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Purpose: This study aims to systematically identify and address key barriers to
misdiagnosis in Al-driven medical diagnostics. The main research question is
how technical limitations, ethical concerns, and unclear accountability hinder
safe and equitable use of Al in real-world clinical practice, and what integrated
solutions can minimize errors and promote trust.

Methods: We conducted a literature review and case analysis across major
medical fields, evaluating failure modes such as data pathology, algorithmic
bias, and human-Al interaction. Based on these findings, we propose a
multidimensional framework combining technical strategies—such as dynamic
data auditing and explainability engines—with ethical and policy interventions,
including federated learning for bias mitigation and blockchain-based
accountability.

Results: Our analysis shows that misdiagnosis often results from data bias, lack
of model transparency, and ambiguous responsibility. When applied to published
case examples and comparative evaluations from the literature, elements of
our framework are associated with improvements in diagnostic accuracy,
transparency, and equity. Key recommendations include bias monitoring, real-
time interpretability dashboards, and legal frameworks for shared accountability.
Conclusion: A coordinated, multidimensional approach is essential to reduce
the risk of misdiagnosis in Al-supported diagnostics. By integrating robust
technical controls, clear ethical guidelines, and defined accountability, our
framework provides a practical roadmap for responsible, transparent, and
equitable Al adoption in healthcare—improving patient safety, clinician trust,
and health equity.
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1 Introduction

The integration of artificial intelligence (AI) into healthcare is
transforming diagnostic workflows. Machine-learning models now
deliver faster and more accurate image interpretation than traditional
methods across oncology, cardiology, and radiology (1, 2). Deep-
learning systems such as convolutional neural networks (CNNs) can
achieve expert-level performance in controlled settings—for example,
melanoma detection AUCs exceeding 0.94 (3)—and they show
promise for expanding early cancer diagnosis in resource-limited
settings (4). Yet these technical achievements do not translate
seamlessly to everyday clinical care. Despite benchmark accuracies as
high as 94.5% (5), real-world deployments often reveal performance
drops of 15-30% due to population shifts and integration barriers (6).

The adoption of Al in diagnostics introduces systemic risks
that current governance frameworks are ill-equipped to manage.
The World Health Organization defines misdiagnosis as the failure
to accurately identify or communicate a patient’s condition (7).
Algorithmic opacity and bias further compound this risk. For
instance, underrepresentation of rural populations in training
datasets has been linked to a 23% higher false-negative rate for
pneumonia detection, while melanoma detection errors are more
prevalent among dark-skinned patients due to dataset imbalances
(8). Additionally, overfitting and spurious correlations can lead to
clinically significant false positives, as observed in breast cancer
screening (9). Two factors exacerbate these challenges: (1) the
“black-box” nature of many AI models, which limits error
traceability and undermines clinician trust (10), and (2) blurred
lines of accountability among developers, clinicians, and healthcare
institutions. We categorize these issues into three failure modes—
data pathology, algorithmic bias, and human-AI interaction—
outlined in Table 1, which links technical root causes to their
clinical consequences.

Implementing real-time bias monitoring and interpretability
dashboards is crucial to mitigating these issues, but the feasibility
and infrastructure requirements must be carefully considered.
While these tools could enhance transparency and trust, their
deployment in resource-limited settings may face challenges related
to cost, data infrastructure, and technical expertise. For hospitals in
low-resource regions, the implementation of such technologies
could require significant investments in both hardware and training.
Therefore, policy recommendations must account for the scalability
of these tools, with phased rollouts and tailored strategies to ensure
accessibility and effectiveness across various healthcare settings. As
noted by Smith and Fotheringham, current liability frameworks
inadequately address this tripartite accountability gap, potentially
exacerbating health disparities. In line with this, a 2023 study in
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JAMA found that AI misdiagnosis rates for minority patients were
31% higher than for majority patients in critical care settings
(11, 12).

This study addresses these gaps by presenting an integrated
framework to reduce Al-related misdiagnosis in real-world care. The
framework couples (i) bias-aware data curation; (ii) a hybrid
explainability engine that combines gradient-based saliency (e.g.,
Grad-CAM, Integrated Gradients) with a structural causal model
(SCM), aligns the top-k% salient regions with SCM variables, and
runs counterfactual/ablation queries with faithfulness checks
(deletion/insertion) to yield concise, clinician-facing rationales; (iii)
dynamic data auditing via federated learning, whereby each site
computes subgroup-stratified metrics (AUC, sensitivity/specificity,
ECE, FPR/FNR) locally and shares privacy-preserving aggregates to
monitor drift (PSI, KL) and fairness (AFNR), with threshold-based
alerts and returned reweighting/sampling quotas to mitigate
and (iv)
instruments, including versioned model fact sheets and on-chain

representation disparities; accountability-by-design
hashing of artifacts with pointers to off-chain logs for auditor
verification. A schematic overview appears in Supplementary Figure S1
(S1A, hybrid explainability; S1B, blockchain-anchored accountability
and data flows; S1C, federated learning-based dynamic auditing).
Because the work involves no patient intervention or prospective
enrollment, clinical trial registration is not applicable.

2 Failure modes and risk analysis in
Al-based medical diagnosis

Scope of evidence. This is a narrative synthesis and framework
paper based on peer-reviewed studies and case analyses; no primary
multi-center trial was performed by the authors. Quantitative values
cited (e.g., error gaps) reflect external sources explicitly referenced in
the text.

2.1 Three interdependent failure modes

Al diagnostic errors can be traced to three interdependent failure
modes, each demanding targeted mitigation. First, data pathology—
driven by sampling biases—leads to systematic underdiagnosis in
minority or underrepresented groups, as seen in elevated false-
negative rates among dark-skinned patients (13). Second, algorithmic
bias—often caused by overfitting to spurious patterns in training
data—results in clinically significant false positives, such as
unnecessary treatment for benign findings (14). Third, human-AI
interaction issues, such as automation complacency or overreliance,

TABLE 1 Failure modes and root causes of Al misdiagnosis: a technical-clinical analysis.

Technical root
cause

Failure mode

Clinical manifestation

Empirical evidence

Data pathology Sampling bias in training data

Under diagnosis in underrepresented subgroups

28% higher FN rates for dark-skinned melanoma cases (13)

Algorithmic bias Opverfitting to spurious

correlations

Over diagnosis of benign nodules as malignant

22% FP increase in lung CT analysis (14)

Human-AT interaction Automation complacency

among clinicians

Delayed correction of Al errors

41% slower error identification vs. human-only workflows (15)
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can slow down error detection and correction, as demonstrated by
delays in clinical workflows when Al is blindly trusted or ignored (15).

Although advanced models such as Vision Transformers can
achieve impressive accuracy—for example, an AUC of 0.97 in
retinal disease detection (16)—their lack of interpretability remains
a major barrier. Clinicians require 2.3 times longer to audit deep
neural network (DNN) decisions compared to traditional rule-
based systems (17), and 34% of radiologists report overriding
correct Al recommendations due to distrust in opaque outputs
(18). This underutilization and propagation of errors highlight a
critical paradox: as AT models become more powerful, the risks of
misdiagnosis, inequity, and accountability gaps can actually
increase if transparency and trust are not systematically addressed.

As depicted in Figure 1, the end-to-end Al diagnostic workflow—
from data collection and model training to clinical application and
iterative feedback—includes several points where technical flaws and
systemic biases can be introduced and amplified. Each stage represents
a potential vulnerability, capable of propagating errors throughout the
entire diagnostic process. These interconnected risks underscore the
urgent need for solutions that not only enhance technical performance,
but also explicitly address the ethical, legal, and operational challenges
unique to Al in healthcare.

2.2 Data quality, diversity, and
accountability in Al diagnostics

The reliability and fairness of AI diagnostics rest on three pillars:
data quality and diversity, algorithmic interpretability, and rigorous
validation. High-quality, representative data are crucial to avoid
systematic disadvantages for minorities. Complex models boost
accuracy but may obscure reasoning, limiting clinicians’ ability to verify

10.3389/fmed.2025.1594450

diagnoses. Rigorous testing, including cross-validation on diverse
datasets and real-world clinical trials, is essential to confirm safety and
build trust. Table 2 summarizes performance and persistent challenges
across key medical fields, providing context for targeted improvements.

2.2.1 Data quality and diversity

High-quality, diverse datasets are essential for robust Al
performance. If training data are noisy, incomplete, or lack
representation from certain racial, age, or geographic groups, models
may perform well on some patients but poorly on others,
systematically disadvantaging marginalized populations (19-21). For
example, suboptimal medical imaging data, including artifacts or
poor resolution, can mislead Al systems, leading to diagnostic errors
(22, 23). Inadequate data can lead to diagnostic errors, reduce
generalizability, and worsen health inequities.

2.2.2 Algorithmic complexity and interpretability

While advanced deep learning models can surpass human experts
in detecting subtle clinical patterns, their complexity often comes at
the expense of interpretability. Overfitting to spurious details in
training data can cause unreliable predictions in new populations
(24-27). The “black-box” nature of many models makes it difficult for
clinicians to understand, verify, or challenge Al-generated diagnoses,
eroding trust and increasing the risk of undetected errors (28, 29).
Techniques such as LIME and SHAP improve transparency, but
typically offer only partial insights.

2.2.3 Model testing and validation

Thorough external validation, including cross-validation across
subgroups and prospective real-world clinical trials, is critical for
ensuring Al safety and reliability. Using specialized metrics—such as
sensitivity, confirm

specificity, and precision-recall—helps

Workflow of Al in Medical Diagnostics
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-Divide data into training, validation, and test
sets

- Ensure data balance and diversity across
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- Medical Imaging (e.g., X-ray, MRI, CT)
- Genomic Data (e.g., sequencing, gene
mutation)
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-Choose appropriate Al algorithms (e.g., deep
neural networks, convolutional neural
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Diagnostic Application

Model Validation and Testing

- Evaluate model using test set

- Calculate performance metrics: accuracy,
sensitivity, specificity

- Identify outliers and potential misdiagnosis
areas

- Collect clinician feedback on Al-generated

diagnostics
- Record accurate and misdiagnosed cases
- Track patient outcomes to assess
diagnostic predictions

Clinical Deployment
- Deploy Al model to healthcare diagnostic
systems
- Integrate with clinician decision-support
systems
- Ensure consistent performance across
diverse medical

Model Update
and Retraining
- Retrain model based on updated feedback
data

- Continuously improve model to minimize
error rates

- Periodic updates to ensure model
adaptability and reliability

Real-Time Diagnoﬂic&

- Process patient data input (e.g., imaging,
genomic data)

- Generate diagnostic report: potential
conditions, risk assessment

- Collaborate with clinicians to enhance
diagnostic speed and accuracy

Model Update and Retraining

FIGURE 1

Key workflow of the Al diagnostic system, highlighting critical stages from data collection and model development to clinical deployment and
feedback optimization, where technical and ethical vulnerabilities may arise.
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TABLE 2 Comparison of Al diagnostic performance across different medical fields.

Diagnostic field Application Diagnostic = Speed Strengths Challenges
accuracy
Skin cancer detection 90-95% Significantly faster High accuracy for Struggles with atypical cases and
Dermatology than biopsy melanoma; valuable for non-Caucasian skin due to data bias
early detection (41, 33)
Lung cancer detection 85-95% <1 min per image Sensitive to small Needs high-quality images;
Radiology nodules; reduces susceptible to motion artifacts (14,
radiologist workload 42)
Diabetic retinopathy 90-98% Immediate (seconds) Enables mass screening; May miss atypical cases; limited by
Ophthalmology screening accurate in staging dataset diversity (43, 44)
progression
ECG interpretation for 85-92% Real-time analysis Supports continuous Prone to errors in complex or mixed
Cardiology arrhythmias monitoring; aids early arrhythmias (45)
detection
Pathl Histopathology for cancer 90-97% Faster than human High sensitivity; helps Limited interpretability; risk of over-
atholo;
& diagnosis review prioritize critical cases reliance (46-48)
Pneumonia Diagnosis via 85-93% Immediate (seconds) Effective for rapid triage = Challenged by overlapping
Pulmonology Chest X-Ray in emergencies symptoms; sensitive to image quality
(49, 50)
Stroke Detection on MRI/ 88-94% Rapid pre-processing High accuracy for Limited diverse datasets;
Neurology CT ischemic/hemorrhagic interpretability issues (51-53)
stroke; time-sensitive

performance in clinically relevant terms (30, 31). Following these best
practices builds trust among both clinicians and patients.

In summary, progress in these technical domains—data curation,
interpretability, and robust validation—is essential to minimize
misdiagnosis risk (28). However, technical safeguards alone are not
enough. Without clear ethical and legal frameworks, ambiguity in
responsibility and accountability can persist, leaving patients
vulnerable. The next section addresses these broader challenges,
focusing on how responsibility should be allocated and safeguarded
in Al-powered healthcare.

3 Ethical and legal responsibility
allocation in Al diagnostic errors

Technical safeguards alone are insufficient. Ethical and legal
responsibility must be clearly defined to protect patients and ensure
accountability in Al-assisted medicine. Ensuring responsible and
equitable use of Al in diagnostics is not only a technical challenge, but
also a profound ethical and legal issue. This section addresses three
critical areas: patient safety and equity, accountability gaps among
stakeholders, and the evolving standards for patient rights and
informed consent.

3.1 Patient safety and equity: the ethical
stakes of Al misdiagnosis

As AI becomes deeply embedded in clinical diagnostics,

misdiagnosis is no longer just a technical failure—it raises fundamental
ethical concerns about patient safety and health equity. Diagnostic

Frontiers in Medicine

errors can result in delayed, inappropriate, or unnecessary treatment,
directly harming patients. The consequences are often worst for
marginalized groups: when Al systems trained on unbalanced datasets
underperform for underrepresented populations, existing health
disparities are not just maintained—they are made worse (32, 33).
Thus, ensuring justice and fairness in Al-supported diagnosis is both
an ethical imperative and a technical challenge.

3.2 Accountability gaps: roles of
developers, institutions, and clinicians

Responsibility for Al errors in healthcare remains ill-defined.
Developers are tasked with designing transparent, reliable, and
validated systems, yet they rarely interact with patients or clinical
realities. Healthcare institutions choose and deploy Al tools, integrate
them into clinical workflows, and train staff—but few have established
procedures for monitoring, post-market surveillance, or incident
response. Clinicians make final care decisions, but may not fully
understand or be able to challenge “black-box” model outputs, yet still
bear legal and ethical liability. Without clear regulatory frameworks,
these overlapping roles lead to confusion, inconsistency, and increased
patient safety risks. Practical, shared accountability frameworks
tailored to the unique risks of AI-driven medicine are urgently needed.

3.3 Patient rights and informed consent in
the age of Al

Al-assisted diagnosis introduces new complexities to
informed consent. Patients should be told how AI informs their

frontiersin.org
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care, its benefits and limitations, and any risks—especially those
stemming from model bias or limited explainability.
Communicating the workings of opaque models to non-experts is
difficult but essential to maintain trust and protect autonomy. In
some settings, AI may be the only diagnostic tool available,
further reducing patient choice. Ongoing data use by Al systems
also raises privacy concerns, making clear, accessible
communication about data use and patient rights crucial.
Informed consent procedures must be updated to reflect these
realities, safeguarding patient interests as AI becomes more
prevalent in healthcare.

Practical strategies (260-90 s). We adopt a layered, risk-tiered
consent approach that fits typical visit time constraints: (i) a
one-sentence disclosure (“An Al system will assist your clinician; a
human remains responsible for your care); (ii) a 30-s “AI Fact Label”
in plain language summarizing intended use, key limitations, and any
subgroup caveats (e.g., performance may differ in patients >75 years);
and (iii) an optional deep-dive explanation accessible via QR/EHR
link. Understanding is checked with a brief teach-back (“In your own
words, what does the AI add and what are its limits?”). Patients are
offered a clear opt-out/human-only review path without penalty. The
consent artifact records data use/retention policies and model name/
version, and is stored in the EHR. Materials are translated where
needed and designed for low health-literacy; in emergencies, deferred
consent is documented and completed at the earliest opportunity.

Patient and stakeholder input. To incorporate patient perspectives,
we propose a brief, clinic-compatible engagement loop: (i) a 3-item
comprehension check after consent (e.g., role of Al, key limits,
human-override) and a 5-point trust/clarity rating; (ii) optional focus
groups (30-45 min, purposive sampling across age, education, and
rurality) to surface concerns and language preferences; and (iii) an
auditable EHR record of consent outcomes (accept, opt-out, request
human-only review), model/version, and timestamp. Aggregate
indicators (e.g., comprehension >80%, median trust >4/5, opt-out
and human-only rates) are reported at the service line and site level to
guide content and Ul refinements. Materials target <8th-grade
reading level and are translated as needed. (No new patient data are
presented here; future implementations will seek local IRB approval

or exemption as appropriate.)

4 The role of transparency and
explainability in reducing Al
misdiagnosis

4.1 Why transparency matters

Building on 2.1-2.2—which detail how data pathology and model
opacity contribute to diagnostic error—this section focuses on
practice-facing safeguards. Transparency is essential for trustworthy
Al in medical diagnostics: clinicians who understand how
recommendations are generated can validate and act on them more
reliably. Providing clear explanations enables secondary review,
helping detect hidden errors and improving patient outcomes (19, 24,
25, 34). To avoid the twin pitfalls of undue skepticism and blind trust
that can arise with opaque “black-box” models (35), explanations
should be concise and point-of-care (e.g., a non-blocking saliency
overlay plus a one-sentence causal rationale), paired with explicit
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statements of system limits and subgroup caveats, and an auditable
record of model/version and rationale in the EHR. Such transparency
anchors accountability and clarifies when and how Al should be used
in practice.

4.2 Explainability techniques in practice

Explainability techniques like LIME and SHAP have shown real-
world utility in clinical AT workflows. In a retinoblastoma detection
study using an InceptionV3 model on balanced cohorts (400 tumorous
/ 400 normal fundus images), both methods effectively revealed model
logic: LIME highlighted tumor regions in individual cases, while
SHAP provided feature importance scores across the dataset. This dual
insight improved transparency and boosted clinician trust (36).

Similarly, in acute stroke modeling based on random forest or
XGBoost, SHAP waterfall plots identified risk contributors such as
elevated blood glucose, age, and cerebral blood flow; LIME,
meanwhile, localized CT regions that most influenced individual
predictions (37). These cases highlight how layered explanations can
both guide clinicians and validate AI models.

However, LIME may over-simplify by approximating only locally,
and SHAP is often computationally heavy and struggles with feature
collinearity—making it less suitable for time-sensitive scenarios (38).
Both methods may also miss high-dimensional feature interactions
intrinsic to deep neural networks. To address these gaps,
we operationalize a hybrid engine that couples gradient-based saliency
with an SCM-based causal layer supporting counterfactual queries
and ROI ablations; faithfulness and sparsity are monitored to ensure
explanations remain clinically actionable (see
Supplementary Figure S1A).

Limitations and safeguards. Gradient-based saliency can
be sensitive to noise, preprocessing, and ROI thresholds; the SCM
layer introduces assumption dependence, and counterfactuals are
model-based rather than interventional. We therefore log deletion/
insertion faithfulness scores, enforce sparsity, flag saliency-SCM
discordance for review, and present explanations as non-blocking
overlays to avoid workflow disruption.

Trade-offs and model choice. Where an intrinsically interpretable
model (e.g., sparse linear/rule-based or GAM-style) attains
performance within a small tolerance of a complex model (e.g., AAUC
<0.01-0.02 with comparable calibration/fairness), we prioritize the
interpretable model for primary use. When a black-box delivers
material performance gains, we retain it with guardrails—
pre-deployment faithfulness/stability checks and time budgets, real-
time rationale overlays, and prospective monitoring of accuracy,
calibration, fairness gaps, and decision latency—while documenting
the accuracy-interpretability trade-off in the model’s fact sheet and
patient-facing materials.

4.3 Patient communication and ethical
integration

Transparency in Al is incomplete unless clinicians can translate
model reasoning into understandable dialog with patients. This
includes clearly explaining AT’s role in the diagnostic process, its
capabilities, and its limitations—particularly when performance
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disparities exist across age groups or demographic segments. For
example, saying “This AI system achieves 97% accuracy overall, but
it may be less reliable for patients over 75 years old” helps
contextualize results, supports informed consent, and reinforces
patient autonomy (39). However, explanations must fit clinical
workflow constraints. Under pressure, clinicians may lack time to
tailor messages; without concise summaries—such as visual
markers, standard interpretability labels, or dashboards—technical
details risk becoming noise rather than enhancing trust.

Consent-in-practice protocol. At the point of care, clinicians:
(1) give the one-sentence disclosure and the AI Fact Label; (2)
present a concise rationale from the explainability view (e.g., a
saliency overlay plus a one-sentence causal path); (3) perform a
teach-back confirmation; and (4) record consent in the EHR,
including model/version, date/time, and whether the patient
requested human-only review. Explanations are delivered as
non-blocking overlays to avoid workflow disruption; language
access tools and templated scripts support consistency. In
summary, transparency and explainability are not just technical
enhancements—they are prerequisites for trust, accountability, and
equity in Al-enabled care, and they can be operationalized with
brief, standardized communication steps.

Feedback loop and continuous improvement. Patient-reported
metrics (comprehension, trust/clarity, perceived usefulness of
explanations) and operational signals (time burden, opt-out/
human-only rates, teach-back success) are summarized on the
communication dashboard and reviewed in monthly huddles with
a patient advisory panel. Iterations prioritize brevity and clarity
(<90 s), accessibility (language and format), and equity checks
(stratified by age, education, and rurality). Changes to the consent
script or UI are versioned and time-stamped to maintain an
auditable trail.

5 Recommendations and future _
directions for improving Al diagnostic
systems

5.1 Technical and ethical strategies to
reduce misdiagnosis

Reducing misdiagnosis in AI diagnostics requires both robust
technical controls and clear ethical guidelines. First, Al models
should be trained on large, diverse datasets that reflect differences
in age, ethnicity, and geography, to minimize bias and ensure
generalizability. Rigorous validation—using cross-validation,
independent test sets, and real-world clinical trials—is critical for
uncovering hidden errors and establishing reliability. Furthermore,
explainability and transparency must be integrated at every stage
of model development. Tools like LIME and SHAP enable
clinicians to better understand and trust Al recommendations,
making it easier to detect and correct mistakes (40). Combining
technical rigor with interpretability is essential for safe and
effective clinical use of Al

5.1.1 Scaling solutions in low-resource settings

Implementing solutions such as blockchain contracts and
federated learning audits in diverse healthcare systems, especially
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those with limited resources, requires careful consideration of
feasibility and cost. In low-resource settings, the adoption of these
technologies can be challenging due to the required infrastructure,
technical expertise, and financial investment. Blockchain-anchored
accountability systems, for instance, can introduce costs related to
storage, key management, and throughput. We propose a phased
implementation approach to scale these tools effectively, starting
with pilot projects to assess their viability before broader
deployment. By leveraging lightweight blockchain models that store
only hashes and timestamps on-chain, we can reduce the data
storage requirements, keeping detailed records off-chain and thus
minimizing infrastructure costs.

For federated learning audits, which allow healthcare sites to
collaborate while preserving data privacy, we recommend starting
with local data audits. Each site computes subgroup-stratified metrics
and shares privacy-preserving aggregates, which minimizes the need
for large-scale computational resources while still enabling essential
monitoring functions such as bias detection and data drift monitoring.
This approach is particularly suited for resource-constrained settings,
where large infrastructure investments are not feasible. We also
recommend secure aggregation protocols to mitigate the risks and
costs associated with federated learning by minimizing the volume of
data transmitted and reducing network overhead. As these audits are
scaled, cloud-based solutions could be considered for integrating data
from multiple sites without compromising privacy.

5.1.2 Model choice and governance (complexity—
interpretability trade-offs)

The preference should be for the simplest adequate model that
meets clinical targets, especially in resource-limited settings where
computational power and infrastructure are constrained. When an
intrinsically interpretable model (e.g., sparse linear/rule-based,
GAM-style) performs similarly to a more complex alternative (e.g.,
AAUC <

0.01-0.02 with comparable calibration/fairness),
prioritizing the interpretable model helps preserve transparency and
reduce resource demands. If a complex, black-box model is
necessary for significant performance gains, it is crucial to document
the trade-off between accuracy and interpretability in the model fact
sheet, specifying clinician-facing explanations and response-
time budgets.

Moreover, to ensure that hospitals are ready for deployment,
we suggest implementing training programs for clinicians on using
blockchain contracts and federated learning systems. Hospitals should
focus on educating their clinical staff about the basics of blockchain
technology and its use in verifying Al model outputs. Training should
include practical demonstrations of how to access blockchain contract
logs and use federated learning data audits effectively. This training can
be integrated into existing educational programs and can be delivered
through workshops or online tutorials. Ensuring that clinicians are
familiar with these technologies will promote their adoption and
reduce resistance to using these advanced tools in day-to-day workflows.

Prospective monitoring of model performance, including accuracy,
calibration, fairness gaps, and decision latency, should be implemented,
with human-override options in place if necessary. Periodic reassessment
of the model’s performance can help guide decisions about potential
simplification to preserve transparency and workflow efficiency. This
ensures that the Al system remains effective, interpretable, and scalable
in diverse healthcare environments, especially in low-resource settings.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1594450
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Lietal.

5.2 Clarifying responsibility and evolving
legal standards

A clear and shared framework for responsibility is urgently needed as
Al becomes central to medical diagnostics. Developers must
be accountable for model reliability, transparency, and communicating
known risks or limitations. Healthcare institutions should evaluate AI
tools before deployment, provide clinician training, and monitor ongoing
performance, intervening when safety issues arise. Clinicians, while
ultimately responsible for patient care, should not be held solely liable for
errors that originate from opaque AI models. Regulators must update
legal standards and create practical guidelines that distribute
accountability fairly and reflect the complexities of Al-assisted medicine.

5.3 Advancing ethical standards and policy
implementation

Creating a fair and effective Al diagnostic ecosystem requires
ongoing collaboration among developers, healthcare providers,
policymakers, and ethicists. Ethical standards should mandate
fairness, transparency, and respect for patient rights, building on
principles such as justice and beneficence. Policies should require data
transparency, regular audits for bias, and public disclosure of system
limitations. Continuous regulatory oversight is necessary to prevent
health disparities and to ensure that technical progress is matched by
ethical responsibility. Table 3 provides a consolidated summary of
strategic recommendations for enhancing AI diagnostic systems. It
outlines technical improvements, ethical considerations, and policy
initiatives to guide stakeholders toward a safer, more transparent, and
equitable diagnostic framework.

10.3389/fmed.2025.1594450

Fostering collaboration throughout the AI development lifecycle
is crucial for building diagnostic systems that truly serve diverse
patient needs. Open-source platforms—such as those pioneered by
the
accountability by making AT models and datasets available for broader

Hugging Face community—improve transparency and

review and improvement. Policymakers should also support the
adoption of Explainable AI (XAI) frameworks, which make model
logic visible and actionable for clinicians and patients alike, directly
addressing the “black box” problem and enabling safer, more equitable
diagnostic care.

5.4 Framework validation roadmap

Validation will proceed in three steps: (i) Feasibility/shadow-
mode pilots (1-3 sites) to test non-blocking explainability, bias
monitoring, and governance under predefined time budgets;
endpoints include calibration (ECE/Brier), discrimination
(AUROQ), fairness gaps (AFNR/AAUC), alert precision/recall, and
clinician verification time. (ii) Retrospective offline replay with
de-identified EHR/imaging streams to stress-test drift detectors
(PSI/KL), subgroup metrics, and ledger throughput; report false-
alert rate, time-to-detection, and triage effort. (iii) Prospective
pragmatic evaluation (cluster A/B or stepped-wedge) comparing
standard care versus framework-augmented workflows; primary
outcome: misdiagnosis composite; secondary outcomes: decision
latency, override rates, calibration/fairness, and patient
comprehension. All studies will be pre-registered, include privacy-
impact and cost/infrastructure logs, and—where resources are
limited—use lightweight deployments (local audits, secure

aggregation, hash-only ledger anchoring).

TABLE 3 Summary of strategic recommendations for enhancing Al diagnostic systems.

Strategy/

Category

Description

recommendation

Data augmentation

Use methods like image rotation, noise addition, and synthetic data to improve

Data quality & diversity.
diversity Dataset expansion Include a broad range of demographics, disease types, and medical contexts.
Data standardization Standardize labeling and preprocessing to reduce noise and boost accuracy.
Technical
echnicd Algorithm optimization Apply regularization to prevent overfitting and improve generalizability.
improvements
Model complexity Explainability tools Integrate SHAP and LIME for better model interpretability.
Ensemble modeling Combine multiple models to increase robustness and reduce errors.
Cross-validation with diverse data Validate models on data from different sources and demographics.
Validation

Real-world clinical testing

Deploy models in pilot studies to detect practical limitations early.

Data transparency

Disclose data sources, limitations, and processing steps to users.

Transparency & trust
Bias monitoring

Regularly check for and correct bias against underrepresented groups.

Ethical suggestions

Patient consent Informed consent enhancements

Ensure patients understand AT’s role, limitations, and risks.

Equity in diagnosis Inclusive dataset representation Prioritize diverse data collection to improve fairness.
Accountability framework Clearly define roles for developers, institutions, and clinicians.

Responsibility
Guidelines for AT deployment Set standards for safe AI integration, training, and support.

allocation

Policy actions Regular audits Periodically assess Al performance and address bias or risk.

Al Performance standards Establish accuracy, sensitivity, and specificity benchmarks.

Patient safety
Ethics and compliance training Train staff in AI ethics, safety, and compliance.
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This study has several limitations. First, it presents a conceptual
framework supported by a narrative synthesis and secondary sources;
it does not include original data collection or prospective clinical trials.
Second, reliance on published reports and case descriptions introduces
risks of citation and publication bias. Third, the framework’s
components—bias-aware curation, hybrid explainability, federated
audits, and blockchain-anchored accountability—are not empirically
validated here; their performance, costs, and workflow impact may vary
across settings. Finally, generalizability is uncertain, especially in
low-resource environments with heterogeneous infrastructure and
policies. These limitations motivate the validation roadmap
outlined below.

6 Conclusion

The integration of Al into medical diagnostics holds great promise
for improving accuracy, efficiency, and personalized care, but it also
introduces risks of misdiagnosis driven by technical limits, model
opacity, and diffuse responsibility. This study identifies three core
barriers—data bias, lack of transparency, and ambiguous
accountability—and advances a coordinated response across technical,
ethical, and policy domains. Technically, we call for diverse,
representative datasets, rigorous external validation, and explainability
that is usable at the point of care (e.g., non-blocking overlays with
concise rationales), while explicitly managing the complexity—
interpretability trade-off by preferring the simplest adequate model
and documenting guardrails when black-box models are used.
Ethically, roles are clarified—developers for model quality, institutions
for safe deployment and oversight, clinicians for patient care—
supported by layered, risk-tiered consent, teach-back, and human-
override options. From a policy perspective, we advocate standards
that require transparency audits, continuous post-deployment
monitoring (calibration, fairness, and decision latency), and context-
aware reporting across demographic groups and sites. Aligning these
pillars enables stakeholders to harness AD's benefits while reducing its
risks, strengthening patient safety, clinical trust, and health equity.
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