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Systemic immune inflammation
index guides machine learning for
rapid TTP diagnosis: a
retrospective cohort study

Zhenqi Liu and Xu Ye*

Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University,
Guangzhou, China

Thrombotic thrombocytopenic purpura (TTP) is a rare, life threatening thrombotic
microangiopathy that requires prompt diagnosis to reduce mortality. However, its
early identification is often hindered by delayed ADAMTS13 testing, particularly in low
resource settings. In this study, we developed a machine learning—based model using
readily available inflammatory markers, including systemic immune inflammation
index (Sll), platelet to lymphocyte ratio (PLR), and platelet neutrophil product (PPN),
to distinguish TTP from immune thrombocytopenia (ITP). A retrospective analysis
of 196 hospitalized patients was conducted, and eight machine learning models
were trained and compared. Logistic regression achieved the best performance
(AUC = 0.78), with SlI identified as the most influential predictor. While the PLASMIC
score remains a widely used tool with higher diagnostic accuracy (AUC = 0.92),
our model relies only on routine blood tests and offers a fast, accessible alternative
for early risk stratification. These findings suggest that composite inflammatory
markers combined with machine learning can assist in the rapid triage of suspected
TTP cases, especially in emergency or resource-limited environments.

KEYWORDS

thrombotic thrombocytopenic purpura, systemic immune-inflammation index,
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1 Introduction

Timely diagnosis of thrombotic thrombocytopenic purpura (TTP) remains challenging
due to its rarity, clinical heterogeneity, and reliance on delayed ADAMTS13 assays. Research
indicates that the principal mechanism involves a shortage of von Willebrand factor cleaving
protease, identified as a disintegrin and metalloproteinase with thrombospondin type 1 motif
13 (ADAMTS13), resulting in the formation of platelet rich thrombi in microvessels (1-3).
Owing to its varied and intricate clinical characteristics, the main diagnosis depends on the
detection of significantly decreased ADAMTSI13 activity (4). However, the accessibility of
ADAMTS13 detection is influenced by various factors, such as the local medical environment,
economic resources, clinician awareness, and the detection cycle, which might result in missed
opportunities for timely diagnosis and treatment of TTP. Recent studies have identified that
persistent inflammatory responses may result in aberrant aggregation of von willebrand factor
(VWE) and activity defects or ADAMTS13 dysfunction, thus leading to platelet consumption
and diminished platelet amount (5). Moreover, inflammation is not only a causative
component of microangiopathic hemolytic anaemia but can also facilitate disease progression
by producing micro-thrombosis and damaging red blood cells (6). Consequently, inflammatory
factors in the blood may be closely related to TTP. However, few studies have investigated the
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role of routine inflammatory markers in predicting the occurrence of
TTP, particularly in the context of rapid differential diagnosis.

Composite inflammatory markers help mitigate random
fluctuations from individual variability, enhance disease specificity
and predictive power, and provide a more comprehensive assessment
of the systemic inflammatory state thereby improving diagnostic
stability and accuracy in clinical practice (7, 8). Among these, the
systemic immune-inflammation index (SII), calculated as the product
of the platelet count and the neutrophil to lymphocyte ratio, reflects
the dynamic interplay between inflammation and immune response.
SII has been widely studied as a prognostic biomarker in malignancies,
neuropsychiatric disorders, dermatological diseases and serum
iron (9-14).

Notably, SII integrates three key cellular components (platelets,
neutrophils, and lymphocytes) that are critically involved in the
pathogenesis of thrombotic thrombocytopenic purpura (TTP),
particularly through their roles in thrombus formation and immune
dysregulation. Despite its growing recognition in other systemic
diseases, the diagnostic value of SII in immune mediated hematologic
disorders such as TTP has received little attention. Investigating SII in
this context may thus uncover a simple, accessible, and potentially
powerful biomarker for early TTP identification. Similarly, platelet
and neutrophil production (PPN) has been explored in cancer,
endocrine disorders, and autoimmune diseases, reflecting the
relationship between inflammation and thrombosis (15). The platelet
to lymphocyte ratio (PLR) serves as another surrogate marker of
platelet activation and prothrombotic status (16, 17). While these
composite indices have demonstrated clinical utility in various disease
contexts, their specific roles in hematological disorders (particularly
in differentiating TTP from conditions with overlapping presentations
like immune thrombocytopenia (ITP)) remain underexplored and
warrant systematic evaluation.

Current reliance on ADAMTSI3 activity assays presents
significant limitations due to prolonged turnaround time (typically
24-72 h) and limited accessibility in many clinical settings (1). To
address this diagnostic gap, we propose the first machine learning
based model integrating SII, PPN, and PLR (readily obtainable from
routine blood tests) for rapid and practical TTP risk stratification.

2 Methods
2.1 Study population

Both TTP and Immune Thrombocytopenia (ITP) present with
thrombocytopenia in clinical practice, which may be related to
inflammatory factors. In order to improve the specificity of TTP
diagnosis, highlight the characteristics of TTP related inflammatory
factors, and improve the clinical practicality of the prediction model,
we selected TTP and ITP patients as control subjects for the study.
This retrospective investigation was performed in the Second
Affiliated Hospital of Guangzhou Medical University in Guangdong
Province, China. A total of 254 consecutive patients with
thrombocytopenia admitted between May 22, 2019, and May 22,
2024, were included. This study adhered to the principles of the
Declaration of Helsinki and received approval from the Clinical
Research and Application Ethics Committee of the Second Affiliated
Hospital of Guangzhou Medical University. The inclusion criteria
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consisted of participants aged >18years and<95 years, who
underwent regular blood tests within 24 h of admission; and patients
objectively diagnosed with TTP or ITP upon initial admission,
possessing comprehensive clinical data. The exclusion criteria
encompassed pregnant women, individuals with solid or haematologic
malignancies, those with other thrombotic diseases, and patients
using immunosuppressants (18). According to the “Chinese
Guidelines for the Diagnosis and Treatment of Primary Immune
Thrombocytopenia in Adults (2020 Edition).” The diagnosis of ITP is
mainly based on clinical exclusion, requiring a decrease in platelet
count, generally no splenomegaly, and bone marrow cell morphology
characterized by increased or normal megakaryocytes with
maturation disorders etc. (19). According to the “Chinese Guidelines
for the Diagnosis and Treatment of Thrombotic Thrombocytopenic
Purpura (2022 Edition).” The diagnosis of TTP, after excluding other
thrombotic microangiopathy, includes: significantly decreased
platelet count, fragmented red blood cells and increased reticulocyte
ratio in peripheral blood smear; increased blood bilirubin,
significantly increased lactate dehydrogenase (LDH), increased blood
urea nitrogen and creatinine, and detection of ADAMTS13 activity
and inhibitors etc. (20). A total of 196 eligible patients were
categorized into the TTP group and the ITP group according to the
final diagnosis. The patient screening process was illustrated in
Figure 1.

2.2 Data collection

Diagnostic workup included tests for antiplatelet membrane
glycoprotein autoantibodies, antinuclear autoantibody group,
antiphospholipid antibodies, hepatitis virus serology, thyroid function
tests, serum immunoglobulin levels, serum thrombopoietin levels,
and genetic testing (20). All diagnoses were centrally assessed by a
minimum of one chief physician from the haematology department
and one laboratory technician, both of whom were uninformed of
other outcomes. Demographic information, fundamental
anthropometric data, medical history, clinical characteristics and
laboratory test results (mainly blood routine test results), past medical
history including that of hypertension, diabetes and other disorders
of the patients were collected within 24 h after admission. SII, PLR,
PPN, and body mass index (BMI) were calculated according to the
following calculation formulas: SII = (neutrophil count x platelet
count) / lymphocyte count; PLR = platelet count/lymphocyte count;
PPN = neutrophil count x platelet count; BMI = weight (kg) /

height2 (m2).

2.3 Statistical analysis

Continuous variables were presented as mean * standard
deviation (SD) or median (interquartile range, IQR), with normality
assessed using the Kolmogorov Smirnov test. Between group
comparisons were conducted using t-tests or Mann Whitney U tests,
while categorical variables were analyzed with chisquare tests. A
two-tailed p-value < 0.05 was considered statistically significant.
Univariate logistic regression analysis was employed to identify risk
factors associated with TTP. All statistical analyses were performed
using SPSS software version 21.0.
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FIGURE 1

Flowchart. A total of 196 patients were retrospectively enrolled and categorized into the TTP (n = 54) and ITP (n = 142) groups. Candidate risk factors
were analyzed using univariate logistic regression, and eight machine learning models were developed using selected variables. The best-performing
model was selected based on AUC, clinical interpretability, calibration, and net benefit.

Feature selection was based on both clinical relevance and
statistical significance, with a particular focus on inflammatory
markers (SII, PLR, and PPN). These markers have been implicated in
thrombosis and immune dysregulation, making them physiologically
relevant for distinguishing T'TP from ITP. To our knowledge, this was
the first study to integrate these inflammatory indices into a machine
learning model for TTP diagnosis.

To develop and validate a diagnostic model, data from 196
patients were randomly divided into a training set (90%) and a test
set (10%). To mitigate overfitting from limited sample size,
we implemented 10-fold cross-validation (stratified by class) with
fixed random seed (500). Eight machine learning models were
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implemented, including Naive Bayes, XGBoost, Support Vector
Machine (SVM), Random Forest, K-Nearest Neighbors (KNN),
Gradient Boost Trees, Decision Tree, and Logistic Regression (21,
22). All models were applied to the binary classification task of
differentiating TTP from ITP. Model performance was averaged
across folds using receiver operating characteristic curve (AUC),
recall, F1 score, accuracy, and confusion matrix. All machine
learning models were implemented in Python (version 3.11.10)
using PyCharm as the development environment. Confusion
matrices were generated to compare predicted and actual labels,
with grid values representing true negatives (TN), false positives
(FP), false negatives (FN), and true positives (TP), thereby

frontiersin.org


https://doi.org/10.3389/fmed.2025.1599999
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Liuand Ye

enabling direct assessment of each model's sensitivity
and specificity.

Given the urgent need for early TTP diagnosis, AUC was
prioritized to minimize false negatives and reduce the risk of missed
diagnosis. Model risk factors were visualized using nomograms,
model reliability was assessed using calibration curves, and the net
clinical benefit of applying the model to decision making was
determined using decision curve analysis (DCA) (23).

After comprehensive evaluation, we selected logistic regression as
the final model because it achieved the highest balance between
accuracy (0.78), interpretability, and clinical feasibility. The feature
contribution was visualized using SHAP values. Unlike black-box
models such as XGBoost or SVM, logistic regression can directly
calculate risk scores, making it more suitable for real world

clinical practice.

3 Results
3.1 Patient characteristics

This study consisted of 196 patients, including 118 females
(60.20%) and 78 males (39.80%), with an average age of
47.60 £ 16.74 years, and a BMI of 23.20+3.44. Among the
participants, 28 had a history of smoking (14.29%), 14 had a history
of alcohol consumption (7.14%), 37 had diabetes (18.88%), 41 had
hypertension (20.92%), and 8 had coronary heart disease (4.08%). The
analysis of essential laboratory test results (platelet count, lymphocyte
count, neutrophil count) indicated that SII ranged from
192.51 + 221.00, PPN ranged from 224.86 + 209.99, and PLR ranged
from 30.13 + 32.96. Table 1 enumerates specific demographic and
clinical factors.

The patients baseline characteristics were shown in Table 2.
Among them, 54 were patients with TTP and 142 were patients with
ITP. Parameters such as body weight (p = 0.023), BMI (p = 0.018),
neutrophil count (p = 0.043), platelet count (p < 0.001), SII (p < 0.001),
PPN (p < 0.001), and PLR (p < 0.001) exhibited significant differences
between the ITP group and the TTP group (p < 0.05). Although the
mean BMI was higher in the TTP group, there was substantial overlap
in the distributions between groups, suggesting that BMI alone may
not reliably distinguish TTP from ITP and should be considered in
combination with inflammatory indices.

Given that BMI calculation incorporates weight and height, and
combined inflammatory index calculation encompasses neutrophil,
platelet, and lymphocyte count parameters, in order to avoid
duplication, the subsequent studies excluded weight, height, and
individual laboratory indicators to prevent redundancy.

3.2 Risk factors

Table 3 illustrates the compositional differences of variables
between the two groups. Significant differences in BMI, SII, PPN, and
PLR (p < 0.05) between the groups were determined as risk factors.
Among them, BMI was a protective factor (OR = 0.89, 95% CI (0.80,
0.98), p = 0.019), whereas SII, PPN, and PLR were identified as risk
factors [OR = 1.01, 95% CI (1.00, 1.01), OR = 1.00, 95% CI (1.00,
1.01), OR = 1.03, 95% CI (1.02, 1.05), respectively].
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TABLE 1 Characteristics of the patients.

Variable Safety analysis set
(n = 196)

Sex, n (%)

Male 78 (39.80%)

Female 118 (60.20%)
Age (years) 47.60 + 16.74
Height (cm) 161.48 +7.48
Weight (kg) 60.55 + 10.16
BMI 2320 £3.44
Smoker, n (%)

No 168 (85.71%)

Yes 28 (14.29%)
Alcohol drinker

No 182 (92.86%)

Yes 14 (7.14%)
Diabetes

No 159 (81.12%)

Yes 37 (18.88%)
Hypertension

No 155 (79.08%)

Yes 41 (20.92%)
Coronary heart disease

No 188 (95.92%)

Yes 8 (4.08%)
Laboratory test index

Neutrophil count(x10° /L) 7.02 £4.52

Monocyte count™ (x 10° /L) 0.56 + 0.40

Lymphocyte count(x10° /L) 1.52+0.79

Platelet count(x10° /L) 34.78 + 30.00

SIT* 192.51 £ 221.00

PPN 224.86 +209.99

PLR* 30.13 + 32.96

*Means non-normally distributed data.

3.3 Machine learning models and
performance evaluation

The data were randomly allocated to the training set and the test
set in a 9:1 ratio utilizing Python. The internal validation employed
10-fold cross-validation with a seed number of 500 to guarantee the
consistency of all parameters. Eight machine learning models were
constructed (Table 4): Naive Bayes, Extreme Gradient Boosting
(XGBoost), Support Vector Machine (SVM), Random Forest,
K-Nearest Neighbors (KNN), Gradient Boosting Tree, Decision Tree,
and Logistic Regression. All models were applied to the binary
classification task of differentiating TTP from ITP. Together with Area
under curve (AUC), recall, F1 score, accuracy, and confusion matrix
were established as performance evaluations. The receiver operator
characteristics (ROC) curve and confusion matrix was illustrated
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TABLE 2 Baseline characteristics of two groups.

10.3389/fmed.2025.1599999

Variable ITP (n = 142) TTP (n = 54) P
Sex 0.325
Male 53 (37.32%) 25 (46.30%)
Female 89 (62.68%) 29 (53.70%)
Age (years) 46.58 £16.33 50.30 + 17.66 0.182
Height (cm) 161.69 +7.48 160.93 +7.52 0.524
Weight (kg) 61.61 +£9.84 57.79 +£10.54 0.023
BMI 23.56 +3.40 22.26 +3.38 0.018*
Smoker 0.579
No 120 (84.51%) 48 (88.89%)
Yes 22 (15.49%) 6 (11.11%)
Alcohol drinker 0.761
No 131 (92.25%) 51 (94.44%)
Yes 11 (7.75%) 3 (5.56%)
Diabetes 0.777
No 114 (80.28%) 45 (83.33%)
Yes 28 (19.72%) 9 (16.67%)
Hypertension 0.386
No 115 (80.99%) 40 (74.07%)
Yes 27 (19.01%) 14 (25.93%)
Coronary heart disease 1
No 136 (95.77%) 52 (96.30%)
Yes 6 (4.23%) 2(3.70%)
Laboratory test index
Neutrophil count 6.66 +4.74 7.98 +3.76 0.043
Monocyte count 0.53 £0.37 0.65 +0.47 0.112
Lymphocyte count 1.57 +0.78 1.36 £ 0.80 0.101
Platelet count 28.35+22.15 51.67 + 40.05 <0.001*
SIT 129.17 £ 119.18 359.09 + 320.76 <0.001%*
PPN 169.96 + 168.27 369.23 + 240.00 <0.001%*
PLR 21.99 +18.57 51.53 +49.34 <0.001%*

P* < 0.05 means statistical significance.

(Figures 2, 3) to enhance the intuitiveness and clarity of the model’s
prediction ability.

The diagnostic performance of the eight machine learning models
was summarized in the confusion matrices shown in Figure 3. Each
matrix illustrates the numbers of true negatives (TN), false positives
(FP), false negatives (FN), and true positives (TP), providing a visual
complement to summary metrics. While several models, such as
Random Forest, XGBoost, and Decision Tree, demonstrated relatively
high true negative counts, they yielded few true positives, resulting in
higher false negatives and thus lower recall and F1 scores—an
especially critical limitation in clinical contexts where minimizing
missed TTP diagnoses is essential. Logistic regression, by contrast,
achieved the most balanced distribution between true positives and
true negatives, consistent with its superior performance across
multiple evaluation metrics. Specifically, it yielded the highest AUC
(0.78; 95% CI: 0.71-0.85), recall (0.46), F1 score (0.55), and accuracy
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(0.78), outperforming more complex classifiers including SVM,
Gradient Boosting, and KNN (Figure 2; Table 4). These results,
supported by both numerical metrics and the confusion matrix
visualization, highlight logistic regression as the most clinically
reliable and interpretable model for early TTP risk prediction.
Notably, the discrimination between TTP and ITP was primarily
driven by composite inflammatory markers (SII, PPN, and PLR), with
logistic regression leveraging these features to achieve the most
reliable performance.

Consequently, with the logistic regression model, the fitting
curve was generated by 1,000 repeated extractions. A calibration
curve (Figure 4) and a Decision Curve Analysis (DCA) curve
(Figure 5) were constructed. The results indicated that the calibration
curve’s real fit was consistent with the ideal fit, demonstrating that the
predicted probability matched the actual probability. The clinical
decision curve exhibited a substantial clinical benefit rate, further
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TABLE 3 The univariate logistic regression analysis.

10.3389/fmed.2025.1599999

TABLE 4 Machine learning development.

Variables OR (95%Cl) P Methods AUC  Recall F1 Presicion
Sex Naive Bayes 0.7281 0.4667 0.5184 0.6731
Male Reference XGBoost 0.7192 0.4667 0.4877 0.5644
Female 0.69 (0.37,1.31) 0.258 SVM 0.7372 0.3667 0.4442 0.6283
Age (years) 1.01 (0.99, 1.03) 0.165 Random Forest 0.7573 0.3733 0.4252 0.5429
Height (cm) 0.99 (0.95, 1.03) 0.52 KNN 0.7702 0.3833 0.4636 0.6833
Weight (kg) 0.96 (0.93, 0.99) 0.02 Gradient Boost Trees 0.7141 0.2767 0.3187 0.3867
BMI smoker 0.89 (0.80, 0.98) 0.019* Decision Tree 0.6195 0.4867 0.4554 0.4357
No Reference Logistic Regression 0.7845 0.4633 0.5502 0.7833
Yes 0.69 (0.24, 1.74) 0.452 The columns of the chart are eight machine models: Naive Bayes, XGBoost, SVM, Random
) Forest, KNN, Gradient Boost Trees, Decision Tree, and Logistic Regression, respectively, and
Alcohol drinker the rows are the performance indicators of these eight machine models, namely AUC, Recall,
No Reference F1, and Precision. Bold values indicate the highest values across all machine learning models
for each metric, highlighting the superior performance of logistic regression.
Yes 0.73 (0.15, 2.48) 0.632
Diabetes
No Reference consistent with its role in systemic inflammation and
platelet activation.
Yes 0.82(0.34, 1.83) 0.643
Hypertension
No Reference 4 Discussion
Yes 1.49 (0.70, 3.11) 0.297
Thrombotic thrombocytopenic purpura (TTP) is a life threatening
Coronary heart disease i i K X o . .
thrombotic microangiopathy that requires rapid diagnosis and timely
No Reference intervention. While therapeutic plasma exchange (TPE) has significantly
Yes 0.91(0.12, 4.27) 0.916 reduced mortality to 10-20% (24-26), the current reliance on
Laboratory test index ADAMTSI13 activity testing presents challenges, particularly in resource
- 101 (1,00, 1.01) 0001% limited settings where accessibility and turnaround time are significant
barriers (27). Given these limitations in current diagnostic methods, our
1.00 (1.00, 1.01 .001% . . . . .
PPN 00 (1.00, 1.01) <0001 study provides a potential alternative for rapid screening. Our study
PLR 1.03 (1.02, 1.05) <0.001% addresses this gap by developing a machine learning based predictive

#P < 0.05 means statistical significance.

elucidating the applicability of this approach in clinical settings. So,
anomogram (Figure 6) prediction model was developed to visualize
risk factors and assess T'TP risk. The four variables were assigned the
four scores in the nomogram. The probability could be directly
obtained by adding the scores of each predictor, further visualizing
data of high risk TTP patients,
diagnostic accuracy.

the clinical boosting

3.4 Visualization of feature significance

The Shapley additive explanation (SHAP) and AUC were used to
visually display the influence of the selected variables on the diagnosis
of TTP. Figure 7 illustrates the classification of the four variable
features in the model, plotting points of different colors corresponding
to each feature variable. It showed that SII is the main risk factor
affecting the diagnosis of TTP, and confirms that SII is the most
influential feature for distinguishing TTP from ITP, and its predictive
ability exceeds that of PPN and PLR. In addition, ROC calculation
(Figure 8) showed that the ROC of SII =0.777 (95% CI = 0.706,
0.849), which exceeds the ROC of PPN 0.776 (95% CI = 0.701, 0.851).
SIT was identified as the most influential predictor in our model,
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model that integrates routine inflammatory markers (SII, PPN, and PLR)
to achieve rapid TTP risk stratification, demonstrating a robust diagnostic
performance (AUC = 0.78).

Current diagnostic pathways for TTP rely heavily on ADAMTS13
assays, which may require 24-72 h for results (28-30). By contrast, our
model enabled real time risk estimation using routine blood tests,
facilitating early identification of high risk patients and prompting
expedited confirmatory testing or preemptive intervention. This is
particularly relevant in settings where ADAMTSI13 assays are
unavailable or delayed. By providing an accessible and cost effective
screening tool, this model had the potential to streamline clinical
workflows and improve patient outcomes, particularly in resource
limited environments.

Although the PLASMIC score demonstrated high diagnostic
accuracy (AUC = 0.92) and is widely used in clinical practice, it is
primarily derived from routinely available clinical and laboratory
variables—such as platelet count, hemolysis markers, renal function,
and underlying malignancy—and does not depend on ADAMTS13
activity testing (31, 32). In this regard, our model is not intended to
replace the PLASMIC score but rather to serve as a complementary
tool. Unlike the PLASMIC score, which integrates a broader set of
variables, our approach was purposefully restricted to three simple
inflammatory composites (SII, PPN, and PLR) together with
BMI. While other routine laboratory measures (e.g., INR, bilirubin,
reticulocyte count, haptoglobin) could also provide diagnostic
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FIGURE 2

Receiver operating characteristic (ROC) curves of eight machine learning models. Logistic regression demonstrated the highest AUC (0.78), followed

by Random Forest, XGBoost, and Naive Bayes. The yellow curve represents the logistic regression model, which was ultimately selected for its
performance and interpretability.
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Confusion matrices of the eight classification models. Confusion matrices of the eight machine learning models (Naive Bayes, XGBoost, Support
Vector Classifier, Random Forest, K-Nearest Neighbors, Gradient Boosting, Decision Tree, and Logistic Regression) for differentiating TTP from ITP.
Columns represent predicted labels (0 = ITP, 1 = TTP) and rows represent true labels, with grid values showing case counts of true negatives (TN, upper
left), false positives (FP, upper right), false negatives (FN, lower lef), and true positives (TP, lower right). The matrices were generated by 10-fold cross-
validation, and logistic regression demonstrated the most balanced performance across true positives and true negatives.
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Calibration curve of the logistic regression model. The predicted probability of TTP is plotted against the observed proportion. A curve closer to the
diagonal reference line indicates better calibration and model reliability in predicting actual outcomes.
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making for TTP risk stratification.
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value, our focus on inflammatory indices offers a physiologically
grounded, low-cost, and universally accessible framework. This
design makes the model particularly suitable for rapid triage in
emergency or resource-limited settings where comprehensive
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laboratory panels or ADAMTSI13 assays may be unavailable
or delayed.

Previous ML-based diagnostic studies in hematology and related
fields often rely on high-dimensional inputs (e.g., electronic health
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intuitive and individualized clinical risk estimation.

Nomogram based on logistic regression output. The nomogram incorporates four key predictors: Sll, PPN, PLR, and BMI. For each patient, the score of
each variable is read on its respective axis and summed to yield a total score, which corresponds to the predicted probability of TTP. This tool allows
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record variables, imaging features, or specialized biomarkers) and
complex classifiers, which may achieve high apparent accuracy but
face challenges with calibration, generalizability, and clinical
adoption—particularly in resource-limited settings (21, 22, 33-39). In
contrast, our model was intentionally designed to use only routine,
low-cost inflammatory composites (SII, PPN, and PLR) together with
BMI, thereby well-established
pathophysiological processes while ensuring scalability and
accessibility where ADAMTSI13 testing is delayed or unavailable (5,
9-13, 24-27, 31, 32). This design highlights the novelty of our study
and emphasizes its suitability for rapid, point-of-care screening.
Although tree-based models such as XGBoost and Random Forest
achieved comparable AUC values in our dataset, their “black-box”

anchoring prediction in
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nature raises concerns about interpretability and clinical uptake. By
contrast, logistic regression provides direct risk quantification through
odds ratios and can be readily implemented as a nomogram-based
prediction tool (Figure 6). This transparency supports real-world
clinical decision making and aligns with prior recommendations
advocating interpretable models for clinical predictive applications (40).

Notably, SII emerged as the most significant predictor of TTP risk,
consistent with its established role in systemic inflammation and platelet
activation (31, 32). Elevated SII has been extensively studied as a
prognostic marker in various conditions, including malignancies,
cardiovascular diseases, and autoimmune disorders, where it serves as
an indicator of heightened inflammatory activity and immune
dysregulation. In the context of TTP, the role of inflammation in disease

frontiersin.org


https://doi.org/10.3389/fmed.2025.1599999
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Liuand Ye

10.3389/fmed.2025.1599999

Variable importance plot. The figure displays the relative importance of the top four features contributing to the model. SIl ranked highest, followed by
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pathophysiology is well established (9-13), with evidence suggesting that
neutrophil activation and platelet aggregation contribute to
microvascular thrombosis (5). Increased SII may indicate excessive
neutrophil driven inflammation and platelet activation, both of which
are key contributors to TTP related thrombotic events. Furthermore,
previous studies have linked elevated SII levels with increased risk of
endothelial dysfunction, hypercoagulability, and microvascular
occlusion hallmarks of TTP progression. Given its simplicity and strong
pathophysiological relevance, SII represents a promising biomarker for
identifying high risk TTP patients and may complement existing
diagnostic strategies by providing a rapid and cost effective risk
assessment tool. Along with PPN and PLR, these composite
inflammatory markers served as the core features for distinguishing TTP
from ITP in our models, with logistic regression leveraging them to
achieve the most balanced and clinically practical diagnostic performance.

This study has several limitations that warrant consideration. First,
it was a single center, retrospective analysis with a relatively small sample
size, especially for TTP cases. Although TTP is a rare disorder, the
limited number of events may restrict the generalizability and statistical
power of the findings. Future multi-center, large-scale studies are
necessary to validate the model across more diverse populations and
clinical settings. Second, the model was only internally validated using
cross validation within the existing dataset. While 10-fold cross-
validation helps mitigate overfitting, external validation on independent

Frontiers in Medicine

cohorts is essential to assess the models real world applicability and
robustness. Third, the model exclusively included inflammatory markers
derived from routine blood tests (SII, PPN, PLR) and BMI, without
integrating other potential clinical variables such as LDH, bilirubin, or
creatinine levels. Although this was done intentionally to maintain
simplicity and accessibility, it may limit the models predictive accuracy
compared to comprehensive scoring systems like PLASMIC. Fourth, our
model does not distinguish between acquired and congenital forms of
TTP, which may have distinct inflammatory profiles. Stratified analysis
in future studies may provide a more nuanced understanding of the
model’s diagnostic performance across TTP subtypes. Lastly, while the
model showed promise for early triage, it cannot substitute for definitive
ADAMTS13 testing, which remains the gold standard for TTP diagnosis.
Our approach is intended as a complementary, rapid screening tool—
particularly useful in settings where timely ADAMTS13 results are
unavailable. Future studies may also explore incorporating additional
routine laboratory parameters to further enhance performance.

5 Conclusion

This study developed a machine learning based model
incorporating inflammatory indices for TTP risk prediction. Logistic
regression demonstrated optimal performance, with SII emerging as
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the most influential predictor. This model had the potential to improve
early TTP diagnosis, reduce diagnostic delays, and facilitate timely
intervention, particularly in resource limited settings. Further
validation through prospective, multi-center studies is warranted to
confirm clinical applicability and integration into routine practice.
With further validation, this approach may be integrated into routine
clinical workflows to facilitate early and accessible TTP diagnosis.
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