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Objectives: This study aimed to identify critical risk factors for acute kidney injury
(AKI) following cardiac surgery. By integrating patient data from the MIMIC-IV
database with large language models (LLMs) and machine learning algorithms,
we ensured the clinical relevance of the selected risk factors, providing robust
insights for the early identification and intervention of postoperative AKI.

Methods: Intensive care unit (ICU) data of patients from the MIMIC-IV database
undergoing cardiac surgery were analyzed. Lasso regression and random
forest algorithms were used to select significant predictive features from
high-dimensional data. Model evaluation involved 10-fold cross-validation
and metrics including accuracy, sensitivity, specificity, and the area under
the curve. To enhance clinical relevance, LLMs-simulated expert judgment in
cardiology and nephrology, which was further validated through discussions
with clinical experts.

Results: In the cohort consisting of 4,565 patients, a total of 113 important and
shared risk factors for AKI were identified, including variables such as anion gap,
arterial partial pressure of oxygen (PaOy), and fraction of inspired oxygen (FiO,).
Among these, 18 key variables were identified as postoperative AKI predictors
via machine learning and LLMs-simulated expert validation. These included
anchor age, Creatinine (serum), BUN (Blood Urea Nitrogen), Potassium (serum),
Sodium (serum), Lactic Acid, Troponin-T, Furosemide (Lasix), Vancomycin
(Random), Gentamicin (Trough), Albumin 5%, ART BP Mean, Cardiac Output
(thermodilution), Brain Natriuretic Peptide (BNP), Absolute Count - Lymphs,
Absolute Count - Monos, and Absolute Count - Neuts. The integration of
LLMs with machine learning algorithms proved effective in accurately identifying
clinically relevant risk factors.

Conclusion: The proposed risk prediction approach for postoperative AKI
following cardiac surgery, based on the collaborative analysis of machine
learning and large language models (LLMs), effectively identified and validated
key clinical risk factors. By simulating expert clinical reasoning, the LLMs
significantly enhanced the medical relevance of feature selection and improved
the clinical interpretability of the model. This approach provides a solid
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theoretical and practical foundation for the precise early identification and
clinical intervention of postoperative AKl in cardiac surgery patients.
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acute kidney injury (AKI), large language models (LLMs), lasso regression, random forest,

MIMIC-1V database

1 Introduction

Acute kidney injury (AKI) is a common and serious clinical
syndrome, especially among patients in the intensive care unit
(ICU) (1). The occurrence of AKI not only significantly increases
the patients hospitalization time and medical expenses, but is
also closely related to high short-term and long-term mortality.
According to statistics, the incidence of AKI in ICU patients can
be as high as 40%-60%, with about 10%-15% of these patients
requiring renal replacement therapy (RRT). Therefore, effectively
preventing, diagnosing, and intervening in AKI promptly is of great
significance for improving the early identification rate of AKI after
cardiac surgery and optimizing clinical intervention (2).

Currently, the diagnosis of AKI mainly relies on the increase
in serum creatinine (SCr) levels and the decrease in urine volume
(3). However, these traditional indicators have certain limitations.
First, the increase in SCr usually lags behind the actual damage
to renal function, resulting in the early identification of AKI not
being timely enough. Second, urine volume is affected by many
factors, such as fluid management and the use of diuretics such
as furosemide, and it is challenging to accurately assess urine
volume. In addition, traditional AKI risk scoring systems (such as
the SOFA score and SAPS score) are based on linear regression
model, which are difficult to fully capture complex non-linear
relationships and high-dimensional data features (4). In recent
years, the application of LLMs (large-scale language model) and
machine learning technology in the medical field has gradually
increased, especially in disease prediction and diagnosis (5). These
technologies can effectively process and analyze structured data,
mine complex patterns and potential relationships within the data,
and thus provide support for clinical decision-making. Therefore,
this study used LASSO and random forest machine learning
methods combined with LLMs to analyze the influencing factors
of AKI within 48 h after cardiac surgery, and employed LLMs to
simulate the judgment of senior medical heart and kidney experts to
improve the medical relevance of feature selection and the clinical
interpretability of the model.

2 Objects and methods

2.1 Data source

The MIMIC-IV database contains multidimensional clinical
data of more than 60,000 ICU patients, covering the patients” basic
demographic characteristics, pathological diagnosis, treatment
process, laboratory test results, drug use, imaging examinations,
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vital signs monitoring, and ICU treatment details (6, 7). All data
are strictly de-identified to ensure the maximum protection of
patient privacy and strictly comply with the privacy protection
requirements of the United States Health Insurance Portability and
Accountability Act (HIPAA). In this study, the data of patients who
underwent cardiac surgery in the ICU were screened, focusing on
the occurrence of postoperative AKI and its related risk factors.
The included patient data included preoperative and intraoperative
clinical indicators (see Table 1).

The diagnosis of AKI is primarily based on the three stages
defined by the Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines (see Table 2).

2.2 Data extraction and processing

Data from the MIMIC-IV database were collected, including
age, gender, marital status, and death status; preoperative
medication status, including medication time and dosage; and
laboratory indicators such as serum creatinine, pulmonary
capillary wedge pressure, mean arterial blood pressure, diastolic
blood pressure, serum bicarbonate, anion gap, C-reactive
protein, hematocrit, vancomycin level, blood oxygen saturation,
phosphorus, sodium ion (serum), sodium ion (whole blood),
body weight, total arterial carbon dioxide, red blood cells, arterial
blood pH, chloride ion (serum), etc., (9, 10). This study extracted
patient data within 48 h following cardiac surgery, including both
patients who developed AKI and those who did not (11). For
patients with AKI, staging was performed according to stages 1,
2, and 3. To better predict the occurrence of postoperative AKI
using preoperative clinical indicators, preoperative laboratory test
results and medication information were extracted as predictive
variables. Missing values for all variables were imputed using
multiple imputation methods (12).

This study cleaned the patient information extracted from
the MIMIC database. To ensure data quality and consistency,
Z-score standardization was used as a data preprocessing method
to standardize clinical data from different sources and high
dimensions, removing the impact of dimensions and ensuring the

balanced contribution of each feature in model training.

2.3 Building a random forest machine
learning prediction model

In the random forest analysis, the full set of preselected
clinical variables—covering both potential confounders and key
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TABLE 1 Study subject selection criteria (8).

Inclusion criteria Exclusion criteria

Those who meet the AKI-related diagnostic Kidney transplant recipient
requirements in the “Guidelines for the
Management of AKI in the Perioperative

Period and ICU”

Patient age: 18-80 years People with cognitive

impairment or mental illness

Patient hospital stay > 48 h Those with kidney-related

diseases or medical history

Underwent heart surgery during ICU stay Family history

TABLE 2 Definition and staging of acute kidney injury (AKI).

Stage 1 Increase in Urine output < 0.5 mL/kg/h
SCr > 0.3 mg/dL for>6h
(> 26.5 pmol/L), or
increase in SCr to > 1.5

times baseline
Stage 2 Increase in SCr to > 2 Urine output < 0.5 mL/kg/h

times baseline for>12h
Stage 3 Increase in SCr to > 3 No specific urine output

times baseline, or threshold, or initiation of renal
SCr > 4.0 mg/dL

(> 353.6 umol/L)

replacement therapy (RRT)

predictors—was entered into the model without prior exclusion,
allowing the algorithm to internally assess their relative importance.
Random forests are well-suited for handling continuous (float-
type) data, particularly in capturing non-linear relationships and
feature interactions. Unlike traditional linear models that rely on
the assumption of linearity among features, random forests build
multiple decision trees and aggregate their results, enabling the
effective identification and modeling of complex patterns within
continuous data. By randomly selecting subsets of features and
samples during training, random forests reduce the need for strong
assumptions or extensive preprocessing of float-type variables,
thereby enhancing the model’s adaptability and predictive accuracy
(13, 14).

In addition, in terms of feature importance assessment, random
forests can quantify the contribution of each feature to the
prediction results, help identify key factors closely related to
AKI risk, and thus provide strong support for clinical decision-
making (15).

2.4 Building the LASSO prediction model

The target variable in this study is closely associated with
the occurrence of AKI. All candidate predictors, including
potential confounders, were initially included simultaneously as
multivariable inputs. Subsequently, Lasso regression was applied
for variable selection. When dealing with high-dimensional data
that contain numerous clinical features, Lasso regression serves
as a commonly used feature selection method. By applying
L1 regularization, it effectively identifies the features most
relevant to the target variable. In datasets with redundant or
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irrelevant features, Lasso regression automatically shrinks the
coeficients of less important variables to zero, thereby reducing
model complexity and improving computational efficiency. When
applied to numerical data, Lasso regression can effectively assess
the importance of continuous variables, demonstrating strong
adaptability in high-dimensional settings. Its L1 regularization also
helps prevent overfitting, a common issue in high-dimensional
data, thus enhancing the model’s generalizability and maintaining
robust predictive performance on new data. The predictive features
selected through Lasso regression contribute to improved model
accuracy. In the context of AKI risk prediction, identifying key
variables closely related to AKI onset is of great clinical significance,
as it supports early recognition and targeted intervention in
clinical practice. In this study, Lasso regression was employed
to identify clinical indicators associated with the occurrence of
different stages of AKI following cardiac surgery. By optimizing
the regularization parameter X, the model achieves a balance
between fitting performance and complexity. The selection of
the X\ value was optimized through cross-validation to achieve
the best fitting effect and control the model complexity. During
the training process, the hyperparameters of the Lasso regression
model (including \) were carefully tuned through grid search
(GridSearchCV) or other optimization methods to ensure high
prediction performance under the optimal configuration.

In addition, to ensure that the label distribution of the
training set and the test set is consistent, stratified sampling
(stratify = y) is used to ensure that the proportion of each category
in both is the same.

2.5 Statistical analysis

Continuous  variables were summarized as median
(interquartile range, IQR) and compared between AKI and
non-AKI groups using the Mann-Whitney U test; if normally
distributed by the Shapiro-Wilk test, they were reported as
mean £+ SD and compared with Student’s t-test. Categorical
variables were presented as n (%) and compared using Pearson’s
chi-square test (Fisher’s exact test when expected cell counts
&lt;5). Two-sided P-values &lt;0.05 were considered statistically
significant. Where appropriate, P-values were adjusted for multiple
testing using the Benjamini-Hochberg false discovery rate
(FDR) procedure.

To estimate adjusted associations, we fitted multivariable
logistic regression models with postoperative AKI (yes/no) as
the dependent variable. Candidate predictors included those
showing between-group differences in univariate tests and those
retained a priori for clinical plausibility and LLMs-simulated expert
validation. The models were adjusted for potential confounders
(age, sex, baseline serum creatinine, and type of cardiac surgery).
Linearity in the logit for continuous predictors was assessed
(locally weighted smoothed plots); when violated, variables were
modeled using restricted cubic splines or clinically meaningful
categories. Multicollinearity was evaluated using variance inflation
factors (VIF), and predictors with VIF &gt;5 were excluded or
combined. Missing data were handled via multiple imputation by
chained equations (m = 5); regression estimates were pooled with

Rubin’s rules. Because continuous predictors were z-standardized
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during preprocessing, adjusted odds ratios (ORs) correspond to
a 1-SD increase unless otherwise specified. Adjusted ORs with
95% confidence intervals (CIs) were reported and visualized
in a forest plot.

2.6 LLMs - enhanced AKI risk mechanism
analysis

This study used large language models (LLMs) to simulate the
thinking process of clinicians and deeply analyzed the relationship
between the selected feature variables and the occurrence of
AKI. LLMs systematically evaluated the correlation between
preoperative indicators and postoperative AKI by deeply analyzing
the physiological mechanisms of each variable and integrating
clinical medical knowledge. Specifically, LLMs not only analyze
the correlation between features through quantitative model, but
also explain how these variables affect kidney function and the
occurrence of AKI through qualitative reasoning.

When analyzing each characteristic variable, LLMs first
analyzed the mechanism of action of the variable in detail
from a physiological perspective, combined with known medical
knowledge. For example, advanced age, as one of the important
factors affecting AKI, may lead to an increased incidence
of postoperative AKI by reducing renal reserve function and
increasing the risk of complications. Elevated preoperative serum
creatinine reflects the impaired state of baseline renal function,
suggesting that patients may have a higher risk of renal damage.
In addition, the use of vancomycin has been identified as a drug-
induced nephrotoxicity mechanism, and a decrease in hematocrit
may affect the oxygen supply to the kidneys, further aggravating
the occurrence of AKI.

Through positive and negative bidirectional demonstration of
the above factors, the study found that the increased preoperative
levels of these indicators were significantly positively correlated
with the incidence of postoperative AKI (P < 0.05). At the same
time, the pathways of widening of the anion gap (possibly related
to undiagnosed metabolic acidosis) and increased inspired oxygen
concentration (FiO;) (possibly reflecting the degree of preoperative
lung dysfunction) have potential physiological explanations, but
due to the lack of sufficient clinical data support, these factors are
still labeled as uncertain factors, and more clinical data are needed
to further verify their role in the occurrence of AKL

For example, LLMs pointed out through the analysis of
increased serum creatinine that the increase in serum creatinine
reflects the state of renal failure, suggesting that patients may
be at a higher risk of AKI. In addition, the impact of changes
in serum potassium on electrolyte balance and the increased
international normalized ratio (INR) that may cause bleeding and
hypoperfusion, thereby increasing the risk of AKI, was further
analyzed and confirmed by LLMs. In the risk assessment stage, this
study combined machine learning algorithms (such as LASSO and
random forest) with the results of LLMs analysis to rank the degree
of influence of each variable on the occurrence of AKI to better
identify and evaluate potential high-risk factors.

In order to improve the reliability of the conclusions, this
study used LLMs after memory reset to verify the analysis
process multiple times. By resetting the model’s memory, it

Frontiers in Medicine

10.3389/fmed.2025.1618222

is ensured that the LLMS’s reasoning process is not disturbed
by the previous analysis, thereby further verifying the logical
rationality of the original conclusion. The model confirmed the
rationality of the analysis process through verification feedback
(the feedback was “yes”). In order to enhance the stability and
consistency of the results, this study also performed consistency
screening through two independent machine learning algorithms
(LASSO and random forest) to ensure the consistency of the
screened variables in different algorithms, thereby enhancing the
reliability of the results.

Large language models not only simulate the decision-making
process of doctors, but also help analyze the mechanism of action
of each variable. According to the degree of influence of the
variable on the occurrence of AKI, LLMs provides corresponding
intervention recommendations for each risk factor. Through this
simulated decision-making process, LLMs can provide clinicians
with more accurate risk assessments, thereby helping doctors make
more scientific clinical decisions.

2.7 Specific research methods for risk
prediction of AKI after cardiac surgery
based on large-scale language models
(LLMs)

With the rapid advancement of large language models (LLMs),
particularly the emergence of cutting-edge models such as GPT-
4.5 and Gemini, new research pathways and tools have become
available for biomedical data analysis. In this study, we propose a
novel AKI risk prediction method for patients undergoing cardiac
surgery, based on iterative validation across multiple LLMs. These
models include both cloud-based LLMs (ChatGPT-4.5, ChatGPT-
40, Google Gemini 2.5) and locally deployed LLMs (DeepSeek-
R1, Gemma 3 27B, Qwen 3 30B), which were used to simulate
clinical reasoning by computationally mimicking the decision-
making processes of physicians.

To systematically screen and validate predictors, an LLMs-
based consensus workflow was applied. Variables with concordant
classifications from at least four LLMs were retained, with the
majority label assigned as the final risk category, whereas those
not meeting this criterion were deemed irrelevant. The resulting
consensus list was exported as the final dataset for subsequent
model development and interpretability analyses. All online queries
in this study were automated through API interfaces, ensuring
efficient and scalable data interaction.

2.7.1 Prompt design for biological function
analysis

In order to ensure that LLMs can accurately analyze the
relationship between changes in key clinical indicators before and
during surgery (such as serum creatinine, blood urea nitrogen
(BUN), sodium, potassium, etc.) and postoperative AKI, this
study designed a precise prompt. The prompt requires LLMs to
simulate the role of an expert in AKI risk assessment after cardiac
surgery, analyze how changes (increase or decrease) in these clinical
indicators affect the occurrence of postoperative AKI, and describe
their mechanism of action in biological processes. To ensure the
scientificity and objectivity of the analysis, the prompt clearly
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requires LLMs to remain neutral. If the role of a clinical indicator is
unclear, it will be marked as “unclear.” The specific contents of the
prompt are as follows:

“Assume that you are an expert in the field of AKI risk
analysis after cardiac surgery and are well-versed in the impact
of preoperative and intraoperative clinical indicators on the
occurrence of postoperative AKI. Please analyze how changes
(increase or decrease) in the following clinical indicators during
surgery are related to the risk of postoperative AKI, and describe
the specific biological processes by which they play a role. If the role
of a clinical indicator is unclear, please mark it as “unclear.” The

»

following is a list of clinical indicators: (list of clinical indicators)

2.7.2 Reducing hallucinations in LLMs output

In order to solve the common illusion phenomenon in LLMs,
that is, the model generates inaccurate or inconsistent content, a
verification method based on iterative verification and similarity
comparison is adopted. This method ensures the reliability and
scientificity of each output through multiple verifications and
comparisons of results. The specific verification steps are as follows:

First, LLMs generate preliminary output based on the provided
prompts, describing the relationship between changes in each
clinical indicator and the risk of postoperative AKI. Then, the
generated preliminary output is combined with the marker name
to form a second input, requiring the model to re-evaluate its
effectiveness. The prompts for verification are as follows:

“Please evaluate whether the clinical indicator name and
functional description in the input match reasonably. If reasonable,
please answer “yes”; if not reasonable, please answer “no” and
provide the correct biological role of the clinical indicator,
especially its role in the occurrence of postoperative AKI. The
specific input is as follows: (clinical indicator name) + initial
results.”

2.7.3 Compilation and synthesis of results

After multiple verifications and iterations of the LLMs
connection API, the final functional description of each clinical
indicator was obtained, which clarified the role of each indicator
in the occurrence of postoperative AKI. The verified results will
be summarized to form a comprehensive assessment of the risk
of postoperative AKI. This process ensures that reliable clinical
indicator analysis can be used to predict the risk of AKI after
cardiac surgery, provide accurate risk assessment, and provide
a scientific basis for clinical decision-making (see Figure 1).
A detailed workflow is provided in Supplementary materials.

3 Results

3.1 Patient extraction results and
multi-model analysis

In the MIMIC-IV database, there are 25,837 ICU patients
who underwent surgery, with 6,247 undergoing cardiac surgery.
After excluding 1,229 patients with preoperative AKI, the first
hospitalization details were retained for patients with repeated
admissions. Additionally, 453 patients who did not have AKI
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measurements within 48 h were excluded. Ultimately, 4,565
patients were included in the study (see Figure 2).

To identify clinical features strongly associated with the
occurrence of AKI at different stages (Stage 1, Stage 2, Stage 3),
independent predictive models were constructed for each AKI
stage. All models were trained using only preoperative clinical
variables to evaluate their importance in predicting AKI.

To identify clinical features associated with different stages
of AKI (Stage 1, Stage 2, Stage 3), we constructed separate
prediction models for each stage. All models were developed using
only preoperative clinical variables to ensure real-world clinical
applicability and early risk prediction. Feature importance in the
random forest models was quantified based on the contribution
of each variable to decision tree splits. Higher importance
scores indicated stronger predictive relevance. To ensure optimal
model performance, the max_features parameter was fine-tuned.
To reduce potential confounding, we selected the top-ranking
features for each AKI stage and compared them using a Venn
diagram to extract shared predictive variables across all three
stages. These consistently important variables were considered
common predictors of AKI, reflecting their robust predictive
power across the clinical spectrum of AKI. Representative features
included variables related to fluid therapy, electrolyte management,
laboratory markers, medications, and hemodynamic parameters.

In parallel, LASSO regression models were developed
separately for each AKI stage. Using L1 regularization, these
models effectively reduced high-dimensional feature spaces by
shrinking the coefficients of irrelevant or redundant variables
toward zero. This approach not only minimized overfitting but
also enhanced model generalizability. Notably, as AKI severity
increased, the number of significant predictors decreased,
suggesting that advanced AKI stages can be predicted with fewer
but more decisive variables.

To further determine stage-independent predictors, the top
features identified by the LASSO models for each stage were
compared using Venn diagram analysis. The intersection revealed
a set of core clinical indicators consistently associated with AKI
across all stages. These features encompassed various domains,
including fluid balance (e.g., Sodium Chloride 0.9% Flush,
Potassium Chloride, Free Water), medication use (e.g., Propofol,
Atorvastatin, Morphine Sulfate), laboratory results [e.g., Creatinine
(serum), BUN, Lactic Acid, Chloride (serum)], and vital signs or
respiratory parameters [e.g., Arterial Blood Pressure Mean, PEEP
Set, Inspired O2 Fraction, Cardiac Output (thermodilution)]. The
integration of these core indicators laid the foundation for robust
and interpretable AKI risk prediction models applicable to the
perioperative cardiac surgery setting.

3.2 Model evaluation

In order to evaluate the predictive performance of multiple
machine learning model constructed in this study, the 10-fold
cross-validation method was used. In each round of cross-
validation, the model was trained using the training set and
evaluated on the validation set. Each round of the entire 10-
fold cross-validation process outputs the corresponding evaluation
indicators, and finally, the overall performance and stability
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STEP I: Clinical
Expert Asscssment

| !
( AKT Risk Factor? ) ( Mark Irrelevant )

Preliminary 5%

STEP 2: LLM Consensus
Integration

Aggregale judgments

!

I

( =4 LLMs agree? ) ( Mark [rrelevant )

Assign Majority Risk

FIGURE 1
The process of querying the large language models (LLMs).

Final SV

of the model are obtained by averaging all 10-fold cross-
validation results. In order to comprehensively measure the ability
of the model in predicting the occurrence of AKI, multiple
standardized evaluation indicators were calculated, including

accuracy, sensitivity, specificity, precision, as well as the receiver
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operating characteristic curve (ROC) and the area under the ROC
curve (AUC). The AUC values are all greater than 0.85, and
the model performance has high reliability, strong discrimination
ability, and stable predictive performance in the AKI prediction
task (see Figure 3 and Table 3).
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All ICU patients who underwent
surgery in the MIMIC-I11 3.0 database
(n=25,837)
Patients who underwent
cardiac surgery
(n=06,247)
Patients with preoperative AKT were excluded
(n=1,229);
Only the first ICU admission was retained for
patients with multiple hospitalizations,
Patients without AKT measurements within 48
hours postoperatively were excluded
{(n=453)
AKT group
{n=13,046)
Final cohort of included
patients (n = 4,565)
Non-AKI group
(n=1,519)
FIGURE 2

Flowchart of cohort selection from MIMIC-IV.

3.3 Validation of clinical relevance of
predictive factors using large language
models (LLMs)

In this study, a variety of advanced large language models
(LLMs), including ChatGPT-4.5, ChatGPT-40, Google Gemini
2.5, DeepSeek-R1, Gemma 3 27B, and Qwen 3 30B, were used
to conduct in-depth clinical validation of the predictive factors
identified by the LASSO and random forest models. These LLMs,
built on extensive medical knowledge and literature, independently
evaluated and confirmed the clinical relevance of each predictive
factor in relation to postoperative AKI following cardiac surgery.

Through comprehensive analysis, the LLMs consistently
indicated that certain predictive factors—such as 0.9% Sodium
Chloride, 5% Dextrose, Acetaminophen, Activated Clotting Time,
Acyclovir, Amiodarone, Arterial CO; Pressure, Arterial O,
Pressure, Atorvastatin, and Dexmedetomidine (Precedex)—though
frequently used in clinical practice, lack a clear pathophysiological
mechanism or direct association with the development of
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postoperative AKI. These variables were interpreted as indicators of
routine clinical management or general drug administration rather
than true causative or predictive factors of renal injury, and thus
were excluded from the final model.

To ensure the accuracy of prediction, the LLMs further
confirmed 18 key clinical variables as being highly relevant to
postoperative AKI. These variables are clinically meaningful and
closely related to the biological mechanisms underlying AKI.
Among the final predictive factors, age (anchor_age) was widely
recognized as a fundamental demographic risk factor. With
increasing age, renal structure and function decline, nephron
number decreases, and glomerular filtration rate drops, reducing
renal reserve capacity and making elderly patients more susceptible
to postoperative AKL.

In terms of metabolic and electrolyte indicators, serum
creatinine and blood urea nitrogen (BUN) are essential markers
of baseline renal function. Elevated levels often indicate pre-
existing renal impairment and serve as strong predictors of
postoperative AKI. Additionally, serum potassium and serum
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ROC Curve - Random Forest & Lasso (10-fold CV)
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FIGURE 3

Random Forest (AUC = 0.90381)
Lassa (AUC = 0.88990)
Random Classifier

The 10-fold cross-validation method (A) and receiver operating characteristic (ROC) curves of various models for predicting postoperative acute

kidney injury (AKI) in cardiac (B).

sodium abnormalities reflect electrolyte disturbances that may
disrupt nephron function or contribute to further renal damage.
Lactic acid elevation suggests tissue hypoperfusion or hypoxia,
making it a sensitive marker of low organ perfusion. Elevated
Troponin-T, frequently seen in perioperative myocardial injury,
may reduce cardiac output and indirectly impair renal perfusion,
thus exacerbating renal dysfunction.

Regarding medication use, Furosemide (Lasix), a commonly
used diuretic, can cause hypovolemia or tubular injury if
administered excessively, making it an independent risk factor
for AKI. Among antibiotics, both Vancomycin (Random) and
Gentamicin (Trough) are well-documented nephrotoxic agents,
and their use is significantly associated with increased AKI risk.
In addition, inappropriate administration of Albumin 5% may
indicate imbalances in fluid management strategies, indirectly
reflecting a negative impact on renal perfusion.

In the aspect of hemodynamic parameters, reduced arterial
blood pressure mean (ART BP Mean) may lead to insufficient
glomerular perfusion and is a direct trigger for AKI. Decreased
cardiac output (thermodilution) indicates compromised cardiac
function, which significantly affects renal perfusion. Brain
Natriuretic Peptide (BNP), a sensitive biomarker of volume
overload and heart failure, suggests postoperative volume
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imbalance or cardiac dysfunction and is indirectly associated with
AKI development.

For immune response markers, abnormal counts of
lymphocytes (Absolute Count - Lymphs), monocytes (Absolute
Count - Monos), and neutrophils (Absolute Count - Neuts) are
commonly observed in postoperative inflammatory or infectious
states. These indicate immune system activation, which plays
a critical role in AKI pathogenesis. Persistent inflammation is
thought to promote tubular damage and interstitial fibrosis,
making changes in immune cell counts important indicators of
AKI risk. Additional details are available in Supplementary Table 1.

Through multi-model iterative analysis and verification, the
use of LLMs in this study effectively ensured the clinical validity
and scientific soundness of selected predictive factors. This
validation process not only excluded variables lacking direct clinical
significance but also confirmed a core set of features strongly linked
to AKI, thereby enhancing the interpretability and reliability of the
prediction model. Ultimately, this provides clinicians with a robust
foundation for accurate AKI risk assessment, improving prevention
and intervention strategies in the postoperative setting.

To further quantify the statistical differences in these clinically
validated variables between the AKI and non-AKI groups, chi-

square tests were conducted for categorical variables. The analysis

frontiersin.org


https://doi.org/10.3389/fmed.2025.1618222
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Lietal.

TABLE 3 Model evaluation results.

10.3389/fmed.2025.1618222

Accuracy Sensitivity Specificity Precision AUC (area under the curve)
Random forest 0.76124 0.85247 0.72144 0.72144 0.87769
Lasso regression 0.75781 0.73342 0.77124 0.77124 0.72144

TABLE 4 Chi-square test table.

Variable (unit) All All Non-AKI | Non-AKI AKI group P-value
patients patients group group range
range range
anchor_age 67.00 18.00-91.00 66.00 20.00-91.00 68.00 18.00-91.00 30.99 < 0.001
ART BP mean 71.75 32.00- 71.75 42.00-77.00 71.75 32.00-297.00 36.47 < 0.001
297.00
Absolute count - Lymphs 1.32 0.00-42.25 1.32 0.00-29.96 1.32 0.00-42.25 4.10 0.043
Absolute count - Monos 0.92 0.00-6.66 0.92 0.00-6.66 0.92 0.00-4.23 112.38 < 0.001
Absolute count - Neuts 12.22 0.02-47.34 12.22 1.22-37.93 12.22 0.02-47.34 139.46 < 0.001
Albumin 5% 0.00 0.00- 0.00 0.00-500.00 0.00 0.00-1000.00 516.51 < 0.001
1000.00
Arterial blood pressure mean 72.95 15.00— 72.95 15.00- 72.95 18.00-149.00 2.81 0.093
150.00 150.00
BUN 37.24 2.00-186.00 37.24 2.00-163.00 37.24 4.00-186.00 90.96 < 0.001
Brain natiuretic peptide 12332.69 244.00- 12332.69 254.00- 12332.69 244.00- 4.31 0.038
(BNP) 68544.00 61696.00 68544.00
Cardiac output 5.11 3.03-8.07 5.11 3.03-5.11 5.11 4.18-8.07 5.48 0.019
(thermodilution)
Creatinine (serum) 2.29 0.00-15.70 2.29 0.30-11.60 2.29 0.00-15.70 187.51 < 0.001
Furosemide (Lasix) 0.00 0.00-250.00 0.00 0.00-250.00 0.00 0.00-200.00 1097.25 < 0.001
Gentamicin (Trough) 1.48 0.40-3.70 1.48 0.40-2.00 1.48 0.40-3.70 0.19 0.666
Lactic Acid 3.75 0.20-20.00 3.75 0.30-14.00 3.75 0.20-20.00 191.85 < 0.001
Potassium (serum) 4.52 1.50-9.50 4.52 2.20-9.10 4.52 1.50-9.50 84.09 < 0.001
Sodium (serum) 135.11 107.00- 135.11 120.00- 135.11 107.00-167.00 1.16 0.281
167.00 161.00
Troponin-T 1.40 0.02-24.15 1.40 0.02-20.83 1.40 0.02-24.15 40.19 < 0.001
Vancomycin (Random) 19.76 1.90-43.20 19.76 3.10-41.20 19.76 1.90-43.20 2.95 0.086

showed that most predictors exhibited significant between-group
differences (P &lt; 0.05), supporting their strong association with
postoperative AKI. Several variables did not reach statistical
significance; however, they were retained as postoperative AKI risk
factors based on established clinical relevance and confirmation
through LLMs-simulated expert validation. Detailed results of the
chi-square tests, including the distribution ranges, test statistics,
and p-values for each variable, are presented in Table 4.

The figure presents key predictors of AKI through a composite
table combining a table and forest plot. The table section displays
the means of each variable in the non-AKI and AKI groups,
while the forest plot visually illustrates the impact of each variable
on AKI risk using confidence intervals and odds ratios (ORs).
Horizontal lines and circles represent the confidence intervals and
OR values for each variable, with ORs > 1 marked by blue circles
(indicating increased risk) and ORs < 1 marked by green circles
(indicating reduced risk). Text labels directly display the OR values
and their confidence interval ranges. The figure legend explicitly
states the use of a logistic regression model and mentions covariates
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including age, sex, and comorbidities. A vertical reference line
(OR =1) is added to the right chart, along with a color-coded legend
indicating the direction of risk, enabling clear presentation of AKI
predictors and facilitating direct comparison of differences between
groups (see Figure 4).

3.4 Construction of the AKI
risk-prediction model

By constructing an AKI risk prediction model (AKI RISK
ASSESSMENT), the data was divided into a test set (30%) and a
training set (70%). The model accuracy was as high as 72.87%,
where the coefficients of each feature included the coefficient values
of each feature [such as Anion gap, Creatinine (serum), etc.,], which
represent the impact of each feature on the target variable (illness)
(see Table 5).

ARA = Zx,- x weight;

i=1
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FIGURE 4
Odds ratios and their confidence intervals for important variables associated with acute kidney injury (AKI).

TABLE 5 Prediction model feature values and their parameters.

X Feature Weig

X anchor_age (basic information) 0.07809

Xz Creatinine (serum) (metabolism and 0.26451
electrolytes)

X3 Furosemide (Lasix) (medication) —0.36554

Xy Gentamicin (Trough) (medication) 0.02833

X5 Albumin 5% (medication) —0.01347

X6 Troponin-T (metabolism amd electrolytes) 0.00768

X7 Vancomycin (Random) (medication) 0.01271

Xs BUN (blood urea nitrogen) (metabolism and —0.04189
electrolytes)

Xo Potassium (serum) (metabolism and 0.29116
electrolytes)

X1 Sodium (serum) (metabolism and electrolytes) 0.02379

X11 Lactic acid (metabolism and electrolytes) 0.041416

X1z ART BP mean (hemodynamics) —0.05194

X13 Arterial blood pressure mean (hemodynamics) —0.00516

Xig Cardiac output (thermodilution) 0.00484

(hemodynamics)
Xi5 Brain natriuretic peptide (BNP) —0.01135
(hemodynamics)

X6 Absolute count - Lymphs (immune response) —0.00686

X17 Absolute count - Monos (immune response) —0.01507

Xis Absolute count - Neuts (immune response) —0.01569
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Formula 1: AKki risk assessment.

3.5 Model interpretability and feature
visualization analysis

To improve the transparency, clinical interpretability, and
decision support utility of the prediction model, we conducted
comprehensive model interpretability and feature visualization
analyses. These included feature correlation analysis, SHAP value
interpretation, and multivariate correlation heatmaps.

Feature correlation analysis demonstrated the strength and
direction of linear associations between each variable and the
AKI stage (Figure 5A). Creatinine (serum), lactic acid, and
potassium (serum) showed the strongest positive correlations with
AKIT severity, suggesting their important roles in reflecting renal
dysfunction and tissue hypoperfusion. Conversely, features such
as furosemide (Lasix), albumin 5%, and sodium (serum) were
negatively correlated with AKI stage, potentially indicating their
association with volume management and treatment interventions.

To explore potential multicollinearity and inter-feature
relationships, we constructed a correlation heatmap using
Pearson’s correlation coefficient (Figure 5B). While most variables
demonstrated weak-to-moderate intercorrelations, we observed a
notable positive correlation between serum creatinine and BUN
(r = 0.39), as well as between absolute neutrophil and monocyte
counts (r = 0.39), consistent with their shared physiological
roles in renal function and immune response. Cardiac Output
(thermodilution) and Gentamicin (Trough) do not display
visible bars because their mean absolute SHAP values were

10 frontiersin.org


https://doi.org/10.3389/fmed.2025.1618222
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Li et al. 10.3389/fmed.2025.1618222
Correlation Between Preoperative Features and AKI Severity
(8) Creatinine (serum) |
(A)  oms SRR, S anchor_age
® Negative carrelation > less severe AKI Lactic Acid I
ara- BUN |
Troponin-T I
Potassium (serum) N
& n Absolute Count - Neuts IS
- 8 Furosemide (Lasix) _
= ] g Albumin 5% I
3 I L Sodium (serum) [N
3. 08 Absolute Count - Monos |
$ Absolute Count - Lymphs I
§ oo = . Arterial Blood Pressure mean [l
‘-4 Brain Natiuretic Peptide (BNP) [l
00251 Vancomycin (Random) il
ART BP Mean B Wm AKl stage 1
a0s04 Cardiac Output (thermodilution) BN AKI stage 2
Gentamicin (Trough) BN AKI stage 3
£ i $ 3 § £ B § g T 3§ £ 8 § % & 3 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
I R
¥ e E 2 § < g 3 & B 3 H I | % Feature Importance Across AK| Stages Based on SHAP Values
F e P
Fealure N
(©) Correlation Matrix of Top Predictive Features for AKI Risk
"
@ Positive Correlation
@ Negative Correlation
No Correlation
P——
3
w §
a
—— g
o
g
W
g
(<]
g
]
g.
Alenal Bood >essure mean 83 2
SERTSS——
o
pra——
U ﬂ-mm
£ Fi¢
& H i
] HE |
:
FIGURE 5
Model interpretability and key feature visualization. (A) Correlation between each feature and acute kidney injury (AKI) stage (Stage 0—3). Positive
values (blue) indicate association with more severe AKI, while negative values (red) indicate a protective or inverse relationship. (B) SHapley Additive
exPlanations (SHAP) summary plot showing the average impact of top features on model predictions for each AKI stage. The color-coded bars
represent AKl stage 1 (pink), stage 2 (blue), and stage 3 (olive green). (C) Pearson correlation heatmap among top predictive features. Red indicates
strong positive correlation, blue indicates strong negative correlation, and white indicates no correlation. The color bar reflects the Pearson
correlation coefficient ranging from —1 to +1.3.

near zero at the plotting scale for some AKI stages. Both
predictors were nevertheless retained based on external clinical
validation (LLMs consensus plus nephrologist adjudication) and
strong mechanistic plausibility—reduced cardiac output reflects
renal hypoperfusion, while aminoglycosides (gentamicin) have
well-described nephrotoxicity.

For individualized prediction interpretability, we applied SHAP
(SHapley Additive exPlanations) analysis, which estimates the
marginal contribution of each feature to the model’s output for
each AKI stage class (Figure 5C). The SHAP summary plot revealed
that furosemide (Lasix), anchor_age, albumin 5%, lactic acid,
and creatinine (serum) had the highest average impact across
AKI severity classes (AKI stage 1-3), indicating these features
play pivotal roles in AKI risk discrimination. Importantly, while
anchor_age and creatinine were major contributors in all classes,
some features such as BNP and neutrophil count showed stage-
specific influence, highlighting the heterogeneous pathophysiology
of AKI progression.

Collectively, the interpretability framework confirmed the
clinical relevance and robustness of the selected features and
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provided clinicians with a transparent basis for understanding
the model’s prediction process. This visualization strategy not
only improved the model’s transparency but also reinforced the
trustworthiness of Al-assisted decision-making in perioperative
AKIT risk management.

4 Discussion

This study focused on the risk prediction of AKI following
cardiac surgery. Based on the MIMIC-IV database, machine
learning models were constructed using LASSO regression
and random forest algorithms. For the first time, multiple
large language models (LLMs)
clinical relevance of the selected predictive variables. The results
demonstrated that this approach not only improved the scientific
rigor and rationality of feature selection but also enhanced

were integrated to validate the

the clinical interpretability and practical applicability of the
predictive models.
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While conventional statistical and machine learning methods
perform well in variable selection, they often rely solely on
statistical correlations between variables and outcomes, making
it difficult to determine whether a variable holds true clinical
significance. To address this limitation, we utilized six mainstream
LLMs—ChatGPT-4.5, ChatGPT-40, Google Gemini 2.5, DeepSeek-
R1, Gemma 3 27B, and Qwen 3 30B—to analyze and reason
through each initially selected variable. Ultimately, 18 key
predictors were confirmed to be clinically meaningful, supported
by clear pathophysiological mechanisms. Meanwhile, a number of
statistically significant but clinically irrelevant features—such as
intravenous fluid infusions, electrolyte supplement medications,
and certain sedative or analgesic agents—were excluded from
the final model.

The final set of predictors encompassed a wide range
of clinically relevant domains, including basic demographic
information [e.g., age (16)], metabolic and electrolyte markers
[e.g., serum creatinine (17), BUN, lactate, and electrolytes],
hemodynamic parameters (e.g., mean arterial pressure, cardiac
output, BNP), immune-inflammatory indicators (e.g., absolute
neutrophil and monocyte counts), and perioperative medications
with known nephrotoxic potential [e.g., furosemide, vancomycin
(18), and gentamicin]. These features reflect the multifactorial and
multi-pathway pathogenesis of AKI. Not only were they statistically
robust, but they are also well-supported by current medical
literature and clinical guidelines, achieving a solid balance between
theoretical depth and real-world applicability in the proposed
prediction model.

In terms of model evaluation, both random forest and LASSO
model showed high predictive ability, especially in terms of
sensitivity and specificity. Compared with traditional statistical
methods, machine learning models can fully explore the complex
non-linear relationships in high-dimensional data, which makes
AKI risk prediction more accurate and powerful. Compared with
previous linear regression model, this study effectively improved
the stability and reliability of the model through multi-stage feature
screening by adopting Lasso regression, an election mechanism,
and 10-fold cross-validation. This method successfully identified
the key clinical features of AKI after cardiac surgery and ensured
the scientificity and applicability of these features in clinical
practice, further enhancing the theoretical basis for individualized
AKT risk prediction.

In addition, the application of LLMs in this study simulated
the judgment process of senior medical experts and further verified
the clinical relevance of feature selection. By simulating real
doctors to analyze feature quantities through LLMs, the accuracy
and reliability of the selected features were ensured, thereby
improving the clinical interpretability of the model. It is worth
noting that when LLMs conduct in-depth analysis of clinical data,
they can simulate the clinical decision-making process of experts,
identify potential risk factors, and provide targeted intervention
recommendations for clinicians. This method provides new ideas
for the application of artificial intelligence in the medical field and
demonstrates the potential of LLMs in improving medical research.

Although this study demonstrated the application prospects
of machine learning model in AKI risk prediction, there are still
some limitations. First, the data of the MIMIC-IV database mainly
comes from a single medical institution, so the generalization
ability of the model may be limited to a certain extent. In order
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to improve the universality of the model, future studies should
consider using data from multiple centers for verification. Second,
although this study has screened and evaluated features through
multiple methods, future studies can combine more real-time
monitoring data, such as physiological parameters and drug usage,
to further improve the real-time prediction ability of the model. In
addition, this study mainly relies on static clinical data, and the
dynamic changes of patients in the clinical environment are an
important factor in the occurrence of AKI. Therefore, combining
dynamic data and time series analysis methods may help improve
the accuracy of the model.

In summary, the AKI risk prediction model constructed
in this study, based on the MIMIC-IV database and LLMs
technology, performed well in terms of accuracy, sensitivity, and
clinical interpretability, providing a scientific basis for the early
identification and clinical intervention of AKI after cardiac surgery.
Through in-depth analysis of clinical data by machine learning, this
study not only identified multiple key predictors but also provided
theoretical support for constructing individualized risk-prediction
models. With the continuous development of technology, this
model is expected to be widely used in clinical practice in the
future, providing new tools for the prevention and treatment of AKI
and promoting the in-depth application of artificial intelligence in
the medical field.
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