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Uncovering predictors of myopia
In youth: a secondary data
analysis using a machine learning
approach
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Introduction: Myopia is a multifactorial condition driven by an interplay of
genetic predisposition and environmental triggers. This study aims to harmonize
and analyze risk predictors from two distinct datasetsone historical and clinical,
the other contemporary and behavioralto develop an integrated framework for
myopia risk prediction.

Methods: We analyzed two datasets: the Orinda Longitudinal Study of Myopia
(OLSM), a 1995 US cohort (n=500) with detailed ocular biometrics (e.g., spherical
equivalent refraction, axial length) and lifestyle factors, and a 2022-2023 Chinese
cross-sectional study (n=100,000) highlighting modern behaviors (e.g., screen
time, posture). We employed multiple machine learning modelsincluding logistic
regression, Explainable Boosting Machine (EBM), gradient boosting decision trees
(GBDT) on OLSM, and deep neural networks (DNN) and XGBoost on the Chinese
datasetto identify key predictors. Model interpretability was assessed using
SHapley Additive exPlanations (SHAP). We also tested three ensemble strategies
(sequential, averaging, transfer learning) to merge insights across the structurally
divergent datasets.

Results: Both datasets confirmed parental myopia as a universal risk factor
and time spent outdoors as a protective factor. In the OLSM dataset, spherical
equivalent refraction and parental myopia were the top predictors, with models
achieving an AUC of up to 0.92. In the Chinese dataset, the DNN model achieved
71% accuracy, identifying screen time, posture, and parental history as major risk
factors. Cross-dataset integration via transfer learning proved most effective,
successfully amplifying features like outdoor activity and posture while retaining
core behavioral predictors like screen time. This approach bridged the clinical
depth of OLSM with the granular, modern lifestyle insights from the Chinese
dataset.

Discussion: Our analysis confirms the multifactorial nature of myopia, blending
historical biological mechanisms with contemporary behavioral drivers. The
study demonstrates a scalable strategy for global myopia risk prediction by
adaptively integrating diverse datasets. While not yet a turnkey clinical tool, this
work lays the groundwork for future multimodal risk-prediction frameworks
that can bridge era-specific biases and harness machine learning to capture the
evolving profile of myopia risk.

KEYWORDS

myopia, machine learning, model, predictors, youth

01 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1595320&domain=pdf&date_stamp=2025-10-21
https://www.frontiersin.org/articles/10.3389/fmed.2025.1595320/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1595320/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1595320/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1595320/full
mailto:wcyjqw@eye.ac.cn
https://doi.org/10.3389/fmed.2025.1595320
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1595320

Liao et al.

1 Introduction

Myopia, or nearsightedness, is emerging as one of the most
prevalent refractive errors and eye problems worldwide. Between 1990
and 2023, the pooled prevalence among children and adolescents
increased from approximately 24-36%, with projections reaching
nearly 40% by 2050, affecting over 740 million young individuals
worldwide (1). As the prevalence of myopia continues to rise, it poses
a major public health challenge (1-4). In urbanized areas of East and
Southeast Asia, which are considered developed regions, the
prevalence of myopia is approximately 80-90% among young adults
(5, 6). Moreover, many developed Western countries (mainly
European countries) show substantially lower rates (20-40%)
compared to East and South Asian countries, while less-developed
regions and developing countries (with less intensive education
systems) often have prevalence rates below 10% (2, 7, 8).

This issue is not only about the high prevalence but also the
alarming rise in incidence. Recent epidemiological studies have
demonstrated a dramatic increase in myopia incidence, mainly in
urbanized populations of East Asia, where intense educational
pressure and prolonged digital screen exposure have raised
significant concerns (3, 4, 9). Myopia is not only a major cause of
visual impairment but also a significant risk factor: approximately
49% of individuals with high myopia develop myopic macular
degeneration, 3-8% experience retinal detachment, and the risk of
glaucoma nearly doubles (10-12). Multiple studies have shown that
myopia prevalence follows a distinct pattern, with the highest rates
observed in urban female individuals (~20%), followed by urban
male (~12%) and rural female individuals (~7%), and the lowest in
rural male individuals (~5%). Multivariate analyses across these
studies indicate that being a student or a professional significantly
increases the risk of myopia, whereas rural residence is associated
with a reduced risk. In addition, female individuals exhibit a
modestly higher prevalence of myopia compared to male individuals
(13-16). Therefore, understanding the risk factors and etiology of
myopia is essential for developing effective prevention and
intervention strategies.

The etiology and patho-mechanism of myopia are complex
and multifactorial, involving an interplay between genetic
predisposition and environmental exposures. Recent studies have
highlighted two key biological theories explaining how myopia
develops. The compensatory mechanism theory suggests that the
eye grows in response to blurry images (defocus) to help improve
vision, a process known as emmetropization. This has been shown
in animal models using special lenses or visual deprivation to
trigger eye growth (17, 18). The second major theory is the
dopamine hypothesis, which explains that dopamine, a chemical
released in the retina when exposed to bright light, helps slow
down eye elongation. When dopamine levels are low, such as
during prolonged time indoors or screen use, eye growth may
continue unchecked, leading to myopia (19, 20). These core
mechanisms are not only important for understanding the
biology of myopia but also provide a strong foundation for using
advanced statistics to understand each risk factor’s impact and
predict the risk of myopia.

As previously mentioned, the development of myopia is
influenced by various risk factors. Family history (parental
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myopia) has consistently been shown to be a strong predictor of
myopia risk, with numerous studies stressing the heritability of
axial elongation and refractive error (21, 22). Additionally, both
modern and old environmental and behavioral factors—such as
increased near work, reduced time outdoors, and higher screen
to the
development of myopia (23, 24). Recent studies with a focus on

time—have emerged as significant contributors
modern life have also emphasized the role of urbanization and
socioeconomic standing, where variations in lifestyle behaviors
correlate strongly with myopia prevalence (25, 26). These insights
have significantly advanced the development of hybrid models
that bring together clinical, genetic, and behavioral data to
predict myopia risk with much greater accuracy.

Furthermore, recent improvements in imaging and biometric
technologies have enabled the detailed quantification of ocular
parameters, including anterior chamber depth (ACD), axial length
(AL), and vitreous chamber depth (VCD). These precise and
non-invasive measures provide objective biomarkers, and when
combined with lifestyle and genetic data, these measures can clarify
the mechanisms underlying myopia and its potential risk factors.
Studies have demonstrated that ocular biometric parameters, in
combination with genetic markers, explain a considerable portion of
the variance in refractive outcomes (27, 28). This integrative approach
has the potential to notify targeted interventions, particularly for high-
risk pediatric populations, to mitigate the long-term burden of
myopia-related complications.

In light of these developments, we bring together two available
myopia studies conducted nearly 28 years apart: Zadnik et al’s
1995-2000 U. S. longitudinal school-based study (500 children)
(29), which offers high-precision ocular biometry (AL, spherical
equivalent refraction (SPHEQ), ACD and VCD, lens thickness
(LT)), detailed near-work and outdoor activity logs, and parental
myopia status; and a 2022-2023 Chinese cross-sectional survey
(100,000 young people) (30) emphasizing modern digital
behaviors (daily TV/computer screen time, lying-down use, screen
distance), homework and outdoor exercise frequency, residence
type (urban or rural), socioeconomic factors, and parental myopia.
Although these datasets differ in era, geography, design
(longitudinal vs. cross-sectional), sample size, and variable types
(continuous biometric measures vs. ordinal behavioral categories),
we applied ensemble learning and transfer learning techniques to
align and fuse their complementary strengths. While this
integration is far from a turnkey clinical tool, it represents the first
step toward harnessing heterogeneous, temporally separated studies
and the power of machine learning to capture both biological and
lifestyle drivers of myopia risk and to inspire future, more practical
multimodal risk-prediction frameworks.

2 Methods
2.1 Data

In this study, we used two public databases to explore the
main predictors of myopia in young populations. The first dataset
(dataset-1) is based on Zadnik et al’s (29) study on ocular
predictors of juvenile myopia; the data are publicly available in
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the Kaggle database through https://www.kaggle.com/datasets/
mscgeorges/myopia-study/data. The data were gathered from 554
children enrolled in the Orinda Longitudinal Study of
Myopia (OLSM).

The second dataset (dataset-2) is based on Huang et al’s (30) study
on risk factors of myopia among young people. Their raw dataset is
available through https://staticcontent.springer.com/esm/art%3A10.1038
%2Fs41598-024-680765/MediaObjects/41598_2024_68076_MOESM2_
ESM.xlsx (Table 1).

2.2 Approach to datasets

In a medical approach, data are gathered sequentially and the
decisions made are dynamically adjusted according to recent
information; the diagnosis, as well as any required interventions or
medications, may change over time as the data evolve.

Our approach mirrored real-world clinical decision-making,
where risk assessment is refined sequentially as additional patient data
become available. Initially, we estimated a patient’s myopia risk using
models trained on lifestyle-related features from Dataset-1 and
Dataset-2, analogous to a clinician’s preliminary history-taking.
Subsequently, Dataset-1 was augmented with paraclinical assessments
(as ordered by an ophthalmologist), prompting a refinement of the
initial risk prediction.

TABLE 1 Key features of the two datasets used in this study.

Dataset-2 = Chinese
Cross-Sectional
Study ()

Dataset-1 = Zadnik
etal. (). (OLSM)

Aspect

Type of Longitudinal cohort (5-year Cross-sectional

Study follow-up)

Study Period | 1995 (baseline) 2022-2023

Location USA China

Sample Size ~500 children ~100,000 young people

Key Clinical: Axial length (AL), Behavioral: Screen time (TV_

Parameters spherical equivalent Time_Daily, Computer_Time_
refraction (SPHEQ), anterior Daily), homework time
chamber depth (ACD), lens (ordinal), outdoor exercise
thickness (LT), vitreous frequency (ordinal)
chamber depth (VCD) Environmental: Screen distance
Behavioral: Near-work hours (TV/Computer), posture,
(READHR, COMPHR, residence type
STUDYHR), outdoor activity | Genetic: Parental_Myopia
(SPORTHR) (ordinal)
Genetic: Parental myopia
(MOMMY, DADMY)

Unique Longitudinal ocular Modern digital habits (e.g.,

Features biometrics (e.g., AL, SPHEQ) lying-down screen use)
Composite near-work metric Socioeconomic factors (e.g.,
(DIOPTERHR) father’s education)

Data Type Numerical clinical/biometric Ordinal/categorical variables for
variables behaviors
Quantified hours/week for Lacks ocular biometrics (e.g.,
behaviors axial length)
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Finally, the two risk estimates were merged using distinct
methodologies. Unlike conventional static approaches, our method
was dynamic and holistic, closely resembling the iterative nature of
clinical practice—where predictions are updated with new
information (Figure 1).

2.3 Separate models training

The first model (model-1) employed on dataset-1 was a
logistic regression classifier optimized using stochastic gradient
descent (SGD). Logistic regression is a linear model suitable for
binary classification tasks, while SGD iteratively updates the
model’s parameters using small batches of data, making it
efficient for large datasets. Before training, the input features are
standardized using StandardScaler to ensure all features are on
the same scale, which is crucial for the performance of gradient-
based optimization methods. Hyperparameter tuning is
performed using GridSearchCV with 5-fold cross-validation to
identify the optimal regularization strength (alpha), which helps
prevent overfitting and improves the model’s generalization
capability. The model’s performance is evaluated using the Area
Under the ROC Curve (AUC) score, a robust metric particularly
useful for imbalanced datasets or when the focus is on the
ranking quality of predictions.

For the second model (model-2) in the dataset-1 analysis,
we employed an Explainable Boosting Machine (EBM), a
glass-box Generalized Additive Model (GAM) with automated
interaction detection. The model was optimized via grid search
over five hyperparameters (max_bins, interactions, outer_bags,
etc.). Categorical variables (GENDER, PARENTMY') were
explicitly encoded, and the model used cyclic gradient boosting
with binning/smoothing to train additive functions for each
feature and interaction. Performance was evaluated through
5-fold with the
hyperparameters tuned to balance interpretability (limited
(AUC-driven
optimization). The final model retained all single features and

cross-validation using AUC scoring,

interaction terms) and predictive power
top interaction pairs, weighted by their mean absolute
contribution to the predictions.

For the third model (model-3) trained on dataset-1, we used a
(GBDT),

implemented with the HistGradientBoostingClassifier. This model is

histogram-based gradient boosting decision tree
particularly effective for handling large datasets and supports both
numerical and categorical features. Hyperparameter tuning was
performed using GridSearchCV with 5-fold cross-validation to
optimize key parameters, including 12_regularization (for controlling
overfitting), max_bins (for discretizing continuous features), and min_
samples_leaf (for controlling the minimum number of samples
required to split a leaf node). The model was configured with early
stopping to prevent overfitting, a validation fraction of 0.15 to monitor
performance, and a learning rate of 0.01 to ensure stable convergence.

1 For detailed definitions of the variables, refer to the Glossary of Terms and

Abbreviations section and Supplementary Table 1.
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Dataset 1

Dataset 2

FIGURE 1
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The graphical abstract illustrates our analytical pipeline, where distinct predictive models were trained separately on each dataset to identify myopia
risk factors. These models were subsequently integrated into a unified framework capable of processing randomized case data, with input parameters

The categorical features were explicitly specified to ensure proper
handling. The model’s performance was evaluated using the AUC score.

For the first model (model-a) on dataset-2, a deep neural network
(DNN) was implemented to predict myopia using a structured input of
categorical, ordinal, and numerical variables. The model consisted of four
dense layers (128, 64, 32 neurons) with ReLU activation functions, batch
normalization, and 30% dropout to prevent overfitting. The output layer
utilized a sigmoid activation function for binary classification. The model
was optimized using the Adam optimizer (learning rate = 0.001) and
trained with binary cross-entropy loss for 50 epochs. Feature importance
analysis was performed using SHapley Additive exPlanations (SHAP) to
understand the impact of different predictors on myopia classification.

To consider another myopia prediction method, we utilized an
enhanced XGBoost classifier as model-b on dataset-2, with 300 trees,
a learning rate of 0.05, and a max depth of 10 to better capture
complex patterns in the dataset. To reduce overfitting, we applied
min_child_weight (3), subsample (0.8), and colsample_bytree (0.8). In
addition, gamma (0.2) and L2 regularization (reg_lambda = 1.5) were
incorporated for better generalization. The model was trained using a
log-loss evaluation metric, and class imbalance was addressed with
scale_pos_weight = 1. Feature importance was extracted after training
to analyze the key predictors of myopia.

2.4 Model merging
2.4.1 Approach A: sequential model merging

In this method, patient data were first managed separately for
dataset-1 and dataset-2, ensuring that each model specialized in the
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specific data structure it was trained on. The first model trained on
dataset-1 was used to generate a risk score, which was then passed to
the second model trained on dataset-2 for final risk estimation. In this
sequential merging approach, we retained the strengths of each dataset
while capturing its domain-specific predictive insights. The
implementation of this approach relied on Python libraries such as
scikit-learn for model chaining, NumPy for numerical processing, and
Pandas for data alignment. The primary rationale behind this
approach was to retain dataset-specific nuances; while maintaining
dataset-1’s clinical depth, dataset-2’s modern lifestyle focus was also
preserved and resulted in improved predictive performance.

2.4.2 Approach B: simple model output merging

This simple strategy involved running patient data through both
models independently and then averaging their outputs with no
superiority to obtain a final risk prediction. This method not only
ensured a balance between the clinical insights from dataset-1 but also
retained the large-scale behavioral trends captured by dataset-2.
Similar to the previous method, merging was implemented using
scikit-learn’s ensemble averaging techniques, with NumPy managing
the arithmetic operations on model outputs. The rationale behind this
approach was its simplicity and interpretability, as it allowed both
models to contribute equally to the final prediction without requiring
complex integration steps.

2.4.3 Approach C: transfer learning

In this study, the model trained on dataset-1 served as a feature
extractor, capturing core myopia-related representations. This
pre-trained model was then fine-tuned on the reorganized dataset-2
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to adapt to new patterns present in the modern dataset. The
implementation was carried out using TensorFlow/Keras for deep
learning-based feature transfer. This method was chosen due to its
ability to enhance learned representations from dataset-1 while
adapting to the behavioral and environmental shifts reflected in
dataset-2, similar to previous approaches but more complex. Transfer
learning enables better generalization, as the model benefits from both
clinical depth knowledge and large-scale contemporary behavioral
data simultaneously.

3 Results

3.1 Baseline characteristics of the two
datasets

In this article, we primarily focus on the predictors used in this
study, and the primary analysis is available in other articles (31).
Baseline characteristics and primary analysis of the two datasets,
which are provided in the Supplementary file in detail, and a brief
review of the characteristics of each dataset is provided here. To
understand the dataset-1 parameters, which are noted below, please
refer to the Glossary of Terms and Abbreviations section,
Supplementary Table 1; Supplementary Figure 1.

The baseline characteristics of dataset-1 (OLSM) provided important
insights into the study population. The distribution of the MYOPIC
parameters indicated a higher proportion of participants without myopia,
aligning with previous observations. Ocular biometric variables such as
ACD, SPHEQ, AL, and VCD exhibited normal or slightly skewed
distributions, reflecting expected variations in eye structure
(Supplementary Figure 2). In addition, the participant’s age at study entry
(AGE) demonstrated a normal distribution.

Time-related variables, including time spent reading for pleasure
(READHR), time spent reading/studying for school assignments
(STUDYHR), time spent engaging in sports/outdoor activities
(SPORTHR), and time spent watching television (TVHR), exhibited
right-skewed distributions, indicating that the majority of the
participants engage in moderate levels of these activities, with a
smaller subset displaying higher durations (Supplementary Figures 2, 3).
The myopia rate trends across these variables suggested potential
associations with reading and screen time, emphasizing the
importance of lifestyle factors in myopia development.

Categorical variables such as gender, parental myopia [especially
if the patient’s mother has a history of myopia (MOMMY), if the
patient’s father has a history of myopia (DADMY), or whether one of
the patient’s parents or both have a history of myopia (PARENTMY)],
and their respective myopia rates provide additional context. Notably,
the myopia rate was higher among participants with both myopic
parents, reinforcing the hereditary influence of myopia
(Supplementary Figure 3).

These findings highlight the diversity in ocular characteristics and
lifestyle habits within the cohort, emphasizing the significance of
considering these factors in myopia-related studies. This baseline
analysis provides a robust foundation for further investigations into
risk factors and outcomes.

In the context of the baseline characteristics of dataset-2, the
distribution of categorical variables revealed significant patterns that

aligned with myopia prevalence trends (Supplementary Figure 4).
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Gender distribution was relatively balanced, while age showed a
higher frequency in younger groups but a progressive increase in
myopia with age. Residence type distribution indicated a higher
proportion of individuals from urban areas, who also exhibited a
higher myopia rate (Supplementary Figure 4). Family income
distribution was skewed toward lower-income groups, although
higher-income individuals showed slightly increased myopia
prevalence. Parental education levels varied, with higher education
levels associated with greater myopia rates. Behavioral factors, such as
lying down or moving while using the eyes, excessive screen time, and
close viewing distances, showed a declining frequency but a rising
myopia trend, indicating their role as risk factors. In contrast, outdoor
exercise, proper posture when reading or using a screen, and adequate
sleep showed an inverse relationship with myopia but were less
frequent in the dataset (Supplementary Figure 4). In conclusion, the
data distribution highlights that while some risk factors are common,
their correlation with myopia suggests a need for lifestyle interventions
to mitigate its prevalence.

3.2 Primary model training on the datasets

The models associated with dataset-1 are labeled as Model-1,
Model-2, and so on. During the training of these models, certain
parameters were combined to simplify the model inputs. DIOPTERHR
is a composite measure of near-work activity burden, calculated as
3 x (READHR + STUDYHR) + 2 x COMPHR + TVHR, where
READHR and STUDYHR represent hours spent reading and studying
(the highest accommodative demand), COMPHR is computer use
(moderate demand), and TVHR is television viewing (the lowest
demand). The weights reflect the typical working distances of each
activity, aligning with physiological models of accommodative effort
based on diopter demand (please visit Supplementary Table 1).

Similarly, the parameter PARENTMY was derived as the sum of
DADMY and MOMMY. These consolidations were implemented to
streamline the input structure and enhance computational efficiency.

For Model-1, trained on dataset-1, a logistic regression model
with SGD optimization was used and fine-tuned using grid search,
leading to the selection of the optimal regularization parameter
(alpha = 0.001). Model performance was evaluated using the AUC
score, ensuring a robust assessment of class distinction capability. The
feature importance analysis (as shown in Figure 2A) showed SPHEQ
as the most influential negative predictor, followed by VCD and
SPORTHR, while PARENTMY and GENDER emerged as the
strongest positive predictors. Features with positive coefficients (blue)
contributed positively to the predicted outcome, while those with
negative coefficients (red) had an inverse effect. The model achieved
a training AUC of 0.890 and training accuracy of 0.896, while cross-
validation results showed an AUC of 0.875 and accuracy of 0.892,
demonstrating strong generalization performance.

These model outputs align with myopia research, confirming
SPHEQ as the strongest negative predictor, reflecting the severity of
myopia. Parental history (PARENTMY) also shows a strong
correlation, highlighting genetic influence. Outdoor activity
(SPORTHR) is negatively associated, supporting its protective effect.
Conversely, VCD is a key positive predictor, linking axial elongation
to myopia progression. Gender (GENDER) also shows a positive
effect, possibly due to a higher prevalence in female individuals.
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FIGURE 2

(E) demonstrates the XGBoost model trained on dataset-2.

The importance analysis results of the models. (A) Demonstrates feature importance according to the linear regression model trained on dataset-1.
(B) Demonstrates the important parameters according to the EBM trained on dataset-1. (C) Illustrates features importance according to the GBDT
trained on dataset-1. (D) Depicts most important features according to the SHAP analysis of the DNN model trained on dataset-2, and

Notably, DIOPTERHR is not a dominant predictor, suggesting that
genetic and axial growth factors play a more significant role
(Figure 2A).

The second model (model-2) trained on dataset-1 was the
Explainable Boosting Machine (EBM), which identified SPHEQ
(spherical equivalent refraction) as the strongest predictor of myopia,
contributing nearly twice the importance of the second-ranked
feature, PARENTMY (parental myopia history). Behavioral factors
such as SPORTHR (sports hours) and biometric measures (ACD,
VCD) showed moderate predictive power, while interaction terms
(eg, SPHEQ & SPORTHR, SPHEQ & PARENTMY) revealed
synergistic effects, collectively explaining 40% of the models predictive
capacity (Figure 2B). The model achieved strong discrimination
(AUC: 0.92 +0.03), with SPHEQ-driven interactions highlighting

Frontiers in Medicine

how refractive error modifies the impact of environmental factors,
such as sports activity, on myopia risk.

The third model (model-3), a histogram-based GBDT, after the
hyperparameter tuning process and finding the optimal configuration
for the GBDT model, was then used to evaluate feature importance.
The feature importance analysis, visualized in Figure 2C, revealed that
SPHEQ and SPORTHR were the most influential features, with
importance scores of approximately 0.35 and 0.25, respectively. Other
features, such as PARENTMY, VCD, and GENDER, showed moderate
importance, while ACD, LT, and DIOPTERHR had relatively lower
impact on the model’s predictions. These results provide valuable
insights into the key drivers of the model’s decision-making process
and highlight the most significant features for further analysis or
model refinement.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1595320
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Liao et al.

In the context of dataset-2, the first model (model-a) employed
was a deep neural network. After tuning and training the model, the
model reached a validation accuracy of 0.87. Using the parameters of
the model and the SHAP library, the effect of each parameter on the
model output was calculated.

A DNN was implemented on dataset-2 as model-a, which
achieved an accuracy of 71.32%, showing a slight improvement over
the XGBoost model (model-b discussed later). The SHAP analysis
revealed that the most influential factors were parental myopia, age,
outdoor exercise frequency, moving eye-use frequency, and homework
time, emphasizing the role of both genetic and environmental factors
in myopia development. Higher feature values for screen time,
computer distance, and TV distance were also found to significantly
impact the predictions. The SHAP summary plot (Figure 2D) further
illustrated the relationship between feature values and their influence
on the model’s decision-making, confirming the importance of
lifestyle habits in myopia prediction.

The second model (model-b), trained on dataset-2, was the
improved XGBoost model that achieved a test accuracy of 66.88%,
with a precision of 71% for myopic cases (class 1) and 30% for
non-myopic cases (class 0). The recall for myopia detection was high
(89%), indicating that the model effectively identified myopic
individuals but struggled with false positives. The most influential
features included screen time, computer distance, TV distance, lying
down while using the eyes, and sleep duration, highlighting the impact
of lifestyle habits on myopia (Figure 2E). Despite improvements, the
model’s overall balance between precision and recall suggests that
further tuning or alternative approaches might be needed for
better classification.

3.3 Understanding model-related risk
factors

The two datasets share core similarities regarding demographic
variables (age, gender), parental myopia history, and behavioral
factors (outdoor activity, near-work hours), enabling partial
harmonization of risk predictors such as genetic predisposition and
environmental exposure. Both capture critical myopia drivers but
differ structurally: the dataset-1 cohort (USA, 1995, n = 500) provides
longitudinal data and detailed ocular biometrics (axial length,
spherical equivalence), while the Chinese cross-sectional dataset
(2022-2023, n = 100,000) emphasizes modern lifestyle factors (screen
time, posture) with ordinal coding. Key challenges include reconciling
numerical (dataset-1) and ordinal (dataset-2) variables, temporal/
geographic biases (pre-digital vs. tech-era behaviors), and study
design mismatch (cohort vs. cross-sectional). However, synergies exist
in leveraging the Chinese dataset’s scale to identify broad risk patterns
and dataset-1’s clinical depth to model biological mechanisms.
Techniques such as transfer learning could merge their strengths,
validating universal predictors (e.g., parental myopia, outdoor activity)
while accounting for era-specific confounders to build a global myopia
risk

clinical dimensions.

framework  integrating  genetic, behavioral, and

The analysis of myopia risk factors across the two datasets,
dataset-1 and dataset-2, revealed both shared and distinct predictors
influenced by the dataset structure and temporal context.

Figures 2A-C (dataset-1) highlight the importance of traditional
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ocular biometric factors (e.g., spherical equivalence, axial length) and
parental myopia, emphasizing biological determinants. Conversely,
Figures 2D-E (dataset-2) prioritize modern lifestyle behaviors (e.g.,
screen time, posture, near-work distance) as dominant predictors,
reflecting the digital-era impact on visual health. While both datasets
confirm the significance of parental myopia and outdoor activity, the
Chinese dataset’s ordinal feature encoding provides a more granular
behavioral assessment, allowing refined risk modeling. The SHAP
analysis (Figure 2D) further illustrated nuanced feature interactions
in contemporary lifestyles, contrasting with the GBDT feature
importance (Figure 2C) that underscored traditional refractive
parameters. This comparison suggests that integrating both datasets
using transfer learning or hybrid modeling could enhance myopia risk
prediction by combining clinical depth (dataset-1) with large-scale
behavioral insights (dataset-2), ultimately improving prevention
strategies across different populations and eras.

3.4 Merging models and their risk
assessments

As discussed in the method, we implemented three approaches for
merging these models (Figure 3). The radar plot highlights variations
in feature importance across the three ensemble approaches, revealing
how different model merging strategies influence the final output.
Sequential merging (Ensemble A - blue) preserved the dominance of
ScreenTime and Near work, reflecting dataset-specific strengths but
slightly underrepresenting secondary features such as OutdoorEx and
Residence B (in an urban area). The simple averaging approach
(Ensemble B - red) balanced contributions from both models,
ensuring LyingEyeUse and TVDist (Near Work) gained more
prominence, although it lacked the adaptability to refine feature
relationships deeply. Transfer learning (Ensemble C - green) exhibited
the most flexibility, redistributing feature weights significantly by
amplifying OutdoorEx and Parental myopia while maintaining core
influences such as ScreenTime and ComputerDist (Near works),
suggesting that it adapts better to evolving patterns. Overall, sequential
merging maintains dataset-driven strengths, simple averaging ensures
fair representation, and transfer learning offers the highest adaptability,
making it a robust choice for integrating diverse datasets with dynamic
trends (Figure 4A). A sample of how the ensemble model works is
shown in Figures 4B,C.

While merging models is a valuable approach for integrating
diverse risk factors and calculating a comprehensive risk score for each
patient, it is not without limitations. One significant concern is that
the output of such a combined model has not been validated in real-
world scenarios. The final risk score is essentially a composite of
outputs from multiple models, each with distinct methodologies and
assumptions. This raises questions about the robustness and
generalizability of the results. Furthermore, the absence of validation
against a control or test group underscores the need for further
investigation to assess the reliability and accuracy of this method.

4 Discussion

Our integrated model framework highlights that both genetic and
environmental factors play pivotal roles in myopia development.
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Illustration of the different approaches implemented in merging the models.
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A schematic usage of the merge models in a real-world-like scenario. (A) A radar plot of cumulative risks according to cases; (B) feeding the merged
models with random cases and calculating their total risks; (C) depicting an explainable risk assessment for each case.

Consistent with previous studies (32-34), the merged models strongly ~ anatomical influences. At the same time, lifestyle and environmental
emphasize parental myopia and ocular biometric indices as key  factors—such as screen time, near-work activities, and less time spent
determinants, highlighting the strong role of hereditary and  outdoors—stand out as significant risk factors, aligning with recent
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findings from large-scale cross-sectional studies in urbanized settings.
(35-37). This duality in risk profiles reinforces the necessity of
multifaceted prevention strategies that address both intrinsic and
extrinsic determinants of myopia.

When we compare our findings with earlier studies, it is
interesting to see that our sequential merging and transfer learning
methods produce feature importance profiles that accurately reflect
the mix of clinical and behavioral differences seen across various
populations. For example, while older models mostly focus on
biometric predictors such as spherical equivalent refraction and axial
length (28, 38, 39), the inclusion of modern lifestyle factors—such as
digital device use and time spent outdoors—through ensemble
averaging and transfer learning has really shifted the spotlight toward
behaviors we can actually change (33, 40). Such a conjunction of
clinical and behavioral insights from different datasets and studies
provides a more holistic view of myopia risk, consistent with the
growing body of literature advocating for integrated risk
assessment models.

Moreover, the overlapping radar plot of ensemble feature
importance illustrates that different model merging strategies can
yield complementary insights. The XGBoost-dominant approach
preserves strong signals from established clinical predictors, while
the DNN-dominant method accentuates modern lifestyle influences.
The approach emphasizing traditional models via the GBDT and
logistic regression appears to balance these aspects effectively,
suggesting that model integration can be tailored to optimize
predictive performance depending on the population and context
(41, 42). Our results align well with recent meta-analyses that
recommend a hybrid model for global myopia risk prediction,
especially in reconciling discrepancies between historical and
contemporary data sources (43).

In conclusion, the synthesis of multiple modeling approaches
underscores the multifactorial nature of myopia, where genetic,
biometric, and environmental factors converge to determine disease
risk. Our findings advocate for the adoption of integrated predictive
models that combine the strengths of different methodologies to yield
a comprehensive risk assessment tool. Such models not only enhance
our understanding of the complex interplay between various risk
factors but also pave the way for personalized interventions aimed at
curbing the myopia epidemic. Future research should focus on
validating these hybrid approaches across diverse populations and
exploring their potential for real-time risk stratification and clinical
decision support.

4.1 Limitations of this study

This study has several limitations and challenges, including
differences in populations, time periods, and predictors. Firstly, as
dataset-1 and dataset-2 are derived from different populations, it is
essential to keep in mind that risk factors and baseline risk levels may
vary between them. On top of that, temporal differences—such as
shifts in diagnostic criteria or environmental factors over time—could
also play a role in shaping the outcomes. Another thing to note is that
while some predictors were common across the datasets, others were
unique to specific datasets. This meant we had to carefully think
through how to harmonize them or use a sequential modeling
approach to handle them properly. Even with these limitations and
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challenges, we made a conscious effort to actively address and
thoughtfully consider each issue throughout the study to minimize its
potential impact on the results.

5 Conclusion

Our study highlights the complex, multifactorial nature of
myopia, combining genetic, biometric, and lifestyle predictors using
advanced modeling techniques. By bridging historical clinical insights
with modern behavioral trends, we showcase the effectiveness of
ensemble and transfer learning methods in improving risk assessment.
This holistic approach provides a scalable framework for analyzing
two distinct datasets with different parameters. Although our method
prioritized merging the datasets and understanding the shared risk
among their data, it will be crucial to validate these models across
diverse populations to strengthen real-time risk stratification and
support better clinical decision-making.
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Glossary

OLSM - Orinda Longitudinal Study of Myopia
SPHEQ - Spherical Equivalent Refraction
VCD - Vitreous Chamber Depth

SPORTHR - sports/outdoor activities
READHR - time spent reading

EBM - Explainable Boosting Machine

GBDT - Gradient Boosted Decision Trees
ACD - including anterior chamber depth

AL - axial length

VCD - vitreous chamber depth

LT - lens thickness

SGD - stochastic gradient descent

AUC - Area Under the ROC Curve

GAM - glass-box Generalized Additive Model
STUDYYEAR - Year the patient entered the study (Numerical, year)

MYOPIC - Myopia within the first five years of follow-up (Categorical,
0=No; 1 = Yes)

AGE - Age at first visit (Numerical, years)

GENDER - Gender (Categorical, 0 = Male; 1 = Female)
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SPHEQ - Spherical Equivalent Refraction (Numerical, diopter)
AL - Axial Length (Numerical, mm)

ACD - Anterior Chamber Depth (Numerical, mm)

LT - Lens Thickness (Numerical, mm)

VCD - Vitreous Chamber Depth (Numerical, mm)

SPORTHR - Time spent engaging in sports/outdoor activities
(Numerical, hours per week)

READHR - Time spent reading for pleasure (Numerical, hours
per week)

COMPHR - Time spent playing video games/working on the PC
(Numerical, hours per week)

STUDYHR - Time spent reading/studying for school assignments
(Numerical, hours per week)

TVHR - Time spent watching television (Numerical, hours per week)

DIOPTERHR - Composite of near-work activities (Numerical, hours
per week)

MOMMY - Myopic Mother in patients familial history (Categorical,
0=No; 1 = Yes)

DADMY - Myopic Father in patients familial history (Categorical,
0=No; 1 = Yes)

PARENTMY - Sum of parents history of myopia (MOMMY +
DADMY, Numerical)
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