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Introduction: Myopia is a multifactorial condition driven by an interplay of 
genetic predisposition and environmental triggers. This study aims to harmonize 
and analyze risk predictors from two distinct datasetsone historical and clinical, 
the other contemporary and behavioralto develop an integrated framework for 
myopia risk prediction.
Methods: We analyzed two datasets: the Orinda Longitudinal Study of Myopia 
(OLSM), a 1995 US cohort (n≈500) with detailed ocular biometrics (e.g., spherical 
equivalent refraction, axial length) and lifestyle factors, and a 2022-2023 Chinese 
cross-sectional study (n=100,000) highlighting modern behaviors (e.g., screen 
time, posture). We employed multiple machine learning modelsincluding logistic 
regression, Explainable Boosting Machine (EBM), gradient boosting decision trees 
(GBDT) on OLSM, and deep neural networks (DNN) and XGBoost on the Chinese 
datasetto identify key predictors. Model interpretability was assessed using 
SHapley Additive exPlanations (SHAP). We also tested three ensemble strategies 
(sequential, averaging, transfer learning) to merge insights across the structurally 
divergent datasets.
Results: Both datasets confirmed parental myopia as a universal risk factor 
and time spent outdoors as a protective factor. In the OLSM dataset, spherical 
equivalent refraction and parental myopia were the top predictors, with models 
achieving an AUC of up to 0.92. In the Chinese dataset, the DNN model achieved 
71% accuracy, identifying screen time, posture, and parental history as major risk 
factors. Cross-dataset integration via transfer learning proved most effective, 
successfully amplifying features like outdoor activity and posture while retaining 
core behavioral predictors like screen time. This approach bridged the clinical 
depth of OLSM with the granular, modern lifestyle insights from the Chinese 
dataset.
Discussion: Our analysis confirms the multifactorial nature of myopia, blending 
historical biological mechanisms with contemporary behavioral drivers. The 
study demonstrates a scalable strategy for global myopia risk prediction by 
adaptively integrating diverse datasets. While not yet a turnkey clinical tool, this 
work lays the groundwork for future multimodal risk-prediction frameworks 
that can bridge era-specific biases and harness machine learning to capture the 
evolving profile of myopia risk.
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1 Introduction

Myopia, or nearsightedness, is emerging as one of the most 
prevalent refractive errors and eye problems worldwide. Between 1990 
and 2023, the pooled prevalence among children and adolescents 
increased from approximately 24–36%, with projections reaching 
nearly 40% by 2050, affecting over 740 million young individuals 
worldwide (1). As the prevalence of myopia continues to rise, it poses 
a major public health challenge (1–4). In urbanized areas of East and 
Southeast Asia, which are considered developed regions, the 
prevalence of myopia is approximately 80–90% among young adults 
(5, 6). Moreover, many developed Western countries (mainly 
European countries) show substantially lower rates (20–40%) 
compared to East and South Asian countries, while less-developed 
regions and developing countries (with less intensive education 
systems) often have prevalence rates below 10% (2, 7, 8).

This issue is not only about the high prevalence but also the 
alarming rise in incidence. Recent epidemiological studies have 
demonstrated a dramatic increase in myopia incidence, mainly in 
urbanized populations of East Asia, where intense educational 
pressure and prolonged digital screen exposure have raised 
significant concerns (3, 4, 9). Myopia is not only a major cause of 
visual impairment but also a significant risk factor: approximately 
49% of individuals with high myopia develop myopic macular 
degeneration, 3–8% experience retinal detachment, and the risk of 
glaucoma nearly doubles (10–12). Multiple studies have shown that 
myopia prevalence follows a distinct pattern, with the highest rates 
observed in urban female individuals (~20%), followed by urban 
male (~12%) and rural female individuals (~7%), and the lowest in 
rural male individuals (~5%). Multivariate analyses across these 
studies indicate that being a student or a professional significantly 
increases the risk of myopia, whereas rural residence is associated 
with a reduced risk. In addition, female individuals exhibit a 
modestly higher prevalence of myopia compared to male individuals 
(13–16). Therefore, understanding the risk factors and etiology of 
myopia is essential for developing effective prevention and 
intervention strategies.

The etiology and patho-mechanism of myopia are complex 
and multifactorial, involving an interplay between genetic 
predisposition and environmental exposures. Recent studies have 
highlighted two key biological theories explaining how myopia 
develops. The compensatory mechanism theory suggests that the 
eye grows in response to blurry images (defocus) to help improve 
vision, a process known as emmetropization. This has been shown 
in animal models using special lenses or visual deprivation to 
trigger eye growth (17, 18). The second major theory is the 
dopamine hypothesis, which explains that dopamine, a chemical 
released in the retina when exposed to bright light, helps slow 
down eye elongation. When dopamine levels are low, such as 
during prolonged time indoors or screen use, eye growth may 
continue unchecked, leading to myopia (19, 20). These core 
mechanisms are not only important for understanding the 
biology of myopia but also provide a strong foundation for using 
advanced statistics to understand each risk factor’s impact and 
predict the risk of myopia.

As previously mentioned, the development of myopia is 
influenced by various risk factors. Family history (parental 

myopia) has consistently been shown to be a strong predictor of 
myopia risk, with numerous studies stressing the heritability of 
axial elongation and refractive error (21, 22). Additionally, both 
modern and old environmental and behavioral factors—such as 
increased near work, reduced time outdoors, and higher screen 
time—have emerged as significant contributors to the 
development of myopia (23, 24). Recent studies with a focus on 
modern life have also emphasized the role of urbanization and 
socioeconomic standing, where variations in lifestyle behaviors 
correlate strongly with myopia prevalence (25, 26). These insights 
have significantly advanced the development of hybrid models 
that bring together clinical, genetic, and behavioral data to 
predict myopia risk with much greater accuracy.

Furthermore, recent improvements in imaging and biometric 
technologies have enabled the detailed quantification of ocular 
parameters, including anterior chamber depth (ACD), axial length 
(AL), and vitreous chamber depth (VCD). These precise and 
non-invasive measures provide objective biomarkers, and when 
combined with lifestyle and genetic data, these measures can clarify 
the mechanisms underlying myopia and its potential risk factors. 
Studies have demonstrated that ocular biometric parameters, in 
combination with genetic markers, explain a considerable portion of 
the variance in refractive outcomes (27, 28). This integrative approach 
has the potential to notify targeted interventions, particularly for high-
risk pediatric populations, to mitigate the long-term burden of 
myopia-related complications.

In light of these developments, we bring together two available 
myopia studies conducted nearly 28 years apart: Zadnik et  al.’s 
1995–2000 U. S. longitudinal school-based study (≈500 children) 
(29), which offers high-precision ocular biometry (AL, spherical 
equivalent refraction (SPHEQ), ACD and VCD, lens thickness 
(LT)), detailed near-work and outdoor activity logs, and parental 
myopia status; and a 2022–2023 Chinese cross-sectional survey 
(≈100,000 young people) (30) emphasizing modern digital 
behaviors (daily TV/computer screen time, lying-down use, screen 
distance), homework and outdoor exercise frequency, residence 
type (urban or rural), socioeconomic factors, and parental myopia. 
Although these datasets differ in era, geography, design 
(longitudinal vs. cross-sectional), sample size, and variable types 
(continuous biometric measures vs. ordinal behavioral categories), 
we applied ensemble learning and transfer learning techniques to 
align and fuse their complementary strengths. While this 
integration is far from a turnkey clinical tool, it represents the first 
step toward harnessing heterogeneous, temporally separated studies 
and the power of machine learning to capture both biological and 
lifestyle drivers of myopia risk and to inspire future, more practical 
multimodal risk-prediction frameworks.

2 Methods

2.1 Data

In this study, we used two public databases to explore the 
main predictors of myopia in young populations. The first dataset 
(dataset-1) is based on Zadnik et  al.’s (29) study on ocular 
predictors of juvenile myopia; the data are publicly available in 
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the Kaggle database through https://www.kaggle.com/datasets/
mscgeorges/myopia-study/data. The data were gathered from 554 
children enrolled in the Orinda Longitudinal Study of 
Myopia (OLSM).

The second dataset (dataset-2) is based on Huang et al.’s (30) study 
on risk factors of myopia among young people. Their raw dataset is 
available through https://staticcontent.springer.com/esm/art%3A10.1038
%2Fs41598-024-680765/MediaObjects/41598_2024_68076_MOESM2_
ESM.xlsx (Table 1).

2.2 Approach to datasets

In a medical approach, data are gathered sequentially and the 
decisions made are dynamically adjusted according to recent 
information; the diagnosis, as well as any required interventions or 
medications, may change over time as the data evolve.

Our approach mirrored real-world clinical decision-making, 
where risk assessment is refined sequentially as additional patient data 
become available. Initially, we estimated a patient’s myopia risk using 
models trained on lifestyle-related features from Dataset-1 and 
Dataset-2, analogous to a clinician’s preliminary history-taking. 
Subsequently, Dataset-1 was augmented with paraclinical assessments 
(as ordered by an ophthalmologist), prompting a refinement of the 
initial risk prediction.

Finally, the two risk estimates were merged using distinct 
methodologies. Unlike conventional static approaches, our method 
was dynamic and holistic, closely resembling the iterative nature of 
clinical practice—where predictions are updated with new 
information (Figure 1).

2.3 Separate models training

The first model (model-1) employed on dataset-1 was a 
logistic regression classifier optimized using stochastic gradient 
descent (SGD). Logistic regression is a linear model suitable for 
binary classification tasks, while SGD iteratively updates the 
model’s parameters using small batches of data, making it 
efficient for large datasets. Before training, the input features are 
standardized using StandardScaler to ensure all features are on 
the same scale, which is crucial for the performance of gradient-
based optimization methods. Hyperparameter tuning is 
performed using GridSearchCV with 5-fold cross-validation to 
identify the optimal regularization strength (alpha), which helps 
prevent overfitting and improves the model’s generalization 
capability. The model’s performance is evaluated using the Area 
Under the ROC Curve (AUC) score, a robust metric particularly 
useful for imbalanced datasets or when the focus is on the 
ranking quality of predictions.

For the second model (model-2) in the dataset-1 analysis, 
we  employed an Explainable Boosting Machine (EBM), a 
glass-box Generalized Additive Model (GAM) with automated 
interaction detection. The model was optimized via grid search 
over five hyperparameters (max_bins, interactions, outer_bags, 
etc.). Categorical variables (GENDER, PARENTMY1) were 
explicitly encoded, and the model used cyclic gradient boosting 
with binning/smoothing to train additive functions for each 
feature and interaction. Performance was evaluated through 
5-fold cross-validation using AUC scoring, with the 
hyperparameters tuned to balance interpretability (limited 
interaction terms) and predictive power (AUC-driven 
optimization). The final model retained all single features and 
top interaction pairs, weighted by their mean absolute 
contribution to the predictions.

For the third model (model-3) trained on dataset-1, we used a 
histogram-based gradient boosting decision tree (GBDT), 
implemented with the HistGradientBoostingClassifier. This model is 
particularly effective for handling large datasets and supports both 
numerical and categorical features. Hyperparameter tuning was 
performed using GridSearchCV with 5-fold cross-validation to 
optimize key parameters, including l2_regularization (for controlling 
overfitting), max_bins (for discretizing continuous features), and min_
samples_leaf (for controlling the minimum number of samples 
required to split a leaf node). The model was configured with early 
stopping to prevent overfitting, a validation fraction of 0.15 to monitor 
performance, and a learning rate of 0.01 to ensure stable convergence. 

1  For detailed definitions of the variables, refer to the Glossary of Terms and 

Abbreviations section and Supplementary Table 1.

TABLE 1  Key features of the two datasets used in this study.

Aspect Dataset-1 = Zadnik 
et al. (29). (OLSM)

Dataset-2 = Chinese 
Cross-Sectional 
Study (30)

Type of 

Study

Longitudinal cohort (5-year 

follow-up)

Cross-sectional

Study Period 1995 (baseline) 2022–2023

Location USA China

Sample Size ~500 children ~100,000 young people

Key 

Parameters

Clinical: Axial length (AL), 

spherical equivalent 

refraction (SPHEQ), anterior 

chamber depth (ACD), lens 

thickness (LT), vitreous 

chamber depth (VCD)

Behavioral: Near-work hours 

(READHR, COMPHR, 

STUDYHR), outdoor activity 

(SPORTHR)

Genetic: Parental myopia 

(MOMMY, DADMY)

Behavioral: Screen time (TV_

Time_Daily, Computer_Time_

Daily), homework time 

(ordinal), outdoor exercise 

frequency (ordinal)

Environmental: Screen distance 

(TV/Computer), posture, 

residence type

Genetic: Parental_Myopia 

(ordinal)

Unique 

Features

Longitudinal ocular 

biometrics (e.g., AL, SPHEQ)

Composite near-work metric 

(DIOPTERHR)

Modern digital habits (e.g., 

lying-down screen use)

Socioeconomic factors (e.g., 

father’s education)

Data Type Numerical clinical/biometric 

variables

Quantified hours/week for 

behaviors

Ordinal/categorical variables for 

behaviors

Lacks ocular biometrics (e.g., 

axial length)
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The categorical features were explicitly specified to ensure proper 
handling. The model’s performance was evaluated using the AUC score.

For the first model (model-a) on dataset-2, a deep neural network 
(DNN) was implemented to predict myopia using a structured input of 
categorical, ordinal, and numerical variables. The model consisted of four 
dense layers (128, 64, 32 neurons) with ReLU activation functions, batch 
normalization, and 30% dropout to prevent overfitting. The output layer 
utilized a sigmoid activation function for binary classification. The model 
was optimized using the Adam optimizer (learning rate = 0.001) and 
trained with binary cross-entropy loss for 50 epochs. Feature importance 
analysis was performed using SHapley Additive exPlanations (SHAP) to 
understand the impact of different predictors on myopia classification.

To consider another myopia prediction method, we utilized an 
enhanced XGBoost classifier as model-b on dataset-2, with 300 trees, 
a learning rate of 0.05, and a max depth of 10 to better capture 
complex patterns in the dataset. To reduce overfitting, we applied 
min_child_weight (3), subsample (0.8), and colsample_bytree (0.8). In 
addition, gamma (0.2) and L2 regularization (reg_lambda = 1.5) were 
incorporated for better generalization. The model was trained using a 
log-loss evaluation metric, and class imbalance was addressed with 
scale_pos_weight = 1. Feature importance was extracted after training 
to analyze the key predictors of myopia.

2.4 Model merging

2.4.1 Approach A: sequential model merging
In this method, patient data were first managed separately for 

dataset-1 and dataset-2, ensuring that each model specialized in the 

specific data structure it was trained on. The first model trained on 
dataset-1 was used to generate a risk score, which was then passed to 
the second model trained on dataset-2 for final risk estimation. In this 
sequential merging approach, we retained the strengths of each dataset 
while capturing its domain-specific predictive insights. The 
implementation of this approach relied on Python libraries such as 
scikit-learn for model chaining, NumPy for numerical processing, and 
Pandas for data alignment. The primary rationale behind this 
approach was to retain dataset-specific nuances; while maintaining 
dataset-1’s clinical depth, dataset-2’s modern lifestyle focus was also 
preserved and resulted in improved predictive performance.

2.4.2 Approach B: simple model output merging
This simple strategy involved running patient data through both 

models independently and then averaging their outputs with no 
superiority to obtain a final risk prediction. This method not only 
ensured a balance between the clinical insights from dataset-1 but also 
retained the large-scale behavioral trends captured by dataset-2. 
Similar to the previous method, merging was implemented using 
scikit-learn’s ensemble averaging techniques, with NumPy managing 
the arithmetic operations on model outputs. The rationale behind this 
approach was its simplicity and interpretability, as it allowed both 
models to contribute equally to the final prediction without requiring 
complex integration steps.

2.4.3 Approach C: transfer learning
In this study, the model trained on dataset-1 served as a feature 

extractor, capturing core myopia-related representations. This 
pre-trained model was then fine-tuned on the reorganized dataset-2 

FIGURE 1

The graphical abstract illustrates our analytical pipeline, where distinct predictive models were trained separately on each dataset to identify myopia 
risk factors. These models were subsequently integrated into a unified framework capable of processing randomized case data, with input parameters 
standardized across both source datasets.
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to adapt to new patterns present in the modern dataset. The 
implementation was carried out using TensorFlow/Keras for deep 
learning-based feature transfer. This method was chosen due to its 
ability to enhance learned representations from dataset-1 while 
adapting to the behavioral and environmental shifts reflected in 
dataset-2, similar to previous approaches but more complex. Transfer 
learning enables better generalization, as the model benefits from both 
clinical depth knowledge and large-scale contemporary behavioral 
data simultaneously.

3 Results

3.1 Baseline characteristics of the two 
datasets

In this article, we primarily focus on the predictors used in this 
study, and the primary analysis is available in other articles (31). 
Baseline characteristics and primary analysis of the two datasets, 
which are provided in the Supplementary file in detail, and a brief 
review of the characteristics of each dataset is provided here. To 
understand the dataset-1 parameters, which are noted below, please 
refer to the Glossary of Terms and Abbreviations section, 
Supplementary Table 1; Supplementary Figure 1.

The baseline characteristics of dataset-1 (OLSM) provided important 
insights into the study population. The distribution of the MYOPIC 
parameters indicated a higher proportion of participants without myopia, 
aligning with previous observations. Ocular biometric variables such as 
ACD, SPHEQ, AL, and VCD exhibited normal or slightly skewed 
distributions, reflecting expected variations in eye structure 
(Supplementary Figure 2). In addition, the participant’s age at study entry 
(AGE) demonstrated a normal distribution.

Time-related variables, including time spent reading for pleasure 
(READHR), time spent reading/studying for school assignments 
(STUDYHR), time spent engaging in sports/outdoor activities 
(SPORTHR), and time spent watching television (TVHR), exhibited 
right-skewed distributions, indicating that the majority of the 
participants engage in moderate levels of these activities, with a 
smaller subset displaying higher durations (Supplementary Figures 2, 3). 
The myopia rate trends across these variables suggested potential 
associations with reading and screen time, emphasizing the 
importance of lifestyle factors in myopia development.

Categorical variables such as gender, parental myopia [especially 
if the patient’s mother has a history of myopia (MOMMY), if the 
patient’s father has a history of myopia (DADMY), or whether one of 
the patient’s parents or both have a history of myopia (PARENTMY)], 
and their respective myopia rates provide additional context. Notably, 
the myopia rate was higher among participants with both myopic 
parents, reinforcing the hereditary influence of myopia 
(Supplementary Figure 3).

These findings highlight the diversity in ocular characteristics and 
lifestyle habits within the cohort, emphasizing the significance of 
considering these factors in myopia-related studies. This baseline 
analysis provides a robust foundation for further investigations into 
risk factors and outcomes.

In the context of the baseline characteristics of dataset-2, the 
distribution of categorical variables revealed significant patterns that 
aligned with myopia prevalence trends (Supplementary Figure 4). 

Gender distribution was relatively balanced, while age showed a 
higher frequency in younger groups but a progressive increase in 
myopia with age. Residence type distribution indicated a higher 
proportion of individuals from urban areas, who also exhibited a 
higher myopia rate (Supplementary Figure  4). Family income 
distribution was skewed toward lower-income groups, although 
higher-income individuals showed slightly increased myopia 
prevalence. Parental education levels varied, with higher education 
levels associated with greater myopia rates. Behavioral factors, such as 
lying down or moving while using the eyes, excessive screen time, and 
close viewing distances, showed a declining frequency but a rising 
myopia trend, indicating their role as risk factors. In contrast, outdoor 
exercise, proper posture when reading or using a screen, and adequate 
sleep showed an inverse relationship with myopia but were less 
frequent in the dataset (Supplementary Figure 4). In conclusion, the 
data distribution highlights that while some risk factors are common, 
their correlation with myopia suggests a need for lifestyle interventions 
to mitigate its prevalence.

3.2 Primary model training on the datasets

The models associated with dataset-1 are labeled as Model-1, 
Model-2, and so on. During the training of these models, certain 
parameters were combined to simplify the model inputs. DIOPTERHR 
is a composite measure of near-work activity burden, calculated as 
3 × (READHR + STUDYHR) + 2 × COMPHR + TVHR, where 
READHR and STUDYHR represent hours spent reading and studying 
(the highest accommodative demand), COMPHR is computer use 
(moderate demand), and TVHR is television viewing (the lowest 
demand). The weights reflect the typical working distances of each 
activity, aligning with physiological models of accommodative effort 
based on diopter demand (please visit Supplementary Table 1).

Similarly, the parameter PARENTMY was derived as the sum of 
DADMY and MOMMY. These consolidations were implemented to 
streamline the input structure and enhance computational efficiency.

For Model-1, trained on dataset-1, a logistic regression model 
with SGD optimization was used and fine-tuned using grid search, 
leading to the selection of the optimal regularization parameter 
(alpha = 0.001). Model performance was evaluated using the AUC 
score, ensuring a robust assessment of class distinction capability. The 
feature importance analysis (as shown in Figure 2A) showed SPHEQ 
as the most influential negative predictor, followed by VCD and 
SPORTHR, while PARENTMY and GENDER emerged as the 
strongest positive predictors. Features with positive coefficients (blue) 
contributed positively to the predicted outcome, while those with 
negative coefficients (red) had an inverse effect. The model achieved 
a training AUC of 0.890 and training accuracy of 0.896, while cross-
validation results showed an AUC of 0.875 and accuracy of 0.892, 
demonstrating strong generalization performance.

These model outputs align with myopia research, confirming 
SPHEQ as the strongest negative predictor, reflecting the severity of 
myopia. Parental history (PARENTMY) also shows a strong 
correlation, highlighting genetic influence. Outdoor activity 
(SPORTHR) is negatively associated, supporting its protective effect. 
Conversely, VCD is a key positive predictor, linking axial elongation 
to myopia progression. Gender (GENDER) also shows a positive 
effect, possibly due to a higher prevalence in female individuals. 
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Notably, DIOPTERHR is not a dominant predictor, suggesting that 
genetic and axial growth factors play a more significant role 
(Figure 2A).

The second model (model-2) trained on dataset-1 was the 
Explainable Boosting Machine (EBM), which identified SPHEQ 
(spherical equivalent refraction) as the strongest predictor of myopia, 
contributing nearly twice the importance of the second-ranked 
feature, PARENTMY (parental myopia history). Behavioral factors 
such as SPORTHR (sports hours) and biometric measures (ACD, 
VCD) showed moderate predictive power, while interaction terms 
(e.g., SPHEQ & SPORTHR, SPHEQ & PARENTMY) revealed 
synergistic effects, collectively explaining 40% of the model’s predictive 
capacity (Figure  2B). The model achieved strong discrimination 
(AUC: 0.92 ± 0.03), with SPHEQ-driven interactions highlighting 

how refractive error modifies the impact of environmental factors, 
such as sports activity, on myopia risk.

The third model (model-3), a histogram-based GBDT, after the 
hyperparameter tuning process and finding the optimal configuration 
for the GBDT model, was then used to evaluate feature importance. 
The feature importance analysis, visualized in Figure 2C, revealed that 
SPHEQ and SPORTHR were the most influential features, with 
importance scores of approximately 0.35 and 0.25, respectively. Other 
features, such as PARENTMY, VCD, and GENDER, showed moderate 
importance, while ACD, LT, and DIOPTERHR had relatively lower 
impact on the model’s predictions. These results provide valuable 
insights into the key drivers of the model’s decision-making process 
and highlight the most significant features for further analysis or 
model refinement.

FIGURE 2

The importance analysis results of the models. (A) Demonstrates feature importance according to the linear regression model trained on dataset-1. 
(B) Demonstrates the important parameters according to the EBM trained on dataset-1. (C) Illustrates features importance according to the GBDT 
trained on dataset-1. (D) Depicts most important features according to the SHAP analysis of the DNN model trained on dataset-2, and 
(E) demonstrates the XGBoost model trained on dataset-2.
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In the context of dataset-2, the first model (model-a) employed 
was a deep neural network. After tuning and training the model, the 
model reached a validation accuracy of 0.87. Using the parameters of 
the model and the SHAP library, the effect of each parameter on the 
model output was calculated.

A DNN was implemented on dataset-2 as model-a, which 
achieved an accuracy of 71.32%, showing a slight improvement over 
the XGBoost model (model-b discussed later). The SHAP analysis 
revealed that the most influential factors were parental myopia, age, 
outdoor exercise frequency, moving eye-use frequency, and homework 
time, emphasizing the role of both genetic and environmental factors 
in myopia development. Higher feature values for screen time, 
computer distance, and TV distance were also found to significantly 
impact the predictions. The SHAP summary plot (Figure 2D) further 
illustrated the relationship between feature values and their influence 
on the model’s decision-making, confirming the importance of 
lifestyle habits in myopia prediction.

The second model (model-b), trained on dataset-2, was the 
improved XGBoost model that achieved a test accuracy of 66.88%, 
with a precision of 71% for myopic cases (class 1) and 30% for 
non-myopic cases (class 0). The recall for myopia detection was high 
(89%), indicating that the model effectively identified myopic 
individuals but struggled with false positives. The most influential 
features included screen time, computer distance, TV distance, lying 
down while using the eyes, and sleep duration, highlighting the impact 
of lifestyle habits on myopia (Figure 2E). Despite improvements, the 
model’s overall balance between precision and recall suggests that 
further tuning or alternative approaches might be  needed for 
better classification.

3.3 Understanding model-related risk 
factors

The two datasets share core similarities regarding demographic 
variables (age, gender), parental myopia history, and behavioral 
factors (outdoor activity, near-work hours), enabling partial 
harmonization of risk predictors such as genetic predisposition and 
environmental exposure. Both capture critical myopia drivers but 
differ structurally: the dataset-1 cohort (USA, 1995, n = 500) provides 
longitudinal data and detailed ocular biometrics (axial length, 
spherical equivalence), while the Chinese cross-sectional dataset 
(2022–2023, n = 100,000) emphasizes modern lifestyle factors (screen 
time, posture) with ordinal coding. Key challenges include reconciling 
numerical (dataset-1) and ordinal (dataset-2) variables, temporal/
geographic biases (pre-digital vs. tech-era behaviors), and study 
design mismatch (cohort vs. cross-sectional). However, synergies exist 
in leveraging the Chinese dataset’s scale to identify broad risk patterns 
and dataset-1’s clinical depth to model biological mechanisms. 
Techniques such as transfer learning could merge their strengths, 
validating universal predictors (e.g., parental myopia, outdoor activity) 
while accounting for era-specific confounders to build a global myopia 
risk framework integrating genetic, behavioral, and 
clinical dimensions.

The analysis of myopia risk factors across the two datasets, 
dataset-1 and dataset-2, revealed both shared and distinct predictors 
influenced by the dataset structure and temporal context. 
Figures  2A–C (dataset-1) highlight the importance of traditional 

ocular biometric factors (e.g., spherical equivalence, axial length) and 
parental myopia, emphasizing biological determinants. Conversely, 
Figures 2D–E (dataset-2) prioritize modern lifestyle behaviors (e.g., 
screen time, posture, near-work distance) as dominant predictors, 
reflecting the digital-era impact on visual health. While both datasets 
confirm the significance of parental myopia and outdoor activity, the 
Chinese dataset’s ordinal feature encoding provides a more granular 
behavioral assessment, allowing refined risk modeling. The SHAP 
analysis (Figure 2D) further illustrated nuanced feature interactions 
in contemporary lifestyles, contrasting with the GBDT feature 
importance (Figure  2C) that underscored traditional refractive 
parameters. This comparison suggests that integrating both datasets 
using transfer learning or hybrid modeling could enhance myopia risk 
prediction by combining clinical depth (dataset-1) with large-scale 
behavioral insights (dataset-2), ultimately improving prevention 
strategies across different populations and eras.

3.4 Merging models and their risk 
assessments

As discussed in the method, we implemented three approaches for 
merging these models (Figure 3). The radar plot highlights variations 
in feature importance across the three ensemble approaches, revealing 
how different model merging strategies influence the final output. 
Sequential merging (Ensemble A - blue) preserved the dominance of 
ScreenTime and Near work, reflecting dataset-specific strengths but 
slightly underrepresenting secondary features such as OutdoorEx and 
Residence B (in an urban area). The simple averaging approach 
(Ensemble B  - red) balanced contributions from both models, 
ensuring LyingEyeUse and TVDist (Near Work) gained more 
prominence, although it lacked the adaptability to refine feature 
relationships deeply. Transfer learning (Ensemble C - green) exhibited 
the most flexibility, redistributing feature weights significantly by 
amplifying OutdoorEx and Parental myopia while maintaining core 
influences such as ScreenTime and ComputerDist (Near works), 
suggesting that it adapts better to evolving patterns. Overall, sequential 
merging maintains dataset-driven strengths, simple averaging ensures 
fair representation, and transfer learning offers the highest adaptability, 
making it a robust choice for integrating diverse datasets with dynamic 
trends (Figure 4A). A sample of how the ensemble model works is 
shown in Figures 4B,C.

While merging models is a valuable approach for integrating 
diverse risk factors and calculating a comprehensive risk score for each 
patient, it is not without limitations. One significant concern is that 
the output of such a combined model has not been validated in real-
world scenarios. The final risk score is essentially a composite of 
outputs from multiple models, each with distinct methodologies and 
assumptions. This raises questions about the robustness and 
generalizability of the results. Furthermore, the absence of validation 
against a control or test group underscores the need for further 
investigation to assess the reliability and accuracy of this method.

4 Discussion

Our integrated model framework highlights that both genetic and 
environmental factors play pivotal roles in myopia development. 
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Conѕiѕtent with previouѕ ѕtudies (32–34), the merged modelѕ strongly 
emphaѕize parental myopia and ocular biometric indiceѕ aѕ key 
determinantѕ, highlighting the ѕtrong role of hereditary and 

anatomical influenceѕ. At the ѕame time, lifestyle and environmental 
factorѕ—such as ѕcreen time, near-work activitieѕ, and leѕѕ time ѕpent 
outdoorѕ—ѕtand out aѕ ѕignificant riѕk factorѕ, aligning with recent 

FIGURE 3

Illustration of the different approaches implemented in merging the models.

FIGURE 4

A schematic usage of the merge models in a real-world-like scenario. (A) A radar plot of cumulative risks according to cases; (B) feeding the merged 
models with random cases and calculating their total risks; (C) depicting an explainable risk assessment for each case.
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findingѕ from large-ѕcale croѕѕ-ѕectional ѕtudieѕ in urbanized ѕettingѕ. 
(35–37). This duality in risk profiles reinforces the necessity of 
multifaceted prevention strategies that address both intrinsic and 
extrinsic determinants of myopia.

When we  compare our findings with earlier studies, it is 
interesting to see that our sequential merging and transfer learning 
methods produce feature importance profiles that accurately reflect 
the mix of clinical and behavioral differences seen across various 
populations. For example, while older models mostly focus on 
biometric predictors such as spherical equivalent refraction and axial 
length (28, 38, 39), the inclusion of modern lifestyle factorѕ—such as 
digital device uѕe and time ѕpent outdoorѕ—through enѕemble 
averaging and transfer learning haѕ really ѕhifted the ѕpotlight toward 
behaviorѕ we  can actually change (33, 40). Such a conjunction of 
clinical and behavioral insights from different datasets and studies 
provides a more holistic view of myopia risk, consistent with the 
growing body of literature advocating for integrated risk 
assessment models.

Moreover, the overlapping radar plot of enѕemble feature 
importance illuѕtrateѕ that different model merging ѕtrategieѕ can 
yield complementary inѕightѕ. The XGBooѕt-dominant approach 
preѕerveѕ ѕtrong ѕignalѕ from eѕtabliѕhed clinical predictorѕ, while 
the DNN-dominant method accentuateѕ modern lifestyle influenceѕ. 
The approach emphasizing traditional models via the GBDT and 
logistic regression appears to balance these aspects effectively, 
suggesting that model integration can be  tailored to optimize 
predictive performance depending on the population and context 
(41, 42). Our results align well with recent meta-analyses that 
recommend a hybrid model for global myopia risk prediction, 
especially in reconciling discrepancies between historical and 
contemporary data sources (43).

In conclusion, the synthesis of multiple modeling approaches 
underscores the multifactorial nature of myopia, where genetic, 
biometric, and environmental factors converge to determine disease 
risk. Our findings advocate for the adoption of integrated predictive 
models that combine the strengths of different methodologies to yield 
a comprehensive risk assessment tool. Such models not only enhance 
our understanding of the complex interplay between various risk 
factors but also pave the way for personalized interventions aimed at 
curbing the myopia epidemic. Future research should focus on 
validating these hybrid approaches across diverse populations and 
exploring their potential for real-time risk stratification and clinical 
decision support.

4.1 Limitations of this study

This study has several limitations and challenges, including 
differences in populations, time periods, and predictors. Firstly, as 
dataset-1 and dataset-2 are derived from different populations, it is 
essential to keep in mind that risk factors and baseline risk levels may 
vary between them. On top of that, temporal differences—such as 
shifts in diagnostic criteria or environmental factors over time—could 
also play a role in shaping the outcomes. Another thing to note is that 
while some predictors were common across the datasets, others were 
unique to specific datasets. This meant we  had to carefully think 
through how to harmonize them or use a sequential modeling 
approach to handle them properly. Even with these limitations and 

challenges, we  made a conscious effort to actively address and 
thoughtfully consider each issue throughout the study to minimize its 
potential impact on the results.

5 Conclusion

Our study highlights the complex, multifactorial nature of 
myopia, combining genetic, biometric, and lifestyle predictors using 
advanced modeling techniques. By bridging historical clinical insights 
with modern behavioral trends, we  showcase the effectiveness of 
ensemble and transfer learning methods in improving risk assessment. 
This holistic approach provides a scalable framework for analyzing 
two distinct datasets with different parameters. Although our method 
prioritized merging the datasets and understanding the shared risk 
among their data, it will be crucial to validate these models across 
diverse populations to strengthen real-time risk stratification and 
support better clinical decision-making.
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Glossary

OLSM - Orinda Longitudinal Study of Myopia

SPHEQ - Spherical Equivalent Refraction

VCD - Vitreous Chamber Depth

SPORTHR - sports/outdoor activities

READHR - time spent reading

EBM - Explainable Boosting Machine

GBDT - Gradient Boosted Decision Trees

ACD - including anterior chamber depth

AL - axial length

VCD - vitreous chamber depth

LT - lens thickness

SGD - stochastic gradient descent

AUC - Area Under the ROC Curve

GAM - glass-box Generalized Additive Model

STUDYYEAR - Year the patient entered the study (Numerical, year)

MYOPIC - Myopia within the first five years of follow-up (Categorical, 
0 = No; 1 = Yes)

AGE - Age at first visit (Numerical, years)

GENDER - Gender (Categorical, 0 = Male; 1 = Female)

SPHEQ - Spherical Equivalent Refraction (Numerical, diopter)

AL - Axial Length (Numerical, mm)

ACD - Anterior Chamber Depth (Numerical, mm)

LT - Lens Thickness (Numerical, mm)

VCD - Vitreous Chamber Depth (Numerical, mm)

SPORTHR - Time spent engaging in sports/outdoor activities 
(Numerical, hours per week)

READHR - Time spent reading for pleasure (Numerical, hours 
per week)

COMPHR - Time spent playing video games/working on the PC 
(Numerical, hours per week)

STUDYHR - Time spent reading/studying for school assignments 
(Numerical, hours per week)

TVHR - Time spent watching television (Numerical, hours per week)

DIOPTERHR - Composite of near-work activities (Numerical, hours 
per week)

MOMMY - Myopic Mother in patients familial history (Categorical, 
0 = No; 1 = Yes)

DADMY - Myopic Father in patients familial history (Categorical, 
0 = No; 1 = Yes)

PARENTMY - Sum of parents history of myopia (MOMMY + 
DADMY, Numerical)
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