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disease: radiological visual score
versus automated quantitative CT
parameters using a pneumonia
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Objective: Evaluate the impact of the use of an Al-assisted quantitative tool
for assessing stratification of patients with acute lung involvement from
coronavirus (COVID-19) compared to a semi-quantitative visual score made by
the radiologist.

Methods: We retrospectively enrolled 611 patients with respiratory distress
and suspected pneumonia admitted between 27 February and 27 April 2020.
Demographic, imaging, and clinical data were collected. Lung involvement was
visually assessed using a 5-class severity scale and compared with automated
Al-based CT analysis (CT Pneumonia Analysis 2.5.2, SyngoVIA Siemens), which
quantified volume and density of alterations. Patients were assigned to severity
classes for concordance analysis. Subgroup analysis across biweekly periods
assessed changes in visual rater performance. Correlation with SpO, and
diagnostic performance (accuracy, sensitivity, specificity, AUC) of both methods
in predicting RT-PCR results were evaluated.

Results: High concordance was found between visual and quantitative
assessments (k = 0.73, p <0.001), with most discordances in low-severity
(classes 0—-1, k = 0.71), while agreement was excellent for higher severity (classes
2-4, k = 0.91). Misclassifications were mainly for mild cases; concordance was
strong in severe, life-threatening presentations. Temporal analysis showed a
progressive improvement in agreement over time (k = 0.62, 0.61, 0.54, 0.73).
A mild but significant negative correlation emerged between quantitative
assessment and SpO, values (r = -0.13, p = 0.02). Diagnostic performance
between the two methods was similar: visual (AUC = 0.55, Accuracy = 44%,
Sensitivity = 27%, Specificity = 78%) and quantitative (AUC = 0.56,
Accuracy = 45%, Sensitivity = 27%, Specificity = 79%). Neither method showed
strong predictive power for RT-PCR COVID-19 positivity. Nonetheless,
assessing lung involvement remains essential for managing respiratory distress,
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regardless of confirmed infection, particularly for identifying patients with >25%
parenchymal involvement who may require hospitalization.

Conclusion: Visual and Al-based CT assessments showed high concordance
and similar accuracy, especially in patients with >25% lung involvement. This
study demonstrates the utility of Al-based algorithms to improve the diagnostic
efficiency and the reliability, highlighting their value in routine COVID-19
pneumonia evaluation and management.
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1 Introduction

Coronavirus disease (COVID-19) is a viral respiratory illness
caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) that has affected millions of individuals worldwide.
COVID-19 primarily manifests as an acute respiratory infection with
varying degrees of severity, ranging from asymptomatic or mild to
severe and life-threatening (1-5).

To date, there is no consensus on the optimal imaging approach
for the assessment of COVID-19 pneumonia. Indeed, the use of chest
CT scans for the diagnosis and management of this condition has been
the subject of intense debate (6). The radiological features of
COVID-19 pneumonia, such as ground-glass opacities, consolidation,
and bilateral pulmonary infiltrates, provide critical insights that guide
clinical decisions (7). These features, detectable on CT scans, have
proven invaluable in the early detection of the disease, particularly in
cases where traditional testing methods like RT-PCR have limitations
in sensitivity and availability (8). The significance of CT scans extends
beyond diagnosis (9), enabling healthcare providers to triage patients
effectively, identifying those who require immediate medical
intervention from those with milder symptoms (10). While there is no
doubt that chest CT scans can provide valuable information on the
extent and severity of pulmonary involvement in COVID-19
pneumonia, the optimal approach for image interpretation is less clear.
Two different approaches have been suggested: quantitative assessment
and semi-quantitative visual scoring. The former involves the
measurement of specific radiological features, such as ground-glass
opacities and consolidation, and the calculation of a score based on
their extent and distribution. The latter relies on visual assessment of
the overall extent and distribution of pulmonary involvement,
typically using a scoring system ranging from 0 to 4.

Previous studies have demonstrated the potential utility of chest
CT scans in the diagnosis and management of COVID-19 pneumonia.
For example, Li et al. (11) reported that chest CT scans were more
sensitive than reverse transcriptase-polymerase chain reaction
(RT-PCR) for the diagnosis of COVID-19 in a cohort of 1,014 patients
in Wuhan, China. Similarly, Fang et al. (12) demonstrated that chest
CT scans can help to differentiate between COVID-19 pneumonia and
non-COVID-19 pneumonia, with ground-glass opacities being more
common in the former. In addition, some studies have suggested that
chest CT scans may be useful for prognostication in patients with
COVID-19 pneumonia, with more extensive pulmonary involvement
being associated with poorer outcomes (6, 13). In the context of
COVID-19, Al-assisted CT analysis has been explored as a means to
support radiologists in assessing lung involvement, particularly in
settings with limited expert availability or high patient loads. The
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tremendous strain that COVID-19 put on the healthcare system
underscored the potential benefits of AI-driven diagnostic tools in
improving efficiency and accuracy. AT has the capability to rapidly and
objectively quantify disease burden, potentially reducing variability
and inter-observer differences inherent in visual scoring methods.

Recent studies have highlighted the potential of deep learning and
radiomics-based approaches to enhance the diagnostic and prognostic
utility of chest CT scans in COVID-19 and other pulmonary diseases,
supporting faster and more reproducible evaluations (14, 15).

Moreover, Al-based algorithms can assist in predicting disease
progression, enabling clinicians to make more informed decisions
regarding patient management and resource allocation.

However, there is limited data on the comparative accuracy of
semi-quantitative visual scoring and quantitative assessment of chest
CT scans for the stratification of patients with COVID-19 pneumonia.
Some studies have suggested that quantitative assessment may
be more accurate than semi-quantitative visual scoring, due to the
potential for inter-observer variability in the latter approach. For
example, Yang et al. (16) reported that quantitative assessment had
higher inter-observer agreement and better diagnostic accuracy than
semi-quantitative visual scoring in a cohort of 72 patients with
COVID-19 pneumonia. On the other hand, other studies have
reported the opposite, with semi-quantitative visual scoring being
more accurate than quantitative assessment. For example, Wu et al.
(13) reported that visual scoring had higher diagnostic accuracy than
quantitative assessment in a cohort of 74 patients. Both assessment
methods play crucial roles in the clinical management of COVID-19
pneumonia, offering complementary insights. The choice between
semi-quantitative and quantitative assessments can depend on various
factors, including the specific needs of patient management, the
availability of resources, and the objectives of clinical or research
studies. Understanding the strengths and limitations of each method
is essential for leveraging their benefits while mitigating potential
downsides, ultimately aiming to enhance patient care and outcomes
in the challenging context of COVID-19 (17).

The main aim of this study was to evaluate the effectiveness of an
Al-assisted quantitative CT tool in assessing lung involvement in
COVID-19 patients compared to a traditional semi-quantitative visual
score assigned by radiologists. We hypothesized that quantitative
assessment would be more accurate than semi-quantitative visual
scoring, given the potential for inter-observer variability in the latter
approach. The results of this study will have important implications
for the management of patients with COVID-19 pneumonia,
particularly with respect to the interpretation of chest CT scans and
the usefulness of AI-based approaches on the diagnostic workflow. By
comparing the two approaches, we seek to determine whether Al can
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enhance the accuracy and efficiency of disease severity assessment,
ultimately improving patient stratification and management.

2 Materials and methods
2.1 Study population

This study was a retrospective single-center study on patients
enrolled during the first wave of Italy pandemic, from 27 February
2020 to 27 April 2020. Included patients were hospitalized for the
suspicion of a novel coronavirus infection and underwent both chest
CT imaging and laboratory virus nucleic acid testing (reverse
transcription-polymerase chain reaction RT-PCR assay with
nasopharyngeal and oropharyngeal swab samples). A total of 611
(mean age, 63yo; age range, 18-93; 65% men and 35% women) chest
examinations CT in the initial emergency department assessment for
suspected COVID were included retrospectively. For the 611 patients,
saturation was measured during chest CT for 399 patients. All patients
with positive RT-PCR results for COVID-19 were identified (n = 435).
In a case with multiple swabs, the patients were rated positively if a
minimum of one of the specimens was positive. Of the 611 patients,
biographical data, imaging characteristics, laboratory tests, and
clinical data were collected (Table 1). The experimental design has
been outlined in Figure 1.

2.2 CT scanning protocol

All images were obtained using the Revolution EVO CT system
(GE Healthcare, Milwaukee, W1, United States) with patients placed
in the supine position. All the scans were performed without contrast
agent administration. Scanning parameters were 120 kVp, 40-90 mAs,
pitch 1-1.25, matrix 512 x 512. All images have been reconstructed
with a slice thickness of 1.25 mm.

2.3 Image analysis

Visual chest CT interpretation was independently performed by
three radiologists (E. M, E C, and C. C) blinded to clinical data,
respectively, with 15, 20, and 12 years of experience.

Each observer systematically assessed typical pulmonary
abnormalities including ground-glass opacity (GGO), crazy paving
patterns, and consolidations. Additional radiological signs such as
emphysema, pulmonary fibrosis, nodular formations, sub-pleural linear
opacities, atelectasis, and tree-in-bud patterns. In addition, for each lobe,
observers graded the abnormalities using the following semiquantitative
visual scoring system. Severity thresholds were defined as follows: score
0, <10%; score 1, 10-25%; score 2, 26—-50%, score 3, 51-75%, score 4,
greater than 76% of pulmonary parenchymal involvement.

In parallel, the CT pneumonia analysis prototype based on the Al
algorithm (Platform Frontier, SyngoVIA, Siemens Healthineers,
Erlangen, Germany) was used to automatically detect and quantify
pathological lung findings. The system employs convolutional neural
networks (CNNs) trained on an extensive and annotated datasets of
9,749 chest CT scans from patients with various lung conditions,
including COVID-19 pneumonia (18), to recognize radiological patterns
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TABLE 1 Demographic characteristics and risk factors of population.

Number of patients 611
Age (years) 63+19
Sex (male) (397) 65%
Height (cm) 169+9
Weight (kg) 78 +19
Saturation 96 =7
FC (bpm) 85+ 17
Smoker (24) 3.96%
Ex-smoker (40) 6.54%
Fever (yes) (446) 73%
Cough (yes) (287) 47%
Dyspnoea (yes) (224) 36.7%
Asthenia (yes) (41) 6.7%
Chest pain (yes) (33) 5.4%
Arthralgias (yes) (41) 6.7%
Dysgeusia (yes) (34) 5.7%
Anosmia (yes) (28) 4.6%
Diarrhea (yes) (36) 5.9%
Shivers (yes) (24) 3.9%
Pharyngodynia (yes) (28) 4.6%
Headache (yes) (38) 6.2%
Hemoptysis (yes) (7) 1.2%
Rhinitis (yes) (14) 2.3%
Conjunctivitis (yes) (10) 1.6%
Nausea (yes) (42) 6.9%

typical of COVID-19 pneumonia, such as ground-glass opacities,
consolidations, and septal thickening. The algorithm automatically
segments the lung parenchyma, identifies several radiological patterns
and calculates key quantitative metrics, including: the total lesion
volume relative to the overall lung volume, the quantitative density
values and the percentage of lung involvement. Furthermore, based on
predefined thresholds of affected lung volume, the algorithm categorizes
disease severity based on the extent of lung involvement, allowing direct
comparison with the radiologists’ visual assessment. The prototype
processes each CT scan in approximately 80! 10s per patient and
generates an output report with the volume and opacity percentages
calculated for individual lobes and for the entire lung volume. Following,
these Al-based classifications were directly compared to radiologists’
semiquantitative scores to evaluate the level of concordance between
manual and automated assessments. For this purpose, we grouped CT
continue percentages into discrete severity score (0-4), encompassing
for score 0, normal to <10%; score 1, 10-25%; score 2, 26—-50%, score 3,
51-75%, score 4, >76% involvement.

2.4 Statistical analysis

To conduct the statistical analysis using IBM SPSS Statistics
software, we utilized various techniques including weighted k-Cohen
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FIGURE 1
Experimental layout.

analysis for CT scoring concordance, correlation analysis with
Pearsons test, and ROC curve analysis.

Firstly, we performed a weighted k-Cohen analysis to examine the
concordance between semi-quantitative visual score versus automated
quantitative assessment. This analysis allowed us to assess whether
there were statistically significant differences in the assessment of
different severity scores. Moreover, the same approach was
implemented subdividing the sample according to four enrollment
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time frames of 15 days to highlight the weight of training and
radiologists confidence in the pandemic period. To assess statistical
power for subgroup analysis, we applied a one-way ANOVA
framework with a=0.05 to detect differences across four-time
groups, based on the observed variability and confidence interval
widths, a standard deviation of 0.15 (assumed for Cohen’s x and
considering a between-group difference of Ax=0.10 as

clinically meaningful).
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Secondly, we employed ANOVA to detect differences among
visual and quantitative scores for SpO2 values. Moreover, a correlation
analysis using Pearson’s test was used to explore the relationships
between CT imaging impairment (quantitative score) and SpO2
percentage. This analysis enabled us to examine the strength and
direction of the linear association between the variables. The Pearson
correlation coefficient (r) was calculated, and its significance level was
assessed to determine whether the observed relationship was
statistically significant (p < 0.05).

Lastly, we conducted ROC curve analysis to evaluate the predictive
performance of a diagnostic test. This analysis involved plotting the
true positive rate (sensitivity) against the false positive rate
(1-specificity) at various classification thresholds, based on a logistic
regression model, and using default parameters. The area under the
ROC curve (AUC) was calculated, with values closer to 1 indicating a
higher discriminatory power of the test.

3 Results

The analysis of the study data revealed several significant findings
(Figure 2). Firstly, there was a good concordance between two
methods used (k: 0.73, p < 0.001), indicating a strong relationship
between qualitative and semi-quantitative measures. However, it was

10.3389/fmed.2025.1606771

observed that the major source of discordance occurred for scores 0
and 1 (k: 0.71, p <0.001), while higher classes and parenchymal
involvement (Class 2-4) showed a higher level of agreement (k: 0.91,
p <0.001) (Figure 3).

Furthermore, we conducted a subgroup analysis over different
timeframes, after performing a post hoc power assessment, (power >
0.8, a = 0.05). We considered four-time frames (sample sizes 122, 281,
166, and 42 cases, respectively). The results indicated a positive trend
for concordance between the two estimations across the entire sample.
The kappa values were found to be 0.62, 0.61, 0.54, and 0.73 for the
four time periods studied, suggesting a moderate to substantial level
of agreement over time (Figure 4).

Moreover, we firstly investigated differences among different
scores for SpO2 values (Figures 5A,B). Following, we correlated
quantitative score with peripheral oxygen saturation (SpO2%),
demonstrating a significant mild anticorrelation for the quantitative
assessment (r: —0.13, p value 0.019; Figure 5C).

In terms of diagnostic performance, no significant differences
were observed between the two methods compared to swab positivity.
The area under the ROC curve (AUC) was 0.55 for visual assessment
and 0.56 for quantitative assessment (Figure 6). The accuracy (Acc),
sensitivity (Se), and specificity (Sp) values were also comparable for
both methods, with visual assessment yielding an accuracy of 44%,
sensitivity of 27%, and specificity of 78%, while quantitative

FIGURE 2

Representative CT images illustrating each qualitative/semi-quantitative scoring category. Coronal reconstructions of chest CT scans demonstrating
varying degrees of parenchymal involvement. Panels (A) through (D) correspond to scores of 1 (10—25% involvement), 2 (26-50%), 3 (51-75%), and 4
(>76%), respectively, highlighting the progressive extent of lung impairment
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FIGURE 3

Comparative distribution of scores from visual and quantitative assessments. Bar graphs depict the percentage of cases assigned scores 0 through 4
using both the visual and quantitative scoring methods, allowing direct comparison of score frequency across the two evaluation approaches.
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FIGURE 4

Temporal analysis of inter-rater agreement across the study period. Cohen's kappa statistics were calculated within approximately biweekly intervals
throughout the enrollment period to assess the consistency of scoring over time and potential training effects during a challenging evaluation phase.
Each data point represents the mean « value for the corresponding time frame, with error bars indicating 95% confidence intervals, reflecting variability
in agreement levels across intervals.

assessment showed an accuracy of 45%, sensitivity of 27%, and 4 Discussion
specificity of 79%.
The use of chest CT scans in the evaluation of COVID-19
pneumonia patients has become increasingly important due to its high
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mild inverse correlation between quantitative CT scores and SpO?2 levels.
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Correlation between scoring metrics and peripheral oxygen saturation (SpO2). Panels (A,B) present box plots comparing SpO2 values across different
visual and quantitative score categories, respectively, showing no statistically significant differences. Panel (C) illustrates a scatter plot demonstrating a

sensitivity and ability to detect early signs of disease progression and
following affecting patients’ management. However, the optimal
method of CT assessment remains unclear, considering that different
assessment approaches come each with its advantages and challenges.
Generally, visual scoring provides a rapid and intuitive method for
estimating lung involvement based on radiological patterns but is
inherently subjective and prone to inter-observer variability (19, 20).
In contrast, quantitative Al-based assessment offers a more objective
and reproducible evaluation by generating precise volumetric
measures of pulmonary alterations, although it may require technical
resources and can miss subtle clinical nuances best recognized by
expert radiologists.

In this study, we compared the accuracy of semi-quantitative
visual scoring and quantitative assessment of chest CT scans for the
stratification of patients with COVID-19 pneumonia, observing an
excellent overall concordance (k = 0.73), particularly in moderate to
severe cases (classes 2-4, k = 0.91), confirming the robustness of
Al-assisted tools for identifying patients with substantial pulmonary
involvement. However, the use of a pretrained commercial Al tool
(Syngo. Via, Siemens), whose training dataset and model specifications
have not been disclosed, could introduce biases. Limited transparency
restricts full assessment of generalizability and performance
consistency. To address these limitations, future studies will consider

Frontiers in Medicine

the use of open-source or customizable Al tools with transparent
architecture and accessible training data. Additionally, external
validation on multicenter datasets and with different CT acquisition
protocols will be essential to assess reproducibility and improve the
robustness of Al-driven quantification.

Our results showed an excellent correlation between the two
methods, with a major source of discordance, although high, for scores
0 and 1 (parenchymal alterations involving less than 25%), compared to
higher classes and parenchymal involvement (Class 2-4). While the rate
of discordance for scores 0-1 seems to be of little influence, given the
lower pulmonary involvement and thus the lower clinical severity of the
patient, it is important to point out that the Al system correctly identifies
patients with an extension greater than 25 percent, i.e., those that from
triage should go for further diagnostic investigation because they are
more at risk for respiratory complications. Our findings are consistent
with previous studies that have shown a strong correlation between
visual and quantitative assessment methods in assessing the extent of
lung involvement in patients with COVID-19 pneumonia (21, 22).
However, our study is unique in that it included a temporal subgroup
analysis, which identified a positive trend for concordance between the
two measures over time (k 0.62, 0.61, 0.54, 0.73 for the four-time lapse
periods). This temporal subgroup analysis provided valuable insight
into the evolution of inter-rater agreement (Cohen’s k) during a dynamic
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Diagnostic performance of visual and quantitative scores relative to RT-PCR swab positivity. Receiver operating characteristic (ROC) curves for both
scoring methods reveal comparable diagnostic accuracy, with area under the curve (AUC) values of 0.55 for visual assessment and 0.56 for quantitative
assessment, indicating no significant difference in their ability to predict swab positivity.

enrollment period. Notably, it enabled us to monitor diagnostic
consistency across different operational phases and to potentially detect
training effects or workflow changes over time. The largest time frame
(16-31 March) showed stable k values with narrow confidence intervals,
indicating robust statistical reliability and reflecting good calibration
among raters during that period. However, one key limitation lies in the
final time frame (16-27 April), which included a small sample size.
While this group exhibited the highest observed k, the wide confidence
intervals indicate considerable uncertainty. This limits the reliability of
the observed increase and reduces statistical power, warranting cautious
interpretation of this result.

Additionally, no differences have been detected among
different scores and SpO2. A mild negative correlation between
quantitative assessment and SpO2 values (r: —0.13, p = 0.019),
which is consistent with previous studies showing a weak
association between the extent of lung involvement and the
severity of hypoxemia (23, 24). A correlation for visual scores and
blood oxygen saturation was not possible, considering the discrete
entity of visual assessment, compared to the finer quantification of
AT assessment. Finally, our ROC curve analysis showed comparable
performance in terms of accuracy, sensitivity, and specificity
between the two methods (mean AUC: 0.55), which is consistent
with previous studies that have shown no significant difference
between the two methods (25).

The mild anticorrelation between chest CT impairment and
SpO2 rates demonstrated how CT morphological criteria cannot
fully explain clinical pulmonary dysfunction, that have taken into
account also other clinical and instrumental variables, such as age
and/or D-dimer concentrations (13). Moreover, the low values of
AUC for both approaches, highlighted as the chest CT findings, did
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not parallel to COVID-19 positivity demonstrated by RT-PCR, but
identified only a specific feature in a poly-symptomatic disease
involving multiple anatomical regions and domains (12). Beyond the
actual impact of CT assessment in COVID patient management, the
results of our study help to frame the role of Al-based tools, clearly
demonstrating their ability to support the radiologist in quantifying
alterations in lung CTs, lightening the workload under emergency
and stress conditions (16).

The integration of Al into the diagnostic process, particularly in
interpreting CT scans for COVID-19, marks a transformative shift in
medical imaging and patient care. AT’s ability to rapidly process and
analyze vast amounts of imaging data with high precision means it can
identify patterns indicative of COVID-19 pneumonia, potentially even
before these signs are clearly evident to human observers (26). This
technology not only enhances the accuracy of diagnoses but also
significantly reduces the time healthcare professionals spend analyzing
scans. By automating the detection and assessment of pathological
features in CT images, Al supports timely and accurate diagnosis,
facilitating early intervention and appropriate treatment planning
(27). Moreover, Al tools can manage and prioritize diagnostic
workflows, ensuring patients with the most severe pathology are
attended to promptly. Consequently, AT’s contribution to diagnostic
radiology in the context of the COVID-19 pandemic alleviates the
strain on medical staff, optimizes resource allocation, and improves
patient outcomes by enabling faster and more precise diagnosis. This
integration underscores the evolving synergy between technology and
healthcare, promising to reshape the future of disease diagnosis and
management (28).

Validating AI-based tools against traditional assessment methods in
the clinical diagnosis of COVID-19 through CT scans is paramount to
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their successful integration into healthcare systems. This validation
process is critical to ensure that Al tools not only match but potentially
exceed the accuracy and reliability of human-driven assessments.
Through rigorous clinical trials and comparative studies, Al algorithms
are evaluated for their ability to accurately identify and quantify
pathological features associated with COVID-19, such as ground-glass
opacities and consolidation patterns. Validation studies, like the one
conducted by Ko et al. (26), focus on various metrics, including
sensitivity, specificity, and predictive values, to gage how well Al tools can
detect COVID-19 cases compared to gold-standard diagnostic methods.

The necessity of this validation process stems from the need to
establish a strong foundation of trust in AI technologies among
healthcare professionals. By demonstrating that AI can work alongside
radiologists, enhancing their capabilities rather than replacing them,
it encourages wider adoption of these technologies in clinical practice.
Moreover, aligning Al tools with clinical outcomes ensures that they
contribute positively to patient care, aiding in the early detection and
monitoring of disease progression, which is crucial for timely
intervention and treatment planning. In essence, the validation of
Al-based tools against traditional methods is not just a technical
necessity but a clinical imperative. It ensures that the integration of Al
into healthcare workflows translates into tangible benefits for patient
management and outcomes. As Al continues to evolve, ongoing
validation and recalibration based on real-world clinical data will
be essential to maintain its relevance and efficacy in the ever-changing
landscape of medical diagnostics (29-31).

In conclusion, clinically, their findings showed that AI tools can
reliably identify patients with parenchymal involvement greater than
25%, a critical threshold for triage decisions. In emergency settings, this
could support the prioritization of patients at higher risk of respiratory
complications, enhancing the efficiency of resource allocation and care
planning. In this context, Al-based quantitative CT analysis may serve
as a decision-support system, particularly where rapid, standardized
assessment is needed, or radiological expertise is limited.
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