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Reliability Volume: a novel metric
for surgical skill evaluation

Zhipu Yu?, Qinghua Liu! and Jin Zhang?*

tSchool of Physics and Electronic Information, Yan'an University, Yan'an, China, 2Yan'an University
Affiliated Hospital, Yan'an, China

This study introduces Reliability Volume (RV), an integrated metric combining
trajectory similarity with empirical reliability estimation using threshold counts
to evaluate surgical skill during repetitive training. RV quantifies both spatial
precision and the probability of consistent task execution, addressing limitations
of single-session metrics that neglect fatigue and performance drift. Applied
to knot-tying with assistive devices, RV jointly reflects spatial accuracy and
performance consistency over multiple sessions. Our results show that RV
reliably tracks learning progression and is readily compatible with real-time
(closed-loop) feedback systems, providing a dynamic, comprehensive, and
practice-oriented assessment framework.
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1 Introduction

Surgical skill evaluation methods can be broadly categorized as subjective and
objective. Subjective evaluations, including expert ratings and self-assessments, remain
prevalent yet suffer from rater bias, inconsistent standards, and inefficiency (1, 2). Objective
evaluations quantify surgical gestures, eye movements, or instrument trajectories (3—
7), but often require specialized hardware, complex analyses, and substantial expertise,
limiting practicality (8). In pursuit of more accurate assessments, quantitative metrics
such as force-based (9), time-based (4, 10), and spatial indicators (e.g., path length and
smoothness) (11, 12) have received considerable attention. Methods including Dynamic
Time Warping (DTW), Hidden Markov Models (HMM), and kinematic feature extraction
are widely used to evaluate the quality and similarity of surgical movements (13-15).
Recent reviews also highlight the rapid growth of computer vision and AI for objective
skill assessment and training across open, laparoscopic, and robotic platforms (16, 17).

Repetitive practice of fundamental skills is particularly important given limited
operating room opportunities, duty-hour restrictions, and ethical constraints. Although
repetition can improve accuracy, efficiency, and trainee confidence, most evaluation
metrics focus on single sessions and do not adequately account for cumulative fatigue and
performance drift during repetitive training.

Fatigue is a key external factor. Kaholet al. reported cognitive deterioration due to
fatigue and sleep deprivation in virtual reality simulations that was not captured by
operative time alone (18). More recent syntheses show mixed but concerning effects of
surgeon fatigue on performance and outcomes and call for direct, within-task measures
rather than retrospective proxies (19).

To contrast single-session (open-loop) and repeated-session (closed-loop) training,
we compare traditional methods with real-time feedback systems, as illustrated in
Figure 1 (20-23). Open-loop approaches provide delayed feedback only after task
completion, limiting opportunities for in-task correction. Closed-loop approaches deliver
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FIGURE 1
Comparison of open-loop and closed-loop training processes.
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immediate feedback and continuous monitoring, enabling trainees
to adjust actions promptly and mitigate negative effects from
fatigue and other external factors.

Addressing these limitations, we propose Reliability Volume
(RV), derived from Euclidean distance (13), working volume (11),
and empirical reliability estimation (24, 25). Unlike traditional
metrics, RV quantifies a trainee’s consistency in real-time, closed-
loop environments by jointly capturing short-term spatial accuracy
and long-term consistency. RV thus provides a comprehensive,
realistic, and practical framework that bridges theoretical modeling
and real-world training.

2 Reliability volume and its calculation

RV is a bivariate descriptor reported as an ordered pair (R, V),
where R is the probability of successfully completing the task within
specified conditions, and V represents the corresponding working-
space volume. A lower R indicates a higher probability of failure;
a smaller V indicates closer alignment with the standard path. The
workflow is shown in Figure 2.

RV = (R, V). 1)
Specifically, the calculation steps are as follows.

Step 1: capture standard and training paths
We define two sets of 3D trajectories:

o Standard path S = {s1,s2,...,sn}, with s, = (x],,¥),,2),).
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{tmi>tm2> ... tmn} for the m-th
repetitiOH, where tyun = (xmns}’mn, Zmn), m e {1, - ,M}.

e Training path T,, =

Step 2: pointwise euclidean deviation
The deviation at index n of repetition m is

Apn = tmn — snll = \/(xmn - x;,)z + (}’mn _}’;1)2 + (Zmn — Z;,)Z-
(2)

Step 3: order the deviations

Collect all d,;, and sort in descending order to obtain
Ds = {dmax> - - -»dj> . . ., dmin}, where d; denotes a distance (radius)
threshold. (Here Dy denotes the multiset of all d,;;,).

Step 4: working-space volume

Unlike the conventional working volume defined as a sphere
whose radius equals the average distance from a hand-centered
point (11), we model a working-space volume as a cylindrical tube
coaxial with the standard path (Figure 3). For a given threshold d;,
the working-space volume is

Vj=ndh 3)

where h is the arc length of the standard path and d; is the
tube radius.

Step 5: empirical reliability estimation

The Monte Carlo method is a powerful statistical tool for
evaluating the ability to complete a specified surgical task within
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a given time and environment (24, 25). Therefore, for each distance
dj, the state function is Z = g(m,n) = dy, — d;. Based on this
state equation, d,;; — dj = 0 can divide the variable space into a
failure space and a reliability space, and the working-space volume,
a cylinder centered on the target path, defines the reliable space.
Moreover, count the number of paths 1j, which d,,;; does not exceed
dj, and compute reliability Rj as:

Rj= — (4)

where R; is the reliability corresponding to distance d;.

Step 6: Reliability Volume
Finally, the Reliability Volume at threshold d; is

RV; = (R;, V). ©)

3 Experiment: knot-tying with
assistive devices

3.1 Path data collection

Path data were collected using an optical motion-tracking
system (Beijing DuLiang Technology Co.) to monitor hand
movements during the experiment. The core hardware and
software configurations of this system are detailed in Table 1.

As shown in Figure 4, a 12 mm reflective marker was affixed to
a pair of hemostatic forceps. Trainees used the instrument to tie a
suture around a needle holder, completing two full loops at a self-
selected comfortable speed. Each repetition started at a prescribed
start point and ended at a predefined boundary. The task was
performed within a cylindrical workspace (Figure 5) with a fixed
height of 2 cm and variable radius r (cm).

All trajectories were recorded at a uniform sampling frequency
and saved in CSV format to ensure consistent path length for
subsequent computational comparisons.

3.2 Participants

Participants included four students, three surgical residents,
two attending surgeons, and one associate chief surgeon. The
associate chief surgeon performed the knot-tying procedure once
to define the standard path. Each trainee then imitated the
task 50 times at a self-selected comfortable speed, with no
time limit imposed. A total of nine trainees (five male, four
female) participated, with demographic information indicated in
the captions of Figures 7-15. Path data were collected via the
motion-tracking system.

3.3 Standard path

Figure 6 presents the standard path generated by the associate
chief surgeon, which served as the reference for trainees.
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Stepl: Data Collection
(Standard Path and Training Paths)

Step2: Similarity Calculation
(Euclidean distance between Paths)

Step3: Sort Distances
(From largest to smallest)

Step4: Calculate working-space volume
(Cylinder volume at each distance)

Step5: Calculate Reliability with Monte Carlo
method
(Identify valid paths at each distance)

Step6: Calculate the different RVs under the
different distances

FIGURE 2
Calculation flowchart.

3.4 Reliability Volume (RV) results

Since only the horizontal displacement between the start
and end points was constrained—with training paths also being
influenced by trainees’ experience and physical condition—
the actual training paths diverge from the standard path.
Accordingly, the Reliability Volume (RV) results are grouped by
role: Figures 7-10 (students), Figures 11-13 (surgical residents),
and Figures 14, 15 (attending surgeons). In each figure, the
left panel shows how R varies with the working-space volume
Vat M =
working-space volume V varies with the number of repetitions
when R = 0.95.

In the first panels, students generally operate at smaller

50 repetitions; the right panel shows how the

working-space volumes V' (i.e., higher spatial precision relative to
the standard path) but exhibit broader transitions in reliability
from R ~ 0 to R ~ 1, indicating greater performance variability
compared with experienced participants. This observation is
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FIGURE 3

Working-space volume (cylindrical tube around the standard path) vs. conventional working volume.
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TABLE 1 Optical Motion-tracking system core configuration for path data collection.

Component type

Equipment name

Brand and model

Key technical specifications

Optical Motion-Tracking NOKOV Mars1.3H

Core Hardware Camera

Resolution: 1,280 x 1,024 (1.3 million pixels);

Max acquisition frequency (full resolution): 240 Hz (adjustable);
Power supply: Power over ethernet (POE);

Interface: GigE/POE

8-port POE switch (power

NOKOV POE8/8-ONV1

POE power ports: 8; Data transmission port: 1;

supply) Total power output: 128 W
Core Software Motion Tracking & Data NOKOV XINGYING Data processing: FPGA edge computing;
Analysis Software Compatibility: Supports Windows/Linux/MATLAB/Simulink/ROS

consistent with previous reports that experienced operators tend
to emphasize stability, whereas novices often trade stability for
precision (11, 12).

In the second panels, RV reveals training dynamics that are
often obscured by traditional single-metric summaries. When
fixing R =
with increasing repetitions, reflecting improved precision at a

0.95, a favorable trend is a reduction in V

constant success probability. For example, student2, student4,
and resident 2 show extended intervals of negative correlation
between repetition count and V, suggesting more effective
practice results.
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By contrast, some participants demonstrate positive
correlations or non-monotonic patterns. For instance, RV
snapshots for studentl at the 10th, 25th, and 50th repetitions
(Table 2) reveal that reliability at a fixed volume (e.g., 427.84 cm?)
can fluctuate (0.90 — 0.96 — 0.90). Similarly, for student2, RV
snapshots at the same repetitions (Table 3) demonstrate variability
at a constant volume (e.g., 613.33 cm?), with reliability shifting
from 0.90 — 0.84 — 0.88.

Clearly, this indicates that a one-size-fits-all imitation training
approach may not be suitable for all trainees. While some

individuals can achieve improved precision at a high success

frontiersin.org



https://doi.org/10.3389/fmed.2025.1591043
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Yu et al.

10.3389/fmed.2025.1591043

FIGURE 4
Working environment.

FIGURE 5
Schematic of the working-space volume.

Working space

probability after completing 50 repetitive training sessions, others
may not demonstrate such progress.

3.5 Fatigue and dynamic feedback

In terms of fatigue, the ability to complete a specified
surgical task under defined conditions is closely linked to fatigue

Frontiersin Medicine

accumulation with increasing repetitions. RV offers a practical
means to capture such effects: fluctuations in R at a fixed V across
repetitions are consistent with transient fatigue or distraction.

For training management, we propose a simple stopping rule
compatible with closed-loop feedback: define a reliability change
threshold (e.g., |AR| > 0.05) at a fixed volume. When within-
session reliability changes by at least this amount, the session should
be paused and skill evaluated using the last stable RV point (the
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measurement immediately preceding the change). For example,
at a working-space volume of 427.84 cm?®, studentl should stop
imitation training at the 10th repetition, as reliability declined from
0.96 to 0.90. At 613.07 cm>, student2 should stop at the 25th
repetition, as reliability shifted from 0.80 to 0.86. Notably, this
stopping rule should account for gradual changes, and this will be
explored in future research.

Thus, RV is not only an integrated metric for quantifying
task success probability under specified conditions, but also a
dynamic measure that reflects fluctuations caused by fatigue
or distraction.

= Training path
@ Start point
@ End point

Z-axis (cm)

FIGURE 6
Standard path.

10.3389/fmed.2025.1591043

4 Discussion

4.1 Practicality of RV for capturing skill
development

As with conventional working volume (11), RV reflects
the expected gradient of spatial economy with increasing
experience. In our data, the maximum of working-space volume
(at R = 1) decreased consistently across groups: students
(~853.57 cm?), surgical residents (465.62 cm?), and attending
surgeons (A270.33 cm?®). Similarly, the average working volume
was 164.50 cm? for students, 66.52 cm? for residents, and 18.30 cm?
for attending surgeons.

Figure 16 and Table 4 highlight why RV-derived volumes may
diverge from conventional working volume. The RV tube radius
is defined by the worst-case deviation from the standard path
(maximal d,,;,), whereas the conventional working volume relies
on the average distance from a hand-centered point. When fatigue
or other uncertainties cause occasional large deviations, the RV
maximum volume remains anchored to its tolerance definition and
is comparatively stable. By contrast, the average-based working
volume is more sensitive to fluctuations.

Thus, although both RV and conventional working volume
can stratify experience, RV provides greater practical utility
by integrating all repetitions within a closed-loop framework
(Figure 3). Compared with established metrics such as path
length, smoothness, and working volume, RV emphasizes
consistency across repetitions rather than single-session snapshots,
thereby offering complementary information for comprehensive
skill assessment.

4.2 Perceived value and implications

Currently, Reliability Volume (RV) primarily focuses on spatial
consistency; however, incorporating task duration represents a

Reliability vs Volume

Target Volume vs Path Count (95.0% Reliability)

08

550

500

450

f 4 —E
— =
— z

' ;E 400

206 g 2 »

= '3 <

$ 350
2 = 2
— w

e 04 s @ 300
o ®
b 4 @
- 13

g 2 250
02 = S

- 200

00 —_— 150

o 100 200 300 400 500 0 10 20 30 40 50
Volume (cm’) Number ot Iraining Paths
FIGURE 7

Reliability Volume (RV) results for student 1 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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FIGURE 8

Reliability Volume (RV) results for student 2 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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FIGURE 9
Reliability Volume (RV) results for student 3 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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Reliability Volume (RV) results for student 4 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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FIGURE 11

Reliability Volume (RV) results for surgical resident 1 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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FIGURE 12

Reliability Volume (RV) results for surgical resident 2 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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Reliability Volume (RV) results for surgical resident 3 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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Reliability Volume (RV) results for attending surgeon 1 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.
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Reliability Volume (RV) results for attending surgeon 2 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.

TABLE 2 Reliability Volume (RV) calculations for student 1 at different repetitions.

10 repetitions

25 repetitions

50 repetitions

Reliability Volume (cm?) Reliability Volume (cm3) Reliability Volume (cm?)
0.90 427,84 0.96 427,84 0.90 42784
0.90 42726 0.96 42726 0.90 4276
0.80 42718 0.92 42718 0.88 42718
0.80 2712 0.92 2712 0.88 2712

TABLE 3 Reliability Volume (RV) calculations for student 2 at different repetitions.

10 repetitions

25 repetitions

50 repetitions

Reliability Volume (cm?) Reliability Volume (cm?) Reliability Volume (cm?)
0.90 613.33 0.84 613.33 0.88 613.33
0.90 613.17 0.84 613.17 0.88 613.17
0.80 613.07 0.80 613.07 0.86 613.07
0.80 613.02 0.80 613.02 0.86 613.02
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FIGURE 16

Comparison of Reliability Volume (RV) and conventional working volumes for student 2.

TABLE 4 Comparison of RV and conventional working volumes for
student 2.

Number of Max RV volume Working volume
training paths (cm?) (cm?)
10 738.23 196.13
20 930.56 216.59
30 930.56 195.13
40 930.56 204.63
50 930.56 190.08

critical future extension, as prolonged execution may also serve
as an indicator of skill variability. While this study demonstrates
the feasibility and practicality of the RV metric, the potential
impacts of fatigue and other confounding factors require further
investigation. Notably, moderating variables such as gender and
prior health status were not included in the current analysis. Future
research should therefore enroll larger and more diverse cohorts,
integrate direct fatigue assessments, and evaluate additional clinical
tasks. Furthermore, given that the number of repetitions was used
as a proxy for actual training time in this study, integrating RV
into automated real-time feedback systems could enhance training
efficiency and skill retention by delivering immediate, actionable
guidance (16, 17).

5 Conclusion

We propose Reliability Volume (RV), an integrated metric
that combines trajectory similarity with an empirical reliability-
based framework to assess surgical skill in repetitive, realistic
training settings. RV quantifies both spatial precision and the
probability of consistent task execution, addressing limitations
of single-session metrics that overlook fatigue and performance
drift. Evidence from knot-tying tasks demonstrates that RV
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effectively captures consistency over repetitions and reveals trade-
offs between precision and reliability. Future work will broaden
participant diversity, evaluate additional training scenarios,
and investigate the integration of RV into automated real-time
feedback systems.
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