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Purpose: This study aims to systematically identify and address key barriers to 
misdiagnosis in AI-driven medical diagnostics. The main research question is 
how technical limitations, ethical concerns, and unclear accountability hinder 
safe and equitable use of AI in real-world clinical practice, and what integrated 
solutions can minimize errors and promote trust.
Methods: We conducted a literature review and case analysis across major 
medical fields, evaluating failure modes such as data pathology, algorithmic 
bias, and human-AI interaction. Based on these findings, we  propose a 
multidimensional framework combining technical strategies—such as dynamic 
data auditing and explainability engines—with ethical and policy interventions, 
including federated learning for bias mitigation and blockchain-based 
accountability.
Results: Our analysis shows that misdiagnosis often results from data bias, lack 
of model transparency, and ambiguous responsibility. When applied to published 
case examples and comparative evaluations from the literature, elements of 
our framework are associated with improvements in diagnostic accuracy, 
transparency, and equity. Key recommendations include bias monitoring, real-
time interpretability dashboards, and legal frameworks for shared accountability.
Conclusion: A coordinated, multidimensional approach is essential to reduce 
the risk of misdiagnosis in AI-supported diagnostics. By integrating robust 
technical controls, clear ethical guidelines, and defined accountability, our 
framework provides a practical roadmap for responsible, transparent, and 
equitable AI adoption in healthcare—improving patient safety, clinician trust, 
and health equity.
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1 Introduction

The integration of artificial intelligence (AI) into healthcare is 
transforming diagnostic workflows. Machine-learning models now 
deliver faster and more accurate image interpretation than traditional 
methods across oncology, cardiology, and radiology (1, 2). Deep-
learning systems such as convolutional neural networks (CNNs) can 
achieve expert-level performance in controlled settings—for example, 
melanoma detection AUCs exceeding 0.94 (3)—and they show 
promise for expanding early cancer diagnosis in resource-limited 
settings (4). Yet these technical achievements do not translate 
seamlessly to everyday clinical care. Despite benchmark accuracies as 
high as 94.5% (5), real-world deployments often reveal performance 
drops of 15–30% due to population shifts and integration barriers (6).

The adoption of AI in diagnostics introduces systemic risks 
that current governance frameworks are ill-equipped to manage. 
The World Health Organization defines misdiagnosis as the failure 
to accurately identify or communicate a patient’s condition (7). 
Algorithmic opacity and bias further compound this risk. For 
instance, underrepresentation of rural populations in training 
datasets has been linked to a 23% higher false-negative rate for 
pneumonia detection, while melanoma detection errors are more 
prevalent among dark-skinned patients due to dataset imbalances 
(8). Additionally, overfitting and spurious correlations can lead to 
clinically significant false positives, as observed in breast cancer 
screening (9). Two factors exacerbate these challenges: (1) the 
“black-box” nature of many AI models, which limits error 
traceability and undermines clinician trust (10), and (2) blurred 
lines of accountability among developers, clinicians, and healthcare 
institutions. We categorize these issues into three failure modes—
data pathology, algorithmic bias, and human–AI interaction—
outlined in Table  1, which links technical root causes to their 
clinical consequences.

Implementing real-time bias monitoring and interpretability 
dashboards is crucial to mitigating these issues, but the feasibility 
and infrastructure requirements must be  carefully considered. 
While these tools could enhance transparency and trust, their 
deployment in resource-limited settings may face challenges related 
to cost, data infrastructure, and technical expertise. For hospitals in 
low-resource regions, the implementation of such technologies 
could require significant investments in both hardware and training. 
Therefore, policy recommendations must account for the scalability 
of these tools, with phased rollouts and tailored strategies to ensure 
accessibility and effectiveness across various healthcare settings. As 
noted by Smith and Fotheringham, current liability frameworks 
inadequately address this tripartite accountability gap, potentially 
exacerbating health disparities. In line with this, a 2023 study in 

JAMA found that AI misdiagnosis rates for minority patients were 
31% higher than for majority patients in critical care settings 
(11, 12).

This study addresses these gaps by presenting an integrated 
framework to reduce AI-related misdiagnosis in real-world care. The 
framework couples (i) bias-aware data curation; (ii) a hybrid 
explainability engine that combines gradient-based saliency (e.g., 
Grad-CAM, Integrated Gradients) with a structural causal model 
(SCM), aligns the top-k% salient regions with SCM variables, and 
runs counterfactual/ablation queries with faithfulness checks 
(deletion/insertion) to yield concise, clinician-facing rationales; (iii) 
dynamic data auditing via federated learning, whereby each site 
computes subgroup-stratified metrics (AUC, sensitivity/specificity, 
ECE, FPR/FNR) locally and shares privacy-preserving aggregates to 
monitor drift (PSI, KL) and fairness (ΔFNR), with threshold-based 
alerts and returned reweighting/sampling quotas to mitigate 
representation disparities; and (iv) accountability-by-design 
instruments, including versioned model fact sheets and on-chain 
hashing of artifacts with pointers to off-chain logs for auditor 
verification. A schematic overview appears in Supplementary Figure S1 
(S1A, hybrid explainability; S1B, blockchain-anchored accountability 
and data flows; S1C, federated learning–based dynamic auditing). 
Because the work involves no patient intervention or prospective 
enrollment, clinical trial registration is not applicable.

2 Failure modes and risk analysis in 
AI-based medical diagnosis

Scope of evidence. This is a narrative synthesis and framework 
paper based on peer-reviewed studies and case analyses; no primary 
multi-center trial was performed by the authors. Quantitative values 
cited (e.g., error gaps) reflect external sources explicitly referenced in 
the text.

2.1 Three interdependent failure modes

AI diagnostic errors can be traced to three interdependent failure 
modes, each demanding targeted mitigation. First, data pathology—
driven by sampling biases—leads to systematic underdiagnosis in 
minority or underrepresented groups, as seen in elevated false-
negative rates among dark-skinned patients (13). Second, algorithmic 
bias—often caused by overfitting to spurious patterns in training 
data—results in clinically significant false positives, such as 
unnecessary treatment for benign findings (14). Third, human-AI 
interaction issues, such as automation complacency or overreliance, 

TABLE 1  Failure modes and root causes of AI misdiagnosis: a technical-clinical analysis.

Failure mode Technical root 
cause

Clinical manifestation Empirical evidence

Data pathology Sampling bias in training data Under diagnosis in underrepresented subgroups 28% higher FN rates for dark-skinned melanoma cases (13)

Algorithmic bias Overfitting to spurious 

correlations

Over diagnosis of benign nodules as malignant 22% FP increase in lung CT analysis (14)

Human-AI interaction Automation complacency 

among clinicians

Delayed correction of AI errors 41% slower error identification vs. human-only workflows (15)
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can slow down error detection and correction, as demonstrated by 
delays in clinical workflows when AI is blindly trusted or ignored (15).

Although advanced models such as Vision Transformers can 
achieve impressive accuracy—for example, an AUC of 0.97  in 
retinal disease detection (16)—their lack of interpretability remains 
a major barrier. Clinicians require 2.3 times longer to audit deep 
neural network (DNN) decisions compared to traditional rule-
based systems (17), and 34% of radiologists report overriding 
correct AI recommendations due to distrust in opaque outputs 
(18). This underutilization and propagation of errors highlight a 
critical paradox: as AI models become more powerful, the risks of 
misdiagnosis, inequity, and accountability gaps can actually 
increase if transparency and trust are not systematically addressed.

As depicted in Figure 1, the end-to-end AI diagnostic workflow—
from data collection and model training to clinical application and 
iterative feedback—includes several points where technical flaws and 
systemic biases can be introduced and amplified. Each stage represents 
a potential vulnerability, capable of propagating errors throughout the 
entire diagnostic process. These interconnected risks underscore the 
urgent need for solutions that not only enhance technical performance, 
but also explicitly address the ethical, legal, and operational challenges 
unique to AI in healthcare.

2.2 Data quality, diversity, and 
accountability in AI diagnostics

The reliability and fairness of AI diagnostics rest on three pillars: 
data quality and diversity, algorithmic interpretability, and rigorous 
validation. High-quality, representative data are crucial to avoid 
systematic disadvantages for minorities. Complex models boost 
accuracy but may obscure reasoning, limiting clinicians’ ability to verify 

diagnoses. Rigorous testing, including cross-validation on diverse 
datasets and real-world clinical trials, is essential to confirm safety and 
build trust. Table 2 summarizes performance and persistent challenges 
across key medical fields, providing context for targeted improvements.

2.2.1 Data quality and diversity
High-quality, diverse datasets are essential for robust AI 

performance. If training data are noisy, incomplete, or lack 
representation from certain racial, age, or geographic groups, models 
may perform well on some patients but poorly on others, 
systematically disadvantaging marginalized populations (19–21). For 
example, suboptimal medical imaging data, including artifacts or 
poor resolution, can mislead AI systems, leading to diagnostic errors 
(22, 23). Inadequate data can lead to diagnostic errors, reduce 
generalizability, and worsen health inequities.

2.2.2 Algorithmic complexity and interpretability
While advanced deep learning models can surpass human experts 

in detecting subtle clinical patterns, their complexity often comes at 
the expense of interpretability. Overfitting to spurious details in 
training data can cause unreliable predictions in new populations 
(24–27). The “black-box” nature of many models makes it difficult for 
clinicians to understand, verify, or challenge AI-generated diagnoses, 
eroding trust and increasing the risk of undetected errors (28, 29). 
Techniques such as LIME and SHAP improve transparency, but 
typically offer only partial insights.

2.2.3 Model testing and validation
Thorough external validation, including cross-validation across 

subgroups and prospective real-world clinical trials, is critical for 
ensuring AI safety and reliability. Using specialized metrics—such as 
sensitivity, specificity, and precision-recall—helps confirm 

FIGURE 1

Key workflow of the AI diagnostic system, highlighting critical stages from data collection and model development to clinical deployment and 
feedback optimization, where technical and ethical vulnerabilities may arise.

https://doi.org/10.3389/fmed.2025.1594450
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al.� 10.3389/fmed.2025.1594450

Frontiers in Medicine 04 frontiersin.org

performance in clinically relevant terms (30, 31). Following these best 
practices builds trust among both clinicians and patients.

In summary, progress in these technical domains—data curation, 
interpretability, and robust validation—is essential to minimize 
misdiagnosis risk (28). However, technical safeguards alone are not 
enough. Without clear ethical and legal frameworks, ambiguity in 
responsibility and accountability can persist, leaving patients 
vulnerable. The next section addresses these broader challenges, 
focusing on how responsibility should be allocated and safeguarded 
in AI-powered healthcare.

3 Ethical and legal responsibility 
allocation in AI diagnostic errors

Technical safeguards alone are insufficient. Ethical and legal 
responsibility must be clearly defined to protect patients and ensure 
accountability in AI-assisted medicine. Ensuring responsible and 
equitable use of AI in diagnostics is not only a technical challenge, but 
also a profound ethical and legal issue. This section addresses three 
critical areas: patient safety and equity, accountability gaps among 
stakeholders, and the evolving standards for patient rights and 
informed consent.

3.1 Patient safety and equity: the ethical 
stakes of AI misdiagnosis

As AI becomes deeply embedded in clinical diagnostics, 
misdiagnosis is no longer just a technical failure—it raises fundamental 
ethical concerns about patient safety and health equity. Diagnostic 

errors can result in delayed, inappropriate, or unnecessary treatment, 
directly harming patients. The consequences are often worst for 
marginalized groups: when AI systems trained on unbalanced datasets 
underperform for underrepresented populations, existing health 
disparities are not just maintained—they are made worse (32, 33). 
Thus, ensuring justice and fairness in AI-supported diagnosis is both 
an ethical imperative and a technical challenge.

3.2 Accountability gaps: roles of 
developers, institutions, and clinicians

Responsibility for AI errors in healthcare remains ill-defined. 
Developers are tasked with designing transparent, reliable, and 
validated systems, yet they rarely interact with patients or clinical 
realities. Healthcare institutions choose and deploy AI tools, integrate 
them into clinical workflows, and train staff—but few have established 
procedures for monitoring, post-market surveillance, or incident 
response. Clinicians make final care decisions, but may not fully 
understand or be able to challenge “black-box” model outputs, yet still 
bear legal and ethical liability. Without clear regulatory frameworks, 
these overlapping roles lead to confusion, inconsistency, and increased 
patient safety risks. Practical, shared accountability frameworks 
tailored to the unique risks of AI-driven medicine are urgently needed.

3.3 Patient rights and informed consent in 
the age of AI

AI-assisted diagnosis introduces new complexities to 
informed consent. Patients should be told how AI informs their 

TABLE 2  Comparison of AI diagnostic performance across different medical fields.

Diagnostic field Application Diagnostic 
accuracy

Speed Strengths Challenges

Dermatology

Skin cancer detection 90–95% Significantly faster 

than biopsy

High accuracy for 

melanoma; valuable for 

early detection

Struggles with atypical cases and 

non-Caucasian skin due to data bias 

(41, 33)

Radiology

Lung cancer detection 85–95% <1 min per image Sensitive to small 

nodules; reduces 

radiologist workload

Needs high-quality images; 

susceptible to motion artifacts (14, 

42)

Ophthalmology

Diabetic retinopathy 

screening

90–98% Immediate (seconds) Enables mass screening; 

accurate in staging 

progression

May miss atypical cases; limited by 

dataset diversity (43, 44)

Cardiology

ECG interpretation for 

arrhythmias

85–92% Real-time analysis Supports continuous 

monitoring; aids early 

detection

Prone to errors in complex or mixed 

arrhythmias (45)

Pathology
Histopathology for cancer 

diagnosis

90–97% Faster than human 

review

High sensitivity; helps 

prioritize critical cases

Limited interpretability; risk of over-

reliance (46–48)

Pulmonology

Pneumonia Diagnosis via 

Chest X-Ray

85–93% Immediate (seconds) Effective for rapid triage 

in emergencies

Challenged by overlapping 

symptoms; sensitive to image quality 

(49, 50)

Neurology

Stroke Detection on MRI/

CT

88–94% Rapid pre-processing High accuracy for 

ischemic/hemorrhagic 

stroke; time-sensitive

Limited diverse datasets; 

interpretability issues (51–53)
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care, its benefits and limitations, and any risks—especially those 
stemming from model bias or limited explainability. 
Communicating the workings of opaque models to non-experts is 
difficult but essential to maintain trust and protect autonomy. In 
some settings, AI may be  the only diagnostic tool available, 
further reducing patient choice. Ongoing data use by AI systems 
also raises privacy concerns, making clear, accessible 
communication about data use and patient rights crucial. 
Informed consent procedures must be updated to reflect these 
realities, safeguarding patient interests as AI becomes more 
prevalent in healthcare.

Practical strategies (≈60–90 s). We adopt a layered, risk-tiered 
consent approach that fits typical visit time constraints: (i) a 
one-sentence disclosure (“An AI system will assist your clinician; a 
human remains responsible for your care.”); (ii) a 30-s “AI Fact Label” 
in plain language summarizing intended use, key limitations, and any 
subgroup caveats (e.g., performance may differ in patients >75 years); 
and (iii) an optional deep-dive explanation accessible via QR/EHR 
link. Understanding is checked with a brief teach-back (“In your own 
words, what does the AI add and what are its limits?”). Patients are 
offered a clear opt-out/human-only review path without penalty. The 
consent artifact records data use/retention policies and model name/
version, and is stored in the EHR. Materials are translated where 
needed and designed for low health-literacy; in emergencies, deferred 
consent is documented and completed at the earliest opportunity.

Patient and stakeholder input. To incorporate patient perspectives, 
we propose a brief, clinic-compatible engagement loop: (i) a 3-item 
comprehension check after consent (e.g., role of AI, key limits, 
human-override) and a 5-point trust/clarity rating; (ii) optional focus 
groups (30–45 min, purposive sampling across age, education, and 
rurality) to surface concerns and language preferences; and (iii) an 
auditable EHR record of consent outcomes (accept, opt-out, request 
human-only review), model/version, and timestamp. Aggregate 
indicators (e.g., comprehension ≥80%, median trust ≥4/5, opt-out 
and human-only rates) are reported at the service line and site level to 
guide content and UI refinements. Materials target ≤8th-grade 
reading level and are translated as needed. (No new patient data are 
presented here; future implementations will seek local IRB approval 
or exemption as appropriate.)

4 The role of transparency and 
explainability in reducing AI 
misdiagnosis

4.1 Why transparency matters

Building on 2.1–2.2—which detail how data pathology and model 
opacity contribute to diagnostic error—this section focuses on 
practice-facing safeguards. Transparency is essential for trustworthy 
AI in medical diagnostics: clinicians who understand how 
recommendations are generated can validate and act on them more 
reliably. Providing clear explanations enables secondary review, 
helping detect hidden errors and improving patient outcomes (19, 24, 
25, 34). To avoid the twin pitfalls of undue skepticism and blind trust 
that can arise with opaque “black-box” models (35), explanations 
should be concise and point-of-care (e.g., a non-blocking saliency 
overlay plus a one-sentence causal rationale), paired with explicit 

statements of system limits and subgroup caveats, and an auditable 
record of model/version and rationale in the EHR. Such transparency 
anchors accountability and clarifies when and how AI should be used 
in practice.

4.2 Explainability techniques in practice

Explainability techniques like LIME and SHAP have shown real-
world utility in clinical AI workflows. In a retinoblastoma detection 
study using an InceptionV3 model on balanced cohorts (400 tumorous 
/ 400 normal fundus images), both methods effectively revealed model 
logic: LIME highlighted tumor regions in individual cases, while 
SHAP provided feature importance scores across the dataset. This dual 
insight improved transparency and boosted clinician trust (36).

Similarly, in acute stroke modeling based on random forest or 
XGBoost, SHAP waterfall plots identified risk contributors such as 
elevated blood glucose, age, and cerebral blood flow; LIME, 
meanwhile, localized CT regions that most influenced individual 
predictions (37). These cases highlight how layered explanations can 
both guide clinicians and validate AI models.

However, LIME may over-simplify by approximating only locally, 
and SHAP is often computationally heavy and struggles with feature 
collinearity—making it less suitable for time-sensitive scenarios (38). 
Both methods may also miss high-dimensional feature interactions 
intrinsic to deep neural networks. To address these gaps, 
we operationalize a hybrid engine that couples gradient-based saliency 
with an SCM-based causal layer supporting counterfactual queries 
and ROI ablations; faithfulness and sparsity are monitored to ensure 
explanations remain clinically actionable (see 
Supplementary Figure S1A).

Limitations and safeguards. Gradient-based saliency can 
be sensitive to noise, preprocessing, and ROI thresholds; the SCM 
layer introduces assumption dependence, and counterfactuals are 
model-based rather than interventional. We therefore log deletion/
insertion faithfulness scores, enforce sparsity, flag saliency–SCM 
discordance for review, and present explanations as non-blocking 
overlays to avoid workflow disruption.

Trade-offs and model choice. Where an intrinsically interpretable 
model (e.g., sparse linear/rule-based or GAM-style) attains 
performance within a small tolerance of a complex model (e.g., ΔAUC 
≤ 0.01–0.02 with comparable calibration/fairness), we prioritize the 
interpretable model for primary use. When a black-box delivers 
material performance gains, we  retain it with guardrails—
pre-deployment faithfulness/stability checks and time budgets, real-
time rationale overlays, and prospective monitoring of accuracy, 
calibration, fairness gaps, and decision latency—while documenting 
the accuracy–interpretability trade-off in the model’s fact sheet and 
patient-facing materials.

4.3 Patient communication and ethical 
integration

Transparency in AI is incomplete unless clinicians can translate 
model reasoning into understandable dialog with patients. This 
includes clearly explaining AI’s role in the diagnostic process, its 
capabilities, and its limitations—particularly when performance 
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disparities exist across age groups or demographic segments. For 
example, saying “This AI system achieves 97% accuracy overall, but 
it may be  less reliable for patients over 75 years old” helps 
contextualize results, supports informed consent, and reinforces 
patient autonomy (39). However, explanations must fit clinical 
workflow constraints. Under pressure, clinicians may lack time to 
tailor messages; without concise summaries—such as visual 
markers, standard interpretability labels, or dashboards—technical 
details risk becoming noise rather than enhancing trust.

Consent-in-practice protocol. At the point of care, clinicians: 
(1) give the one-sentence disclosure and the AI Fact Label; (2) 
present a concise rationale from the explainability view (e.g., a 
saliency overlay plus a one-sentence causal path); (3) perform a 
teach-back confirmation; and (4) record consent in the EHR, 
including model/version, date/time, and whether the patient 
requested human-only review. Explanations are delivered as 
non-blocking overlays to avoid workflow disruption; language 
access tools and templated scripts support consistency. In 
summary, transparency and explainability are not just technical 
enhancements—they are prerequisites for trust, accountability, and 
equity in AI-enabled care, and they can be operationalized with 
brief, standardized communication steps.

Feedback loop and continuous improvement. Patient-reported 
metrics (comprehension, trust/clarity, perceived usefulness of 
explanations) and operational signals (time burden, opt-out/
human-only rates, teach-back success) are summarized on the 
communication dashboard and reviewed in monthly huddles with 
a patient advisory panel. Iterations prioritize brevity and clarity 
(≤90 s), accessibility (language and format), and equity checks 
(stratified by age, education, and rurality). Changes to the consent 
script or UI are versioned and time-stamped to maintain an 
auditable trail.

5 Recommendations and future 
directions for improving AI diagnostic 
systems

5.1 Technical and ethical strategies to 
reduce misdiagnosis

Reducing misdiagnosis in AI diagnostics requires both robust 
technical controls and clear ethical guidelines. First, AI models 
should be trained on large, diverse datasets that reflect differences 
in age, ethnicity, and geography, to minimize bias and ensure 
generalizability. Rigorous validation—using cross-validation, 
independent test sets, and real-world clinical trials—is critical for 
uncovering hidden errors and establishing reliability. Furthermore, 
explainability and transparency must be integrated at every stage 
of model development. Tools like LIME and SHAP enable 
clinicians to better understand and trust AI recommendations, 
making it easier to detect and correct mistakes (40). Combining 
technical rigor with interpretability is essential for safe and 
effective clinical use of AI.

5.1.1 Scaling solutions in low-resource settings
Implementing solutions such as blockchain contracts and 

federated learning audits in diverse healthcare systems, especially 

those with limited resources, requires careful consideration of 
feasibility and cost. In low-resource settings, the adoption of these 
technologies can be challenging due to the required infrastructure, 
technical expertise, and financial investment. Blockchain-anchored 
accountability systems, for instance, can introduce costs related to 
storage, key management, and throughput. We propose a phased 
implementation approach to scale these tools effectively, starting 
with pilot projects to assess their viability before broader 
deployment. By leveraging lightweight blockchain models that store 
only hashes and timestamps on-chain, we  can reduce the data 
storage requirements, keeping detailed records off-chain and thus 
minimizing infrastructure costs.

For federated learning audits, which allow healthcare sites to 
collaborate while preserving data privacy, we recommend starting 
with local data audits. Each site computes subgroup-stratified metrics 
and shares privacy-preserving aggregates, which minimizes the need 
for large-scale computational resources while still enabling essential 
monitoring functions such as bias detection and data drift monitoring. 
This approach is particularly suited for resource-constrained settings, 
where large infrastructure investments are not feasible. We  also 
recommend secure aggregation protocols to mitigate the risks and 
costs associated with federated learning by minimizing the volume of 
data transmitted and reducing network overhead. As these audits are 
scaled, cloud-based solutions could be considered for integrating data 
from multiple sites without compromising privacy.

5.1.2 Model choice and governance (complexity–
interpretability trade-offs)

The preference should be for the simplest adequate model that 
meets clinical targets, especially in resource-limited settings where 
computational power and infrastructure are constrained. When an 
intrinsically interpretable model (e.g., sparse linear/rule-based, 
GAM-style) performs similarly to a more complex alternative (e.g., 
ΔAUC ≤ 0.01–0.02 with comparable calibration/fairness), 
prioritizing the interpretable model helps preserve transparency and 
reduce resource demands. If a complex, black-box model is 
necessary for significant performance gains, it is crucial to document 
the trade-off between accuracy and interpretability in the model fact 
sheet, specifying clinician-facing explanations and response-
time budgets.

Moreover, to ensure that hospitals are ready for deployment, 
we suggest implementing training programs for clinicians on using 
blockchain contracts and federated learning systems. Hospitals should 
focus on educating their clinical staff about the basics of blockchain 
technology and its use in verifying AI model outputs. Training should 
include practical demonstrations of how to access blockchain contract 
logs and use federated learning data audits effectively. This training can 
be integrated into existing educational programs and can be delivered 
through workshops or online tutorials. Ensuring that clinicians are 
familiar with these technologies will promote their adoption and 
reduce resistance to using these advanced tools in day-to-day workflows.

Prospective monitoring of model performance, including accuracy, 
calibration, fairness gaps, and decision latency, should be implemented, 
with human-override options in place if necessary. Periodic reassessment 
of the model’s performance can help guide decisions about potential 
simplification to preserve transparency and workflow efficiency. This 
ensures that the AI system remains effective, interpretable, and scalable 
in diverse healthcare environments, especially in low-resource settings.

https://doi.org/10.3389/fmed.2025.1594450
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al.� 10.3389/fmed.2025.1594450

Frontiers in Medicine 07 frontiersin.org

5.2 Clarifying responsibility and evolving 
legal standards

A clear and shared framework for responsibility is urgently needed as 
AI becomes central to medical diagnostics. Developers must 
be accountable for model reliability, transparency, and communicating 
known risks or limitations. Healthcare institutions should evaluate AI 
tools before deployment, provide clinician training, and monitor ongoing 
performance, intervening when safety issues arise. Clinicians, while 
ultimately responsible for patient care, should not be held solely liable for 
errors that originate from opaque AI models. Regulators must update 
legal standards and create practical guidelines that distribute 
accountability fairly and reflect the complexities of AI-assisted medicine.

5.3 Advancing ethical standards and policy 
implementation

Creating a fair and effective AI diagnostic ecosystem requires 
ongoing collaboration among developers, healthcare providers, 
policymakers, and ethicists. Ethical standards should mandate 
fairness, transparency, and respect for patient rights, building on 
principles such as justice and beneficence. Policies should require data 
transparency, regular audits for bias, and public disclosure of system 
limitations. Continuous regulatory oversight is necessary to prevent 
health disparities and to ensure that technical progress is matched by 
ethical responsibility. Table 3 provides a consolidated summary of 
strategic recommendations for enhancing AI diagnostic systems. It 
outlines technical improvements, ethical considerations, and policy 
initiatives to guide stakeholders toward a safer, more transparent, and 
equitable diagnostic framework.

Fostering collaboration throughout the AI development lifecycle 
is crucial for building diagnostic systems that truly serve diverse 
patient needs. Open-source platforms—such as those pioneered by 
the Hugging Face community—improve transparency and 
accountability by making AI models and datasets available for broader 
review and improvement. Policymakers should also support the 
adoption of Explainable AI (XAI) frameworks, which make model 
logic visible and actionable for clinicians and patients alike, directly 
addressing the “black box” problem and enabling safer, more equitable 
diagnostic care.

5.4 Framework validation roadmap

Validation will proceed in three steps: (i) Feasibility/shadow-
mode pilots (1–3 sites) to test non-blocking explainability, bias 
monitoring, and governance under predefined time budgets; 
endpoints include calibration (ECE/Brier), discrimination 
(AUROC), fairness gaps (ΔFNR/ΔAUC), alert precision/recall, and 
clinician verification time. (ii) Retrospective offline replay with 
de-identified EHR/imaging streams to stress-test drift detectors 
(PSI/KL), subgroup metrics, and ledger throughput; report false-
alert rate, time-to-detection, and triage effort. (iii) Prospective 
pragmatic evaluation (cluster A/B or stepped-wedge) comparing 
standard care versus framework-augmented workflows; primary 
outcome: misdiagnosis composite; secondary outcomes: decision 
latency, override rates, calibration/fairness, and patient 
comprehension. All studies will be pre-registered, include privacy-
impact and cost/infrastructure logs, and—where resources are 
limited—use lightweight deployments (local audits, secure 
aggregation, hash-only ledger anchoring).

TABLE 3  Summary of strategic recommendations for enhancing AI diagnostic systems.

Category Issue Strategy/
recommendation

Description

Technical 

improvements

Data quality & 

diversity

Data augmentation
Use methods like image rotation, noise addition, and synthetic data to improve 

diversity.

Dataset expansion Include a broad range of demographics, disease types, and medical contexts.

Data standardization Standardize labeling and preprocessing to reduce noise and boost accuracy.

Model complexity

Algorithm optimization Apply regularization to prevent overfitting and improve generalizability.

Explainability tools Integrate SHAP and LIME for better model interpretability.

Ensemble modeling Combine multiple models to increase robustness and reduce errors.

Validation
Cross-validation with diverse data Validate models on data from different sources and demographics.

Real-world clinical testing Deploy models in pilot studies to detect practical limitations early.

Ethical suggestions

Transparency & trust
Data transparency Disclose data sources, limitations, and processing steps to users.

Bias monitoring Regularly check for and correct bias against underrepresented groups.

Patient consent Informed consent enhancements Ensure patients understand AI’s role, limitations, and risks.

Equity in diagnosis Inclusive dataset representation Prioritize diverse data collection to improve fairness.

Policy actions

Responsibility 

allocation

Accountability framework Clearly define roles for developers, institutions, and clinicians.

Guidelines for AI deployment Set standards for safe AI integration, training, and support.

Regular audits Periodically assess AI performance and address bias or risk.

Patient safety
AI Performance standards Establish accuracy, sensitivity, and specificity benchmarks.

Ethics and compliance training Train staff in AI ethics, safety, and compliance.
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This study has several limitations. First, it presents a conceptual 
framework supported by a narrative synthesis and secondary sources; 
it does not include original data collection or prospective clinical trials. 
Second, reliance on published reports and case descriptions introduces 
risks of citation and publication bias. Third, the framework’s 
components—bias-aware curation, hybrid explainability, federated 
audits, and blockchain-anchored accountability—are not empirically 
validated here; their performance, costs, and workflow impact may vary 
across settings. Finally, generalizability is uncertain, especially in 
low-resource environments with heterogeneous infrastructure and 
policies. These limitations motivate the validation roadmap 
outlined below.

6 Conclusion

The integration of AI into medical diagnostics holds great promise 
for improving accuracy, efficiency, and personalized care, but it also 
introduces risks of misdiagnosis driven by technical limits, model 
opacity, and diffuse responsibility. This study identifies three core 
barriers—data bias, lack of transparency, and ambiguous 
accountability—and advances a coordinated response across technical, 
ethical, and policy domains. Technically, we  call for diverse, 
representative datasets, rigorous external validation, and explainability 
that is usable at the point of care (e.g., non-blocking overlays with 
concise rationales), while explicitly managing the complexity–
interpretability trade-off by preferring the simplest adequate model 
and documenting guardrails when black-box models are used. 
Ethically, roles are clarified—developers for model quality, institutions 
for safe deployment and oversight, clinicians for patient care—
supported by layered, risk-tiered consent, teach-back, and human-
override options. From a policy perspective, we advocate standards 
that require transparency audits, continuous post-deployment 
monitoring (calibration, fairness, and decision latency), and context-
aware reporting across demographic groups and sites. Aligning these 
pillars enables stakeholders to harness AI’s benefits while reducing its 
risks, strengthening patient safety, clinical trust, and health equity.
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