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Hearing loss is the most common sensory disorder, significantly affecting the
quality of life for millions of people worldwide. Chemical chaperones are
emerging as a potential therapeutic option for hereditary forms of deafness
associated with protein misfolding. VRT534, a chemical chaperone previously
used in the treatment of cystic fibrosis, has been shown to modulate the
activity of mutated forms of human connexin 26 (Cx26), a gap junction protein
crucial for auditory function. However, the precise molecular mechanism of its
interaction with Cx26 remains unclear. In this study, we investigated the ability
of VRT534 to bind and functionally rescue mutant Cx26. Structural models of
Cx26 were generated using AlphaFold3 and analyzed via Diff-Dock-L for binding
prediction. Functional restoration by VRT534 was tested using an automated
patch-clamp in Hela cells expressing wild-type or mutant Cx26 (Cx26WT,
Cx26L90P, Cx26F161S, and Cx26R184P). VRT534 restored channel function in
Cx26L90P and Cx26R184P, but not in Cx26F161S. Docking data revealed stronger
binding affinity of VRT534 to mutant variants, with putative binding sites located
near the pore region. These findings provide new insight into the selective rescue
of mutant Cx26 and support further development of chemical chaperones for
hereditary hearing loss.
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1 Introduction

Hearing loss is a major global health challenge, affecting over 7% of the world’s
population. Despite technological advances in hearing aids and cochlear implants,
therapeutic strategies addressing the molecular basis of hereditary hearing loss remain
lacking (1). Genetic factors account for more than half of congenital hearing loss cases (2—-
4), with mutations in the GJB2 gene, which encodes connexin 26 (Cx26), being the most
prevalent cause of non-syndromic sensorineural hearing loss (5).

Connexins are a family of transmembrane proteins that form the structural subunits
of gap junctions. Each connexin has four transmembrane domains, two extracellular
loops, one intracellular loop, and intracellular N- and C-termini. Different connexin
types can combine to form diverse gap junction channels, allowing for cell-type-specific
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communication. Connexin 26 (Cx26) and connexin 43 (Cx43)
are among the most studied. A connexon, also known as a
hemichannel, is a hexameric assembly of six connexin proteins.
Connexons are embedded in the plasma membrane and represent
half of a gap junction channel. Each connexon can exist in an open
or closed state and can function as an independent hemichannel
or form a complete intercellular channel by docking with another
connexon from an adjacent cell. The formation of a gap junction
requires the alignment and docking of two connexons from
neighboring cells, creating a continuous aqueous pore. Connexon
hemichannels and gap junctions facilitate the exchange of ions,
metabolites, and signaling molecules (6). Gap junction proteins
are essential for potassium recycling in the cochlea, maintaining
the endocochlear potential critical for auditory transduction.
Mutations in Cx26 disrupt the formation of functional gap
junctions, leading to cellular dysfunction and hearing loss, while
preserving the cochlear architecture (7-14). This disruption offers a
therapeutic target: restoring gap junction communication through
the use of chemical chaperones.

The potential for small-molecule chaperones to stabilize
mutant Cx26 was recently described by Wang et al. (15). This
strategy has been successfully used in the treatment of cystic
fibrosis and other diseases (16-18). More than 100 disease-
associated Cx26 mutations have been described, many of which
led to protein misfolding, degradation, or impaired trafficking
(19, 20). Advances in structural biology, particularly through
cryo-electron microscopy, have revealed how specific mutations
disrupt Cx26 architecture and function (21-23). Among these,
the mutations (Cx26L90P, Cx26F161S, and Cx26R184P) impair
channel function to varying degrees (24, 25). To explore the
mechanism of VRT534-mediated rescue, we modeled mutant and
wild-type Cx26 structures and examined functional recovery using
patch-clamp analysis in transfected HeLa cells.

2 Materials and methods

2.1 Cell cultivation and harvesting

HeLa cells expressing either wild-type Cx26 (Cx26WT) or
mutantsCx26L90P, Cx26F161S, Cx26R184P were cultivated at 37°C
with 5% CO,. After 3 days, cells were detached using TypLE
solution, washed with PBS, and resuspended in extracellular
solution. Cells were triturated and diluted in extracellular solution
and cooled in a low-binding Petri dish for 15 min at ~10°C. The
cell suspension was transferred to a SyncroPatch Teflon reservoir
and placed on the Cell Hotel set to 10°C with 200 RPM shaking
frequency. No explicit seal resistance threshold was used during the
analysis; however, recordings with seal resistance below 500 M2
were excluded to ensure data quality. Cell viability post-harvesting
was confirmed by trypan blue exclusion (>95%).

2.2 Patch-clamp analysis

Automated patch-clamp recordings were conducted using the
SyncroPatch 384i platform (Nanion Technologies). Medium (5-8
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M$?) and high resistance (>10 Mg2) chips were used. Current-
voltage relationships were measured using a step protocol from
—80mV to +60 mV in 5 mV increments. For activation, cells were
depolarized to +40 mV for 10 or 20 s and hyperpolarized to —100
or —120mV for 30 or 60s. Higher voltages (~+80mV) were
avoided due to stability issues in prolonged recordings. Steady-
state activation and inactivation curves were fitted with Boltzmann
functions. Compound effects were normalized to baseline and
maximum block, and IC50 values were calculated using GraphPad
Prism (version 6.05).

2.3 Structural modeling and docking

3D models of human Cx26W'T and its mutants were generated
using AlphaFold3 based on DNA sequences (26, 27). Only
monomeric forms were modeled, as the Diff-Dock-L algorithm
currently supports docking to monomers. Full connexon modeling
would require molecular dynamic simulations (MDSs), which were
beyond the scope of this study. Structural models were validated by
alignment with available cryo-EM structures. Docking simulations
with VRT534 were performed using Diff-Dock-L, and binding
scores were reported in kcal/mol. Lower (more negative) scores
indicate stronger binding affinity.

3 Results

To investigate whether VRT534 influences the connexin 26
wild-type or mutant activities, HeLa cells expressing Cx26WT or
the mutant constructs Cx26F161S, Cx26L90P, and Cx26R184P were
used. Therefore, the cells were equilibrated in a cell hotel at different
conditions) and then analyzed using the automated SyncroPatch-
clamp process, analyzing the Cx26-mediated channel activity
(Table 1). Sealing and voltage testing were performed as shown
in Figure 1A. Automated patch-clamp analysis revealed that HeLa
cells expressing Cx26L90P, Cx26F161S, or Cx26R184P showed
reduced channel activity compared to Cx26WT (Figure 1B). The
obtained current traces were monitored as a function of voltage
with or without high Ca>* (5 mM) or 20 uM VRT534. The control

TABLE 1 Cx26-mediated channel activity by automated
SyncroPatch-Clamp analysis.

CBN
(concentrations
in the cell hotel)

Ca2+_

Cx26-

condition constructs

Chip#1 Low Ca** WT, L9OP, No CBN, 2 uM, 20 pM
R184P, F161S
Chip#2 Normal Ca>* WT, L9OP, No CBN, 2 pM, 20 uM
R184P, F161S
Chip#3 Low & Normal | WT, L9OP, 160 M CBN
Ca’* R184P, F161S

Conditions of channel activity using Ca>* and carbenoxolone (CBN) as control and different
VRT534 concentrations during preincubation in the cell hotel. The cell line assignment varies,
but all four variants (W'T, L90P, R184P, and F161S) were tested under all conditions. Positions
B4/C7/CY, etc., denote well IDs on the patch chip.
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FIGURE 1
(A) Automated voltage protocol as a function of time. (B) Typical current traces after applying voltages for Hela cells expressing Cx26WT, or mutant
Cx26F161S, Cx26L90P, or Cx26R184P in the presence of low or normal Ca®* or preincubated with VRT534 (20 wM). (C) -V plot obtained from all
constructs Cx26WT, Cx26F161S, Cx26L90P, and Cx26R184P with and without VRT534. (D) Channel activity restoration by VRT534 treatment. Current
measurements at +40 mV for all constructs: Cx26WT, Cx26F161S, Cx26L90P, and Cx26R184P.
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shows that Cx26 mutants exhibited lower channel activity, while
amino acid exchange at position F161S displayed diminished Ca**
sensitivity, suggesting altered gating properties. After overnight
preincubation with 20 WM VRT534, current traces were plotted
as a function of voltage for control and VRT534 treatment in
Cx26WT and Cx26 mutant cells (Figure 1C). The influence on
the restoration of Cx26WT and mutant HeLa cells was monitored
at + 40mV, and it can be seen that the best recovery effect was
achieved for Cx26 mutant L90P and Cx26R184P (Figures 1C, D).
To investigate whether a structural position can be detected for
VRT534, the DNA sequence of human Cx26 was modeled via
AlphaFold3, and the structure of the monomeric Cx26 was used
for docking experiments. The binding affinities of 100 binding
positions were determined for each monomeric structure of
Cx26WT and the mutated Cx26F161S, Cx26L90P, and Cx26R184P
(Figure 2A). For Cx26WT, binding affinities were predominantly
weak (positive or near-zero kcal/mol). In contrast, Cx26L90P and
Cx26R184P showed multiple high-affinity (<-6 kcal/mol) binding
positions near the pore region (Figure 2B). Interestingly, these
positions were not adjacent to the mutated residues, suggesting an
allosteric mechanism of action. The lack of rescue in Cx26F161S,
despite pore-proximal binding, suggests that not all gating
defects are reversible by VRT534. This may reflect a mechanistic
divergence between Ca?T -sensitive gating and chaperone-mediated
structural stabilization.

4 Discussion

This study introduces a combined structural and functional
approach to investigating chemical chaperone action in mutated
Cx26 channels. Our data support the hypothesis that VRT534
selectively restores function by binding near the pore region,
independent of the exact mutation site. Despite promising research,
implementing chemical chaperone therapy for hearing loss faces
significant barriers. These include ensuring action specificity and
the reliable delivery of chaperones to cochlear cells, given the
restrictive nature of the cochlear environment. Structure-based
approaches allow for the precise design of chemical chaperones.
In addition, the used mutations have been shown to have different
effects on function: they can prevent the protein from reaching
the cell membrane or cause it to function incorrectly. Chemical
chaperones may need to be probed for these different effects.
Recently, we used a microarray test to identify the chemical
chaperone VRT534, which restores the Cx26 mutation-induced
malfunction of connexin hemichannels in HeLa cells (7). This
could indicate that chemical chaperones favor channel opening,
or, as shown in cystic fibrosis, influence the folding process.
For the first time to our knowledge, we used the SyncroPatch-
Clamp technique as a high-throughput method to study the
electrophysiological properties of mutated connexin hemichannels
and the influence of chemical chaperones on restoring connexin
function. It automates the traditional patch-clamp technique,
enabling rapid and simultaneous recording of multiple cells.
Notably, Cx26F161S showed reduced Ca?t sensitivity, but showed
no functional rescue by VRT534. Since Ca?T also acts at the
pore, this discrepancy suggests that not all pore-level alterations
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are functionally equivalent, and that VRT534’s binding may only
restore select gating defects. After treatment with VRT534, a
chaperone identified in an earlier study to restore the function of
specific Cx26 mutations, we could verify the restoration of channel
activity for the Cx26L90P and Cx26R184P mutations. Restoration
of channel activity by chemical chaperones has been achieved in
cystic fibrosis (CF). The most common mutation is AF508 in
the cystic fibrosis transmembrane conductance regulator (CFTR)
protein. This mutation leads to the misfolding and degradation of
CFTR, preventing it from reaching the cell surface to function as
a chloride channel (17). Chemical chaperones, such as lumacaftor,
have been designed to bind to the misfolded CFTR protein, aiding
in its proper folding and trafficking to the cell membrane, thereby
restoring its function (28). Lumacaftor and Tezacaftor are now
two chemical chaperons clinically approved for the treatment
of CF.

Another compound, 4-phenylbutyrate (PBA), has been shown
to act as a chemical chaperone by stabilizing the CFTR
protein’s structure (29). By this stabilization, CFTR can escape
degradation in the endoplasmic reticulum and be transported to
the cell membrane.

To understand how specific mutations impact the structure
and function of Cx26, we developed a structural model that can
predict how mutations might alter protein folding, interfere with
gap junction assembly, or disrupt hemichannel function. By using
this model, we have taken a general approach to probe a preselected
chaperone, i.e., VRT534, and identified a possible binding site near
the pore, which may be responsible for restoring channel function.
The binding of the chemical chaperone VRT534 near the central
pore, mediated by its N-terminus, could potentially counteract the
effects of the mutation. This interaction might restore the normal
function of Cx26, which was blocked by the mutations. This is very
likely since the chaperone has already demonstrated the ability to
restore hemichannel function (Figure 1C) and (7). In other words,
chaperone binding could abolish the mutation’s disruptive impact
on the protein’s activity, although the binding is distant from the
mutation site. This has also been shown for other conditions. For
example, certain mutations in the gonadotropin-releasing hormone
receptor (GnRHR) lead to misfolding and misrouting, causing
diseases such as hypogonadotropic hypogonadism. However,
specific chemical chaperones can bind to regions of the GnRHR
that are not at the mutation site, facilitating correct folding
and trafficking to the cell surface, thereby restoring receptor
function (30). The use of monomeric models is a limitation.
However, current docking algorithms, such as Diff-Dock-L, do
not yet support hexameric gap junctions. Future studies utilizing
molecular dynamics simulations will be necessary to validate
the pore-binding and allosteric effects within the full connexon
context. Certain mutations, such as V143A in small heat shock
proteins, can impair their oligomerization and chaperone activity,
leading to various diseases (31). Suppressor mutations in the N-
terminal region, distant from the V143A mutation, can restore
oligomerization and function, indicating that interactions at sites
away from the original mutation can compensate for structural
defects. These examples illustrate how chemical chaperones can
bind to specific regions of a protein, which may be located at,
close to, or distant from the mutation site, facilitating proper
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FIGURE 2

Human Cx26WT and mutations modeled by AlphaFold3 for docking experiments. (A) Cx26 DNA sequence was used for AlphaFold3 modeling. The
monomeric Cx26 models for wild-type and mutations in Cx26F161S, Cx26L90P, and Cx26R184P, shown as a cartoon (green), were transferred to
Diff-Dock-L for docking experiments. Diff-Dock-L analysis of putative binders of VRT534 using rank as a function of SMINA affinity in kcal/mole for
Cx26WT and mutant positions Cx26F161S, Cx26L90P, and Cx26R184P (32-36). (B) Binding position with an affinity greater than —6 kcal/mol of
VRT534 in the structure of monomeric human Cx26 (green) with several positions for VRT534 near the internal pore.

folding and function, similar to the mechanism proposed for
connexin hemichannels.

In summary, we present a novel high-throughput and
modeling-based strategy to evaluate chemical chaperone candidates
for Cx26-related deafness. This approach may facilitate the future
design of tailored therapeutics for gap junction disorders. Future
progress hinges on overcoming existing delivery and specificity
challenges, possibly integrating novel techniques from related
fields, such as CRISPR for genetic correction and synthetic biology
for system regulation. Emerging insights, potentially elucidated by
future studies like ours or previous ones, and continuous research
will be essential in unlocking the therapeutic power of chemical
chaperones in auditory medicine.
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