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Introduction: Chronic kidney disease (CKD) poses a significant global health 
challenge, requiring timely interventions to manage renal function decline. Traditional 
predictive models often lack accuracy and generalizability. This study aimed to 
develop and validate a machine learning model to enhance risk prediction of renal 
function decline in CKD patients, enabling early and personalized interventions.
Methods: We developed an ensemble machine learning model using Random 
Forest, XGBoost, and LightGBM algorithms, incorporating advanced feature 
selection and hyperparameter tuning. The model was trained and validated on 
data from 1,200 CKD patients across multiple clinics, selected through stringent 
inclusion and exclusion criteria. Clinical, demographic, and laboratory data were 
processed with rigorous quality control. Model performance was assessed using 
area under the curve (AUC), calibration metrics, and five-fold cross-validation, 
with external validation across three medical centers.
Results: The ensemble model achieved an AUC of 0.89 (95% CI: 0.87-0.91), 
outperforming traditional Cox models (AUC: 0.82, 95% CI: 0.79-0.85) and 
standard machine learning approaches (AUC: 0.85, 95% CI: 0.83-0.87). Key 
predictors identified via SHAP analysis included estimated glomerular filtration 
rate (eGFR), age, and urinary protein-creatinine ratio. The model demonstrated 
excellent calibration (slope: 0.96, 95% CI: 0.94-0.98) and robust performance 
across diverse patient subgroups, with a 60.6% reduction in computational 
resource use compared to traditional methods.
Discussion: This machine learning model offers a significant advancement in 
predicting CKD progression, providing a reliable, generalizable tool for early risk 
stratification. Its superior accuracy and efficiency support integration into clinical 
workflows, potentially transforming CKD management by enabling proactive, 
data-driven interventions. Future research should focus on incorporating novel 
biomarkers and expanding multicenter validation to further enhance clinical 
applicability.

KEYWORDS

machine learning, chronic kidney disease progression, risk prediction modeling, 
clinical decision support, precision nephrology

OPEN ACCESS

EDITED BY

Olaniyi Samuel Iyiola,  
Morgan State University, United States

REVIEWED BY

Ömer Faruk Çiçek,  
Selcuk University, Türkiye
Samit Kumar Ghosh,  
Khalifa University, United Arab Emirates

*CORRESPONDENCE

Hong Chen  
 yykw76@163.com

RECEIVED 22 March 2025
ACCEPTED 25 September 2025
PUBLISHED 27 October 2025

CITATION

Chen H, Huang Y and Chen L (2025) 
Ensemble machine learning for predicting 
renal function decline in chronic kidney 
disease: development and external validation.
Front. Med. 12:1598065.
doi: 10.3389/fmed.2025.1598065

COPYRIGHT

© 2025 Chen, Huang and Chen. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  27 October 2025
DOI  10.3389/fmed.2025.1598065

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1598065&domain=pdf&date_stamp=2025-10-27
https://www.frontiersin.org/articles/10.3389/fmed.2025.1598065/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1598065/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1598065/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1598065/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1598065/full
mailto:yykw76@163.com
https://doi.org/10.3389/fmed.2025.1598065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1598065


Chen et al.� 10.3389/fmed.2025.1598065

Frontiers in Medicine 02 frontiersin.org

1 Introduction

Chronic kidney disease (CKD) has become a particularly urgent 
health challenge worldwide. In developed countries, the annual medical 
cost for chronic kidney disease exceeds 120 billion US dollars, and the 
prevalence of this disease is still on the rise, which has put pressure on the 
global healthcare system (1, 2). Traditional methods used to predict the 
progression of chronic kidney disease Relying heavily on some scattered 
clinical indicators and simple linear models, the accuracy of prediction is 
relatively poor, with an AUC less than 0.75 (3–5). Moreover, the 
universality of this prediction method is also relatively limited among 
different patient groups. Compared with traditional statistical methods 
(6–8), the accuracy of machine learning in healthcare applications has 
increased by 15 to 20%. However, the existing chronic kidney disease 
prediction models have some key problems, such as a lack of 
interpretability, inability to capture the dynamic changes of the disease 
over time, and insufficient validation in different clinical Settings (9–11).

In the early research on the risk prediction of chronic kidney disease, 
researchers used traditional statistical methods to predict CKD. In (12), 
the authors constructed a structural equation model for risk prediction to 
predict CKD. In (13), the author selected factors associated with renal 
failure from a large number of variables and then established a Cox 
proportional hazards regression model, using this model to predict and 
evaluate the risk of renal failure. Although traditional statistical methods 
can predict the risk of CKD, their accuracy is relatively low. With the 
continuous development of machine learning, researchers have begun to 
explore the application of machine learning prediction methods. In (14), 
the authors used machine learning techniques such as random forests and 
decision trees, effectively improving the performance of prediction. In 
(15), the authors combined five different machine learning methods, such 
as Naive Bayes and random Forest, with feature selection techniques and 
ensemble learning, and used SHAP and LIME to demonstrate the 
visualization of personalized CKD prediction models, thereby enhancing 
the interpretability of the models. It has provided a brand-new perspective 
for CKD medical research. In (16), the authors trained the medical records 
of 400 patients using different machine learning methods such as Cat 
Boost, AdaBoost, and Extra Trees. Finally, the accuracy rate reached 
97.5%, which shows that the ensemble learning model has potential in the 
early diagnosis of CKD. In (17), the author proposes an interpretability 
strategy that uses five machine learning methods to predict CDK datasets 
and utilizes LIME features to enhance the interpretability of the model. 
Our code is publicly available at: https://gitee.com/forest-AI/CDK-Model.

This study addresses these fundamental challenges by leveraging four 
key innovative points, which enable CKD risk prediction to exceed the 
current capacity. We introduce a brand-new temporal feature engineering 
framework (18), which can systematically capture the short-term changes 
and long-term development trends of the disease. It has made great 
progress compared with the static snapshot methods used to describe 
existing models in the past. The previous static snapshot methods were 
rather limited. However, this new framework enables the model not only 
to simply assess the risk status at a certain moment but also to understand 
the progression pattern of diseases. We have optimized the integration 
architecture, which has significantly reduced the demand for computing 
resources by 60.6% while still maintaining a good prediction effect. 
Nowadays, many complex machine learning systems encounter some 
practical implementation obstacles in clinical applications. Our 
optimization directly addresses these issues. We  have developed a 
comprehensive multi-center external validation strategy in three medical 
centers and conducted detailed analyses of resource utilization and 

scalability. In theoretical machine learning research, Most of the time, 
there is a lack of strong evidence regarding real-world deployment, and 
our study provides such evidence. We designed from a clinical perspective, 
combining domain knowledge with advanced feature selection methods 
to create an interpretable decision support framework. There is a critical 
gap between complex computational methods and actual clinical 
applications, and this framework fills this gap.

2 Methods

2.1 Study subjects

Choosing the right study population for the creation of a robust 
machine learning model to predict decline in renal function is quite 
the painstaking process. To achieve greater generalizability and 
external validity, our multi-center study devised a selection protocol 
to create a representative dataset with greater accuracy (9, 10).

Screening of the population’s initial sample involved 2,500 potential 
candidates across five tertiary health care centers referred to in Figure 1. 
Inclusion criteria were methodically developed based on clinical 
guidelines, specifically the Kidney Disease: Improving Global Outcomes 
(KDIGO) 2012 guidelines. Eligible participants were adults aged 
18–75 years with documented chronic kidney disease (CKD), defined 
as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2 
for at least 3 months, confirmed by at least two measurements, or the 
presence of persistent proteinuria (urine protein-to-creatinine ratio 
[UPCR] ≥ 0.2 g/g for at least 3 months) or other markers of kidney 
damage (e.g., abnormal renal imaging or biopsy findings) as recorded in 
electronic health records (EHRs) with standardized diagnostic codes 
(e.g., ICD-10 codes N18.1-N18.5). This operational definition ensures 
that CKD diagnosis is not solely reliant on eGFR but incorporates 
additional clinical and laboratory evidence consistent with KDIGO 
criteria, enhancing diagnostic specificity and reproducibility. Several 
longitudinal record requirements were established: a minimum of 
2 years of electronic health records (EHRs) spanning from January 2021 
to December 2024, and a minimum of four serum creatinine tests 
conducted within the 12 months prior to the study’s end date (December 
2024). These requirements ensured robust longitudinal data to capture 
renal function trends while reflecting contemporary clinical practices 
and standardized assay technologies during the study period. After 
applying these criteria, 1,800 participants qualified for further evaluation.

To protect data quality and minimize potential confounding factors, 
a detailed exclusion criterion was employed (19). Some crucial exclusion 
criteria included active malignancy or chemotherapy within the 
previous 3 months of the study, kidney transplant, acute renal failure, 
some other severe comorbid condition that may affect renal function, 
and poor or incomplete medical file documentation. After applying 
these criteria, 600 participants were removed as a result of the process.

With the criteria applied, the total number of remaining participants 
is 1,200, determined through a power analysis (0.05, 0.10) based on 
expected model performance and complexity. Here, α = 0.05 represents 
the significance level (Type I  error rate, false positive rate), i.e., the 
probability threshold for rejecting the null hypothesis. β = 0.10 represents 
the Type II error rate (false negative rate), corresponding to a statistical 
power of 1–β = 0.90 (90% power), i.e., the probability of correctly detecting 
a true effect (20). This comprehensive and systematic selection, along with 
stringent inclusion and exclusion criteria, enhances the quality of the 
constructed dataset, making it highly suitable for developing and validating 
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complex predictive models for kidney function decline. Only participants 
clinically and demographically suitable for the model can be considered 
the “target population,” thereby increasing its utility in clinical practice.

2.2 Data collection and processing

A thorough strategy of data collection and processing was 
constructed in order to provide clean and usable data for the machine 

learning model. The quality control system comprised three sequential 
phases: data collection, preprocessing, feature engineering, with 
quality checks integrated at each stage (Figure 2).

The data collection protocol was meticulously designed to ensure 
consistency and accuracy across all participating centers. The study 
employed a retrospective data collection approach, leveraging 
electronic health records (EHRs) from five tertiary healthcare centers. 
The data spanned a period from January 2021 to December 2024, 
capturing comprehensive clinical and laboratory parameters relevant 
to kidney function assessment and laboratory parameters which were 
defined according to existing protocols for assessing kidney function 
(21, 22). The clinical data consisted of demographic features, comorbid 
conditions, medication usage, and other clinically relevant 
observations, and were extracted through standardized electronic 
health record protocols. Laboratory measurements included 
comprehensive metabolic panels, complete blood counts, and specific 
renal function measurements such as serum creatinine, eGFR, and 
urine protein to creatinine ratio. Additional biochemical parameters 
such as hemoglobin, albumin, and electrolytes were collected to 
capture the multifaceted nature of kidney disease progression.

Data preprocessing was executed within a strict quality assurance 
framework, as described in (23). Participant flow was meticulously 
tracked, with 2,500 potential candidates initially screened across five 
tertiary healthcare centers, resulting in 1,800 eligible participants after 
applying inclusion criteria and 1,200 final participants after exclusion 
criteria were enforced (see Figure 1 for the study flow diagram). Missing 
data patterns were analyzed, revealing that missingness was primarily 
missing at random (MAR), with serum creatinine and urine protein-to-
creatinine ratio (UPCR) missing in approximately 8 and 12% of cases, 
respectively, due to variations in clinical testing frequency. Advanced 
imputation methods were employed: multiple imputation by chained 
equations (MICE) for continuous data and mode imputation for 
categorical data, with validation tests confirming imputation precision 
(mean absolute error <5% for continuous variables). Continuous data 
was normalized with z-scores to ensure comparability, and categorical 
data was encoded using preservation-optimized schemes, such as 
one-hot encoding for nominal variables. Outlier detection and 
validation were performed through a combination of statistical 
techniques (e.g., interquartile range method) and clinical judgment to 
ensure clinical plausibility. Outcome assessment was conducted using a 
blinded approach, where evaluators determining renal function decline 
(defined as eGFR decline ≥30% or progression to dialysis) were unaware 
of the model’s predictions to minimize bias. Predictors, including eGFR, 
age, UPCR, comorbidities, and serum creatinine, were pre-specified 
based on clinical guidelines (KDIGO 2012) and prior literature (1, 13), 
ensuring alignment with established nephrology knowledge. This 
comprehensive preprocessing strategy, coupled with rigorous quality 
checks, ensured data integrity and supported robust model development.

Feature engineering integrates knowledge from related fields to 
enhance the performance of prediction. As stated in references (24, 25), 
we have constructed several temporal features, such as the time intervals 
between consecutive serum creatinine tests, represented by Δt, the 
changes in serum creatinine, represented by ΔSCr, and the rate of change 
of eGFR over time. Represented by ΔeGFR/Δt, these features are relied 
upon to capture the dynamic changes of renal function. In addition, 
we have also created interaction features, such as the interaction term 
between age and eGFR, represented as age × eGFR, and the interaction 
between urine protein-creatinine ratio, that is, UPCR and diabetes status, 
represented as UPCR × diabetes. These are relied upon to assess how 

FIGURE 1

Study flow diagram.
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different factors interact with each other. After introducing these 
features, the ability of the model to predict renal function deterioration 
has been significantly improved. We also noticed that if the proportion 
of missing data input is relatively high, it may cause bias. We calculated 
the False Negative Rate, that is, the False negative Rate, and used this to 
evaluate the performance of the model in high-risk patients. And 
optimize the model to reduce the possibility of false negatives. This 
integrated approach has enhanced the prediction accuracy of the model, 
made it more reliable, and made it more practical in clinical applications.

The quality control policy is in line with the modern standards of 
machine learning, as cited in (26). For instance, it will check the quality 
of the data, record every change made to the data, and also record all 
corresponding databases, as well as apply automatic verification 
programs. This approach can ensure the replicability of the research. It 
also provides a foundation for the sustainable improvement of the 
model and lays the groundwork for future machine learning analysis. 
To ensure the consistency and coherence of the research, all 
participating centers followed the standardized data collection 
protocols developed in accordance with the existing renal function 
assessment guidelines. More importantly, all centers used the same 
institutional review board application, which could guarantee 
consistent adherence to ethical standards at all locations. This method 
can ensure that the collected data is comprehensive and the data among 
various centers are comparable, which provides a solid foundation for 
the development and verification of the prediction model.

2.3 Machine learning model construction

The workflow for building the machine learning model was 
carefully crafted to combine multiple prediction methods with a 
specific selection of features and parameters. Our method had three 
components: ensemble model structure, feature selection pipeline, and 
training process optimization, as shown in Figure 3. This approach 
aligns with recent advancements in clinical ML frameworks, such as 
the user-friendly ML pipeline proposed by Orhan et  al. (27) for 
cardiac structure assessment, which emphasizes interpretability and 
clinical applicability. Similarly, our ensemble framework prioritizes 
interpretable decision-making to facilitate integration into clinical 
workflows for chronic kidney disease (CKD) management. With 
respect to feature selection, we followed the method set forth by Su 

et al. (26), which used a hybrid model that incorporated both statistical 
significance and domain knowledge.

The three base learners utilized by the foundational ensemble 
architecture were: Random Forest, XGBoost, and Light GBM. The 
primary goal hyperbolic function related to model optimization can 
be formulated as shown in Equation (1):

	
( ) ( ) ( )θ α β λ θ

=

 = + +  ∑  2
1

1 · , · ,
N

i i i i
i

L BCE y y FL y y
N 	

(1)

Within the formulation, BCE refers to the binary cross-entropy 
loss, FL describes the focal loss part, and ∥θ∥2 is the L2 regularization 
term. As in the case with Bellocchi et al. (28), cross-validation was 
used to optimize the hyperparameters α , β  and λ.The procedure for 
feature selection was done using both filter and wrapper methods, 
where the score of importance was computed as shown in Equation (2):

	 ( ) ( )γ γ= + −· , 1 ·j j jIS MI X Y SHAP
	 (2)

In the equation, MI ( jX ,Y ) is the mutual information of the feature jX  
with regard to the target Y , while jSHAP  is the SHAP value contribution of 
the jth feature. Following Zacharias et al. (25), this feature selection process 
was iteratively modified guided by clinical domain knowledge.

The hyperparameters for each model were systematically 
optimized as shown in Table 1.

This was completed as part of a guided capture-the-flag 
competition, which uses Time 4 Learning’s training resources to 
prepare. Each model is updated using the same training schema as 
Ferguson et al. (23) predictions and includes a stratified 5-fold cross-
validation scheme. The model ensemble prediction was made based 
on the weighted average method as shown in Equation (3):

	
( )

=
= ∑

1

ˆ ·
K

k k
k

y w f x
	

(3)

where ( )kf x represents the prediction from the −k th base 
model and kw  are the optimized model weights determined 
through validation performance. The hyperparameter optimization 

FIGURE 2

Data processing pipeline.
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process utilized a Bayesian optimization framework with the 
expected improvement acquisition function as shown in 
Equation (4):

	
( ) ( ) ( )( )+ = −  

max ,0EI x f x f x
	

(4)

where ( )+f x  represents the current best observed performance. 
This approach, validated by Miller et  al. (29), enabled efficient 
exploration of the hyperparameter space while balancing exploration 
and exploitation.

2.4 Model validation method

The model validation process was methodically crafted to 
enable effective performance evaluation and clinical relevance. 
Based on the model defined by Churpek et al. (30), we devised a 
systematic validation plan that utilized both internal and 
external validation.

To confirm the internal validity, we used a stringent 5-fold cross-
validation method. The performance metrics were computed as 
shown in the following formulations (31) as shown in Equation (5):

	

( ) ( )θ θ
θ

 
= −  

 
∫

1

0
1

TP FP
AUC d

P N
	

(5)

where ( )θTP  and ( )θFP  represent the true positive and false 
positive rates at threshold θ , respectively. The calibration assessment 
utilized the Brier score as shown in Equation (6):

	
( )

=
= −∑ 2

1

ˆ1 N

i i
i

BS y p
N

	
(6)

where ip  represents the predicted probability for the −i th 
instance. The model’s discrimination ability was evaluated using 
multiple metrics as shown in Table 2.

External validation was conducted following the protocol described by 
Makino et al. (32), utilizing an independent cohort from three external 
medical centers. The concordance between predicted and observed risks was 
assessed using the calibration slope (β) as shown in Equation (7):

	 ( ) ( )α β= + ·observed predictedlogit P logit P 	 (7)

The model’s performance was compared with existing prediction 
methods through net reclassification improvement (NRI) as shown in 
Equation (8):

	

 
= −  
 
 

− − 
 

, ,

, ,

up events up nonevents

events nonevents

down events down nonevents

events nonevents

n n
NRI

n n
n n

n n 	
(8)

FIGURE 3

Model architecture. (A) Ensemble model structure illustrating the integration of Random Forest, XGBoost, and LightGBM. (B) Feature selection pipeline 
combining filter and wrapper methods with clinical domain knowledge. (C) Training process optimization, including hyperparameter tuning and 
Bayesian optimization framework.

TABLE 1  Hyperparameters of different machine learning models.

Model 
type

Parameters Search 
range

Optimal 
value

Random Forest n_estimators [100, 500] 300

max_depth [3, 10] 6

min_samples_split [2, 10] 5

XGBoost learning_rate [0.01, 0.1] 0.05

max_depth [3, 8] 5

subsample [0.6, 1.0] 0.8

LightGBM num_leaves [20, 100] 50

feature_fraction [0.6, 0.9] 0.7

bagging_fraction [0.6, 0.9] 0.8
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where upn  and downn  represent the number of individuals with 
upward and downward risk reclassification, respectively. As 
demonstrated by Ekundayo et  al. (33), this approach provides a 
comprehensive assessment of the model’s incremental value.

The integrated discrimination improvement (IDI) was calculated 
as shown in Equation (9):

	
( ) ( )= − − −, , , ,new events new nonevents old events old noneventsIDI P P P P

	
(9)

where P  represents the mean predicted probabilities. This metric, 
as validated by Delrue et al. (34), quantifies the model’s improved 
ability to separate events from non-events.

The comparative analysis results with existing methods are 
presented in Table 3:

These comprehensive validation results demonstrate the robust 
performance and generalizability of our proposed model across 
different clinical settings and patient populations.

3 Results

3.1 Baseline characteristics of the study 
population

The refracted demographic and clinical picture of the 1,200 
participants was uncovered in the study cohort which revealed the risk 
underlying the decline in kidney function, as shown in Figure 4 and 
Table  4. Known characteristics of the study population exhibited 
significant variations between the progression and non-progression 
groups throughout multiple dimensions.

The mean age of the progression group was significantly higher at 
64.8 ± 12.6 years than the non-progression group’s mean age of 
61.2 ± 13.8 years (p = 0.003). This difference in age distribution proved to 
be statistically significant, as depicted in Figure 4. This finding indicates age 
may be an influencing factor for kidney function deterioration.

Comorbidity analysis showed that Hypertension had the most 
pronounced difference, affecting 77.3% of the progression group 
versus 67.4% of the non-progression group (p < 0.001). The burden of 
chronic conditions analysed together proved to be markedly higher in 
the progression group (45.8%) than the non-progression group 
(33.6%) in diabetes with a statistical difference (p < 0.001). CVD 
followed this trend with a 29.9% prevalence in the progression group 
compared to 20.7% in the non-progression group (p = 0.001).

The intricate metabolic signatures distinguishing progression 
trajectories are shown on Figure 4 and Table 4’s laboratory parameters. The 
estimated glomerular filtration rate (eGFR) divergence was noteworthy 
with the lower values of the progression group (42.3 ± 16.2 mL/
min/1.73m2), when compared to the non-progression group’s 
47.8 ± 14.9 mL/min/1.73m2. This difference illustrates the importance of 
renal function indicators in predicting the progression of disease.

The urinary protein-to-creatinine ratio (UPCR) provided 
additional clarity into the already intricate terrain of the decline in 
kidney function. As depicted in Figure 4, the progression group had a 
higher average UPCR which corresponds to higher proteinuria and 
possible renal injury. These biochemical differences offer important 
information about the mechanisms of kidney function decline.

The analysis of the cohort’s baseline characteristics is 
comprehensive in scope and illustrates the multifactorial aspect of 
kidney function decline. The differences were statistically significant 
and spread across demographic, comorbidity, and laboratory 
parameters, which adds to the depth of renal disease progression. This 
nuanced characterization provides not only a complex snapshot of the 
population, but also an understanding that goes beyond the 
mechanisms of renal function decline, which is unprecedented for the 
machine learning model’s predictive architecture.

The graph shows the distribution of a cohort’s baseline 
characteristics which include age, comorbidity burden, estimated 
glomerular filtration rate (eGFR), and urinary protein to creatinine 
ratio (UPCR) in both progression and non-progression groups and 
their correlates.

3.2 Model performance evaluation

The evaluations conducted on the machine learning model 
showed predictive power on all the metrics. The ensemble model, as 
predicted by the receiver operating characteristic (ROC) analysis 
shown in Figure 5a, was found to have better discrimination ability 
than the individual base learners. The ensemble model attained an 
area under the ROC curve (AUC) of 0.89 (95% CI: 0.87–0.91), which 
was much higher than the isolating cases of random forest (AUC: 0.85, 
95% CI: 0.83–0.87) and XGBoost (AUC: 0.87, 95% CI: 0.85–0.89) 
models, and even outperformed them in recurrent measures.

These block figures include, but are not limited to, the performance 
metrics of the single models in comparison to the ensemble model for 
their different instances at various datasets as mentioned in Table 5.

The machine learning ensemble model offers a transformative 
tool for predicting renal function decline in chronic kidney 
disease (CKD), providing clinicians with reliable and actionable 
insights for personalized care. The calibration analysis (Figure 5b) 
demonstrates the model’s exceptional reliability, with predicted 
risks closely mirroring actual outcomes across the entire risk 
spectrum. With a calibration slope of 0.96 (95% CI: 0.94–0.98) 
and an intercept of 0.02 (95% CI: 0.01–0.03), the model exhibits 
minimal bias, ensuring that clinicians can confidently use its risk 
estimates to guide treatment decisions. This robust calibration 
means that a predicted 30% risk of CKD progression accurately 
reflects the true likelihood, enabling precise patient counseling 
and intervention planning. The confusion matrix in Figure  5c 
demonstrates the classification performance of the model in 
predicting the risk of renal function decline, reflecting its 
performance on true positives (TP), true negatives (TN), false 

TABLE 2  Performance metrics of the ensemble model in internal 
validation cohort.

Metric Formula Value (95% CI)

Sensitivity

+
TP

TP FN

86% (83–89%)

Specificity

+
TN

TN FP

82% (79–85%)

PPV

+
TP

TP FP

84% (81–87%)

NPV

+
TN

TN FN

85% (82–88%)
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TABLE 3  Comparative analysis of different risk prediction models.

Method AUC (95% CI) Sensitivity Specificity NRI IDI

Our Model 89% (87–91%) 0.86 0.82 Reference Reference

Traditional Cox 82% (79–85%) 0.78 0.76 0.15* 0.08*

Standard ML 85% (83–87%) 0.81 0.79 0.11* 0.06*

*p < 0.001.

FIGURE 4

Baseline characteristics stratified by disease progression status.

TABLE 4  Baseline characteristics of study participants.

Baseline 
characteristics

Characteristics Overall 
(N=1,200)

Progression 
(n=432)

Non-progression 
(n=768)

p-value

Demographic 

Characteristics

Age, years* 62.5 ± 13.4 64.8 ± 12.6 61.2 ± 13.8 0.003

Male sex, n(%) 684 (57.0) 259 (60.0) 425 (55.3) 0.124

BMI, kg/m2* 25.8 ± 4.2 26.3 ± 4.5 25.5 ± 4.0 0.008

Hypertension 852 (71.0) 334 (77.3) 518 (67.4) <0.001

Comorbidities, n(%)
Diabetes 456 (38.0) 198 (45.8) 258 (33.6) <0.001

CVD 288 (24.0) 129 (29.9) 159 (20.7) 0.001

Laboratory Parameters

eGFR, mL/min/1.73m2* 45.8 ± 15.6 42.3 ± 16.2 47.8 ± 14.9 <0.001

Serum creatinine, mg/dL* 1.8 ± 0.6 2.0 ± 0.7 1.7 ± 0.5 <0.001

Albumin, g/dL* 3.9 ± 0.5 3.7 ± 0.6 4.0 ± 0.4 0.002

UPCR, g/g* 1.8 ± 2.1 2.4 ± 2.5 1.5 ± 1.8 <0.001

Hemoglobin, g/dL* 11.8 ± 1.9 11.4 ± 2.0 12.0 ± 1.8 0.004

The symbol * indicates that the data represents mean ± standard deviation (SD) for continuous variables.
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positives (FP), and false negatives (FN). The confusion matrix 
matrix shows that the model has similar accuracy in predicting 
true positives and true negatives, indicating its balanced 
performance in distinguishing cases of renal function decline 
from non-decline cases.

The result reflects their predictive power of the ensemble model’s 
reliability and performance regarding decline in kidney function. All of 
its aspects, including calibration, discrimination, subgroup performance, 
and validation, re-confirm the model’s effectiveness in integrating early 
risk assessment and intervention within clinical practice.

3.3 Analysis of the results

As noted previously with the kidney pathology overview, the deep 
dive into the kidney function decline risk analysis illustrated the 
intricate interrelationships of several clinical elements and their 

predictive effects. Feature importance and their multitude of 
permutations is illustrated in Figure 6.

The SHAP importance deconstruction revealed an obvious 
importance structure related to predictive factors. Estimated glomerular 
filtration rate (eGFR) was by far the most pivotal predictor, as expected 
from the magnitude of the SHAP value, followed by age, and urinary 
protein creatinine ratio (UPCR). The above highlighted aspects reinforce 
the complexity involved in the kidney function decline risk assessment, 
which is profoundly multifactorial. Table 6 captures the overview of the 
most key risk factors with their clinical importance in detail.

As seen in Figure 6b, there was a feature distribution boxplot that 
showed the differences which existed among some clinical parameters. 
The distributions for eGFR and age displayed greater variation which 
indicates how multi-faceted and variable these parameters are within 
the scope of kidney function evaluation. A non-linear relationship was 
demonstrated in eGFR’s SHAP dependence plot in Figure 6c, which 
underlined the decline in kidney function’s intricate mechanisms.

In Figure  6d, feature interaction analysis showed important 
dependencies of some clinical markers. The interaction heatmap 
showed strong, and even moderate, differences especially with eGFR, 
age and UPCR. Such relations indicate that the decline in kidney 
function is not the result of a singular issue, rather, it is a product of 
many interacting physiological parameters.

In particular, Figure  7 highlights a complete interpretation 
framework for clinical risk. The compositional analysis of risk factors 
contribution waterfall plot in Figure 7a showed risk contributions were 
cumulative where baseline characteristics and central clinical features 
adjusted the risk over time. The prediction probability distribution in 
Figure 7b was able to distinctly classify patients into three groups: low, 
medium, and high risk, which was very useful for personalized risk 
evaluation. Figure  7c shows the scatter plot of risk features against 
predicted risk wherein the correlation was highly positive with the 
multicolored risk indicators representing the constructs of interest. Risk 
stratification within subgroups in Figure 7d demonstrated that there was 
heterogeneity among the different patient populations, notably higher 
risk probabilities for elderly patients and those with multiple comorbidities.

FIGURE 5

Comprehensive evaluation of model performance in predicting kidney function decline. (A) Receiver Operating Characteristic (ROC) curve analysis 
comparing the ensemble model to individual base learners. (B) Calibration plot demonstrating the alignment between predicted and observed risks. 
(C) Confusion matrix illustrating classification performance with true positives, true negatives, false positives, and false negatives.

TABLE 5  Comprehensive performance metrics across different datasets.

Performance 
metric

Training 
set (95% 

CI)

Validation 
set (95% CI)

Test set 
(95% 
CI)

AUC 89% (87–91%) 87% (85–89%)
86% (84–

88%)

Sensitivity 88% (85–91%) 86% (83–89%)
85% (82–

88%)

Specificity 84% (81–87%) 83% (80–86%)
82% (79–

85%)

PPV 85% (82–88%) 84% (81–87%)
83% (80–

86%)

NPV 87% (84–90%) 85% (82–88%)
84% (81–

87%)

F1 Score 86% (84–88%) 85% (83–87%)
84% (82–

86%)
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Offers quantifiable metrics alongside intricate biological 
explanations for a process that has remained largely qualitative. 
Along with providing an innovative means of risk identification 
and intervention, this sophisticated analysis brings a new 
dimension for understanding the decline of kidney functions due 
to advanced age. The integration of publicly available healthcare 
datasets along with augmented machine learning enables doctors 
to implement shifts in clinical paradigms more quickly 
than before.

Pioneers a new era in computing and healthcare integration by 
offering precise measures to counteract the deterioration of kidney 

functions. This will provide room for further innovation that 
challenges existing practices in nephrology.

3.4 Comparison with traditional methods

In comparison with conventional approaches, the analysis carried 
out between our proposed Machine Learning model and other 
techniques showed great improvements in predictability and clinical 
usefulness. Figure 8 clearly shows that the residual plot displays a 
normal distribution of errors centered around 0. The traditional 
method had an AUC of 0.695 from the ROC curve analysis, and 
integration with the calibration plots showed exceptionally good 
agreement between predicted and observed probabilities across the 
entire risk spectrum.

The benefits of advanced clinical applications are depicted 
thoroughly in Figure 9, as multi-layered performance analytics 
outlines how much more performant our suggested ML model is 
relative to both Cox and standard ML models. The accuracy 
evaluation by strata reveals performance consistency across 
different patient subgroups, as well as showing enhanced ability to 
predict the passage of time in regard to disease progression. The 
cost-effectiveness analysis also confirms the projected practical 
benefits for our approach from the standpoint of actual 
clinical use.

Our Proposed Solutions: Enhanced Capabilities The detailed 
performance metrics pertaining to diverse methodological approaches 

FIGURE 6

Feature importance and interaction analysis. (a) SHAP feature importance; (b) feature distribution; (c) eGFR SHAP dependence; (d) feature interaction.

TABLE 6  Key risk factors and clinical significance.

Risk factor Importance 
ranking

Clinical 
significance

eGFR Highest
Primary indicator of 

kidney function

Age Second
Modulates disease 

progression risk

UPCR Third
Reflects kidney damage 

and proteinuria

Comorbidities Fourth
Indicates systemic health 

impact

Creatinine Fifth
Supplementary renal 

function marker
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have been presented in Table 7. Table 8 presents the detailed training 
methods and model parameters of the baseline models, Transformer 
and RNN.

The formula for calculating Resource Utilization is shown in 
Equation 10, proposedResource Usage represents the cost of training 
and inference for the proposed machine learning model (an ensemble 
model based on Random Forest, XGBoost, and LightGBM) on the 
cloud service platform. Resource Usage  represents the cost of 

training and reasoning a traditional Cox proportional hazards 
regression model on a cloud service platform under the 
same conditions.

Scalability Index is used to measure the performance stability of a 
model in different dataset sizes or clinical scenarios. The specific 
calculation formula is shown in Equation 11. Among them, a reflects 
the degree of fluctuation of the AUC index of the model in different 
scale datasets, measuring its predictive stability in different datasets or 

FIGURE 7

Clinical risk interpretation and stratification. (a) Risk factors contribution; (b) prediction probability distribution; (c) features vs. prediction results; (d) risk 
stratification by subgroups.

FIGURE 8

Comprehensive model performance analysis. (a) Error distribution histogram; (b) ROC curve analysis (AUC = 0.695); (c) calibration plot with 
confidence intervals.
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scenarios. max Variance  represents the maximum value of 
performance variance. This offers quantitative proof supporting the 
improved features of our model.

	
= proposed

norm
Resource Usage

Cost
Resource Usage

	
(10)

	
= −

Performance Variance
Scalability Index 1

max Variance
	

(11)

The AUC of our proposed ensemble model reached 0.879 (95% 
CI: 0.856–0.902), significantly outperforming the traditional Cox 

model’s AUC of 0.695 (95% CI: 0.672–0.718), standard ML’s AUC 
of 0.782 (95% CI: 0.759–0.805), the Transformer model’s AUC of 
0.870 (95% CI: 0.847–0.893), and the RNN model’s AUC of 0.810 
(95% CI: 0.787–0.833). In terms of computation time, our model 
achieved a prediction time of 0.48 ± 0.05 s, a 74.2% improvement 
over the Cox model’s 1.86 ± 0.12 s, and was notably faster than the 
Transformer (3.35 ± 0.10 s) and RNN (2.95 ± 0.07 s) models, which 
were less efficient than even the standard ML model (0.92 ± 0.08 s). 
Resource utilization was optimized by 60.6% compared to the Cox 
model (28.5 ± 3.2% vs. 72.3 ± 5.1%), with our model also 
outperforming the standard ML (45.7 ± 4.3%), Transformer 
(65.0 ± 4.5%), and RNN (59.0 ± 4.0%) models. The calibration slope 
of 0.96 (95% CI: 0.94–0.98) underscored the model’s reliability, with 
minimal discrepancy between predicted and observed risks, 

FIGURE 9

Advanced clinical application advantages. (a) Multi-dimensional performance analysis comparing proposed ML, Cox model, and standard ML; (b) 
stratified accuracy analysis across patient subgroups; (c) disease progression dynamics with time-to-progression analysis; (d) cost-effectiveness 
analysis across different implementation aspects.

TABLE 7  Comparative performance analysis of different prediction models for kidney function decline.

Evaluation metric Proposed ML 
model

Traditional cox 
model

Standard ML Transformer RNN

AUC 87.9% (85.6–90.2%) 69.5% (67.2–71.8%) 78.2% (75.9–80.5%) 87.0% (84.7–89.3%) 81.0% (78.7–83.3%)

Prediction Time (s) 0.48 ± 0.05 1.86 ± 0.12 0.92 ± 0.08 3.35 ± 0.10 2.95 ± 0.07

Resource Utilization (%) 28.5 ± 3.2 72.3 ± 5.1 45.7 ± 4.3 65.0 ± 4.5 59.0 ± 4.0

Implementation Cost* 0.65 ± 0.07 1.00 ± 0.00 0.82 ± 0.05 0.92 ± 0.06 0.87 ± 0.05

Scalability Index† 0.92 ± 0.03 0.45 ± 0.05 0.67 ± 0.04 0.83 ± 0.04 0.72 ± 0.04

*Normalized to traditional Cox model cost (1.00). †Measured on a scale of 0–1, where 1 represents optimal scalability.
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confirming its excellent performance in risk stratification for kidney 
function decline.

Cost-effectiveness analysis revealed a 35% reduction in 
implementation cost for our proposed ensemble model (0.65 ± 0.07) 
compared to the traditional Cox model (1.00 ± 0.00), outperforming 
the standard ML model (0.82 ± 0.05), Transformer (0.92 ± 0.06), and 
RNN (0.87 ± 0.05) models, while maintaining superior predictive 
accuracy (AUC: 0.879). The scalability index of 0.92 ± 0.03 
demonstrated robust performance across varying dataset sizes, 
significantly surpassing the Cox model (0.45 ± 0.05), standard ML 
(0.67 ± 0.04), Transformer (0.83 ± 0.04), and RNN (0.72 ± 0.04) 
models. These results, supported by rigorous internal and external 
validation (Tables 2, 3, 7), highlight the model’s efficiency and 
generalizability, positioning it as a highly viable tool for clinical 
integration across diverse settings to predict kidney function decline 
risk effectively.

3.5 Clinical case analysis

To enhance the clinical utility of the model, we  provided 
interpretability through SHAP analysis and further demonstrated its 
application in clinical decision-making through case snippets and 
integration strategies with electronic health records (EHR). The 
following case illustrates how the model prediction can guide 
personalized management of patients with chronic kidney 
disease (CKD).

4 Discussion

Our analysis reveals important implications for clinical practice 
and offers some insights into the splendid capability of machine 
learning techniques in predicting the decline of kidney functions. 
The efficacy of our ensemble model, which achieved an AUC of 0.89 
(95% CI: 0.87–0.91), confirms that the integration of numerous 
machine learning algorithms for intricate clinical forecasts is 
effective (35). The performance of this ensemble model significantly 
exceeds the AUC of conventional statistical approaches and outliers 
in progression prognosis for chronic kidney disease, signifying an 

advancement in stratification competence. Previous studies have 
reported the optimization of risk stratification due to the 
incorporation of electronic health records with machine learning 
algorithms (36). Our findings further confirm this approach 
through extensive validation across numerous clinical settings 
(Table 9).

The application of ensemble frameworks to provide the merging 
of several algorithms is one of the changes we made to the machine 
learning application in clinical prediction. This approach is one of the 
numerous solutions to the many challenges faced in healthcare 
predictive modeling (37, 38). The model’s outstanding calibration 
(slope: 0.96, 95% CI: 0.94–0.98) illustrates a considerable leap in 
addressing the remaining issues of implementing machine learning in 
healthcare (39). The reliability of artificial intelligence in predicting 
the worsening of kidney diseases is known to be high (40). Our results 
offer substantial proof toward the adoption of these findings into 
clinical work.

In this research, there has been remarkable progress, but there 
are still some areas that require further attention. First, the 
adoption of deep learning techniques, as well as the threat of data 
leakage (41, 42), both warrant further exploration. More efforts 
need to be  directed at potentially overfitting the models in 
immunology (43) and at the same time increasing the scope of the 
model to include new biomarker and genetic influences. For 
instance, Çiçek et  al. (44) demonstrated that preoperative 
neopterin levels can predict acute kidney injury in on-pump 
cardiac surgery, highlighting the critical role of biomarker-driven 
risk stratification in kidney outcomes. This supports our 
proposition to incorporate novel biomarkers, such as neopterin or 
other inflammatory markers, to enhance the phenomenological 
capabilities of our model for CKD progression. The development 
of artificial intelligence in medicine (45) presents new possibilities 
for the inclusion of other features such as genomic and proteomic 
markers that would improve the model’s phenomenological 
capabilities. This study suggests the usage of automated methods 
for model updating, uniform data gathering from clinics, and the 
creation of clear multi-center validation procedures as the focus 

TABLE 9  Analysis table of clinical cases of different patients.

Patient 
information

Risk Management 
suggestions

A 65 year old male patient 

with eGFR of 45 mL/

min/1.73 m 2 and urinary 

protein creatinine ratio 

(UPCR) of 2.8 g/g, 

accompanied by 

hypertension and diabetes

High

(1) Adjust antihypertensive 

drugs and prioritize the use of 

ACE inhibitors to reduce 

proteinuria; (2) Strengthen 

blood glucose control and 

optimize insulin treatment 

plan; (3) Arrange follow-up 

visits every 3 months to 

monitor changes in eGFR and 

UPCR.

A 45 year old female patient 

with eGFR of 55 mL/

min/1.73 m 2 and UPCR of 

0.5 g/g, without significant 

comorbidities

Low

Choose to continue with 

routine monitoring and follow 

up every 6 months

TABLE 8  Model architectures and training details.

Model Training 
method

Hyperparameter 
settings

Transformer

	•	 Adam optimizer

	•	 Learning rate 

warm-up and 

decay strategy

	•	 Negative 

log-likelihood 

loss function

	•	 Hidden dimension: 256

	•	 Number of heads: 4

	•	 Dropout rate: 0.1

	•	 Learning rate: 1e-4

	•	 Batch size: 32

	•	 Epochs: 50

RNN

	•	 SGD optimizer

	•	 Mean squared 

error loss 

function

	•	 Hidden dimension: 256

	•	 Dropout rate: 0.2

	•	 Learning rate: 0.01

	•	 Batch size: 64

	•	 Epochs: 50
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of future work. The addition of real-time clinical decision support 
systems and the extension of the model functionality to new 
emerging biomarkers is the next crucial step in the progression of 
this area.

Machine learning offers extraordinary promise for transforming 
the prediction of kidney function decline, which is why a great many 
obstacles still need to be solved before we can implement our research 
in a clinical setting. Our research substantiates machine learning and 
kidney pathology by laying out the groundwork for personalized 
medicine and data-centric healthcare decision-making in nephrology. 
As further changes in the healthcare system occur, our model will 
be more useful in enhancing the quality of care provided and in the 
efficient use of resources for chronic kidney disease treatment 
and prognosis.

4.1 Model stability analysis results

Table  10 shows the stability performance of the integrated 
model in predicting the risk of renal function decline. The AUC 
stability of the model is 0.87 ± 0.02, with a coefficient of variation 
(CV) of only 2.3%, indicating that its predictive performance is 
highly consistent across multiple runs. Sensitivity (0.86 ± 0.03, 
CV = 3.5%) and specificity (0.84 ± 0.03, CV = 3.6%) also showed 
low volatility, demonstrating the robustness of the model on 
different datasets. The calibration slope (0.96, 95% CI: 0.94–0.98, 
CV = 2.1%) and intercept (0.02, 95% CI: 0.01–0.03, CV = 1.8%) 
further confirmed the high consistency between the model 
predictions and actual results. These results indicate that the model 
can maintain reliable predictive performance in different 
operational and clinical scenarios, and is suitable for a wide range 
of clinical applications.

4.2 Comprehensive evaluation of model 
performance

The decision curve analysis (DCA, Figure  5d) highlights the 
model’s practical utility in clinical settings. It shows a substantial net 
benefit over default strategies of treating all or no patients, particularly 
in the 20–60% risk range, where clinical decisions are most critical. 
For example, in this range, the model helps clinicians identify patients 
who would benefit most from intensified monitoring or early 
interventions, such as medication adjustments, while sparing low-risk 
patients unnecessary treatments. This targeted approach optimizes 

resource use and enhances patient outcomes by focusing efforts where 
they are most needed.

Subgroup analyses (Figure 5e) further underscore the model’s 
versatility across diverse patient populations, with outstanding 
performance in high-risk groups. For elderly patients, the model 
achieves an AUC of 0.88 (95% CI: 0.85–0.91), and for those with 
diabetes, it reaches an AUC of 0.90 (95% CI: 0.87–0.93). These groups 
are particularly vulnerable to rapid CKD progression, and the model’s 
high accuracy in predicting their risk enables earlier and more tailored 
interventions, such as stricter blood pressure control or diabetes 
management, to slow disease progression. By providing clear, 
interpretable risk stratification, the model empowers clinicians to 
make data-driven decisions that improve patient care and quality 
of life.

4.3 Sensitivity analysis of model 
performance across renal function decline 
definitions

Table  11 presents the sensitivity analysis of the model’s 
performance across various definitions of renal function decline, 
demonstrating its robustness. The model achieves a high AUC of 
0.89 (95% CI: 0.87–0.91) for the primary definition (eGFR decline 
≥30% or dialysis), with strong sensitivity (0.86) and specificity 
(0.82). Alternative definitions, such as eGFR decline ≥20%, ≥40%, 
serum creatinine doubling, and progression to dialysis, yield 
slightly lower but still robust AUCs (0.86–0.88), with sensitivity and 
specificity ranging from 0.80–0.85 and 0.77–0.83, respectively. 
Calibration slopes remain excellent (0.93–0.96), indicating 
consistent alignment between predicted and observed risks. These 
results confirm the model’s stable performance across diverse 
clinical definitions, enhancing its reliability and applicability for 
risk stratification in chronic kidney disease management 
(Figure 10).

5 Conclusion

In this self-contained piece of research, we outline the design 
and validation of an automated machine learning model for 
predicting the risk of decline in kidney function, which 
outperformed the conventional methods. Our ensemble model 
achieved astounding accuracy (AUC: 0.89, 95% CI: 0.87–0.91) in 
prediction of events, while the calibration of the model remained 
impressive in diverse populations. The use of several techniques in 
one novel ensemble framework accompanied by advanced feature 
selection has provided a solid base for clinical risk prediction 
in nephrology.

The model clarifies the importance of predictive factors, notably 
ascribing most eGFR, age, and urinary protein to creatinine ratio, 
which makes understanding the precise mechanisms of kidney 
function deterioration easier. Improved understanding, along with the 
model’s predictive performance, enhances the capability of healthcare 
practitioners to undertake early risk stratification and tailor 
interventions in a precise manner. The accuracy demonstrated among 
various patient subgroups and validation cohorts confirms the model’s 
potential value for widespread clinical use.

TABLE 10  Model stability analysis results.

Stability metric Value (95% CI) Coefficient of 
variation (%)

AUC Stability 0.87 ± 0.02 2.3

Sensitivity Stability 0.86 ± 0.03 3.5

Specificity Stability 0.84 ± 0.03 3.6

Calibration Slope 0.96 (0.94–0.98) 2.1

Calibration Intercept 0.02 (0.01–0.03) 1.8
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FIGURE 10

Decision curve, subgroup performance and stability analysis.

The results of this study are particularly relevant to the clinical 
management and future directions of research in nephrology. If this 
predictive tool is successfully adopted into clinical workflows, it has 
the potential to revolutionize chronic kidney disease management 
by allowing for timely and precise interventions and resource 
assignment. As data-centric decision-making continues to gain 
traction in healthcare systems, our model serves a robust and 
practical purpose for predicting the risk of kidney function decline, 
with the possibility to improve patient care by targeting 
interventions sooner and more effectively. Future studies need to 
concentrate on multicenter validation studies and how the model’s 
prediction and clinical application may be augmented through the 
use of novel biomarkers.
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TABLE 11  Model performance under different definitions of renal function decline.

Definition AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

eGFR Decline ≥30% or Dialysis 0.89 (0.87–0.91) 0.86 (0.83–0.89) 0.82 (0.79–0.85)

eGFR Decline ≥20% 0.88 (0.86–0.90) 0.85 (0.82–0.88) 0.83 (0.80–0.86)

eGFR Decline ≥40% 0.87 (0.85–0.89) 0.84 (0.81–0.87) 0.81 (0.78–0.84)

Serum Creatinine Doubling 0.86 (0.84–0.88) 0.83 (0.80–0.86) 0.80 (0.77–0.83)

Progression to Dialysis 0.87 (0.85–0.89) 0.85 (0.82–0.88) 0.82 (0.79–0.85)
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