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Erastin-induced multi-pathway
cell death in endometriosis: a
mechanistic and translational
narrative review

Zhe Gao and Juan Du*

School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu,
China

This narrative review examines the therapeutic potential of Erastin and its derivatives
for endometriosis (EMS) by integrating mechanistic, preclinical, and translational
perspectives. We conducted a focused review of literature from PubMed and Web
of Science Core Collection (WoSCC) through August 2025; following a systematic
screening and de-duplication process, 91 studies were included for synthesis. The
evidence indicates that within the iron-rich, ROS-prone microenvironment of EMS,
Erastin inhibits the system Xc~ transporter, depletes intracellular glutathione (GSH),
and inactivates GPX4, thereby driving ferroptosis in ectopic endometrial stromal
cells. This process engages a coordinated network of regulated cell death that
extends beyond ferroptosis to include crosstalk with necroptosis and pyroptosis,
while being critically modulated by ferritinophagy and the paradoxical role of
defective mitophagy. Despite the development of next-generation analogs with
improved pharmacological properties, clinical translation is constrained by a narrow
therapeutic window due to on-target and off-target toxicities. To overcome these
limitations, we propose that future strategies must prioritize lesion-focused drug
delivery, such as nanocarriers and triggerable prodrugs, alongside biomarker-
guided treatment regimens to decouple efficacy from systemic risk, paving a
credible path for the clinical application of Erastin-class agents in EMS.
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1 Introduction

Affecting an estimated 6-10% of women of reproductive age, endometriosis (EMS) is a
common gynecological disorder that significantly impacts physical and mental health, often
manifesting as a debilitating clinical syndrome of chronic pelvic pain, severe dysmenorrhea,
dyspareunia, and associated infertility (1). This disease is characterized by the presence of
endometrial tissue, which should normally reside within the uterine cavity, appearing
in locations outside the uterus where it invades and proliferates, commonly involving the
ovaries and peritoneum (2). The most widely accepted theory for its pathogenesis is retrograde
menstruation, where endometrial cells flow backward through the fallopian tubes into the
pelvic cavity during menstruation (3). Surgical treatment continues to play a critical role in
the management of EMS, especially in cases where symptoms are severe or other treatments
have been ineffective. Surgery is suitable for patients who cannot tolerate or do not respond
to medical therapies, particularly those with acute pain events, deep EMS, or ovarian
endometriomas (4). Additionally, surgery can be used to improve the reproductive
environment in patients with EMS-related infertility. In cases of deep EMS, the primary goal
of surgery is to alleviate pain and organ obstruction. Clinically, surgical options include
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laparoscopy and the excision of extrauterine lesions. While
laparoscopy is a minimally invasive procedure, its recurrence rate is
high, whereas radical surgery, which involves the removal of both
ovaries along with the lesions, offers a more definitive approach.
Medical therapies commonly include progestins, GnRH agonists,
and oral contraceptives, which can alleviate symptoms to some extent
but often cause significant side effects and tend to relapse once the
medication is discontinued. The hormonal treatment of EMS is
primarily designed to target the endocrine mechanisms underlying
the disease and includes several major drug classes. Gonadotropin
releasing hormone agonists, such as goserelin, are employed to induce
a hypoestrogenic state by initially stimulating and then downregulating
pituitary hormone secretion, whereas gonadotropin releasing
hormone antagonists, directly block receptor binding for a more rapid
onset of action (5). Progestins, such as dienogest, are considered a
first-line treatment option, and compared to combined oral
contraceptives, oral progestins usually have a better safety and
tolerability profile (6). In addition, second-line treatments such as
GnRH agonists effectively reduce pain but are compromised by
significant menopausal side effects and challenges with long-term
tolerability, which has prompted the development of novel oral GnRH
antagonists like elagolix, linzagolix, and relugolix that offer dose-
dependent estrogen suppression and rapid reversibility. These newer
agents enable a more personalized balance between efficacy and safety
through strategies such as add-back therapy to mitigate bone mineral
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density loss and vasomotor symptoms (7, 8). Overall, both surgical
and medical treatments face limitations such as high recurrence rates
or pronounced adverse effects, and there remains a lack of ideal long-
term therapeutic options in clinical practice (9).

In recent years, studies have revealed that cell death plays a critical
role in EMS lesions. These lesions frequently exhibit iron overload,
oxidative stress, and inflammation, all of which can induce and
exacerbate ferroptosis, thereby inhibiting the growth of lesion cells
(10). Erastin, as a small-molecule ferroptosis inducer, works by
inhibiting the system Xc~ transporter-an amino acid antiporter
responsible for exchanging extracellular cystine for intracellular
glutamate (11)-leading to depletion of intracellular glutathione (GSH),
indirectly inactivating glutathione peroxidase 4 (GPX4), and
ultimately triggering ferroptosis (12). However, as research has
progressed, Erastin’s induction of cell death is not limited solely to
ferroptosis but may involve the combined action of multiple cell death
pathways (13, 14). Based on the current evidence, we propose that the
iron-overloaded, ROS-prone milieu of EMS renders EESCs susceptible
to Erastin-triggered, multi-pathway regulated cell death that integrates
ferroptosis with necroptotic and pyroptotic signaling, while ferritin
handling and mitophagy act as key modulators of susceptibility. In
turn, this coordinated engagement of death programs—together with
precedent from oncology—supports the view that Erastin has
therapeutic potential for EMS when exposure is directed preferentially
to lesions and minimized in normal tissues.
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2 Study selection and literature scope

We conducted a focused narrative review to synthesize published
evidence on Erastin and ferroptosis-centered cell-death pathways in
endometriosis. Two databases were queried: PubMed and the Web of
Science Core Collection (WoSCC). Searches covered each database
from inception through August 14, 2025. Database-specific queries
were constructed around three concept blocks—endometriosis,
regulated cell-death modalities, and Erastin with its analogs—and
executed according to each platform’s advanced search rules. The
PubMed search returned 98 records; after excluding the single
non-English item, 97 records proceeded to screening. The WoSCC
search returned 108 records; after removing two conference abstracts,
one editorial, and one duplicate, 104 records proceeded to screening.
We exported all records with full bibliographic fields and used Python
scripts to identify duplicates across sources; ninety-three cross-
database duplicates were detected, yielding a combined corpus of 108
unique records for assessment. Two reviewers then independently
screened titles, abstracts, and full texts against prespecified criteria,
resolving disagreements by consensus. Studies were eligible if they
reported published data in English relevant to endometriosis and at
least one of the targeted cell-death modalities, with specific attention
to Erastin or its analogs in in-vitro, ex-vivo, in-vivo, or human
observational contexts. Items not meeting these criteria, including
conference materials, editorial matter, letters without primary data,
retractions, and topic-irrelevant reports, were excluded. Manual
screening of the 108 unique records led to the exclusion of 17
manuscripts for irrelevance, resulting in 91 studies included in the
review. To ensure completeness, we also performed forward citation
tracking of included articles and examined reference lists to capture
additional publications of contextual relevance. Figure 1 shows the
selection workflow for this

literature identification and

narrative review.

3 Endometriosis microenvironment:
iron—redox dysregulation and
cell-death priming

Most of the iron in the human body is contained within circulating
red blood cells, where it plays pivotal roles in oxygen transport,
metabolic reactions, and DNA synthesis (15). Studies have shown that
women with endometriosis have higher levels of iron, ferritin, and
hemoglobin in their peritoneal fluid compared to healthy controls
(16). Large amounts of free iron are also found around the ovaries
infiltrated by ectopic endometrial tissue, and the nearby follicles are
overloaded with iron (17). This situation severely impairs oocyte
development and quality, potentially contributing to the infertility
commonly associated with endometriosis. The initial cause of iron
overload in ectopic endometriotic lesions, as well as in peritoneal and
follicular fluid, remains unclear, but it may be related to retrograde
menstruation and repeated local bleeding of lesions, leading to the
excessive degradation and influx of red blood cells. According to
Lousse et al., retrograde menstruation and bleeding from ectopic
endometrial lesions can transport menstrual endometrial tissue and
red blood cells into the peritoneal cavity (18). Some of these tissues
and cells are subsequently engulfed, absorbed, and degraded by
peritoneal macrophages, storing iron in the form of hemosiderin. In
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addition, ferritin and hemoglobin are released into the peritoneal
fluid. Hemoglobin breakdown releases heme, which is metabolized by
heme oxygenase to produce active iron and form iron-ferritin
deposits. This process disrupts iron homeostasis, and because the
iron-clearing system cannot effectively eliminate the excess iron, an
iron-overloaded environment ultimately develops in the peritoneal
fluid and endometriotic lesions (19). Moreover, the reflux of menstrual
blood into the ovaries and repeated local bleeding in ovarian lesions
can create iron overload in the follicular fluid as well. Excessive
peritoneal iron accumulation leads to overproduction of reactive
oxygen species (ROS)-a group of highly reactive chemicals formed
from oxygen, which at high concentrations can damage DNA, RNA,
proteins, and lipids within the cell (20)-and enhanced activation of
nuclear factor kappa-B (NF-kB), which, by promoting the expression
of matrix metalloproteinases (MMPs), exacerbates inflammation,
angiogenesis, and cell adhesion. These changes drive the progression
of endometriotic lesions and facilitate the development of
endometriosis (21). Endometriosis is closely linked to iron overload,
and these findings indicate that ectopic endometrial tissue, through
repeated bleeding during its invasive growth, evolves into an iron-
overloaded state under the influence of macrophages.

Ferroptosis is a form of programmed cell death characterized by
lipid peroxidation, driven by iron and ROS, and was first proposed by
Dixon in 2012 (22). In EMS tissue, excessive iron promotes the
generation of large amounts of ROS through the Fenton reaction,
thereby disturbing the antioxidant equilibrium and triggering
oxidative stress. The Fenton reaction is an oxidative process in which
ferrous ions (Fe?*) catalyze the decomposition of hydrogen peroxide
(H;0) into hydroxyl radicals (¢OH) (23). Accumulated free iron
provides abundant substrate for this reaction, as the iron reacts with
hydrogen peroxide to produce highly reactive ROS. These ROS exert
substantial oxidative pressure on surrounding cellular structures,
particularly on cell membranes rich in polyunsaturated fatty acids
(PUFAs) (24). By attacking the double bonds in PUFAs, ROS lead to
lipid peroxidation and the formation of lipid peroxides. In the
presence of iron, this lipid peroxidation process escalates further,
producing large quantities of lipid peroxides that seriously
compromise membrane integrity, gradually damaging membrane
structure and function (25). As lipid peroxidation intensifies,
membrane permeability is altered, eventually culminating in
membrane rupture or functional loss and, ultimately, ferroptosis.
Figure 2 shows the central mechanism of iron-driven ferroptosis in
EMS tissue, where excess iron catalyzes the Fenton reaction to produce
ROS, which in turn causes lipid peroxidation and membrane rupture.
This iron-overloaded and pro-oxidative milieu creates conditions
conducive to ferroptosis in ectopic endometrial tissue in
endometriosis. This destructive oxidative process is considered a
central mechanism of ferroptosis, iron overload accelerates the
production of ROS via the Fenton reaction, which in turn amplifies
lipid peroxidation, compromising the cell membrane and leading
to ferroptosis.

Resistance to ferroptosis in ectopic endometrial tissue is a crucial
feature in the pathogenesis of endometriosis. Although the iron-
overloaded microenvironment can destroy surrounding tissue via
ferroptosis and induce inflammatory responses (26), its cytotoxic
effects on ectopic endometrial tissue are limited, primarily due to the
tissue’s ferroptosis resistance (10). The precise mechanisms underlying
this resistance remain unclear. Some studies have reported that, in
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PRISMA 2020 flow diagram of study identification and selection in the PubMed and WoSCC searches

patients with EMS, both normal endometrial stromal cells (NESCs)
and ectopic endometrial stromal cells (EESCs) exhibit significantly
increased Fibulin-1 expression, which confers ferroptosis resistance
on EESCs by inhibiting ferroptosis (27). Additionally, Li et al.
discovered that EESCs can proliferate in an iron-rich environment and
resist ferroptosis through the ATF4-xCT pathway (28). Furthermore,
other research indicates that ferroptosis in EESCs promotes the
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production of vascular endothelial growth factor A (VEGFA) and
interleukin-8 (IL8). Consequently, EESCs secrete angiogenic factors
in a paracrine fashion, thereby fueling neovascularization (29) and
further advancing endometriosis pathogenesis. This ferroptosis
resistance in ectopic endometrial tissue contributes to the difficulty in
eradicating lesions and the ongoing progression of the disease. Given
this intrinsic resistance to ferroptosis, therapeutic strategies have been
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The mechanism of ferroptosis in EMS tissue. The iron-rich microenvironment of endometriotic lesions provides abundant Fe?*, which reacts with H,0O,
via the Fenton reaction to produce highly reactive hydroxyl radicals (¢OH). These reactive oxygen species (ROS) then induce lipid peroxidation of the
cell membrane, compromising its integrity and ultimately leading to membrane rupture and cell death.

developed to pharmacologically bypass these cellular defenses. Among
the most studied agents for this purpose is Erastin, a compound that
induces ferroptosis through a distinct mechanism.

To counteract the damaging effects of lipid peroxidation, cells
have evolved a primary defense system centered on the GSH and
GPX4 axis (30). Erastin can directly affect cystine uptake through
voltage-dependent anion channels (VDAC) (31). System Xc~ is an
amino acid exchange system that transports extracellular cystine into
the cell while exporting intracellular glutamate (32). Cystine serves as
the precursor for GSH, which is a critical intracellular antioxidant
(33). By inhibiting system Xc~, Erastin reduces cystine uptake,
subsequently lowering GSH levels. GSH functions as a cofactor for
GPX4, an enzyme that protects cell membranes from oxidative
damage by converting lipid peroxides into less harmful lipid alcohols
(34). When GSH is depleted, GPX4 loses its ability to neutralize lipid
peroxides. Once GPX4 is inactivated, lipid peroxides accumulate
within the cell, compromising membrane integrity and eventually
causing membrane rupture and cell death (35, 36). Meanwhile,
intracellular Fe?* further enhances the lipid peroxidation process via
the Fenton reaction, generating additional ROS and promoting
ferroptosis. Moreover, Erastin can increase intracellular iron
availability by upregulating heme oxygenase, which releases iron by
degrading heme (37). Obviously, this ferroptosis mechanism induced
by Erastin is clearly distinct from the iron overload-driven ferroptosis
observed in EMS tissues, both are based on ROS-induced lipid
peroxidation and its damage to the cell membrane, leading to cell
death, but the driving mechanisms differ.

Despite the inherent resistance of EMS tissue to ferroptosis,
studies have shown that Erastin can still effectively induce ferroptosis
in EMS lesions, leading to tissue atrophy and cell death. Li et al.
reported in a mouse model of endometriosis that ferroptosis induced
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by an Erastin analog significantly inhibited the formation of ectopic
endometrial lesions and caused a marked atrophy of EESCs. In
contrast, iron supplementation had no significant impact on lesion
progression in this model, likely due to the intrinsic resistance of EMS
lesions to iron overload-induced ferroptosis. Moreover, they found
that overexpression of ferroportin (FPN) suppressed Erastin-induced
ferroptosis in EESCs, whereas FPN deficiency accelerated this process
(38). FPN is the only known transmembrane iron exporter in
vertebrates, primarily expressed in duodenal enterocytes, hepatocytes,
and macrophages, where it plays a crucial role in maintaining cellular
and systemic iron homeostasis (39). Based on these findings,
we hypothesize that the ability of Erastin to bypass the ferroptosis
resistance of EMS tissue and effectively induce ferroptosis and lesion
atrophy may be attributed to its unique ferroptosis-inducing
mechanism and its multifaceted regulation of iron homeostasis.

4 Necroptosis and pyroptosis in
ectopic endometrial stromal cells

Necroptosis is a unique form of programmed cell death that
exhibits the morphological characteristics of necrosis while being
strictly regulated by specific molecular pathways. Crucially, unlike
apoptosis, which is typically immunologically silent, necroptosis
results in cell lysis and the release of damage-associated molecular
patterns, thereby provoking a potent inflammatory response (40).
Unlike apoptosis, its execution is independent of caspases and is
instead driven by receptor-interacting protein kinase 1 (RIPK1) and
receptor-interacting protein kinase 3 (RIPK3), with mixed lineage
kinase domain-like protein (MLKL) acting as the executioner by
oligomerizing and forming pores in the plasma membrane, leading to
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its rupture (41). Recent evidence suggests that necroptosis is already
an active process within endometriotic lesions, contributing to the
chronic inflammatory environment of the disease (42). Although
Erastin is best known as an inducer of ferroptosis, Yu et al. discovered
that Erastin can also trigger necroptosis (13). Necroptosis is closely
associated with ROS production, and both processes form a positive
feedback loop through this shared signaling mechanism. On one
hand, ROS generated by NADPH oxidase 1 (NOX1) and mitochondria
can activate RIPK1 and further recruit RIPK3 to initiate necroptosis.
On the other hand, RIPK3 enhances aerobic respiration by modulating
metabolic pathways, thereby increasing ROS production and
reinforcing the feedback loop (43).

Moreover, Erastin-induced ferroptosis is accompanied by plasma
membrane rupture and the release of large amounts of ROS. While
macrophages and other immune cells can partially clear these ROS,
the excessive ROS burden surpasses the clearance capacity of immune
cells, allowing residual ROS to further activate necroptosis through
positive feedback mechanisms. Therefore, Erastin not only directly
induces necroptosis but also amplifies its occurrence through the ROS
generated during ferroptosis, establishing a synergistic interaction
between ferroptosis and necroptosis. Figure 3 shows the synergistic
positive feedback loop between ferroptosis and necroptosis, where
ROS released during Erastin-induced ferroptosis triggers necroptosis,
which in turn releases more ROS and iron to amplify the overall cell
death signal. Based on these findings, we propose that Erastin-induced
cell death in EMS tissue is not solely limited to ferroptosis but is also
accompanied by necroptosis, further elucidating the complex interplay
between these cell death pathways in EMS pathophysiology.

10.3389/fmed.2025.1594702

Pyroptosis is a pro-inflammatory, regulated necrotic-like form
of cell death. Its signaling cascade is centered around human
Caspase-1, Caspase-4, and Caspase-5, or murine Caspase-11 (44).
Like necroptosis, pyroptosis is increasingly recognized as a key
driver of inflammation in endometriosis, with evidence pointing to
the activation of gasdermin proteins in endometriotic tissues (45).
Although the exact link between Erastin and pyroptosis remains
unclear, Erastin-induced ferroptosis generates a substantial amount
of ROS. As a key stress signal, ROS oxidizes the mitochondrial outer
membrane protein Tom?20, altering its structure and enhancing its
ability to recruit Bax. Bax oligomerizes in the mitochondrial outer
membrane, forming channels that facilitate the release of
cytochrome ¢ into the cytoplasm, subsequently activating
Caspase-9, which then triggers Caspase-3 activation through a
caspase cascade. Activated Caspase-3 cleaves gasdermin E
(GSDME), releasing its N-terminal pore-forming domain (PFD)
from the C-terminal inhibitory structure, thereby forming
membrane pores and inducing GSDME-mediated pyroptosis (46).
Zhou et al. demonstrated that Tom20 or Bax knockout effectively
blocks ROS-induced pyroptosis, while antioxidant treatment
significantly reduces Tom20 oxidation, Bax mitochondrial
recruitment, and GSDME cleavage, further confirming that ROS
serves as the central regulator of this signaling pathway (47).
Therefore, we hypothesize that pyroptosis may also be involved in
Erastin-induced regulated cell death (RCD) in EMS stromal cells.
Moreover, the secondary ROS release following cell rupture may
further influence ferroptosis and pyroptosis, forming a feedback
loop that amplifies cell death progression.
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5 Selective autophagy and
ferritinophagy in lesion redox control

Autophagy is a critical cellular quality control process with a
complex, double-edged role in cell fate: it can promote survival by
recycling damaged components or contribute to cell death under
specific forms of stress. Autophagy is an intracellular degradation
process responsible for eliminating proteins, misfolded or
damaged organelles, and aged cellular components. During this
process, membranes enclose portions of the cytoplasm and
targeted cellular components, forming autophagosomes (48). As a
classical ferroptosis inducer, Erastin has been found to increase
autophagic flux in target cells (14). Indeed, multiple lines of
evidence confirm this effect. For instance, Gao et al. demonstrated
that Erastin treatment in fibroblasts and fibrosarcoma cells
robustly induced the conversion of LC3I to LC3II and the
formation of GFP-LC3 puncta, which are definitive hallmarks of
autophagy activation (49). Similarly, Li et al. reported that in
breast cancer cells, Erastin significantly increased the expression
of key autophagy-associated proteins, including beclin-1, ATG5,
ATG12, and LC3B, while concurrently decreasing levels of the
autophagy substrate p62 (50). Furthermore, Erastin-induced
ferroptosis in target cells is accompanied by membrane rupture
and the release of large amounts of ROS, which may further
enhance autophagy via ROS-mediated activation of the AMPK/
mTOR signaling pathway.

This Erastin-induced increase in autophagic flux is crucial because
it directly enables ferritinophagy, a selective process that targets the
iron-storage protein ferritin for degradation and is now recognized as
a key driver of ferroptosis. Ferritinophagy is the autophagic
degradation process of ferritin, an iron storage protein, which is
crucial for cellular iron homeostasis. Ferritin consists of 24 subunits
of ferritin heavy chain 1 (FTH1) and ferritin light chain (FTL), capable
of storing up to 4,500 iron atoms (51). The combination of
autophagosome isolation and quantitative proteomics has identified
nuclear receptor coactivator 4 (NCOA4) as the cargo receptor
responsible for autophagy-dependent ferritin degradation (52). This
mechanism is likely due to the C-terminal domain of NCOA4 binding
to the conserved surface arginine (R23) of FTH1 in phagocytic cells,
subsequently facilitating its interaction with autophagosomes and
autolysosomes (14). Mancias et al. demonstrated that ferritin delivery
to lysosomes requires NCOA4, and NCOA4-deficient cells fail to
degrade ferritin, leading to a reduction in bioavailable intracellular
iron (53). Supporting this direct link, Hou et al. identified NCOA4 as
the selective cargo receptor for the autophagic turnover of ferritin
during ferroptosis, demonstrating that genetic inhibition of NCOA4
suppressed ferritin degradation and consequently inhibited Erastin-
induced ferroptosis (54). In line with this, Sun et al. noted that the
knockdown of NCOA4 or core autophagy genes like ATG5 and
ATG13 could suppress Erastin-induced ferritin degradation, iron
accumulation, and lipid peroxidation. Therefore, by activating this
NCOA4-mediated ferritinophagy pathway, Erastin promotes the
release of free iron, which in turn amplifies ROS production and lipid
peroxidation, resulting in an autophagy-dependent mode of
ferroptosis. Given this evidence, it is clear that Erastin-induced cell
death in EMS tissue involves a critical autophagic component, wherein
the induction of NCOA4-mediated ferritinophagy drives ferroptosis
by degrading ferritin and increasing the intracellular labile iron pool.
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6 Mitophagy and mitochondrial
quality control in Erastin sensitivity

Within the broader process of autophagy, mitophagy—the
selective removal of mitochondria—plays a particularly intricate role
in the response of endometriotic cells to Erastin. Mitophagy is a highly
selective form of autophagy responsible for eliminating damaged
mitochondria, thereby maintaining mitochondrial quality control and
cellular homeostasis (55). This process is canonically driven by the
stabilization of PTEN-induced kinase 1 (PINK1) on the outer
membrane of depolarized mitochondria, which subsequently recruits
the E3 Parkin  (56).
polyubiquitination then facilitates the interaction with autophagy

ubiquitin  ligase Parkin-mediated
receptors, ultimately leading to autophagosome formation and
lysosomal degradation of dysfunctional mitochondria. In the context
of EMS, impaired mitophagy has significant pathological implications,
resulting in the accumulation of dysfunctional mitochondria and
elevated levels of ROS. Providing direct molecular evidence for this
impairment, Deng et al. identified Prohibitin 2 (PHB2), a critical
mitochondrial inner-membrane receptor for Parkin-dependent
mitophagy, as significantly downregulated in ectopic endometrial
tissues (57). However, the clinical persistence of EMS, a disease state
characterized by impaired mitophagy, suggests that the resulting
elevation in ROS is not sufficient to induce widespread EESC death. If
it were, EMS would likely behave as a self-limiting condition. Instead,
this limited increase in ROS appears to place EESCs in a state of
chronic oxidative stress, which fuels a pro-inflammatory and
pro-proliferative microenvironment rather than effectively killing the
ectopic cells.

This chronic oxidative stress state, and the pro-inflammatory,
pro-proliferative microenvironment it creates, can be controlled
through the intervention of restoring mitophagy. Evidence from
animal models demonstrates that reactivating mitophagy effectively
limits the inflammatory microenvironment, reduces angiogenesis, and
promotes the clearance of ectopic cells. In a rat model of EMS,
D’Amico et al. demonstrated that supplementation with agai berry
suppresses the PI3K/AKT and ERK signaling pathways, thereby
inhibiting mammalian target of mTOR activity and activating
AMBRAI1/Beclin-1-LC3 signaling (58). This cascade restores PINK1/
Parkin-dependent mitophagy and concurrently activates the NRF2
pathway, enhancing antioxidant responses, like NQO-1and HO-1, and
consequently reducing oxidative stress in ectopic lesions.
Complementing this finding, Siracusa et al. reported that ectopic
endometriotic implants show reduced expression of key mitophagy
proteins, including BNIP3, AMBRALI, and Parkin, which further
confirms that mitophagy is suppressed in EESCs (59). Treatment with
rapamycin reversed these impairments by downregulating the
phosphorylated AKT/mTOR pathway and upregulating BNIP3,
AMBRAL, and Parkin expression. Crucially, their studies found that
the restoration of mitophagy leads to increased apoptosis, decreased
angiogenesis, and notably smaller lesion sizes. Deng et al. show that
overexpression of PHB2—as a key receptor for mitophagy, its
overexpression signifies an effective restoration of this process—
suppressed cellular proliferation, migration, and invasion, and
promoted apoptosis through the enhancement of Parkin-dependent
mitophagy (57). This regulation was shown to occur under the direct
transcriptional control of GA-binding protein alpha (GABPA)—a
critical Ets-family transcription factor that acts as a master regulator
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of mitochondrial biogenesis by controlling the expression of nuclear-
encoded mitochondrial proteins, and whose direct binding to the
PHB2 promoter makes it a key upstream determinant of the cell’s
capacity for mitophagy (60).

Additional mechanistic insights have further delineated the
complexity of mitophagy regulation in EMS. In parallel, Zhao et al.
illustrated another regulatory axis wherein mammalian Ste20-like
kinase 1 (MST1), which is downregulated in endometriosis, modulates
mitochondrial dynamics. Their work showed that restoring MST1
expression activates p53, which subsequently phosphorylates Drp1 at
Ser616 to facilitate mitochondrial fission while concurrently
suppresses Parkin transcription (61). While this pathway also impairs
mitophagy, it does so to an extent that pushes the cell past a survival
threshold, ultimately inducing caspase-9-dependent apoptosis and
loss of migratory capacity in EESCs. This highlights that EESCs exist
in a delicate balance, where their survival depends on a moderate level
of mitochondrial dysfunction; restoring homeostasis through
conventional mitophagy or inducing catastrophic mitochondrial
failure can both lead to their demise.

Recent investigations have uncovered a direct mechanistic
interplay between mitophagy and Erastin-induced ferroptosis in
EMS. Gou et al. found that butyrate, a short-chain fatty acid derived
from gut microbiota—whose levels are notably diminished in EMS
patients—heightens the susceptibility of EESCs to Erastin-induced
ferroptosis (62). This sensitization effect occurs via the suppression of
FFAR2/PPAR-y/PINK1/Parkin
Knockdown or pharmacological inhibition of components within this

mitophagy through the axis.
axis effectively reversed the ferroptosis-enhancing impact of butyrate,
thus establishing a functional and causal relationship between
mitophagy suppression and heightened Erastin responsiveness. The
mTOR pathway, serving as a critical metabolic regulator and
mitophagy gatekeeper, integrates both metabolic and inflammatory
signals to calibrate mitochondrial turnover and ROS production—key
mediators of ferroptosis induction by Erastin (63-65). Under
pathological conditions characterized by deficient mitophagy,
pharmacological agents such as rapamycin or agai berry restore
mitochondrial turnover, thereby promoting apoptosis and reducing
angiogenesis in lesions reliant on AKT/mTOR signaling (66-68).
Conversely, in cellular contexts dependent upon Parkin-mediated
mitophagy for survival, interference with this pathway via MST1-p53
axis activation or FFAR2/PPAR-y signaling blockade enhances cellular
susceptibility to ferroptosis upon Erastin treatment.

Collectively, current evidence highlights a nuanced and context-
dependent role for mitophagy in modulating the therapeutic efficacy
of Erastin in EMS. Under physiological or untreated pathological
conditions, mitophagy functions beneficially by maintaining
mitochondrial integrity, reducing ROS accumulation, suppressing
oxidative stress, and consequently decreasing angiogenesis and lesion
viability in EESCs. However, EMS lesions inherently exhibit impaired
mitophagy, leading to the persistent accumulation of dysfunctional
mitochondria and increased ROS production. Crucially, this
dysfunctional state provides a unique opportunity for Erastin-based
therapy. Erastin exploits the defective mitophagy-driven ROS
accumulation to circumvent the ferroptosis resistance characteristic
of EESCs, thereby enhancing its therapeutic efficacy. Conversely, the
restoration or enhancement of mitophagy would paradoxically
attenuate Erastin-induced ROS accumulation, undermining its
ferroptosis-promoting effects. Therefore, to maximize the therapeutic
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potential of Erastin, targeted suppression of mitophagy during
treatment is essential. Future research should further explore this
critical balance, aiming to define precise therapeutic windows and
identify molecular targets within mitophagy pathways to optimize
Erastin’s clinical application in treating endometriosis.

7 Erastin-induced multi-pathway cell
death network in EMS

In EMS tissue, Erastin activates multiple cell death signaling
pathways, forming a complex network effect that ultimately induces
the death of ectopic endometrial cells. First, by inhibiting system Xc~,
Erastin causes a drastic reduction in GSH levels, leading to the
inactivation of GPX4 and the accumulation of lipid peroxides, thus
inducing and amplifying ferroptosis. This process is closely associated
with autophagy, particularly with NCOA4-mediated ferritinophagy.
In the case of high autophagic flux, ferritin is degraded, releasing more
Fe**, which further promotes the Fenton reaction and lipid
peroxidation, thereby exacerbating ferroptosis and causing greater
membrane damage. In the context of FPN deficiency or inadequate
expression, the cells cannot efficiently export iron, resulting in
continued accumulation of free iron and further enhancing the
detrimental effects of ferroptosis.

It is important to note that Erastin-induced cell death is not
limited to ferroptosis. Following the generation of large amounts of
ROS, necroptosis is activated. Necroptosis, driven by the RIPK1-
RIPK3-MLKL signaling cascade, is amplified in the presence of ROS,
leading to the formation of membrane pores and membrane rupture,
which releases inflammatory molecules and additional ROS. This not
only exacerbates the damage to ectopic endometrial cells but also
creates a sustained oxidative stress and inflammatory signal in the
local microenvironment. Meanwhile, pyroptosis can also be indirectly
triggered by Erastin. As ROS accumulate excessively, the
mitochondrial outer membrane protein Tom20 and the Bax pathway
are altered, leading to the release of cytochrome ¢ and other
pro-apoptotic/pro-pyroptotic molecules from mitochondria, thereby
activating the downstream caspase cascade. The cleaved N-terminal
fragment of GSDME forms pores in the cell membrane, triggering
pyroptosis, which is characterized by cell swelling, rupture, and the
release of pro-inflammatory signals. As the damage to the membrane
structure and organelles increases, a new wave of ROS and
inflammatory factors further feedback into the pathways of ferroptosis
and necroptosis, amplifying their effects.

Notably, the unique pathological context of EMS critically shapes
the outcome of these interconnected pathways. While autophagy is
normally a protective mechanism, Erastin subverts this process to
promote ferritinophagy, leading to the large-scale degradation of
ferritin and the release of excess iron that further reinforces ferroptosis.
More specifically, mitophagy, the programmed quality-control
pathway for mitochondria, becomes maladaptive in the EMS context.
The defective mitophagy observed in EESCs permits the accumulation
of dysfunctional mitochondria, which sustains elevated ROS levels
and intensifies all ROS-dependent arms of Erastin-induced cell death.
Taken together, the convergence of ferritinophagy-derived labile iron
and pathology-related mitophagy deficiency creates a hypersensitive
state, heightening the induction of cell death by Erastin in EESCs. On
this basis, we posit that the therapeutic action of Erastin in EMS is
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critically mediated by these ROS-driven programs, and that 8 Translational outlook: ana log S,
pharmacologic suppression of mitophagy may further sensitize lesions ~ Sd fety liabilities, and delive ry strateg ies
to Erastin.

Based on these findings, we propose that the multiple cell death Erastin has demonstrated antitumor activity in several
pathways induced by Erastin in EMS create a tightly regulated positive ~ malignancies, including gastric and colorectal cancer (69, 70), and the
feedback network centered around free iron and ROS. Figure 4 shows  inflammatory, iron-loaded, oxidative microenvironment shared by
the integrated network of cell death pathways triggered by Erastinin ~ many tumors and EMS provides a coherent theoretical basis for
endometriosis, illustrating how ferroptosis, necroptosis, and  applying this strategy to EMS (71, 72). Building on the evidence of
pyroptosis are interconnected and modulated by autophagy-  Erastin-induced cell death mentioned earlier, we posit that Erastin can
dependent processes. On one hand, free iron and ROS are the core  restrain lesion growth in EMS by inhibiting system Xc~, depleting
driving factors of ferroptosis; on the other hand, ROS explosion and ~ cystine and GSH, compromising GPX4 activity, and driving lipid
the spread of inflammatory signals further enhance necroptosis and  peroxidation within EESCs. Under the iron-rich, ROS-prone
pyroptosis, and in some cases, affect autophagic function. These death  conditions characteristic of lesions, this perturbation engages a
modes interact with and amplify each other, leading to the rapid and  coordinated program of RCD across intersecting pathways—not only
compounded destruction of ectopic endometrial tissue. By precisely ~ ferroptosis but also necroptotic and pyroptotic signaling—while
regulating key molecules involved in iron homeostasis and autophagy,  ferritin handling and mitophagy status further skew redox
such as FPN, heme oxygenase, and NCOA4, it may be possible to ~ homeostasis toward irreversible injury in EESCs. Studies have shown
improve the specificity and effectiveness of Erastin in EMS treatment,  that EESCs are more vulnerable than NESCs in this context, and that
while minimizing excessive inflammation or oxidative damage to  the lesion milieu amplifies Erastin’s impact through persistent
surrounding normal tissues. Further research into these feedback  oxidative pressure and impaired mitochondrial quality control (26, 38,
loops and critical molecular nodes may uncover more potential small 73, 74). Taken together with precedent from oncology, the overall
molecules or biomarkers, providing new insights for the clinical  evidence indicates that Erastin has clear therapeutic potential for
translation of Erastin-based therapies in EMS and potentially = EMS, provided drug delivery preferentially targets lesions while
other diseases. sparing healthy tissue.

Disease Mechanisms — Endometriosis

Cell Death Network Triggered by Erastin
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FIGURE 4

The multi-pathway regulated cell death network induced by Erastin in endometriosis. This network is centered around free iron and ROS, which are
amplified through interconnected cell death programs. The figure details the key pathways, including: (1) ferroptosis activation through system Xc=/
GPX4 inhibition, (2) necroptosis triggered by the RIPK1-RIPK3-MLKL signaling cascade, (3) pyroptosis mediated by the Tom20-Bax-Caspase-3/GSDME
axis, and (4) the crucial modulation of these pathways by ferritinophagy, which increases labile iron, and defective mitophagy, which sustains elevated
ROS levels.
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Medicinal chemistry efforts have generated analogs and
functional derivatives to address Erastin’s poor solubility, metabolic
instability, and limited usability in vivo (75). Imidazole ketone
Erastin (IKE) achieves markedly greater potency and stability
through an imidazole ketone scaffold that enables durable target
engagement while resisting metabolic clearance (76); in cell assays
it reaches nanomolar activity and maintains stability in plasma and
liver microsomes, and in animal models it inhibits tumor growth at
tolerated doses with suitable formulations (77). Piperazine Erastin
(PE) increases polarity and water compatibility, raising aqueous
solubility by more than an order of magnitude relative to Erastin
and improving exposure and metabolic stability (78, 79); despite
only modest gains in intrinsic potency, it achieves effective
concentrations in vivo and delays tumor growth in xenograft
models (12). PRLX93936 was optimized for drug like behavior and
formulated as a hydrochloride salt to enhance bioavailability; it
demonstrated preclinical efficacy (80), progressed to first in human
testing, and showed activity in Ras driven models, including
combinational benefit with platinum therapy (81, 82). Sulfasalazine
(SAS) is an orally available, water soluble inhibitor of system Xc~
with a well characterized clinical pharmacology (83); although less
potent than Erastin in vitro, its feasibility for systemic dosing and
observed ferroptosis linked sensitization in difficult models
underscore its translational relevance (84). RSL3 and ML162
represent a second strategy that disables lipid peroxide repair by
directly inhibiting GPX4 with low nanomolar lethality in diverse
cell systems; their electrophilic chemistry and rapid reactivity limit
systemic use at present but they define a potent downstream entry
point for ferroptosis (85, 86). FIN56 promotes GPX4 degradation
while depleting coenzyme Q10, creating a dual node pressure on
the lipid antioxidant network that can overcome single target

10.3389/fmed.2025.1594702

resistance and broaden ferroptosis induction across resistant states
(87, 88).

Across these compounds, two mechanistic classes emerge. The
first starves cells of cystine by inhibiting system Xc~, collapsing the
GSH-GPX4 axis and predisposing lesions to lipid peroxidation; this
class includes Erastin, IKE, PE, PRLX93936, and SAS. The second
disrupts lipid peroxide repair at or downstream of GPX4 through
direct enzyme blockade or by accelerating GPX4 loss and depleting its
cofactors; this class includes RSL3, ML162, and FIN56. Figure 5 shows
the chemical structures of Erastin and these representative analogs/
derivatives. Table 1 shows the pharmacological properties and
practical advantages of these agents relative to Erastin, providing a
reference framework for selecting candidates and delivery strategies
in preclinical models of EMS.

Despite rapid advances in the design of Erastin analogs and
derivatives, the fundamental problem of on-target toxicity remains
unresolved. Inhibiting system Xc~ lowers intracellular cystine and
depletes GSH in transporter-dependent tissues, placing normal cells
under sustained oxidative pressure (89). Studies have shown in mouse
models that high-dose Erastin reduces red blood cells and hemoglobin,
suppresses bone-marrow cellularity, and depletes hematopoietic stem
and progenitor populations that are highly sensitive to ferroptosis (90,
91); immune cell death has also been observed, weakening antitumor
immunity (92). Consistent with transporter dependence in the
gastrointestinal tract, kidney, liver, and spleen (89), tissue injury
emerges when systemic exposures are achieved. Agents that act
downstream on GPX4 carry a related liability because they disable
lipid-peroxide repair in nonlesional tissues. Next-generation
compounds improve chemistry rather than biology: IKE increases
potency and stability and PE increases aqueous solubility and
exposure, yet both remain system Xc~ inhibitors and therefore retain

Erastin IKE

[The Chemical Structures of Erastin and Its Representative Analogs/Derivatives

PE PRLX93936

FINS6

FIGURE 5
The chemical structures of Erastin and its representative analogs/derivatives.
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TABLE 1 Pharmacological characteristics and advantages compared to Erastin for representative analogs/derivatives.

Compound  Main pharmacological characteristics Advantages compared to Erastin

Erastin A system Xc~ inhibitor with poor aqueous solubility and metabolic instability. | Mechanism benchmark for ferroptosis in EMS-relevant settings.

A system Xc~ inhibitor with nanomolar potency and improved metabolic Delivers stronger activity at lower doses with improved metabolic
T stability. robustness.

A system Xc~ inhibitor with greatly increased aqueous solubility and better Enables simple aqueous formulation and higher systemic exposure.
FE systemic exposure.

A system Xc~ inhibitor formulated as a salt with drug-like pharmacokinetics Offers translational pharmacokinetics with first-in-human experience.
PRLXS3936 and human data.
SAS An oral, water-soluble system Xc™ inhibitor suitable for systemic dosing. Provides a clinically approved, systemically dosable scaffold for

repurposing.

RSL3 A direct GPX4 inhibitor that produces rapid, potent ferroptosis. Bypasses cystine dependence through direct GPX4 blockade.

A direct GPX4 inhibitor used as a potent tool compound in resistant models. Affords robust GPX4 inhibition for models resistant to upstream
M6z blockade.

An agent that promotes GPX4 degradation and depletes coenzyme Q10 to Exerts dual pressure on the lipid-antioxidant network to overcome
FInse drive ferroptosis. resistance.

the same on-target risk. Clinical experience with PRLX93936
underscores the ceiling for systemic dosing, as a phase I trial was
terminated early when patients experienced severe, intolerable toxicity
at very low doses (93), revealing an exceptionally narrow
therapeutic index.

Beyond on-target injury, off-target interactions further complicate
translation. Mitochondrial engagement, including binding to voltage-
dependent anion channels, can heighten oxidative stress in nonlesional
tissues and contribute to organ dysfunction independent of lesion-
directed ferroptosis (94, 95). Studies have shown that Erastin can also
modulate p53 signaling outside its canonical ferroptosis activity,
altering transcriptional programs that regulate cell-cycle progression
and stress responses and thereby intensifying cytotoxicity in sensitive
tissues (96). Taken together, the combined burden of on-target toxicity
and off-target effects constrains the therapeutic window and
constitutes a practical barrier to clinical development, making it
essential to pair analog optimization with delivery strategies that
confine exposure to lesions and minimize unintended pathway
engagement in normal tissues.

In light of the on-target and off-target liabilities outlined above,
we recommend a development path that prioritizes separation of
lesion efficacy from systemic exposure. The first layer should focus
on biodistribution: local or lesion-preferring delivery is likely to
yield the greatest gain in therapeutic index. We propose testing
intralesional or intraperitoneal depot systems, as well as
nanoparticle and liposomal carriers engineered to concentrate drug
within pelvic lesions while limiting distribution to hematopoietic
and hepatic tissues (97-99). As a complementary approach, rational
should
be explored to restrict activation to cells that overexpress disease-

prodrug designs and receptor-targeted conjugates
associated markers in the endometriotic microenvironment.
Triggerable chemistries responsive to local redox state, pH, or
lesion-enriched enzymes may further ensure that active drug is
generated predominantly within ectopic tissue (100). Together,
these delivery-centered strategies provide the mechanistic context
needed to revisit exposure levels that were previously precluded
by toxicity.
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We also recommend schedule and combination designs that
maintain lesion pressure while protecting normal tissues. Intermittent
or metronomic dosing could preserve antioxidant capacity in
nonlesional compartments yet sustain cumulative oxidative stress in
EESCs (89). Combination regimens that sensitize lesions—by
increasing iron availability within lesions or dampening compensatory
antioxidant pathways—may allow meaningful dose reductions of
To exploration,
pharmacodynamic monitoring should be embedded from the outset,

Erastin-class agents. enable safe clinical
using biomarkers of lipid peroxidation and cellular redox status to
verify on-lesion activity, coupled with early indicators of marrow and
mitochondrial injury to guide dose adjustment (101). Patient selection
should be biomarker-guided, emphasizing lesions with molecular
features consistent with ferroptosis susceptibility and delivery
feasibility (102). Finally, medicinal chemistry should advance analogs
with improved stability and minimized promiscuous protein binding,
specifically aiming to reduce marrow suppression and mitochondrial
liabilities while retaining on-lesion potency (103).

Taken together, current evidence positions Erastin and its
derivatives as plausible candidates for controlling endometriosis by
exploiting the iron-driven, oxidative lesion milieu to trigger RCD in
ectopic stromal cells. Two complementary lineages—system Xc~
inhibitors and GPX4-directed agents—offer improvements in potency,
stability, or solubility, yet translation is constrained by on-target
depletion of cystine and glutathione in normal tissues and by off-target
perturbations, including mitochondrial channel engagement and p53
pathway modulation, which collectively narrow the therapeutic index.
Progress will depend on decoupling lesion efficacy from systemic
exposure through lesion-focused delivery platforms, triggerable or
receptor-targeted prodrugs, and schedules or combinations that
sustain lesion pressure at reduced doses. Pharmacodynamic
monitoring and biomarker-guided selection should verify on-lesion
activity while safeguarding marrow and mitochondrial function.
Priorities for research include head-to-head evaluation of analogs in
EMS models with integrated pharmacokinetic—pharmacodynamic
mapping and iterative chemistry to lower promiscuous binding
without compromising on-lesion potency.
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9 Conclusions and future directions

Evidence synthesized in this review indicates that Erastin has
potential to control EMS by exploiting lesion-specific vulnerabilities
in iron handling and redox balance. Within the iron-rich, ROS-prone
microenvironment of EMS, inhibition of system Xc~ limits cystine
import, depletes GSH, constrains GPX4 activity, and drives lipid
peroxidation in ectopic endometrial stromal cells. Under these
conditions, Erastin engages a coordinated network of regulated cell
death that extends beyond ferroptosis to include necroptotic and
pyroptotic signaling, with ferritin turnover increasing labile iron and
mitophagy status shaping cellular susceptibility. Studies across models,
together with precedent from oncology, support the view that this
multi-pathway engagement can be leveraged to restrain lesion growth
when exposure is directed preferentially to diseased tissue.

Translation is limited at present by on-target injury in normal
tissues and by off-target pathway perturbations, necessitating solutions
that separate lesion efficacy from systemic risk. Future work should
prioritize delivery platforms that localize exposure to pelvic lesions,
including intraperitoneal or intralesional depots and nanocarriers,
alongside triggerable or receptor-guided prodrugs designed to activate
within the biochemical milieu of lesions. Scheduling and combination
strategies that maintain pressure on ectopic cells while preserving
antioxidant capacity in nonlesional compartments warrant systematic
evaluation, supported by pharmacokinetic-pharmacodynamic
mapping and biomarker programs that verify on-lesion lipid
peroxidation and redox modulation while monitoring marrow,
hepatic, renal, and mitochondrial safety. Comparative studies of
representative analogs under uniform conditions, coupled with
iterative chemistry to minimize promiscuous protein binding and
mitigate p53- and mitochondrial channel-linked liabilities, will
be essential. Attention to reproductive endpoints and long-term
outcomes should anchor this agenda so that Erastin-class approaches
can be tested credibly for clinical benefit in EMS.
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