11 3.03–5.11 5.11 4.18–8.07 5.48 0.019 

Creatinine (serum) 2.29 0.00–15.70 2.29 0.30–11.60 2.29 0.00–15.70 187.51 < 0.001 

Furosemide (Lasix) 0.00 0.00–250.00 0.00 0.00–250.00 0.00 0.00–200.00 1097.25 < 0.001 

Gentamicin (Trough) 1.48 0.40–3.70 1.48 0.40–2.00 1.48 0.40–3.70 0.19 0.666 

Lactic Acid 3.75 0.20–20.00 3.75 0.30–14.00 3.75 0.20–20.00 191.85 < 0.001 

Potassium (serum) 4.52 1.50–9.50 4.52 2.20–9.10 4.52 1.50–9.50 84.09 < 0.001 

Sodium (serum) 135.11 107.00– 

167.00 

135.11 120.00– 

161.00 

135.11 107.00–167.00 1.16 0.281 

Troponin-T 1.40 0.02–24.15 1.40 0.02–20.83 1.40 0.02–24.15 40.19 < 0.001 

Vancomycin (Random) 19.76 1.90–43.20 19.76 3.10–41.20 19.76 1.90–43.20 2.95 0.086 

showed that most predictors exhibited significant between-group 
dierences (P &lt; 0.05), supporting their strong association with 
postoperative AKI. Several variables did not reach statistical 
significance; however, they were retained as postoperative AKI risk 
factors based on established clinical relevance and confirmation 
through LLMs-simulated expert validation. Detailed results of the 
chi-square tests, including the distribution ranges, test statistics, 
and p-values for each variable, are presented in Table 4. 

The figure presents key predictors of AKI through a composite 
table combining a table and forest plot. The table section displays 
the means of each variable in the non-AKI and AKI groups, 
while the forest plot visually illustrates the impact of each variable 
on AKI risk using confidence intervals and odds ratios (ORs). 
Horizontal lines and circles represent the confidence intervals and 
OR values for each variable, with ORs > 1 marked by blue circles 
(indicating increased risk) and ORs < 1 marked by green circles 
(indicating reduced risk). Text labels directly display the OR values 
and their confidence interval ranges. The figure legend explicitly 
states the use of a logistic regression model and mentions covariates 

including age, sex, and comorbidities. A vertical reference line 
(OR = 1) is added to the right chart, along with a color-coded legend 
indicating the direction of risk, enabling clear presentation of AKI 
predictors and facilitating direct comparison of dierences between 
groups (see Figure 4). 

3.4 Construction of the AKI 
risk-prediction model 

By constructing an AKI risk prediction model (AKI RISK 
ASSESSMENT), the data was divided into a test set (30%) and a 
training set (70%). The model accuracy was as high as 72.87%, 
where the coeÿcients of each feature included the coeÿcient values 
of each feature [such as Anion gap, Creatinine (serum), etc.,], which 
represent the impact of each feature on the target variable (illness) 
(see Table 5). 

ARA = 
X 

i=1 

xi × weighti 
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FIGURE 4 

Odds ratios and their confidence intervals for important variables associated with acute kidney injury (AKI). 

TABLE 5 Prediction model feature values and their parameters. 

X Feature Weight 

X1 anchor_age (basic information) 0.07809 

X2 Creatinine (serum) (metabolism and 

electrolytes) 
0.26451 

X3 Furosemide (Lasix) (medication) −0.36554 

X4 Gentamicin (Trough) (medication) 0.02833 

X5 Albumin 5% (medication) −0.01347 

X6 Troponin-T (metabolism amd electrolytes) 0.00768 

X7 Vancomycin (Random) (medication) 0.01271 

X8 BUN (blood urea nitrogen) (metabolism and 

electrolytes) 
−0.04189 

X9 Potassium (serum) (metabolism and 

electrolytes) 
0.29116 

X10 Sodium (serum) (metabolism and electrolytes) 0.02379 

X11 Lactic acid (metabolism and electrolytes) 0.041416 

X12 ART BP mean (hemodynamics) −0.05194 

X13 Arterial blood pressure mean (hemodynamics) −0.00516 

X14 Cardiac output (thermodilution) 
(hemodynamics) 

0.00484 

X15 Brain natriuretic peptide (BNP) 
(hemodynamics) 

−0.01135 

X16 Absolute count - Lymphs (immune response) −0.00686 

X17 Absolute count - Monos (immune response) −0.01507 

X18 Absolute count - Neuts (immune response) −0.01569 

Formula 1: Aki risk assessment. 

3.5 Model interpretability and feature 
visualization analysis 

To improve the transparency, clinical interpretability, and 
decision support utility of the prediction model, we conducted 
comprehensive model interpretability and feature visualization 
analyses. These included feature correlation analysis, SHAP value 
interpretation, and multivariate correlation heatmaps. 

Feature correlation analysis demonstrated the strength and 
direction of linear associations between each variable and the 
AKI stage (Figure 5A). Creatinine (serum), lactic acid, and 
potassium (serum) showed the strongest positive correlations with 
AKI severity, suggesting their important roles in reflecting renal 
dysfunction and tissue hypoperfusion. Conversely, features such 
as furosemide (Lasix), albumin 5%, and sodium (serum) were 
negatively correlated with AKI stage, potentially indicating their 
association with volume management and treatment interventions. 

To explore potential multicollinearity and inter-feature 
relationships, we constructed a correlation heatmap using 
Pearson’s correlation coeÿcient (Figure 5B). While most variables 
demonstrated weak-to-moderate intercorrelations, we observed a 
notable positive correlation between serum creatinine and BUN 
(r = 0.39), as well as between absolute neutrophil and monocyte 
counts (r = 0.39), consistent with their shared physiological 
roles in renal function and immune response. Cardiac Output 
(thermodilution) and Gentamicin (Trough) do not display 
visible bars because their mean absolute SHAP values were 
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FIGURE 5 

Model interpretability and key feature visualization. (A) Correlation between each feature and acute kidney injury (AKI) stage (Stage 0–3). Positive 
values (blue) indicate association with more severe AKI, while negative values (red) indicate a protective or inverse relationship. (B) SHapley Additive 
exPlanations (SHAP) summary plot showing the average impact of top features on model predictions for each AKI stage. The color-coded bars 
represent AKI stage 1 (pink), stage 2 (blue), and stage 3 (olive green). (C) Pearson correlation heatmap among top predictive features. Red indicates 
strong positive correlation, blue indicates strong negative correlation, and white indicates no correlation. The color bar reflects the Pearson 
correlation coefficient ranging from −1 to +1.3. 

near zero at the plotting scale for some AKI stages. Both 
predictors were nevertheless retained based on external clinical 
validation (LLMs consensus plus nephrologist adjudication) and 
strong mechanistic plausibility—reduced cardiac output reflects 
renal hypoperfusion, while aminoglycosides (gentamicin) have 
well-described nephrotoxicity. 

For individualized prediction interpretability, we applied SHAP 
(SHapley Additive exPlanations) analysis, which estimates the 
marginal contribution of each feature to the model’s output for 
each AKI stage class (Figure 5C). The SHAP summary plot revealed 
that furosemide (Lasix), anchor_age, albumin 5%, lactic acid, 
and creatinine (serum) had the highest average impact across 
AKI severity classes (AKI stage 1–3), indicating these features 
play pivotal roles in AKI risk discrimination. Importantly, while 
anchor_age and creatinine were major contributors in all classes, 
some features such as BNP and neutrophil count showed stage-
specific influence, highlighting the heterogeneous pathophysiology 
of AKI progression. 

Collectively, the interpretability framework confirmed the 
clinical relevance and robustness of the selected features and 

provided clinicians with a transparent basis for understanding 
the model’s prediction process. This visualization strategy not 
only improved the model’s transparency but also reinforced the 
trustworthiness of AI-assisted decision-making in perioperative 
AKI risk management. 

4 Discussion 

This study focused on the risk prediction of AKI following 
cardiac surgery. Based on the MIMIC-IV database, machine 
learning models were constructed using LASSO regression 
and random forest algorithms. For the first time, multiple 
large language models (LLMs) were integrated to validate the 
clinical relevance of the selected predictive variables. The results 
demonstrated that this approach not only improved the scientific 
rigor and rationality of feature selection but also enhanced 
the clinical interpretability and practical applicability of the 
predictive models. 
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While conventional statistical and machine learning methods 
perform well in variable selection, they often rely solely on 
statistical correlations between variables and outcomes, making 
it diÿcult to determine whether a variable holds true clinical 
significance. To address this limitation, we utilized six mainstream 
LLMs—ChatGPT-4.5, ChatGPT-4o, Google Gemini 2.5, DeepSeek-
R1, Gemma 3 27B, and Qwen 3 30B—to analyze and reason 
through each initially selected variable. Ultimately, 18 key 
predictors were confirmed to be clinically meaningful, supported 
by clear pathophysiological mechanisms. Meanwhile, a number of 
statistically significant but clinically irrelevant features—such as 
intravenous fluid infusions, electrolyte supplement medications, 
and certain sedative or analgesic agents—were excluded from 
the final model. 

The final set of predictors encompassed a wide range 
of clinically relevant domains, including basic demographic 
information [e.g., age (16)], metabolic and electrolyte markers 
[e.g., serum creatinine (17), BUN, lactate, and electrolytes], 
hemodynamic parameters (e.g., mean arterial pressure, cardiac 
output, BNP), immune-inflammatory indicators (e.g., absolute 
neutrophil and monocyte counts), and perioperative medications 
with known nephrotoxic potential [e.g., furosemide, vancomycin 
(18), and gentamicin]. These features reflect the multifactorial and 
multi-pathway pathogenesis of AKI. Not only were they statistically 
robust, but they are also well-supported by current medical 
literature and clinical guidelines, achieving a solid balance between 
theoretical depth and real-world applicability in the proposed 
prediction model. 

In terms of model evaluation, both random forest and LASSO 
model showed high predictive ability, especially in terms of 
sensitivity and specificity. Compared with traditional statistical 
methods, machine learning models can fully explore the complex 
non-linear relationships in high-dimensional data, which makes 
AKI risk prediction more accurate and powerful. Compared with 
previous linear regression model, this study eectively improved 
the stability and reliability of the model through multi-stage feature 
screening by adopting Lasso regression, an election mechanism, 
and 10-fold cross-validation. This method successfully identified 
the key clinical features of AKI after cardiac surgery and ensured 
the scientificity and applicability of these features in clinical 
practice, further enhancing the theoretical basis for individualized 
AKI risk prediction. 

In addition, the application of LLMs in this study simulated 
the judgment process of senior medical experts and further verified 
the clinical relevance of feature selection. By simulating real 
doctors to analyze feature quantities through LLMs, the accuracy 
and reliability of the selected features were ensured, thereby 
improving the clinical interpretability of the model. It is worth 
noting that when LLMs conduct in-depth analysis of clinical data, 
they can simulate the clinical decision-making process of experts, 
identify potential risk factors, and provide targeted intervention 
recommendations for clinicians. This method provides new ideas 
for the application of artificial intelligence in the medical field and 
demonstrates the potential of LLMs in improving medical research. 

Although this study demonstrated the application prospects 
of machine learning model in AKI risk prediction, there are still 
some limitations. First, the data of the MIMIC-IV database mainly 
comes from a single medical institution, so the generalization 
ability of the model may be limited to a certain extent. In order 

to improve the universality of the model, future studies should 
consider using data from multiple centers for verification. Second, 
although this study has screened and evaluated features through 
multiple methods, future studies can combine more real-time 
monitoring data, such as physiological parameters and drug usage, 
to further improve the real-time prediction ability of the model. In 
addition, this study mainly relies on static clinical data, and the 
dynamic changes of patients in the clinical environment are an 
important factor in the occurrence of AKI. Therefore, combining 
dynamic data and time series analysis methods may help improve 
the accuracy of the model. 

In summary, the AKI risk prediction model constructed 
in this study, based on the MIMIC-IV database and LLMs 
technology, performed well in terms of accuracy, sensitivity, and 
clinical interpretability, providing a scientific basis for the early 
identification and clinical intervention of AKI after cardiac surgery. 
Through in-depth analysis of clinical data by machine learning, this 
study not only identified multiple key predictors but also provided 
theoretical support for constructing individualized risk-prediction 
models. With the continuous development of technology, this 
model is expected to be widely used in clinical practice in the 
future, providing new tools for the prevention and treatment of AKI 
and promoting the in-depth application of artificial intelligence in 
the medical field. 
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