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Systemic immune inflammation 
index guides machine learning for 
rapid TTP diagnosis: a 
retrospective cohort study
Zhenqi Liu  and Xu Ye *

Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 
Guangzhou, China

Thrombotic thrombocytopenic purpura (TTP) is a rare, life threatening thrombotic 
microangiopathy that requires prompt diagnosis to reduce mortality. However, its 
early identification is often hindered by delayed ADAMTS13 testing, particularly in low 
resource settings. In this study, we developed a machine learning–based model using 
readily available inflammatory markers, including systemic immune inflammation 
index (SII), platelet to lymphocyte ratio (PLR), and platelet neutrophil product (PPN), 
to distinguish TTP from immune thrombocytopenia (ITP). A retrospective analysis 
of 196 hospitalized patients was conducted, and eight machine learning models 
were trained and compared. Logistic regression achieved the best performance 
(AUC = 0.78), with SII identified as the most influential predictor. While the PLASMIC 
score remains a widely used tool with higher diagnostic accuracy (AUC = 0.92), 
our model relies only on routine blood tests and offers a fast, accessible alternative 
for early risk stratification. These findings suggest that composite inflammatory 
markers combined with machine learning can assist in the rapid triage of suspected 
TTP cases, especially in emergency or resource-limited environments.
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1 Introduction

Timely diagnosis of thrombotic thrombocytopenic purpura (TTP) remains challenging 
due to its rarity, clinical heterogeneity, and reliance on delayed ADAMTS13 assays. Research 
indicates that the principal mechanism involves a shortage of von Willebrand factor cleaving 
protease, identified as a disintegrin and metalloproteinase with thrombospondin type 1 motif 
13 (ADAMTS13), resulting in the formation of platelet rich thrombi in microvessels (1–3). 
Owing to its varied and intricate clinical characteristics, the main diagnosis depends on the 
detection of significantly decreased ADAMTS13 activity (4). However, the accessibility of 
ADAMTS13 detection is influenced by various factors, such as the local medical environment, 
economic resources, clinician awareness, and the detection cycle, which might result in missed 
opportunities for timely diagnosis and treatment of TTP. Recent studies have identified that 
persistent inflammatory responses may result in aberrant aggregation of von willebrand factor 
(VWF) and activity defects or ADAMTS13 dysfunction, thus leading to platelet consumption 
and diminished platelet amount (5). Moreover, inflammation is not only a causative 
component of microangiopathic hemolytic anaemia but can also facilitate disease progression 
by producing micro-thrombosis and damaging red blood cells (6). Consequently, inflammatory 
factors in the blood may be closely related to TTP. However, few studies have investigated the 
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role of routine inflammatory markers in predicting the occurrence of 
TTP, particularly in the context of rapid differential diagnosis.

Composite inflammatory markers help mitigate random 
fluctuations from individual variability, enhance disease specificity 
and predictive power, and provide a more comprehensive assessment 
of the systemic inflammatory state thereby improving diagnostic 
stability and accuracy in clinical practice (7, 8). Among these, the 
systemic immune-inflammation index (SII), calculated as the product 
of the platelet count and the neutrophil to lymphocyte ratio, reflects 
the dynamic interplay between inflammation and immune response. 
SII has been widely studied as a prognostic biomarker in malignancies, 
neuropsychiatric disorders, dermatological diseases and serum 
iron (9–14).

Notably, SII integrates three key cellular components (platelets, 
neutrophils, and lymphocytes) that are critically involved in the 
pathogenesis of thrombotic thrombocytopenic purpura (TTP), 
particularly through their roles in thrombus formation and immune 
dysregulation. Despite its growing recognition in other systemic 
diseases, the diagnostic value of SII in immune mediated hematologic 
disorders such as TTP has received little attention. Investigating SII in 
this context may thus uncover a simple, accessible, and potentially 
powerful biomarker for early TTP identification. Similarly, platelet 
and neutrophil production (PPN) has been explored in cancer, 
endocrine disorders, and autoimmune diseases, reflecting the 
relationship between inflammation and thrombosis (15). The platelet 
to lymphocyte ratio (PLR) serves as another surrogate marker of 
platelet activation and prothrombotic status (16, 17). While these 
composite indices have demonstrated clinical utility in various disease 
contexts, their specific roles in hematological disorders (particularly 
in differentiating TTP from conditions with overlapping presentations 
like immune thrombocytopenia (ITP)) remain underexplored and 
warrant systematic evaluation.

Current reliance on ADAMTS13 activity assays presents 
significant limitations due to prolonged turnaround time (typically 
24–72 h) and limited accessibility in many clinical settings (1). To 
address this diagnostic gap, we propose the first machine learning 
based model integrating SII, PPN, and PLR (readily obtainable from 
routine blood tests) for rapid and practical TTP risk stratification.

2 Methods

2.1 Study population

Both TTP and Immune Thrombocytopenia (ITP) present with 
thrombocytopenia in clinical practice, which may be  related to 
inflammatory factors. In order to improve the specificity of TTP 
diagnosis, highlight the characteristics of TTP related inflammatory 
factors, and improve the clinical practicality of the prediction model, 
we selected TTP and ITP patients as control subjects for the study. 
This retrospective investigation was performed in the Second 
Affiliated Hospital of Guangzhou Medical University in Guangdong 
Province, China. A total of 254 consecutive patients with 
thrombocytopenia admitted between May 22, 2019, and May 22, 
2024, were included. This study adhered to the principles of the 
Declaration of Helsinki and received approval from the Clinical 
Research and Application Ethics Committee of the Second Affiliated 
Hospital of Guangzhou Medical University. The inclusion criteria 

consisted of participants aged ≥18 years and<95 years, who 
underwent regular blood tests within 24 h of admission; and patients 
objectively diagnosed with TTP or ITP upon initial admission, 
possessing comprehensive clinical data. The exclusion criteria 
encompassed pregnant women, individuals with solid or haematologic 
malignancies, those with other thrombotic diseases, and patients 
using immunosuppressants (18). According to the “Chinese 
Guidelines for the Diagnosis and Treatment of Primary Immune 
Thrombocytopenia in Adults (2020 Edition).” The diagnosis of ITP is 
mainly based on clinical exclusion, requiring a decrease in platelet 
count, generally no splenomegaly, and bone marrow cell morphology 
characterized by increased or normal megakaryocytes with 
maturation disorders etc. (19). According to the “Chinese Guidelines 
for the Diagnosis and Treatment of Thrombotic Thrombocytopenic 
Purpura (2022 Edition).” The diagnosis of TTP, after excluding other 
thrombotic microangiopathy, includes: significantly decreased 
platelet count, fragmented red blood cells and increased reticulocyte 
ratio in peripheral blood smear; increased blood bilirubin, 
significantly increased lactate dehydrogenase (LDH), increased blood 
urea nitrogen and creatinine, and detection of ADAMTS13 activity 
and inhibitors etc. (20). A total of 196 eligible patients were 
categorized into the TTP group and the ITP group according to the 
final diagnosis. The patient screening process was illustrated in 
Figure 1.

2.2 Data collection

Diagnostic workup included tests for antiplatelet membrane 
glycoprotein autoantibodies, antinuclear autoantibody group, 
antiphospholipid antibodies, hepatitis virus serology, thyroid function 
tests, serum immunoglobulin levels, serum thrombopoietin levels, 
and genetic testing (20). All diagnoses were centrally assessed by a 
minimum of one chief physician from the haematology department 
and one laboratory technician, both of whom were uninformed of 
other outcomes. Demographic information, fundamental 
anthropometric data, medical history, clinical characteristics and 
laboratory test results (mainly blood routine test results), past medical 
history including that of hypertension, diabetes and other disorders 
of the patients were collected within 24 h after admission. SII, PLR, 
PPN, and body mass index (BMI) were calculated according to the 
following calculation formulas: SII = (neutrophil count × platelet 
count) / lymphocyte count; PLR = platelet count/lymphocyte count; 
PPN  = neutrophil count × platelet count; BMI = weight (kg) / 
height2 (m2).

2.3 Statistical analysis

Continuous variables were presented as mean ± standard 
deviation (SD) or median (interquartile range, IQR), with normality 
assessed using the Kolmogorov Smirnov test. Between group 
comparisons were conducted using t-tests or Mann Whitney U tests, 
while categorical variables were analyzed with chisquare tests. A 
two-tailed p-value < 0.05 was considered statistically significant. 
Univariate logistic regression analysis was employed to identify risk 
factors associated with TTP. All statistical analyses were performed 
using SPSS software version 21.0.

https://doi.org/10.3389/fmed.2025.1599999
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu and Ye� 10.3389/fmed.2025.1599999

Frontiers in Medicine 03 frontiersin.org

Feature selection was based on both clinical relevance and 
statistical significance, with a particular focus on inflammatory 
markers (SII, PLR, and PPN). These markers have been implicated in 
thrombosis and immune dysregulation, making them physiologically 
relevant for distinguishing TTP from ITP. To our knowledge, this was 
the first study to integrate these inflammatory indices into a machine 
learning model for TTP diagnosis.

To develop and validate a diagnostic model, data from 196 
patients were randomly divided into a training set (90%) and a test 
set (10%). To mitigate overfitting from limited sample size, 
we implemented 10-fold cross-validation (stratified by class) with 
fixed random seed (500). Eight machine learning models were 

implemented, including Naïve Bayes, XGBoost, Support Vector 
Machine (SVM), Random Forest, K-Nearest Neighbors (KNN), 
Gradient Boost Trees, Decision Tree, and Logistic Regression (21, 
22). All models were applied to the binary classification task of 
differentiating TTP from ITP. Model performance was averaged 
across folds using receiver operating characteristic curve (AUC), 
recall, F1 score, accuracy, and confusion matrix. All machine 
learning models were implemented in Python (version 3.11.10) 
using PyCharm as the development environment. Confusion 
matrices were generated to compare predicted and actual labels, 
with grid values representing true negatives (TN), false positives 
(FP), false negatives (FN), and true positives (TP), thereby 

FIGURE 1

Flowchart. A total of 196 patients were retrospectively enrolled and categorized into the TTP (n = 54) and ITP (n = 142) groups. Candidate risk factors 
were analyzed using univariate logistic regression, and eight machine learning models were developed using selected variables. The best-performing 
model was selected based on AUC, clinical interpretability, calibration, and net benefit.
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enabling direct assessment of each model’s sensitivity 
and specificity.

Given the urgent need for early TTP diagnosis, AUC was 
prioritized to minimize false negatives and reduce the risk of missed 
diagnosis. Model risk factors were visualized using nomograms, 
model reliability was assessed using calibration curves, and the net 
clinical benefit of applying the model to decision making was 
determined using decision curve analysis (DCA) (23).

After comprehensive evaluation, we selected logistic regression as 
the final model because it achieved the highest balance between 
accuracy (0.78), interpretability, and clinical feasibility. The feature 
contribution was visualized using SHAP values. Unlike black-box 
models such as XGBoost or SVM, logistic regression can directly 
calculate risk scores, making it more suitable for real world 
clinical practice.

3 Results

3.1 Patient characteristics

This study consisted of 196 patients, including 118 females 
(60.20%) and 78 males (39.80%), with an average age of 
47.60 ± 16.74 years, and a BMI of 23.20 ± 3.44. Among the 
participants, 28 had a history of smoking (14.29%), 14 had a history 
of alcohol consumption (7.14%), 37 had diabetes (18.88%), 41 had 
hypertension (20.92%), and 8 had coronary heart disease (4.08%). The 
analysis of essential laboratory test results (platelet count, lymphocyte 
count, neutrophil count) indicated that SII ranged from 
192.51 ± 221.00, PPN ranged from 224.86 ± 209.99, and PLR ranged 
from 30.13 ± 32.96. Table 1 enumerates specific demographic and 
clinical factors.

The patient’s baseline characteristics were shown in Table  2. 
Among them, 54 were patients with TTP and 142 were patients with 
ITP. Parameters such as body weight (p = 0.023), BMI (p = 0.018), 
neutrophil count (p = 0.043), platelet count (p < 0.001), SII (p < 0.001), 
PPN (p < 0.001), and PLR (p < 0.001) exhibited significant differences 
between the ITP group and the TTP group (p < 0.05). Although the 
mean BMI was higher in the TTP group, there was substantial overlap 
in the distributions between groups, suggesting that BMI alone may 
not reliably distinguish TTP from ITP and should be considered in 
combination with inflammatory indices.

Given that BMI calculation incorporates weight and height, and 
combined inflammatory index calculation encompasses neutrophil, 
platelet, and lymphocyte count parameters, in order to avoid 
duplication, the subsequent studies excluded weight, height, and 
individual laboratory indicators to prevent redundancy.

3.2 Risk factors

Table  3 illustrates the compositional differences of variables 
between the two groups. Significant differences in BMI, SII, PPN, and 
PLR (p < 0.05) between the groups were determined as risk factors. 
Among them, BMI was a protective factor (OR = 0.89, 95% CI (0.80, 
0.98), p = 0.019), whereas SII, PPN, and PLR were identified as risk 
factors [OR = 1.01, 95% CI (1.00, 1.01), OR = 1.00, 95% CI (1.00, 
1.01), OR = 1.03, 95% CI (1.02, 1.05), respectively].

3.3 Machine learning models and 
performance evaluation

The data were randomly allocated to the training set and the test 
set in a 9:1 ratio utilizing Python. The internal validation employed 
10-fold cross-validation with a seed number of 500 to guarantee the 
consistency of all parameters. Eight machine learning models were 
constructed (Table  4): Naive Bayes, Extreme Gradient Boosting 
(XGBoost), Support Vector Machine (SVM), Random Forest, 
K-Nearest Neighbors (KNN), Gradient Boosting Tree, Decision Tree, 
and Logistic Regression. All models were applied to the binary 
classification task of differentiating TTP from ITP. Together with Area 
under curve (AUC), recall, F1 score, accuracy, and confusion matrix 
were established as performance evaluations. The receiver operator 
characteristics (ROC) curve and confusion matrix was illustrated 

TABLE 1  Characteristics of the patients.

Variable Safety analysis set 
(n = 196)

Sex, n (%)

 � Male 78 (39.80%)

 � Female 118 (60.20%)

Age (years) 47.60 ± 16.74

Height (cm) 161.48 ± 7.48

Weight (kg) 60.55 ± 10.16

BMI 23.20 ± 3.44

Smoker, n (%)

 � No 168 (85.71%)

 � Yes 28 (14.29%)

Alcohol drinker

 � No 182 (92.86%)

 � Yes 14 (7.14%)

Diabetes

 � No 159 (81.12%)

 � Yes 37 (18.88%)

Hypertension

 � No 155 (79.08%)

 � Yes 41 (20.92%)

Coronary heart disease

 � No 188 (95.92%)

 � Yes 8 (4.08%)

Laboratory test index

 � Neutrophil count(×109 /L) 7.02 ± 4.52

 � Monocyte count* (× 109 /L) 0.56 ± 0.40

 � Lymphocyte count(×109 /L) 1.52 ± 0.79

 � Platelet count(×109 /L) 34.78 ± 30.00

 � SII* 192.51 ± 221.00

 � PPN 224.86 ± 209.99

 � PLR* 30.13 ± 32.96

*Means non-normally distributed data.
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(Figures 2, 3) to enhance the intuitiveness and clarity of the model’s 
prediction ability.

The diagnostic performance of the eight machine learning models 
was summarized in the confusion matrices shown in Figure 3. Each 
matrix illustrates the numbers of true negatives (TN), false positives 
(FP), false negatives (FN), and true positives (TP), providing a visual 
complement to summary metrics. While several models, such as 
Random Forest, XGBoost, and Decision Tree, demonstrated relatively 
high true negative counts, they yielded few true positives, resulting in 
higher false negatives and thus lower recall and F1 scores—an 
especially critical limitation in clinical contexts where minimizing 
missed TTP diagnoses is essential. Logistic regression, by contrast, 
achieved the most balanced distribution between true positives and 
true negatives, consistent with its superior performance across 
multiple evaluation metrics. Specifically, it yielded the highest AUC 
(0.78; 95% CI: 0.71–0.85), recall (0.46), F1 score (0.55), and accuracy 

(0.78), outperforming more complex classifiers including SVM, 
Gradient Boosting, and KNN (Figure  2; Table  4). These results, 
supported by both numerical metrics and the confusion matrix 
visualization, highlight logistic regression as the most clinically 
reliable and interpretable model for early TTP risk prediction. 
Notably, the discrimination between TTP and ITP was primarily 
driven by composite inflammatory markers (SII, PPN, and PLR), with 
logistic regression leveraging these features to achieve the most 
reliable performance.

Consequently, with the logistic regression model, the fitting 
curve was generated by 1,000 repeated extractions. A calibration 
curve (Figure  4) and a Decision Curve Analysis (DCA) curve 
(Figure 5) were constructed. The results indicated that the calibration 
curve’s real fit was consistent with the ideal fit, demonstrating that the 
predicted probability matched the actual probability. The clinical 
decision curve exhibited a substantial clinical benefit rate, further 

TABLE 2  Baseline characteristics of two groups.

Variable ITP (n = 142) TTP (n = 54) P

Sex 0.325

 � Male 53 (37.32%) 25 (46.30%)

 � Female 89 (62.68%) 29 (53.70%)

Age (years) 46.58 ± 16.33 50.30 ± 17.66 0.182

Height (cm) 161.69 ± 7.48 160.93 ± 7.52 0.524

Weight (kg) 61.61 ± 9.84 57.79 ± 10.54 0.023

BMI 23.56 ± 3.40 22.26 ± 3.38 0.018*

Smoker 0.579

 � No 120 (84.51%) 48 (88.89%)

 � Yes 22 (15.49%) 6 (11.11%)

Alcohol drinker 0.761

 � No 131 (92.25%) 51 (94.44%)

 � Yes 11 (7.75%) 3 (5.56%)

Diabetes 0.777

 � No 114 (80.28%) 45 (83.33%)

 � Yes 28 (19.72%) 9 (16.67%)

Hypertension 0.386

 � No 115 (80.99%) 40 (74.07%)

 � Yes 27 (19.01%) 14 (25.93%)

Coronary heart disease 1

 � No 136 (95.77%) 52 (96.30%)

 � Yes 6 (4.23%) 2 (3.70%)

Laboratory test index

 � Neutrophil count 6.66 ± 4.74 7.98 ± 3.76 0.043

 � Monocyte count 0.53 ± 0.37 0.65 ± 0.47 0.112

 � Lymphocyte count 1.57 ± 0.78 1.36 ± 0.80 0.101

 � Platelet count 28.35 ± 22.15 51.67 ± 40.05 < 0.001*

 � SII 129.17 ± 119.18 359.09 ± 320.76 < 0.001*

 � PPN 169.96 ± 168.27 369.23 ± 240.00 < 0.001*

 � PLR 21.99 ± 18.57 51.53 ± 49.34 < 0.001*

P* < 0.05 means statistical significance.
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elucidating the applicability of this approach in clinical settings. So, 
a nomogram (Figure 6) prediction model was developed to visualize 
risk factors and assess TTP risk. The four variables were assigned the 
four scores in the nomogram. The probability could be  directly 
obtained by adding the scores of each predictor, further visualizing 
the clinical data of high risk TTP patients, boosting 
diagnostic accuracy.

3.4 Visualization of feature significance

The Shapley additive explanation (SHAP) and AUC were used to 
visually display the influence of the selected variables on the diagnosis 
of TTP. Figure  7 illustrates the classification of the four variable 
features in the model, plotting points of different colors corresponding 
to each feature variable. It showed that SII is the main risk factor 
affecting the diagnosis of TTP, and confirms that SII is the most 
influential feature for distinguishing TTP from ITP, and its predictive 
ability exceeds that of PPN and PLR. In addition, ROC calculation 
(Figure  8) showed that the ROC of SII = 0.777 (95% CI = 0.706, 
0.849), which exceeds the ROC of PPN 0.776 (95% CI = 0.701, 0.851). 
SII was identified as the most influential predictor in our model, 

consistent with its role in systemic inflammation and 
platelet activation.

4 Discussion

Thrombotic thrombocytopenic purpura (TTP) is a life threatening 
thrombotic microangiopathy that requires rapid diagnosis and timely 
intervention. While therapeutic plasma exchange (TPE) has significantly 
reduced mortality to 10–20% (24–26), the current reliance on 
ADAMTS13 activity testing presents challenges, particularly in resource 
limited settings where accessibility and turnaround time are significant 
barriers (27). Given these limitations in current diagnostic methods, our 
study provides a potential alternative for rapid screening. Our study 
addresses this gap by developing a machine learning based predictive 
model that integrates routine inflammatory markers (SII, PPN, and PLR) 
to achieve rapid TTP risk stratification, demonstrating a robust diagnostic 
performance (AUC = 0.78).

Current diagnostic pathways for TTP rely heavily on ADAMTS13 
assays, which may require 24–72 h for results (28–30). By contrast, our 
model enabled real time risk estimation using routine blood tests, 
facilitating early identification of high risk patients and prompting 
expedited confirmatory testing or preemptive intervention. This is 
particularly relevant in settings where ADAMTS13 assays are 
unavailable or delayed. By providing an accessible and cost effective 
screening tool, this model had the potential to streamline clinical 
workflows and improve patient outcomes, particularly in resource 
limited environments.

Although the PLASMIC score demonstrated high diagnostic 
accuracy (AUC = 0.92) and is widely used in clinical practice, it is 
primarily derived from routinely available clinical and laboratory 
variables—such as platelet count, hemolysis markers, renal function, 
and underlying malignancy—and does not depend on ADAMTS13 
activity testing (31, 32). In this regard, our model is not intended to 
replace the PLASMIC score but rather to serve as a complementary 
tool. Unlike the PLASMIC score, which integrates a broader set of 
variables, our approach was purposefully restricted to three simple 
inflammatory composites (SII, PPN, and PLR) together with 
BMI. While other routine laboratory measures (e.g., INR, bilirubin, 
reticulocyte count, haptoglobin) could also provide diagnostic 

TABLE 4  Machine learning development.

Methods AUC Recall F1 Presicion

Naive Bayes 0.7281 0.4667 0.5184 0.6731

XGBoost 0.7192 0.4667 0.4877 0.5644

SVM 0.7372 0.3667 0.4442 0.6283

Random Forest 0.7573 0.3733 0.4252 0.5429

KNN 0.7702 0.3833 0.4636 0.6833

Gradient Boost Trees 0.7141 0.2767 0.3187 0.3867

Decision Tree 0.6195 0.4867 0.4554 0.4357

Logistic Regression 0.7845 0.4633 0.5502 0.7833

The columns of the chart are eight machine models: Naive Bayes, XGBoost, SVM, Random 
Forest, KNN, Gradient Boost Trees, Decision Tree, and Logistic Regression, respectively, and 
the rows are the performance indicators of these eight machine models, namely AUC, Recall, 
F1, and Precision. Bold values indicate the highest values across all machine learning models 
for each metric, highlighting the superior performance of logistic regression.

TABLE 3  The univariate logistic regression analysis.

Variables OR (95%CI) P

Sex

 � Male Reference

 � Female 0.69 (0.37, 1.31) 0.258

Age (years) 1.01 (0.99, 1.03) 0.165

Height (cm) 0.99 (0.95, 1.03) 0.52

Weight (kg) 0.96 (0.93, 0.99) 0.02

BMI smoker 0.89 (0.80, 0.98) 0.019*

No Reference

Yes 0.69 (0.24, 1.74) 0.452

Alcohol drinker

 � No Reference

 � Yes 0.73 (0.15, 2.48) 0.632

Diabetes

 � No Reference

 � Yes 0.82 (0.34, 1.83) 0.643

Hypertension

 � No Reference

 � Yes 1.49 (0.70, 3.11) 0.297

Coronary heart disease

 � No Reference

 � Yes 0.91 (0.12, 4.27) 0.916

Laboratory test index

 � SII 1.01 (1.00, 1.01) < 0.001*

 � PPN 1.00 (1.00, 1.01) < 0.001*

 � PLR 1.03 (1.02, 1.05) < 0.001*

*P < 0.05 means statistical significance.
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FIGURE 2

Receiver operating characteristic (ROC) curves of eight machine learning models. Logistic regression demonstrated the highest AUC (0.78), followed 
by Random Forest, XGBoost, and Naive Bayes. The yellow curve represents the logistic regression model, which was ultimately selected for its 
performance and interpretability.

FIGURE 3

Confusion matrices of the eight classification models. Confusion matrices of the eight machine learning models (Naïve Bayes, XGBoost, Support 
Vector Classifier, Random Forest, K-Nearest Neighbors, Gradient Boosting, Decision Tree, and Logistic Regression) for differentiating TTP from ITP. 
Columns represent predicted labels (0 = ITP, 1 = TTP) and rows represent true labels, with grid values showing case counts of true negatives (TN, upper 
left), false positives (FP, upper right), false negatives (FN, lower lef), and true positives (TP, lower right). The matrices were generated by 10-fold cross-
validation, and logistic regression demonstrated the most balanced performance across true positives and true negatives.
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value, our focus on inflammatory indices offers a physiologically 
grounded, low-cost, and universally accessible framework. This 
design makes the model particularly suitable for rapid triage in 
emergency or resource-limited settings where comprehensive 

laboratory panels or ADAMTS13 assays may be  unavailable 
or delayed.

Previous ML-based diagnostic studies in hematology and related 
fields often rely on high-dimensional inputs (e.g., electronic health 

FIGURE 5

Decision curve analysis (DCA) of the logistic regression model. The x-axis represents threshold probabilities, and the y-axis shows the net clinical 
benefit. The model demonstrates a consistent net benefit across a range of threshold values, suggesting its potential utility in guiding clinical decision-
making for TTP risk stratification.

FIGURE 4

Calibration curve of the logistic regression model. The predicted probability of TTP is plotted against the observed proportion. A curve closer to the 
diagonal reference line indicates better calibration and model reliability in predicting actual outcomes.
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record variables, imaging features, or specialized biomarkers) and 
complex classifiers, which may achieve high apparent accuracy but 
face challenges with calibration, generalizability, and clinical 
adoption—particularly in resource-limited settings (21, 22, 33–39). In 
contrast, our model was intentionally designed to use only routine, 
low-cost inflammatory composites (SII, PPN, and PLR) together with 
BMI, thereby anchoring prediction in well-established 
pathophysiological processes while ensuring scalability and 
accessibility where ADAMTS13 testing is delayed or unavailable (5, 
9–13, 24–27, 31, 32). This design highlights the novelty of our study 
and emphasizes its suitability for rapid, point-of-care screening.

Although tree-based models such as XGBoost and Random Forest 
achieved comparable AUC values in our dataset, their “black-box” 

nature raises concerns about interpretability and clinical uptake. By 
contrast, logistic regression provides direct risk quantification through 
odds ratios and can be readily implemented as a nomogram-based 
prediction tool (Figure  6). This transparency supports real-world 
clinical decision making and aligns with prior recommendations 
advocating interpretable models for clinical predictive applications (40).

Notably, SII emerged as the most significant predictor of TTP risk, 
consistent with its established role in systemic inflammation and platelet 
activation (31, 32). Elevated SII has been extensively studied as a 
prognostic marker in various conditions, including malignancies, 
cardiovascular diseases, and autoimmune disorders, where it serves as 
an indicator of heightened inflammatory activity and immune 
dysregulation. In the context of TTP, the role of inflammation in disease 

FIGURE 6

Nomogram based on logistic regression output. The nomogram incorporates four key predictors: SII, PPN, PLR, and BMI. For each patient, the score of 
each variable is read on its respective axis and summed to yield a total score, which corresponds to the predicted probability of TTP. This tool allows 
intuitive and individualized clinical risk estimation.

FIGURE 7

SHAP summary plot for model interpretation. Shapley Additive Explanations (SHAP) visualize the contribution of each feature to the model output. Red 
dots represent high values of a variable, and blue dots represent low values. Variables on top (especially SII) had the greatest impact on model 
predictions.
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pathophysiology is well established (9–13), with evidence suggesting that 
neutrophil activation and platelet aggregation contribute to 
microvascular thrombosis (5). Increased SII may indicate excessive 
neutrophil driven inflammation and platelet activation, both of which 
are key contributors to TTP related thrombotic events. Furthermore, 
previous studies have linked elevated SII levels with increased risk of 
endothelial dysfunction, hypercoagulability, and microvascular 
occlusion hallmarks of TTP progression. Given its simplicity and strong 
pathophysiological relevance, SII represents a promising biomarker for 
identifying high risk TTP patients and may complement existing 
diagnostic strategies by providing a rapid and cost effective risk 
assessment tool. Along with PPN and PLR, these composite 
inflammatory markers served as the core features for distinguishing TTP 
from ITP in our models, with logistic regression leveraging them to 
achieve the most balanced and clinically practical diagnostic performance.

This study has several limitations that warrant consideration. First, 
it was a single center, retrospective analysis with a relatively small sample 
size, especially for TTP cases. Although TTP is a rare disorder, the 
limited number of events may restrict the generalizability and statistical 
power of the findings. Future multi-center, large-scale studies are 
necessary to validate the model across more diverse populations and 
clinical settings. Second, the model was only internally validated using 
cross validation within the existing dataset. While 10-fold cross-
validation helps mitigate overfitting, external validation on independent 

cohorts is essential to assess the model’s real world applicability and 
robustness. Third, the model exclusively included inflammatory markers 
derived from routine blood tests (SII, PPN, PLR) and BMI, without 
integrating other potential clinical variables such as LDH, bilirubin, or 
creatinine levels. Although this was done intentionally to maintain 
simplicity and accessibility, it may limit the model’s predictive accuracy 
compared to comprehensive scoring systems like PLASMIC. Fourth, our 
model does not distinguish between acquired and congenital forms of 
TTP, which may have distinct inflammatory profiles. Stratified analysis 
in future studies may provide a more nuanced understanding of the 
model’s diagnostic performance across TTP subtypes. Lastly, while the 
model showed promise for early triage, it cannot substitute for definitive 
ADAMTS13 testing, which remains the gold standard for TTP diagnosis. 
Our approach is intended as a complementary, rapid screening tool—
particularly useful in settings where timely ADAMTS13 results are 
unavailable. Future studies may also explore incorporating additional 
routine laboratory parameters to further enhance performance.

5 Conclusion

This study developed a machine learning based model 
incorporating inflammatory indices for TTP risk prediction. Logistic 
regression demonstrated optimal performance, with SII emerging as 

FIGURE 8

Variable importance plot. The figure displays the relative importance of the top four features contributing to the model. SII ranked highest, followed by 
PPN, PLR, and BMI, confirming the value of composite inflammatory indices in distinguishing TTP from ITP.
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the most influential predictor. This model had the potential to improve 
early TTP diagnosis, reduce diagnostic delays, and facilitate timely 
intervention, particularly in resource limited settings. Further 
validation through prospective, multi-center studies is warranted to 
confirm clinical applicability and integration into routine practice. 
With further validation, this approach may be integrated into routine 
clinical workflows to facilitate early and accessible TTP diagnosis.
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