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predicting renal function decline
In chronic kidney disease:
development and external
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Introduction: Chronic kidney disease (CKD) poses a significant global health
challenge, requiring timely interventions to manage renal function decline. Traditional
predictive models often lack accuracy and generalizability. This study aimed to
develop and validate a machine learning model to enhance risk prediction of renal
function decline in CKD patients, enabling early and personalized interventions.
Methods: We developed an ensemble machine learning model using Random
Forest, XGBoost, and LightGBM algorithms, incorporating advanced feature
selection and hyperparameter tuning. The model was trained and validated on
data from 1,200 CKD patients across multiple clinics, selected through stringent
inclusion and exclusion criteria. Clinical, demographic, and laboratory data were
processed with rigorous quality control. Model performance was assessed using
area under the curve (AUC), calibration metrics, and five-fold cross-validation,
with external validation across three medical centers.

Results: The ensemble model achieved an AUC of 0.89 (95% Cl. 0.87-0.91),
outperforming traditional Cox models (AUC: 0.82, 95% CI. 0.79-0.85) and
standard machine learning approaches (AUC: 0.85, 95% CI: 0.83-0.87). Key
predictors identified via SHAP analysis included estimated glomerular filtration
rate (eGFR), age, and urinary protein-creatinine ratio. The model demonstrated
excellent calibration (slope: 0.96, 95% Cl: 0.94-0.98) and robust performance
across diverse patient subgroups, with a 60.6% reduction in computational
resource use compared to traditional methods.

Discussion: This machine learning model offers a significant advancement in
predicting CKD progression, providing a reliable, generalizable tool for early risk
stratification. Its superior accuracy and efficiency support integration into clinical
workflows, potentially transforming CKD management by enabling proactive,
data-driven interventions. Future research should focus on incorporating novel
biomarkers and expanding multicenter validation to further enhance clinical
applicability.
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1 Introduction

Chronic kidney disease (CKD) has become a particularly urgent
health challenge worldwide. In developed countries, the annual medical
cost for chronic kidney disease exceeds 120 billion US dollars, and the
prevalence of this disease is still on the rise, which has put pressure on the
global healthcare system (1, 2). Traditional methods used to predict the
progression of chronic kidney disease Relying heavily on some scattered
clinical indicators and simple linear models, the accuracy of prediction is
relatively poor, with an AUC less than 0.75 (3-5). Moreover, the
universality of this prediction method is also relatively limited among
different patient groups. Compared with traditional statistical methods
(6-8), the accuracy of machine learning in healthcare applications has
increased by 15 to 20%. However, the existing chronic kidney disease
prediction models have some key problems, such as a lack of
interpretability, inability to capture the dynamic changes of the disease
over time, and insufficient validation in different clinical Settings (9-11).

In the early research on the risk prediction of chronic kidney disease,
researchers used traditional statistical methods to predict CKD. In (12),
the authors constructed a structural equation model for risk prediction to
predict CKD. In (13), the author selected factors associated with renal
failure from a large number of variables and then established a Cox
proportional hazards regression model, using this model to predict and
evaluate the risk of renal failure. Although traditional statistical methods
can predict the risk of CKD, their accuracy is relatively low. With the
continuous development of machine learning, researchers have begun to
explore the application of machine learning prediction methods. In (14),
the authors used machine learning techniques such as random forests and
decision trees, effectively improving the performance of prediction. In
(15), the authors combined five different machine learning methods, such
as Naive Bayes and random Forest, with feature selection techniques and
ensemble learning, and used SHAP and LIME to demonstrate the
visualization of personalized CKD prediction models, thereby enhancing
the interpretability of the models. It has provided a brand-new perspective
for CKD medical research. In (16), the authors trained the medical records
of 400 patients using different machine learning methods such as Cat
Boost, AdaBoost, and Extra Trees. Finally, the accuracy rate reached
97.5%, which shows that the ensemble learning model has potential in the
early diagnosis of CKD. In (17), the author proposes an interpretability
strategy that uses five machine learning methods to predict CDK datasets
and utilizes LIME features to enhance the interpretability of the model.
Our code is publicly available at: https://gitee.com/forest-AI/CDK-Model.

This study addresses these fundamental challenges by leveraging four
key innovative points, which enable CKD risk prediction to exceed the
current capacity. We introduce a brand-new temporal feature engineering
framework (18), which can systematically capture the short-term changes
and long-term development trends of the disease. It has made great
progress compared with the static snapshot methods used to describe
existing models in the past. The previous static snapshot methods were
rather limited. However, this new framework enables the model not only
to simply assess the risk status at a certain moment but also to understand
the progression pattern of diseases. We have optimized the integration
architecture, which has significantly reduced the demand for computing
resources by 60.6% while still maintaining a good prediction effect.
Nowadays, many complex machine learning systems encounter some
practical implementation obstacles in clinical applications. Our
optimization directly addresses these issues. We have developed a
comprehensive multi-center external validation strategy in three medical
centers and conducted detailed analyses of resource utilization and
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scalability. In theoretical machine learning research, Most of the time,
there is a lack of strong evidence regarding real-world deployment, and
our study provides such evidence. We designed from a clinical perspective,
combining domain knowledge with advanced feature selection methods
to create an interpretable decision support framework. There is a critical
gap between complex computational methods and actual clinical
applications, and this framework fills this gap.

2 Methods
2.1 Study subjects

Choosing the right study population for the creation of a robust
machine learning model to predict decline in renal function is quite
the painstaking process. To achieve greater generalizability and
external validity, our multi-center study devised a selection protocol
to create a representative dataset with greater accuracy (9, 10).

Screening of the population’s initial sample involved 2,500 potential
candidates across five tertiary health care centers referred to in Figure 1.
Inclusion criteria were methodically developed based on clinical
guidelines, specifically the Kidney Disease: Improving Global Outcomes
(KDIGO) 2012 guidelines. Eligible participants were adults aged
18-75 years with documented chronic kidney disease (CKD), defined
as an estimated glomerular filtration rate (éGFR) < 60 mL/min/1.73m?
for at least 3 months, confirmed by at least two measurements, or the
presence of persistent proteinuria (urine protein-to-creatinine ratio
[UPCR] > 0.2 g/g for at least 3 months) or other markers of kidney
damage (e.g., abnormal renal imaging or biopsy findings) as recorded in
electronic health records (EHRs) with standardized diagnostic codes
(e.g., ICD-10 codes N18.1-N18.5). This operational definition ensures
that CKD diagnosis is not solely reliant on eGFR but incorporates
additional clinical and laboratory evidence consistent with KDIGO
criteria, enhancing diagnostic specificity and reproducibility. Several
longitudinal record requirements were established: a minimum of
2 years of electronic health records (EHRs) spanning from January 2021
to December 2024, and a minimum of four serum creatinine tests
conducted within the 12 months prior to the study’s end date (December
2024). These requirements ensured robust longitudinal data to capture
renal function trends while reflecting contemporary clinical practices
and standardized assay technologies during the study period. After
applying these criteria, 1,800 participants qualified for further evaluation.

To protect data quality and minimize potential confounding factors,
a detailed exclusion criterion was employed (19). Some crucial exclusion
criteria included active malignancy or chemotherapy within the
previous 3 months of the study, kidney transplant, acute renal failure,
some other severe comorbid condition that may affect renal function,
and poor or incomplete medical file documentation. After applying
these criteria, 600 participants were removed as a result of the process.

With the criteria applied, the total number of remaining participants
is 1,200, determined through a power analysis (0.05, 0.10) based on
expected model performance and complexity. Here, a = 0.05 represents
the significance level (Type I error rate, false positive rate), ie., the
probability threshold for rejecting the null hypothesis. f = 0.10 represents
the Type II error rate (false negative rate), corresponding to a statistical
power of 1-f = 0.90 (90% power), i.e., the probability of correctly detecting
atrue effect (20). This comprehensive and systematic selection, along with
stringent inclusion and exclusion criteria, enhances the quality of the
constructed dataset, making it highly suitable for developing and validating
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Initial Screening
(n=2500)

Inclusion Criteria:
‘Age 18-75 years
‘Documented CKD
->2 years medical records
‘Complete clinical data
-Informed consent

(n=1800)

Exclusion Criteria:
-Acute kidney ijury
-Active cancer treatment
‘Severe comorbidities
‘Incomplete medical records
-Inconsistent documentation
(n=600)

Final Analyzed Sample
(n=1200)

FIGURE 1
Study flow diagram.

complex predictive models for kidney function decline. Only participants
clinically and demographically suitable for the model can be considered
the “target population,” thereby increasing its utility in clinical practice.

2.2 Data collection and processing

A thorough strategy of data collection and processing was
constructed in order to provide clean and usable data for the machine
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learning model. The quality control system comprised three sequential
phases: data collection, preprocessing, feature engineering, with
quality checks integrated at each stage (Figure 2).

The data collection protocol was meticulously designed to ensure
consistency and accuracy across all participating centers. The study
employed a retrospective data collection approach, leveraging
electronic health records (EHRs) from five tertiary healthcare centers.
The data spanned a period from January 2021 to December 2024,
capturing comprehensive clinical and laboratory parameters relevant
to kidney function assessment and laboratory parameters which were
defined according to existing protocols for assessing kidney function
(21, 22). The clinical data consisted of demographic features, comorbid
conditions, medication usage, and other Cclinically relevant
observations, and were extracted through standardized electronic
health record protocols. Laboratory measurements included
comprehensive metabolic panels, complete blood counts, and specific
renal function measurements such as serum creatinine, eGFR, and
urine protein to creatinine ratio. Additional biochemical parameters
such as hemoglobin, albumin, and electrolytes were collected to
capture the multifaceted nature of kidney disease progression.

Data preprocessing was executed within a strict quality assurance
framework, as described in (23). Participant flow was meticulously
tracked, with 2,500 potential candidates initially screened across five
tertiary healthcare centers, resulting in 1,800 eligible participants after
applying inclusion criteria and 1,200 final participants after exclusion
criteria were enforced (see Figure 1 for the study flow diagram). Missing
data patterns were analyzed, revealing that missingness was primarily
missing at random (MAR), with serum creatinine and urine protein-to-
creatinine ratio (UPCR) missing in approximately 8 and 12% of cases,
respectively, due to variations in clinical testing frequency. Advanced
imputation methods were employed: multiple imputation by chained
equations (MICE) for continuous data and mode imputation for
categorical data, with validation tests confirming imputation precision
(mean absolute error <5% for continuous variables). Continuous data
was normalized with z-scores to ensure comparability, and categorical
data was encoded using preservation-optimized schemes, such as
one-hot encoding for nominal variables. Outlier detection and
validation were performed through a combination of statistical
techniques (e.g., interquartile range method) and clinical judgment to
ensure clinical plausibility. Outcome assessment was conducted using a
blinded approach, where evaluators determining renal function decline
(defined as eGFR decline >30% or progression to dialysis) were unaware
of the model’s predictions to minimize bias. Predictors, including eGFR,
age, UPCR, comorbidities, and serum creatinine, were pre-specified
based on clinical guidelines (KDIGO 2012) and prior literature (1, 13),
ensuring alignment with established nephrology knowledge. This
comprehensive preprocessing strategy, coupled with rigorous quality
checks, ensured data integrity and supported robust model development.

Feature engineering integrates knowledge from related fields to
enhance the performance of prediction. As stated in references (24, 25),
we have constructed several temporal features, such as the time intervals
between consecutive serum creatinine tests, represented by At, the
changes in serum creatinine, represented by ASCr, and the rate of change
of eGFR over time. Represented by AeGFR/At, these features are relied
upon to capture the dynamic changes of renal function. In addition,
we have also created interaction features, such as the interaction term
between age and eGFR, represented as age x eGFR, and the interaction
between urine protein-creatinine ratio, that is, UPCR and diabetes status,
represented as UPCR x diabetes. These are relied upon to assess how
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Data Collection Data Preprocessing Feature Engineering

Clinical Features Missing Value Handling Feature Selection

Laboratory Tests Normalization Feature Extraction

Detailed Processing Steps
. . Featur Final
Raw Data — Cleaning — Processing — ¢ tu ©
Selection Dataset

FIGURE 2
Data processing pipeline.

different factors interact with each other. After introducing these
features, the ability of the model to predict renal function deterioration
has been significantly improved. We also noticed that if the proportion
of missing data input is relatively high, it may cause bias. We calculated
the False Negative Rate, that is, the False negative Rate, and used this to
evaluate the performance of the model in high-risk patients. And
optimize the model to reduce the possibility of false negatives. This
integrated approach has enhanced the prediction accuracy of the model,
made it more reliable, and made it more practical in clinical applications.

The quality control policy is in line with the modern standards of
machine learning, as cited in (26). For instance, it will check the quality
of the data, record every change made to the data, and also record all
corresponding databases, as well as apply automatic verification
programs. This approach can ensure the replicability of the research. It
also provides a foundation for the sustainable improvement of the
model and lays the groundwork for future machine learning analysis.
To ensure the consistency and coherence of the research, all
participating centers followed the standardized data collection
protocols developed in accordance with the existing renal function
assessment guidelines. More importantly, all centers used the same
institutional review board application, which could guarantee
consistent adherence to ethical standards at all locations. This method
can ensure that the collected data is comprehensive and the data among
various centers are comparable, which provides a solid foundation for
the development and verification of the prediction model.

2.3 Machine learning model construction

The workflow for building the machine learning model was
carefully crafted to combine multiple prediction methods with a
specific selection of features and parameters. Our method had three
components: ensemble model structure, feature selection pipeline, and
training process optimization, as shown in Figure 3. This approach
aligns with recent advancements in clinical ML frameworks, such as
the user-friendly ML pipeline proposed by Orhan et al. (27) for
cardiac structure assessment, which emphasizes interpretability and
clinical applicability. Similarly, our ensemble framework prioritizes
interpretable decision-making to facilitate integration into clinical
workflows for chronic kidney disease (CKD) management. With
respect to feature selection, we followed the method set forth by Su
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etal. (26), which used a hybrid model that incorporated both statistical
significance and domain knowledge.

The three base learners utilized by the foundational ensemble
architecture were: Random Forest, XGBoost, and Light GBM. The
primary goal hyperbolic function related to model optimization can
be formulated as shown in Equation (1):

L(0)= % [aBCE(y,,yl)+ﬁFL(y,,yz)]+z||e|b (1)

HMZ

Within the formulation, BCE refers to the binary cross-entropy
loss, FL describes the focal loss part, and ||€]], is the L, regularization
term. As in the case with Bellocchi et al. (28), cross-validation was
used to optimize the hyperparameters &, # and A.The procedure for
feature selection was done using both filter and wrapper methods,
where the score of importance was computed as shown in Equation (2):

IS; = y-MI(X},Y ) +(1—7 ) SHAP; ©)

In the equation, MI (X j,Y) is the mutual information of the feature X j
with regard to the target Y, while SHAP; is the SHAP value contribution of
the jth feature. Following Zacharias et al. (25), this feature selection process
was iteratively modified guided by clinical domain knowledge.

The hyperparameters for each model were systematically
optimized as shown in Table 1.

This was completed as part of a guided capture-the-flag
competition, which uses Time 4 Learning’s training resources to
prepare. Each model is updated using the same training schema as
Ferguson et al. (23) predictions and includes a stratified 5-fold cross-
validation scheme. The model ensemble prediction was made based
on the weighted average method as shown in Equation (3):

K
7= wi fi(x) 3)
k=1

where fi (x) represents the prediction from the k—th base
model and wy are the optimized model weights determined
through validation performance. The hyperparameter optimization
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Machine learning Model Architecture and pipeline

A. Model Architecture B. Feature Selection Pipeline C.Training Process
A Im""{ﬁ;*g““ Data Split
Random Forest XGBoost LightGBM c linica(ln; Lab)o ator Train(70%)/ Val(15%)/Test(15%)
n=300, depth=6 1r=0.05 num leaves=50 l Y l
l Statistical Selection 5-Fold Cross Validation
Ml Score + SHAP Values Stratified Sampling
Weighted Ensemble l l
Clinical Validation Hyperparameter Optimization
l Domain Knowledge Bayesian Optimization
Risk Prediction F‘“‘ELEZ‘;‘)“”S Model Evaluation
Optimized Set AUC-ROC, PR-Curve
FIGURE 3

Model architecture. (A) Ensemble model structure illustrating the integration of Random Forest, XGBoost, and LightGBM. (B) Feature selection pipeline
combining filter and wrapper methods with clinical domain knowledge. (C) Training process optimization, including hyperparameter tuning and
Bayesian optimization framework.

TABLE 1 Hyperparameters of different machine learning models. To confirm the internal validity, we used a stringent 5-fold cross-
Parameters Search Optimal validation method. The performance metrics were computed as
range value shown in the following formulations (31) as shown in Equation (5):
Random Forest n_estimators [100, 500] 300
1TP(6)(. FP(6)
max_depth (3,10] 6 AUC=J —21-———=|df (5)
0 p N
min_samples_split (2,10] 5
XGBoost learning_rate [0.01, 0.1] 0.05
max_depth 3.8] 5 where TP(H) and FP(H) represent the true positive and false
- ’ positive rates at threshold 8, respectively. The calibration assessment
subsample [0.6, 1.0] 0.8 s . - .
utilized the Brier score as shown in Equation (6):
LightGBM num_leaves [20, 100] 50
. N
feature_fraction [0.6,0.9] 0.7 1 A2
- BS=2(vi=hi) (©)
bagging_fraction [0.6,0.9] 0.8 i-1
process utilized a Bayesian optimization framework with the where p; represents the predicted probability for the i—th

expected improvement acquisition function as shown in  instance. The model’s discrimination ability was evaluated using
Equation (4): multiple metrics as shown in Table 2.
External validation was conducted following the protocol described by
EI(x) _ E[max(f(x)—f(f ))0)} (4) Makino et al. (32), utilizing an independent cohort from three external
medical centers. The concordance between predicted and observed risks was
assessed using the calibration slope (/) as shown in Equation (7):
where f (x+) represents the current best observed performance.
This approach, validated by Miller et al. (29), enabled efficient lOgit(P observed ) =a+ ﬂ~10git(P predicted) (7)
exploration of the hyperparameter space while balancing exploration
and exploitation.
The model’s performance was compared with existing prediction
methods through net reclassification improvement (NRI) as shown in

2.4 Model validation method Equation (8):
The model validation process was methodically crafted to " "
enable effective performance evaluation and clinical relevance. NRI ={ up.cvents _ b ’mmeventsJ
Based on the model defined by Churpek et al. (30), we devised a Hevents Mnonevents
systematic validation plan that utilized both internal and —(nd‘m’"’e"e"ts _ Bdown,nonevents j (8)
external validation. Nevents Nnonevents

Frontiers in Medicine 05 frontiersin.org


https://doi.org/10.3389/fmed.2025.1598065
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Chen et al.

TABLE 2 Performance metrics of the ensemble model in internal
validation cohort.

Metric ‘ Formula ‘ Value (95% ClI)
Sensitivity 86% (83-89%)
TP
TP+ FN
Specificity 82% (79-85%)
™
TN + FP
PPV 84% (81-87%)
TP
TP + FP
NPV 85% (82-88%)
_IN_
TN + FN

where n,, and 1140y, represent the number of individuals with
upward and downward risk reclassification, respectively. As
demonstrated by Ekundayo et al. (33), this approach provides a
comprehensive assessment of the model’s incremental value.

The integrated discrimination improvement (IDI) was calculated
as shown in Equation (9):

IDI = (Pnew,events - Pnew,nonevents ) - (Pold,events ~ Lold,nonevents ) 9)

where P represents the mean predicted probabilities. This metric,
as validated by Delrue et al. (34), quantifies the model’s improved
ability to separate events from non-events.

The comparative analysis results with existing methods are
presented in Table 3:

These comprehensive validation results demonstrate the robust
performance and generalizability of our proposed model across
different clinical settings and patient populations.

3 Results

3.1 Baseline characteristics of the study
population

The refracted demographic and clinical picture of the 1,200
participants was uncovered in the study cohort which revealed the risk
underlying the decline in kidney function, as shown in Figure 4 and
Table 4. Known characteristics of the study population exhibited
significant variations between the progression and non-progression
groups throughout multiple dimensions.

The mean age of the progression group was significantly higher at
64.8 +12.6 years than the non-progression groups mean age of
61.2 £ 13.8 years (p = 0.003). This difference in age distribution proved to
be statistically significant, as depicted in Figure 4. This finding indicates age
may be an influencing factor for kidney function deterioration.

Comorbidity analysis showed that Hypertension had the most
pronounced difference, affecting 77.3% of the progression group
versus 67.4% of the non-progression group (p < 0.001). The burden of
chronic conditions analysed together proved to be markedly higher in
the progression group (45.8%) than the non-progression group
(33.6%) in diabetes with a statistical difference (p < 0.001). CVD
followed this trend with a 29.9% prevalence in the progression group
compared to 20.7% in the non-progression group (p = 0.001).
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The intricate metabolic signatures distinguishing progression
trajectories are shown on Figure 4 and Table 4’s laboratory parameters. The
estimated glomerular filtration rate (eGFR) divergence was noteworthy
with the lower values of the progression group (42.3+16.2mL/
min/1.73m?), when compared to the non-progression groups
47.8 +14.9 mL/min/1.73m’. This difference illustrates the importance of
renal function indicators in predicting the progression of disease.

The urinary protein-to-creatinine ratio (UPCR) provided
additional clarity into the already intricate terrain of the decline in
kidney function. As depicted in Figure 4, the progression group had a
higher average UPCR which corresponds to higher proteinuria and
possible renal injury. These biochemical differences offer important
information about the mechanisms of kidney function decline.

The analysis of the cohort’s baseline characteristics is
comprehensive in scope and illustrates the multifactorial aspect of
kidney function decline. The differences were statistically significant
and spread across demographic, comorbidity, and laboratory
parameters, which adds to the depth of renal disease progression. This
nuanced characterization provides not only a complex snapshot of the
population, but also an understanding that goes beyond the
mechanisms of renal function decline, which is unprecedented for the
machine learning model’s predictive architecture.

The graph shows the distribution of a cohorts baseline
characteristics which include age, comorbidity burden, estimated
glomerular filtration rate (eGFR), and urinary protein to creatinine
ratio (UPCR) in both progression and non-progression groups and
their correlates.

3.2 Model performance evaluation

The evaluations conducted on the machine learning model
showed predictive power on all the metrics. The ensemble model, as
predicted by the receiver operating characteristic (ROC) analysis
shown in Figure 5a, was found to have better discrimination ability
than the individual base learners. The ensemble model attained an
area under the ROC curve (AUC) of 0.89 (95% CI: 0.87-0.91), which
was much higher than the isolating cases of random forest (AUC: 0.85,
95% CI: 0.83-0.87) and XGBoost (AUC: 0.87, 95% CI: 0.85-0.89)
models, and even outperformed them in recurrent measures.

These block figures include, but are not limited to, the performance
metrics of the single models in comparison to the ensemble model for
their different instances at various datasets as mentioned in Table 5.

The machine learning ensemble model offers a transformative
tool for predicting renal function decline in chronic kidney
disease (CKD), providing clinicians with reliable and actionable
insights for personalized care. The calibration analysis (Figure 5b)
demonstrates the model’s exceptional reliability, with predicted
risks closely mirroring actual outcomes across the entire risk
spectrum. With a calibration slope of 0.96 (95% CI: 0.94-0.98)
and an intercept of 0.02 (95% CI: 0.01-0.03), the model exhibits
minimal bias, ensuring that clinicians can confidently use its risk
estimates to guide treatment decisions. This robust calibration
means that a predicted 30% risk of CKD progression accurately
reflects the true likelihood, enabling precise patient counseling
and intervention planning. The confusion matrix in Figure 5¢
demonstrates the classification performance of the model in
predicting the risk of renal function decline, reflecting its
performance on true positives (TP), true negatives (TN), false
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TABLE 3 Comparative analysis of different risk prediction models.

10.3389/fmed.2025.1598065

Method AUC (95% ClI) Sensitivity Specificity NRI IDI
Our Model 89% (87-91%) 0.86 0.82 Reference Reference
Traditional Cox 82% (79-85%) 0.78 0.76 0.15% 0.08%*
Standard ML 85% (83-87%) 0.81 0.79 0.11% 0.06*
#p <0.001.
80 - (a) Age Distribution 80 - (b) Comorbidity Prevalence
I Progression
70 70 b [ Non-progression
60 60 -
_50 =50+
4 o
3 o
240 Sa0t
5 8
<30 S0t
20 20 -
10 10 -
0

70

eGFR (mL/min/1.73m?)
w B [$2]
o o o

N
o

o

FIGURE 4

Progression Non-progression

(c) eGFR Distribution

Progression Non-progression

Baseline characteristics stratified by disease progression status.

UPCR (g/g)

Hypertension

Diabetes CVvD

(d) UPCR Distribution

Progression Non-progression

TABLE 4 Baseline characteristics of study participants.

Baseline Characteristics Overall Progression Non-progression p-value
characteristics (N=1,200) (n=432) (n=768)
Age, years* 62.5+13.4 648+12.6 612+138 0.003
Demographic Male sex, n(%) 684 (57.0) 259 (60.0) 425 (55.3) 0.124
Characteristics BMI, kg/m?* 258+4.2 263 +4.5 255+ 4.0 0.008
Hypertension 852 (71.0) 334(77.3) 518 (67.4) <0.001
Diabetes 456 (38.0) 198 (45.8) 258 (33.6) <0.001
Comorbidities, (%)
CVD 288 (24.0) 129 (29.9) 159 (20.7) 0.001
eGFR, mL/min/1.73m>* 458 +15.6 423+162 47.8 +14.9 <0.001
Serum creatinine, mg/dL* 1.8£0.6 2.0+0.7 1.7+£05 <0.001
Laboratory Parameters Albumin, g/dL* 39+05 3.7+06 4.0+04 0.002
UPCR, g/g* 1.8+2.1 2425 1.5+18 <0.001
Hemoglobin, g/dL* 11.8+19 11.4+20 120+1.8 0.004

The symbol * indicates that the data represents mean + standard deviation (SD) for continuous variables.
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Comprehensive evaluation of model performance in predicting kidney function decline. (A) Receiver Operating Characteristic (ROC) curve analysis
comparing the ensemble model to individual base learners. (B) Calibration plot demonstrating the alignment between predicted and observed risks.
(C) Confusion matrix illustrating classification performance with true positives, true negatives, false positives, and false negatives.
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TABLE 5 Comprehensive performance metrics across different datasets.

Performance Training Validation Test set
metric set (95% set (95% Cl) (95%
Cl) Cl)
86% (84~
AUC 89% (87-91%) 87% (85-89%)
88%)
85% (82-
Sensitivity 88% (85-91%) 86% (83-89%)
88%)
82% (79-
Specificity 84% (81-87%) 83% (80-86%)
85%)
83% (80-
PPV 85% (82-88%) 84% (81-87%)
86%)
84% (81-
NPV 87% (84-90%) 85% (82-88%)
87%)
84% (82-
F1 Score 86% (84-88%) 85% (83-87%)
86%)

positives (FP), and false negatives (FN). The confusion matrix
matrix shows that the model has similar accuracy in predicting
true positives and true negatives, indicating its balanced
performance in distinguishing cases of renal function decline
from non-decline cases.

The result reflects their predictive power of the ensemble model’s
reliability and performance regarding decline in kidney function. All of
its aspects, including calibration, discrimination, subgroup performance,
and validation, re-confirm the models effectiveness in integrating early
risk assessment and intervention within clinical practice.

3.3 Analysis of the results
As noted previously with the kidney pathology overview, the deep

dive into the kidney function decline risk analysis illustrated the
intricate interrelationships of several clinical elements and their
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predictive effects. Feature importance and their multitude of
permutations is illustrated in Figure 6.

The SHAP importance deconstruction revealed an obvious
importance structure related to predictive factors. Estimated glomerular
filtration rate (eGFR) was by far the most pivotal predictor, as expected
from the magnitude of the SHAP value, followed by age, and urinary
protein creatinine ratio (UPCR). The above highlighted aspects reinforce
the complexity involved in the kidney function decline risk assessment,
which is profoundly multifactorial. Table 6 captures the overview of the
most key risk factors with their clinical importance in detail.

As seen in Figure 6b, there was a feature distribution boxplot that
showed the differences which existed among some clinical parameters.
The distributions for eGFR and age displayed greater variation which
indicates how multi-faceted and variable these parameters are within
the scope of kidney function evaluation. A non-linear relationship was
demonstrated in eGFR’s SHAP dependence plot in Figure 6¢, which
underlined the decline in kidney function’s intricate mechanisms.

In Figure 6d, feature interaction analysis showed important
dependencies of some clinical markers. The interaction heatmap
showed strong, and even moderate, differences especially with eGFR,
age and UPCR. Such relations indicate that the decline in kidney
function is not the result of a singular issue, rather, it is a product of
many interacting physiological parameters.

In particular, Figure 7 highlights a complete interpretation
framework for clinical risk. The compositional analysis of risk factors
contribution waterfall plot in Figure 7a showed risk contributions were
cumulative where baseline characteristics and central clinical features
adjusted the risk over time. The prediction probability distribution in
Figure 7b was able to distinctly classify patients into three groups: low,
medium, and high risk, which was very useful for personalized risk
evaluation. Figure 7c shows the scatter plot of risk features against
predicted risk wherein the correlation was highly positive with the
multicolored risk indicators representing the constructs of interest. Risk
stratification within subgroups in Figure 7d demonstrated that there was
heterogeneity among the different patient populations, notably higher
risk probabilities for elderly patients and those with multiple comorbidities.
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Feature importance and interaction analysis. (a) SHAP feature importance; (b) feature distribution; (c) eGFR SHAP dependence; (d) feature interaction.

TABLE 6 Key risk factors and clinical significance.

Risk factor Importance Clinical
ranking significance
Primary indicator of
eGFR Highest
kidney function
Modulates disease
Age Second
progression risk
Reflects kidney damage
UPCR Third
and proteinuria
Indicates systemic health
Comorbidities Fourth
impact
Supplementary renal
Creatinine Fifth P Y
function marker

Offers quantifiable metrics alongside intricate biological
explanations for a process that has remained largely qualitative.
Along with providing an innovative means of risk identification
and intervention, this sophisticated analysis brings a new
dimension for understanding the decline of kidney functions due
to advanced age. The integration of publicly available healthcare
datasets along with augmented machine learning enables doctors
to implement shifts in clinical paradigms more quickly
than before.

Pioneers a new era in computing and healthcare integration by
offering precise measures to counteract the deterioration of kidney
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functions. This will provide room for further innovation that
challenges existing practices in nephrology.

3.4 Comparison with traditional methods

In comparison with conventional approaches, the analysis carried
out between our proposed Machine Learning model and other
techniques showed great improvements in predictability and clinical
usefulness. Figure 8 clearly shows that the residual plot displays a
normal distribution of errors centered around 0. The traditional
method had an AUC of 0.695 from the ROC curve analysis, and
integration with the calibration plots showed exceptionally good
agreement between predicted and observed probabilities across the
entire risk spectrum.

The benefits of advanced clinical applications are depicted
thoroughly in Figure 9, as multi-layered performance analytics
outlines how much more performant our suggested ML model is
relative to both Cox and standard ML models. The accuracy
evaluation by strata reveals performance consistency across
different patient subgroups, as well as showing enhanced ability to
predict the passage of time in regard to disease progression. The
cost-effectiveness analysis also confirms the projected practical
benefits for our approach from the standpoint of actual
clinical use.

Our Proposed Solutions: Enhanced Capabilities The detailed
performance metrics pertaining to diverse methodological approaches
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confidence intervals.

Comprehensive model performance analysis. (a) Error distribution histogram; (b) ROC curve analysis (AUC = 0.695); (c) calibration plot with

have been presented in Table 7. Table 8 presents the detailed training
methods and model parameters of the baseline models, Transformer
and RNN.

The formula for calculating Resource Utilization is shown in
Equation 10, Resource Usageproposed Iepresents the cost of training
and inference for the proposed machine learning model (an ensemble
model based on Random Forest, XGBoost, and LightGBM) on the
cloud service platform. Resource Usage represents the cost of
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training and reasoning a traditional Cox proportional hazards
regression model on a cloud service platform under the
same conditions.

Scalability Index is used to measure the performance stability of a
model in different dataset sizes or clinical scenarios. The specific
calculation formula is shown in Equation 11. Among them, a reflects
the degree of fluctuation of the AUC index of the model in different
scale datasets, measuring its predictive stability in different datasets or
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analysis across different implementation aspects.
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TABLE 7 Comparative performance analysis of different prediction models for kidney function decline.

Evaluation metric Proposed ML Traditional cox Standard ML Transformer

model model
AUC 87.9% (85.6-90.2%) 69.5% (67.2-71.8%) 78.2% (75.9-80.5%) 87.0% (84.7-89.3%) 81.0% (78.7-83.3%)
Prediction Time (s) 0.48 +0.05 1.86 +0.12 0.92 +0.08 3.35+0.10 2.95+0.07
Resource Utilization (%) 28.5+3.2 723 +5.1 457443 65.0 + 4.5 59.0 + 4.0
Implementation Cost* 0.65 +0.07 1.00 % 0.00 0.82 +0.05 0.92 +0.06 0.87 +0.05
Scalability Indext 0.92 +0.03 0.45 + 0.05 0.67 +0.04 0.83 +0.04 0.72+0.04

*Normalized to traditional Cox model cost (1.00). tMeasured on a scale of 0-1, where 1 represents optimal scalability.

scenarios. max Variance represents the maximum value of
performance variance. This offers quantitative proof supporting the

improved features of our model.

Resource Usageproposed

Costporm = (10)

Resource Usage

Performance Variance

Scalability Index =1- (11)

max Variance

The AUC of our proposed ensemble model reached 0.879 (95%
CI: 0.856-0.902), significantly outperforming the traditional Cox
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model’s AUC of 0.695 (95% CI: 0.672-0.718), standard MLs AUC
of 0.782 (95% CI: 0.759-0.805), the Transformer model’s AUC of
0.870 (95% CI: 0.847-0.893), and the RNN model’s AUC of 0.810
(95% CI: 0.787-0.833). In terms of computation time, our model
achieved a prediction time of 0.48 + 0.05 s, a 74.2% improvement
over the Cox model’s 1.86 + 0.12 s, and was notably faster than the
Transformer (3.35 + 0.10 s) and RNN (2.95 + 0.07 s) models, which
were less efficient than even the standard ML model (0.92 + 0.08 s).
Resource utilization was optimized by 60.6% compared to the Cox
model (28.5+3.2% vs. 72.3+5.1%), with our model also
outperforming the standard ML (45.7 + 4.3%), Transformer
(65.0 £ 4.5%), and RNN (59.0 + 4.0%) models. The calibration slope
0f 0.96 (95% CI: 0.94-0.98) underscored the model’s reliability, with
minimal discrepancy between predicted and observed risks,
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confirming its excellent performance in risk stratification for kidney
function decline.

Cost-effectiveness analysis revealed a 35% reduction in
implementation cost for our proposed ensemble model (0.65 + 0.07)
compared to the traditional Cox model (1.00 + 0.00), outperforming
the standard ML model (0.82 * 0.05), Transformer (0.92 + 0.06), and
RNN (0.87 + 0.05) models, while maintaining superior predictive
accuracy (AUC: 0.879). The scalability index of 0.92 +0.03
demonstrated robust performance across varying dataset sizes,
significantly surpassing the Cox model (0.45 + 0.05), standard ML
(0.67 £ 0.04), Transformer (0.83 +0.04), and RNN (0.72 + 0.04)
models. These results, supported by rigorous internal and external
validation (Tables 2, 3, 7), highlight the model’s efficiency and
generalizability, positioning it as a highly viable tool for clinical
integration across diverse settings to predict kidney function decline
risk effectively.

3.5 Clinical case analysis

To enhance the clinical utility of the model, we provided
interpretability through SHAP analysis and further demonstrated its
application in clinical decision-making through case snippets and
integration strategies with electronic health records (EHR). The
following case illustrates how the model prediction can guide
personalized management of patients with chronic kidney
disease (CKD).

4 Discussion

Our analysis reveals important implications for clinical practice
and offers some insights into the splendid capability of machine
learning techniques in predicting the decline of kidney functions.
The efficacy of our ensemble model, which achieved an AUC of 0.89
(95% CI: 0.87-0.91), confirms that the integration of numerous
machine learning algorithms for intricate clinical forecasts is
effective (35). The performance of this ensemble model significantly
exceeds the AUC of conventional statistical approaches and outliers
in progression prognosis for chronic kidney disease, signifying an

10.3389/fmed.2025.1598065

advancement in stratification competence. Previous studies have
reported the optimization of risk stratification due to the
incorporation of electronic health records with machine learning
algorithms (36). Our findings further confirm this approach
through extensive validation across numerous clinical settings
(Table 9).

The application of ensemble frameworks to provide the merging
of several algorithms is one of the changes we made to the machine
learning application in clinical prediction. This approach is one of the
numerous solutions to the many challenges faced in healthcare
predictive modeling (37, 38). The model’s outstanding calibration
(slope: 0.96, 95% CI: 0.94-0.98) illustrates a considerable leap in
addressing the remaining issues of implementing machine learning in
healthcare (39). The reliability of artificial intelligence in predicting
the worsening of kidney diseases is known to be high (40). Our results
offer substantial proof toward the adoption of these findings into
clinical work.

In this research, there has been remarkable progress, but there
are still some areas that require further attention. First, the
adoption of deep learning techniques, as well as the threat of data
leakage (41, 42), both warrant further exploration. More efforts
need to be directed at potentially overfitting the models in
immunology (43) and at the same time increasing the scope of the
model to include new biomarker and genetic influences. For
instance, Cicek et al. (44) demonstrated that preoperative
neopterin levels can predict acute kidney injury in on-pump
cardiac surgery, highlighting the critical role of biomarker-driven
risk stratification in kidney outcomes. This supports our
proposition to incorporate novel biomarkers, such as neopterin or
other inflammatory markers, to enhance the phenomenological
capabilities of our model for CKD progression. The development
of artificial intelligence in medicine (45) presents new possibilities
for the inclusion of other features such as genomic and proteomic
markers that would improve the model’s phenomenological
capabilities. This study suggests the usage of automated methods
for model updating, uniform data gathering from clinics, and the
creation of clear multi-center validation procedures as the focus

TABLE 9 Analysis table of clinical cases of different patients.

Patient Risk Management
information suggestions
TABLE 8 Model architectures and training details.
(1) Adjust antihypertensive
Model Training Hyperparameter e ol drugs and prioritize the use of
i 5 year old male patient
method settings Y P ACE inhibitors to reduce
with eGFR of 45 mL/
« Adam optimizer proteinuria; (2) Strengthen
« Hidden dimension: 256 min/1.73 m * and urinary
o Learning rate blood glucose control and
o Number of heads: 4 protein creatinine ratio High
warm-up and optimize insulin treatment
« Dropout rate: 0.1 (UPCR) of 2.8 g/g,
Transformer decay strategy plan; (3) Arrange follow-up
 Learning rate: le-4 accompanied by
o Negative visits every 3 months to
o Batch size: 32 hypertension and diabetes
log-likelihood monitor changes in eGFR and
« Epochs: 50
loss function UPCR.
« Hidden dimension: 256 A 45 year old female patient Choose to continue with
o SGD optimizer
« Dropout rate: 0.2 with eGFR of 55 mL/ routine monitoring and follow
o Mean squared
RNN « Learning rate: 0.01 min/1.73 m*and UPCRof | Low up every 6 months
error loss
« Batch size: 64 0.5 g/g, without significant
function
« Epochs: 50 comorbidities
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of future work. The addition of real-time clinical decision support
systems and the extension of the model functionality to new
emerging biomarkers is the next crucial step in the progression of
this area.

Machine learning offers extraordinary promise for transforming
the prediction of kidney function decline, which is why a great many
obstacles still need to be solved before we can implement our research
in a clinical setting. Our research substantiates machine learning and
kidney pathology by laying out the groundwork for personalized
medicine and data-centric healthcare decision-making in nephrology.
As further changes in the healthcare system occur, our model will
be more useful in enhancing the quality of care provided and in the
efficient use of resources for chronic kidney disease treatment
and prognosis.

4.1 Model stability analysis results

Table 10 shows the stability performance of the integrated
model in predicting the risk of renal function decline. The AUC
stability of the model is 0.87 + 0.02, with a coefficient of variation
(CV) of only 2.3%, indicating that its predictive performance is
highly consistent across multiple runs. Sensitivity (0.86 + 0.03,
CV =3.5%) and specificity (0.84 + 0.03, CV = 3.6%) also showed
low volatility, demonstrating the robustness of the model on
different datasets. The calibration slope (0.96, 95% CI: 0.94-0.98,
CV =2.1%) and intercept (0.02, 95% CI: 0.01-0.03, CV = 1.8%)
further confirmed the high consistency between the model
predictions and actual results. These results indicate that the model
can maintain reliable predictive performance in different
operational and clinical scenarios, and is suitable for a wide range
of clinical applications.

4.2 Comprehensive evaluation of model
performance

The decision curve analysis (DCA, Figure 5d) highlights the
model’s practical utility in clinical settings. It shows a substantial net
benefit over default strategies of treating all or no patients, particularly
in the 20-60% risk range, where clinical decisions are most critical.
For example, in this range, the model helps clinicians identify patients
who would benefit most from intensified monitoring or early
interventions, such as medication adjustments, while sparing low-risk
patients unnecessary treatments. This targeted approach optimizes

TABLE 10 Model stability analysis results.

Value (95% ClI) Coefficient of

variation (%)

Stability metric

AUC Stability 0.87 £0.02 23
Sensitivity Stability 0.86 +0.03 3.5
Specificity Stability 0.84 +0.03 3.6
Calibration Slope 0.96 (0.94-0.98) 2.1
Calibration Intercept 0.02 (0.01-0.03) 1.8
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resource use and enhances patient outcomes by focusing efforts where
they are most needed.

Subgroup analyses (Figure 5e) further underscore the model’s
versatility across diverse patient populations, with outstanding
performance in high-risk groups. For elderly patients, the model
achieves an AUC of 0.88 (95% CI: 0.85-0.91), and for those with
diabetes, it reaches an AUC of 0.90 (95% CI: 0.87-0.93). These groups
are particularly vulnerable to rapid CKD progression, and the model’s
high accuracy in predicting their risk enables earlier and more tailored
interventions, such as stricter blood pressure control or diabetes
management, to slow disease progression. By providing clear,
interpretable risk stratification, the model empowers clinicians to
make data-driven decisions that improve patient care and quality
of life.

4.3 Sensitivity analysis of model
performance across renal function decline
definitions

Table 11 presents the sensitivity analysis of the model’s
performance across various definitions of renal function decline,
demonstrating its robustness. The model achieves a high AUC of
0.89 (95% CI: 0.87-0.91) for the primary definition (eGFR decline
>30% or dialysis), with strong sensitivity (0.86) and specificity
(0.82). Alternative definitions, such as eGFR decline >20%, >40%,
serum creatinine doubling, and progression to dialysis, yield
slightly lower but still robust AUCs (0.86-0.88), with sensitivity and
specificity ranging from 0.80-0.85 and 0.77-0.83, respectively.
Calibration slopes remain excellent (0.93-0.96), indicating
consistent alignment between predicted and observed risks. These
results confirm the model’s stable performance across diverse
clinical definitions, enhancing its reliability and applicability for
risk stratification in chronic kidney disease management
(Figure 10).

5 Conclusion

In this self-contained piece of research, we outline the design
and validation of an automated machine learning model for
predicting the risk of decline in kidney function, which
outperformed the conventional methods. Our ensemble model
achieved astounding accuracy (AUC: 0.89, 95% CI: 0.87-0.91) in
prediction of events, while the calibration of the model remained
impressive in diverse populations. The use of several techniques in
one novel ensemble framework accompanied by advanced feature
selection has provided a solid base for clinical risk prediction
in nephrology.

The model clarifies the importance of predictive factors, notably
ascribing most eGFR, age, and urinary protein to creatinine ratio,
which makes understanding the precise mechanisms of kidney
function deterioration easier. Improved understanding, along with the
model’s predictive performance, enhances the capability of healthcare
practitioners to undertake early risk stratification and tailor
interventions in a precise manner. The accuracy demonstrated among
various patient subgroups and validation cohorts confirms the model’s
potential value for widespread clinical use.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1598065
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Chen et al.

10.3389/fmed.2025.1598065

TABLE 11 Model performance under different definitions of renal function decline.

Definition AUC (95% Cl)

eGFR Decline >30% or Dialysis 0.89 (0.87-0.91)

Sensitivity (95% Cl)

Specificity (95% CI)

0.86 (0.83-0.89) 0.82 (0.79-0.85)

eGFR Decline >20% 0.88 (0.86-0.90)

0.85 (0.82-0.88) 0.83 (0.80-0.86)

eGFR Decline >40% 0.87 (0.85-0.89)

0.84 (0.81-0.87) 0.81 (0.78-0.84)

Serum Creatinine Doubling 0.86 (0.84-0.88)

0.83 (0.80-0.86) 0.80 (0.77-0.83)

Progression to Dialysis 0.87 (0.85-0.89)

0.85 (0.82-0.88) 0.82 (0.79-0.85)
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FIGURE 10
Decision curve, subgroup performance and stability analysis.

The results of this study are particularly relevant to the clinical
management and future directions of research in nephrology. If this
predictive tool is successfully adopted into clinical workflows, it has
the potential to revolutionize chronic kidney disease management
by allowing for timely and precise interventions and resource
assignment. As data-centric decision-making continues to gain
traction in healthcare systems, our model serves a robust and
practical purpose for predicting the risk of kidney function decline,
with the possibility to improve patient care by targeting
interventions sooner and more effectively. Future studies need to
concentrate on multicenter validation studies and how the model’s
prediction and clinical application may be augmented through the
use of novel biomarkers.
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