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Artificial intelligence has significantly improved diagnostic accuracy and
efficiency in medical imaging-assisted diagnosis. However, existing systems
often focus on a single disease, neglecting the pathological connections
between diseases. To fully leverage multi-disease information, this paper
proposes an auxiliary diagnostic model based on joint learning of brain and
lung data (ADMBLD), aiming to enhance the comprehensiveness and accuracy
of diagnoses through cross-disease correlation learning. The model integrates
imaging data and clinical history of brain and lung diseases to identify potential
correlations between different diseases. Experimental results show that the
model trained on both brain and lung data outperforms those trained separately,
validating the effectiveness of the multi-disease joint learning diagnostic
model. This confirms that integrating multi-disease information captures latent
pathological relationships, overcoming the limitations of single-disease models,
thereby providing clinicians with more precise and comprehensive diagnostic
support and demonstrating its potential in advancing intelligent diagnostic
systems.
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1 Introduction

Currently, artificial intelligence has made significant progress in medical imaging-
assisted diagnosis, but many diseases are interconnected, especially across different organs.
For example, lung (1–3) diseases like COPD are closely linked to cardiovascular conditions.
Ignoring these cross-disease correlations can lead to incomplete diagnoses and affect
treatment plans. Most current systems focus on single-organ imaging, like generating
reports based solely on chest CT scans. In multi-disease diagnosis, combining medical
reports with imaging data is essential for accurate diagnosis, utilizing techniques such as
report segmentation and image classification to provide comprehensive support.

In medical report segmentation (4, 5), early research focused on overall classification
of sentences or paragraphs, with medical text segmentation relying heavily on traditional
machine learning methods. For instance, Chang et al. (6) used support vector machines for
medical text classification, improving accuracy by incorporating medical dictionaries and
rules. Li et al. (7) proposed a hierarchical Bayesian non-parametric model that successfully
mined semantically coherent disease topics by integrating word distance information
for semantic segmentation. In recent years, with the development of large language
models, some studies have started using models like BERT for text semantic segmentation.
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Yang et al. introduced the BERT-BiGRU-CRF model, leveraging
BERT to address ambiguity in text and enhance entity recognition
accuracy. However, these models faced limited generalization
performance in specific medical domains, leading to a decrease in
accuracy. To improve large model performance in the medical field,
Yao et al. (8) fine-tuned the BERT model, further enhancing its
capabilities in medical text processing.

In medical image classification (9, 10), traditional methods
primarily relied on manual feature extraction and classic machine
learning algorithms. Researchers would construct classifiers
through image preprocessing (e.g., denoising, enhancement)
and feature extraction (e.g., texture features, shape features).
However, these manual feature-based and classical machine-
learning approaches often suffer from low classification accuracy
and poor robustness. In recent years, neural network-based CT
image classification methods have been introduced. For example,
Hong et al. (11) developed a global reference framework by
identifying head bounding boxes and sequentially locating other
body parts. Zhang et al. (12) proposed a supervised method based
on 3D CT image spatial information, improving the accuracy of
body part recognition.

After report segmentation and image classification, the
obtained multi-disease information can be modeled. In recent
years, research based on methods such as Bayesian networks
has emerged. For example, Heckerman et al. (13) designed
the Pathfinder expert system, which uses a Bayesian network
to diagnose over 60 diseases and 100 symptoms, significantly
improving diagnostic accuracy. Constantinou et al. (14) developed
a data-driven Bayesian network generation framework that uses
the EM algorithm to learn conditional probabilities between
variables. This framework can analyze four types of correlations:
indirect causal effects, indirect evidential effects, common causes,
and common effects. Despite progress in studying multi-
disease interactions, particularly in using Bayesian networks and
knowledge graphs (15) to improve diagnostic accuracy, challenges
such as reliance on expert evaluations, subjectivity, and low
computational efficiency still remain. Brain and lung diseases
involve complex mechanisms and diverse clinical manifestations,
and existing technologies face difficulties in data fusion and model
construction. More efficient probabilistic acquisition methods
and reasoning algorithms are needed. Therefore, we propose an
auxiliary diagnostic model based on joint learning of brain and lung
data. The innovations of our model are as follows:

• We employ data augmentation to perform preliminary feature
extraction on the collected brain and lung data, thereby
obtaining labeled reports and imaging data.

• We propose an auxiliary diagnostic model based on joint
learning of brain and lung data. This model utilizes a small
amount of manually labeled data, combined with brain and
lung data, and employs methods such as smoothing, data
augmentation, and transfer learning to significantly enhance
the quality of medical report generation.

2 Method

The model in this study is divided into two parts. The first part
involves dataset augmentation, where feature extraction is done

through sequence classification and report segmentation, yielding
annotated reports and imaging data. The second part focuses on
model training, using a small portion of labeled data to train the
sequence classification and report segmentation models, which are
then applied to classify image sequences and segment report texts
for the remaining data.

2.1 Datasets introduction

The brain dataset includes 22,429 samples from 10 hospitals,
divided into a training set of 21,429 samples, a validation set of 400
samples, and a test set of 600 samples.The lung dataset contains
9,725 samples from 14 hospitals and health centers, split into 9,225
for training, 200 for validation, and 300 for testing.

Each examination dataset includes medical images and
corresponding report data. The images mainly consist of CT
scans of the brain and chest-lung regions. The report data
contains clinical history, image description, and imaging diagnosis.
Clinicians fill out the clinical history, while radiologists write the
image description and diagnosis, which provide details of the
image features, findings, disease diagnosis, and further examination
recommendations.

2.2 Datasets augmentation

2.2.1 Sequence classification
For imaging sequences, sequence classification aims to

categorize them into brain, chest-lung, or other body regions. A
straightforward approach to sequence classification is to make an
initial determination based on the label information in the DICOM
files that store the images. For instance, the Series Description
field in DICOM often provides clues regarding the body region,
to some extent. However, due to variations in storage practices
across different hospitals and devices, the contents of labels such
as Series Description can vary greatly and are often inconsistent.
Relying solely on this information for classification is frequently
problematic. To address this issue, we employed manual annotation
to label a subset of the imaging sequences. Specifically, for the
constructed brain and lung datasets, we randomly selected 1,873
imaging sequences for manual annotation, classifying them into
categories such as brain, chest, and other regions. The labeled data
were then split into training and testing sets at an 80:20 ratio.

2.2.2 Report segmentation
For a case report with imaging data from multiple (16,

17) body regions, we segment the “image description” section
to extract descriptions for specific regions like the brain and
lungs. The output is a sequence of the same length, where each
position corresponds to a body region. This task, known as report
segmentation, aids in subsequent experiments.

To automatically perform report segmentation on large-scale
reports and reduce the need for manual annotation, we trained
a text processing model capable of automatically segmenting the
imaging description text. Specifically, we extracted 1,100 reports
from the brain and lung datasets, and manually annotated the
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FIGURE 1

An auxiliary diagnostic model based on joint learning of brain and lung data.

TABLE 1 Notation and description.

Notation Description

Xi
v Medical image sequences

ŷi
v Predicted categories of medical imaging sequences

yi
v True categories of medical imaging sequences

xi
t Image description

ŷi
t Segmentation of predicted image descriptions

yi
t Segmentation of true image descriptions

Dt Text generation model

Ev Image encoding model

yt Target text sequence

different body regions described in the reports. The annotation
labels included “brain,” “lung,” and “other.” To minimize labeling
costs, we manually annotated only a small portion of the dataset.
Based on this manually annotated data, we trained a sequence
classification model and a report segmentation model to classify
image sequences and segment report texts for the remaining data.
The overall architecture of the model is shown in Figure 1. The
primary mathematical symbols used in our model are detailed
in Table 1.

2.2.3 Sequence classification model
The sequence classification model is designed to automatically

classify the body region to which a medical image belongs based
on an input sequence of images. Let the sequence be denoted as
xi

v = [
xi1

v , xi2
v , . . . , xiM

v
]
, where the sequence contains M slices of

images, and the label for the sequence is yi
v, representing the body

region category. The sequence classification model is composed
of a ResNet18 model as the image feature extractor and a fully
connected layer (fc) as the classifier. Assume the input is a single
slice RGB image xij

v ∈ Rk×h×3 with 3 channels. The sequence
classification model outputs a predicted probability ŷij

v ∈ R3,
representing the probability that the slice belongs to each of the
three categories. The specific calculation formula is as follows:

ŷij
v = fc

(
ResNet(xij

v

)
(1)

Since an image consists of multiple slices, we calculate the category
prediction for the sequence by averaging the predicted results of a
subset of slices. The specific formula is as follows:

ŷi
v = 1

M

M∑
j=1

ŷij
v (2)

The model parameters are ultimately trained using the cross-
entropy loss function. The specific loss function is as follows:

L = −
N∑

i=1

yi
v · log (ŷi

v) (3)
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where N denotes the number of labeled data points.

2.2.4 Report segmentation model
The report segmentation model is capable of automatically

segmenting the body parts corresponding to each sentence in
the input image description. Let the input image description be
denoted as xi

t =
[
xi1

t , xi2
t , . . . , xiM

t
]
, where M is the number of words

in the description. The report segmentation label is represented
by a corresponding encoding of the same length, denoted as yi

t ∈
RM , where each element of the label corresponds to the body
part described by the word at the respective position. Since the
label categories include “brain,” “chest and lungs,” and “others,” the
encoding is defined as follows: the brain is labeled as 1, chest and
lungs as 2, and others as 3.

The report segmentation model is a Transformer model
consisting of 6 encoder layers. The maximum token length
(sequence length) for the input sequence is 500. First, the input
image description xi

t is tokenized to obtain its corresponding
textual representation f i

t = [f i1
t , f i2

t , ..., f iM
t ] ∈ RM×d, where

d represents the dimensionality of the text representation. This
representation is then augmented with position encoding and
fed into the Transformer encoder, resulting in the textual
representation of the next layer. The specific calculation formula
is as follows:

f i(l+1)
t = Et

(
f i(l)
t

)
(4)

where Et denotes a single layer of the Transformer encoder, f i(l)
t

represents the textual representation at the lth layer, and f i
t

(0) = f i
t .

After the 6 layers of encoding, the final representation f i(6)
t is

obtained and subsequently passed through a fully connected layer
for body part classification. The specific calculation formula is as
follows:

ŷi
t = softmax

(
fc

(
f i(6)
t

))
(5)

Where ŷi
t ∈ RM×3 represents the predicted body part category. The

model parameters are ultimately trained using the cross-entropy
loss function. The specific loss function is as follows:

L = −
N∑

i=1

yi
t · log (ŷi

t) (6)

where N denotes the number of labeled data points.

In order to improve the performance of the report
segmentation model, we further employ the following optimization
methods.

2.2.4.1 Prediction smoothing
Considering that descriptions of the same body part in medical

reports are usually continuous, a smoothing strategy is proposed.
When the predicted category at a given position differs from that of
the adjacent position, and the adjacent categories are the same, the
predicted category will be adjusted to match the adjacent category.
This approach enhances the model’s ability to capture continuous
descriptions, as shown in Figure 2.

2.2.4.2 Data augmentation
To enhance the model’s generalization, a text data

augmentation method based on random editing is proposed.
During training, each position has a 2% chance of randomly
inserting or deleting characters, with the label sequence adjusted
accordingly. Additionally, words are randomly replaced with
synonyms, sentence order is shuffled, and minor grammatical or
spelling errors are introduced to increase diversity. This approach
expands the training data distribution and reduces overfitting.

2.2.4.3 Transfer learning
To leverage the semantic information in large-scale unlabeled

report texts, a transfer learning strategy is used for pretraining and
fine-tuning the segmentation model. The text processing model
is initially trained on a large corpus of unlabeled reports to learn
general textual features. Then, the trained weights are transferred
to the report segmentation model and fine-tuned on labeled data to
better adapt to the specific needs of the segmentation task.

2.2.4.4 Multi-task learning
The report segmentation task is jointly trained with related

tasks, which enhances the model’s understanding of medical texts.

TABLE 2 Enhance healthcare datasets.

Sample set

Datasets Training set Validation
set

Test set SUM

Brain dataset 6,059 337 337 6,733

Lung dataset 5,091 283 283 5,657

Total 11,150 620 620 12,390

FIGURE 2

Predictive smoothing.
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This approach enables the model to share lower-level text features
and optimize across multiple tasks, improving overall performance.

2.2.5 Medical report generation
Assume the input report prefix is ft = [f 1

t , f 2
t , ..., f n

t ] ∈ Rn×d,
and the input medical image is xv ∈ Rk×h×D, where k, h, and D
represent the length, width, and number of channels of the input
image, respectively. The image encoder Ev takes the medical image
xi as input and outputs the image features fv ∈ RD×d, where d
denotes the dimensionality of the image features. Subsequently, the
image features fv and the text representation ft are jointly input into
the text generation model to obtain the input for the next layer.

After L layers of encoding, the output sequence representation
is passed through a linear mapping layer followed by a softmax
layer, resulting in the prediction of the next word in the current
text, denoted as ŷ(v)

t . To supervise the model’s performance in the
report generation task, the cross-entropy loss is used to constrain
the model’s output. The objective is to maximize the similarity
between the output sequence and the target sequence. The specific
loss function is as follows:

L = −
T∑

t=1

V∑
v=1

y(v)
t log

(
ŷ(v)

t

)
(7)

Where T is the length of the output sequence, V is the size of
the vocabulary, y(v)

t is the true distribution of the target sequence
at time step t, represented as a one-hot encoding, and ŷ(v)

t is the
probability distribution generated by the model at time step t.

3 Experiments

To further investigate the brain-lung correlation and conduct
cross-disease joint experiments, the brain and lung datasets were
processed further. The enhanced datasets are shown in Table 2.

For the medical images in the brain and chest-lung datasets,
we adopted random cropping and random sampling strategies to
standardize the slices across different sequences. For the report
texts, we set a maximum length to ensure consistent batch
processing.

3.1 Experimental settings

We conducted experiments on an image-text multimodal
model using a ResNet-18 image encoder built with the Pytorch
framework. The experiments ran on an Nvidia Tesla T4 GPU
(16GB memory) with a batch size of 8 for 50 epochs, at a learning
rate of 3e-5. The results show that 50 epochs were enough for the

TABLE 3 The segmentation result of report.

Brain dataset Lung dataset

Models IOU Precision Recall IOU Precision Recall

Benchmark model 0.952 0.973 0.979 0.890 0.919 0.968

+ Smoothing 0.958 0.976 0.981 0.904 0.925 0.978

+ Data augmentation 0.957 0.973 0.984 0.928 0.946 0.975

+ Transfer learning 0.962 0.977 0.985 0.929 0.949 0.967

Bold values represent the best values in this set of data.

TABLE 4 When the model uses different training data, the report is generated on the brain dataset.

Evaluate metrics

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr-D

Brain datasets 0.611 0.567 0.531 0.503 0.666 1.527

Lung datasets 0.599 0.554 0.519 0.491 0.659 1.465

Brain + Lung datasets 0.632 0.582 0.543 0.513 0.667 1.580

Bold values represent the best values in this set of data.

TABLE 5 The effect of the report generation on the lung dataset when the model uses different training data.

Evaluate metrics

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr-D

Brain datasets 0.549 0.478 0.428 0.390 0.507 0.295

Lung datasets 0.594 0.517 0.461 0.418 0.524 0.323

Brain + Lung datasets 0.626 0.544 0.485 0.441 0.532 0.409

Bold values represent the best values in this set of data.
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model to converge on the training set and perform well on the
validation set.

In this chapter, IOU (Intersection over Union), Precision,
and Recall are used to evaluate the performance of the report
segmentation model. BLEU, ROUGEL and CIDEr-D are used
to evaluate the performance of the medical image report
generation task.

3.2 Experimental results and analysis

To evaluate the results of ADMBLD, we compare the
segmentation accuracy when different modules are added. The
performance of each model is shown in Table 3, with the optimal
results highlighted in bold. Based on the results, the following
conclusions can be drawn:

1. The baseline model achieved an IOU of 0.952, precision of 0.973,
and recall of 0.979 on brain data, while for lung data, the three
metrics were 0.890, 0.919, and 0.968, respectively. This suggests
that brain data segmentation is relatively easier, likely due to the
more regular structure of the brain, lower text complexity, and
more concentrated image features.

2. After incorporating prediction smoothing, the segmentation
performance for both brain and lung data improved, particularly
the IOU, which increased to 0.958 and 0.904, respectively. This
indicates that adjusting the continuity of model predictions
effectively reduces fragmentation in category predictions,
enhancing segmentation stability and consistency.

3. Further introducing data augmentation strategies led to
an additional performance boost. Notably, for lung data,
the IOU improved from 0.904 to 0.928, and precision
significantly increased from 0.925 to 0.946. This demonstrates
that diversifying training data helps enhance the model’s
generalization ability, especially in complex lung segmentation
tasks.

4. Combining transfer learning resulted in optimal performance
across both datasets. For brain data, the IOU increased to
0.962, with precision and recall reaching 0.977 and 0.985,
respectively; for lung data, the IOU rose to 0.929, with precision
and recall at 0.949 and 0.967, respectively. This shows that
leveraging pre-trained model knowledge significantly improves
the initial model parameters, enhancing overall segmentation
performance.

To investigate the correlation between different diseases and the
impact of joint training on report generation performance, three
experimental setups were designed in this section. These setups
include training on the brain dataset alone, training on the lung
dataset alone, and joint training on both the brain and lung datasets.
Evaluations were conducted on both the brain and lung data.

The experimental results, shown in Tables 4, 5, lead to the
following conclusions:

1. As shown in Table 4, for BLEU-1 to BLEU-4, the model trained
solely on the brain dataset outperforms the one trained on the
lung dataset, with the joint training model achieving the best
performance. For the CIDEr-D metric, the joint training model
also leads, with a score of 1.580. This suggests that joint training

improves the model’s generation ability for brain data, allowing
it to better capture related semantics and expressions, leading to
more accurate and coherent reports.

2. As shown in Table 5, the joint training model leads with a
BLEU-1 score of 0.626. It also demonstrates strong performance
across BLEU-2 to BLEU-4 metrics. For the ROUGE-L metric
and CIDEr-D metric, the joint training model likewise shows
advantages, scoring 0.532 and 0.409, higher than the models
trained on brain or lung data alone. This indicates that joint
training also has a positive impact on report generation related
to lung data, improving the quality and diversity of reports
generated for lung data.

3. Overall, while models trained on individual datasets for different
diseases show some performance on their respective test
sets, joint training demonstrates advantages across multiple
evaluation metrics. This suggests that there is some correlation
between datasets for different diseases, and joint training
allows the model to learn richer features and knowledge. As a
result, it enhances performance in report generation tasks for
both disease-related datasets, offering a more optimal training
strategy for future applications in medical report generation.

4 Conclusion

To address the common limitation of existing intelligent
diagnostic systems, which are often confined to single disease
analysis, this paper proposes a multi-disease joint learning-
based report generation model. By integrating brain and chest-
lung medical imaging data with report text, the model explores
potential correlations between diseases, thereby enhancing the
comprehensiveness and accuracy of diagnoses. Experimental
results show that multi-disease joint training can effectively
uncover latent feature correlations between different diseases,
significantly improving the performance of report generation for
individual diseases. This validates the pathological correlations
between different body parts and provides practical evidence for
the further development of multi-disease intelligent diagnostic
systems.
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