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This study introduces Reliability Volume (RV), an integrated metric combining trajectory similarity with empirical reliability estimation using threshold counts to evaluate surgical skill during repetitive training. RV quantifies both spatial precision and the probability of consistent task execution, addressing limitations of single-session metrics that neglect fatigue and performance drift. Applied to knot-tying with assistive devices, RV jointly reflects spatial accuracy and performance consistency over multiple sessions. Our results show that RV reliably tracks learning progression and is readily compatible with real-time (closed-loop) feedback systems, providing a dynamic, comprehensive, and practice-oriented assessment framework.
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1 Introduction

Surgical skill evaluation methods can be broadly categorized as subjective and objective. Subjective evaluations, including expert ratings and self-assessments, remain prevalent yet suffer from rater bias, inconsistent standards, and inefficiency (1, 2). Objective evaluations quantify surgical gestures, eye movements, or instrument trajectories (3–7), but often require specialized hardware, complex analyses, and substantial expertise, limiting practicality (8). In pursuit of more accurate assessments, quantitative metrics such as force-based (9), time-based (4, 10), and spatial indicators (e.g., path length and smoothness) (11, 12) have received considerable attention. Methods including Dynamic Time Warping (DTW), Hidden Markov Models (HMM), and kinematic feature extraction are widely used to evaluate the quality and similarity of surgical movements (13–15). Recent reviews also highlight the rapid growth of computer vision and AI for objective skill assessment and training across open, laparoscopic, and robotic platforms (16, 17).

Repetitive practice of fundamental skills is particularly important given limited operating room opportunities, duty-hour restrictions, and ethical constraints. Although repetition can improve accuracy, efficiency, and trainee confidence, most evaluation metrics focus on single sessions and do not adequately account for cumulative fatigue and performance drift during repetitive training.

Fatigue is a key external factor. Kahol et al. reported cognitive deterioration due to fatigue and sleep deprivation in virtual reality simulations that was not captured by operative time alone (18). More recent syntheses show mixed but concerning effects of surgeon fatigue on performance and outcomes and call for direct, within-task measures rather than retrospective proxies (19).

To contrast single-session (open-loop) and repeated-session (closed-loop) training, we compare traditional methods with real-time feedback systems, as illustrated in Figure 1 (20–23). Open-loop approaches provide delayed feedback only after task completion, limiting opportunities for in-task correction. Closed-loop approaches deliver immediate feedback and continuous monitoring, enabling trainees to adjust actions promptly and mitigate negative effects from fatigue and other external factors.


[image: Diagram comparing open-loop and closed-loop training processes. The open-loop process includes steps: Start, Instruction Delivery, Trainee Performs Task, Task Completed, Expert Review, Feedback Provided, End. The closed-loop process includes: Start, Instruction Delivery, Trainee Performs Task, Real-time Feedback, Immediate Correction, Continuous Monitoring, End.]
FIGURE 1
 Comparison of open-loop and closed-loop training processes.


Addressing these limitations, we propose Reliability Volume (RV), derived from Euclidean distance (13), working volume (11), and empirical reliability estimation (24, 25). Unlike traditional metrics, RV quantifies a trainee's consistency in real-time, closed-loop environments by jointly capturing short-term spatial accuracy and long-term consistency. RV thus provides a comprehensive, realistic, and practical framework that bridges theoretical modeling and real-world training.



2 Reliability volume and its calculation

RV is a bivariate descriptor reported as an ordered pair (R, V), where R is the probability of successfully completing the task within specified conditions, and V represents the corresponding working-space volume. A lower R indicates a higher probability of failure; a smaller V indicates closer alignment with the standard path. The workflow is shown in Figure 2.

RV=(R,V).      (1)

Specifically, the calculation steps are as follows.


[image: Flowchart depicting a six-step process. Step 1: Data Collection (Standard Path and Training Paths). Step 2: Similarity Calculation (Euclidean distance between paths). Step 3: Sort Distances (From largest to smallest). Step 4: Calculate working-space volume (Cylinder volume at each distance). Step 5: Calculate Reliability with Monte Carlo method (Identify valid paths at each distance). Step 6: Calculate the different RVs under the different distances.]
FIGURE 2
 Calculation flowchart.


Step 1: capture standard and training paths

We define two sets of 3D trajectories:

• Standard path S = {s1, s2, …, sN}, with sn=(xn′,yn′,zn′).

• Training path Tm = {tm1, tm2, …, tmN} for the m-th repetition, where tmn = (xmn, ymn, zmn), m ∈ {1, …, M}.

Step 2: pointwise euclidean deviation

The deviation at index n of repetition m is

dmn=‖tmn−sn‖=(xmn−xn′)2+(ymn−yn′)2+(zmn−zn′)2.      (2)

Step 3: order the deviations

Collect all dmn and sort in descending order to obtain Ds = {dmax, …, dj, …, dmin}, where dj denotes a distance (radius) threshold. (Here Ds denotes the multiset of all dmn).

Step 4: working-space volume

Unlike the conventional working volume defined as a sphere whose radius equals the average distance from a hand-centered point (11), we model a working-space volume as a cylindrical tube coaxial with the standard path (Figure 3). For a given threshold dj, the working-space volume is

Vj=πdj2h      (3)

where h is the arc length of the standard path and dj is the tube radius.


[image: 3D plot showing a spiraling trajectory within a translucent green sphere grid. A purple line represents the path, starting at a green dot and ending at a red dot. Axes are labeled X, Y, and Z in centimeters. Legend indicates standard trajectory, start, and end points.]
FIGURE 3
 Working-space volume (cylindrical tube around the standard path) vs. conventional working volume.


Step 5: empirical reliability estimation

The Monte Carlo method is a powerful statistical tool for evaluating the ability to complete a specified surgical task within a given time and environment (24, 25). Therefore, for each distance dj, the state function is Z = g(m, n) = dmn − dj. Based on this state equation, dmn − dj = 0 can divide the variable space into a failure space and a reliability space, and the working-space volume, a cylinder centered on the target path, defines the reliable space. Moreover, count the number of paths nj, which dmi does not exceed dj, and compute reliability Rj as:

Rj=njM      (4)

where Rj is the reliability corresponding to distance dj.

Step 6: Reliability Volume

Finally, the Reliability Volume at threshold dj is

RVj=(Rj,Vj).      (5)



3 Experiment: knot-tying with assistive devices


3.1 Path data collection

Path data were collected using an optical motion-tracking system (Beijing DuLiang Technology Co.) to monitor hand movements during the experiment. The core hardware and software configurations of this system are detailed in Table 1.

TABLE 1  Optical Motion-tracking system core configuration for path data collection.


	Component type
	Equipment name
	Brand and model
	Key technical specifications





	Core Hardware
	Optical Motion-Tracking Camera
	NOKOV Mars1.3H
	Resolution: 1,280 × 1,024 (1.3 million pixels); 
Max acquisition frequency (full resolution): 240 Hz (adjustable); 
Power supply: Power over ethernet (POE); 
Interface: GigE/POE



	8-port POE switch (power supply)
	NOKOV POE8/8-ONV1
	POE power ports: 8; 
Data transmission port: 1; 
Total power output: 128 W

 
	Core Software
	Motion Tracking & Data Analysis Software
	NOKOV XINGYING
	Data processing: FPGA edge computing; 
Compatibility: Supports Windows/Linux/MATLAB/Simulink/ROS






As shown in Figure 4, a 12 mm reflective marker was affixed to a pair of hemostatic forceps. Trainees used the instrument to tie a suture around a needle holder, completing two full loops at a self-selected comfortable speed. Each repetition started at a prescribed start point and ended at a predefined boundary. The task was performed within a cylindrical workspace (Figure 5) with a fixed height of 2 cm and variable radius r (cm).


[image: Hands are shown using a surgical needle holder and suture thread on a practice suture pad with various incision shapes. The pad is annotated with “Start point” and “End boundary,” indicating a segment of two centimeters.]
FIGURE 4
 Working environment.



[image: Surgical forceps depicted in an open position, indicating a circular working space. The dimensions of the space are marked: 2 centimeters wide and extending 2 times the radius vertically.]
FIGURE 5
 Schematic of the working-space volume.


All trajectories were recorded at a uniform sampling frequency and saved in CSV format to ensure consistent path length for subsequent computational comparisons.



3.2 Participants

Participants included four students, three surgical residents, two attending surgeons, and one associate chief surgeon. The associate chief surgeon performed the knot-tying procedure once to define the standard path. Each trainee then imitated the task 50 times at a self-selected comfortable speed, with no time limit imposed. A total of nine trainees (five male, four female) participated, with demographic information indicated in the captions of Figures 7–15. Path data were collected via the motion-tracking system.



3.3 Standard path

Figure 6 presents the standard path generated by the associate chief surgeon, which served as the reference for trainees.


[image: 3D plot depicting a blue spiral training path around a grey cylinder, with a green dot marking the start point and a red dot indicating the end point. The axes are labeled X, Y, and Z in centimeters.]
FIGURE 6
 Standard path.




3.4 Reliability Volume (RV) results

Since only the horizontal displacement between the start and end points was constrained—with training paths also being influenced by trainees' experience and physical condition—the actual training paths diverge from the standard path. Accordingly, the Reliability Volume (RV) results are grouped by role: Figures 7–10 (students), Figures 11–13 (surgical residents), and Figures 14, 15 (attending surgeons). In each figure, the left panel shows how R varies with the working-space volume V at M = 50 repetitions; the right panel shows how the working-space volume V varies with the number of repetitions when R = 0.95.


[image: Left graph displays Reliability vs. Volume with a blue step plot showing reliability increasing with volume. Right graph shows Target Volume vs. Path Count at 95% reliability, with a red line illustrating volume increasing with training paths.]
FIGURE 7
 Reliability Volume (RV) results for student 1 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: A two-part graph. Left: A blue step graph titled “Reliability vs Volume” shows reliability increasing with volume in cubic centimeters, ranging from zero to approximately nine hundred. Right: A red line graph titled “Target Volume vs Path Count (95.0% Reliability)” illustrates how the target volume at 95% reliability increases sharply with the number of training paths, stabilizing around seven hundred cubic centimeters after the initial spike.]
FIGURE 8
 Reliability Volume (RV) results for student 2 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: Two side-by-side graphs. The left graph, titled “Reliability vs Volume,” shows a blue step line indicating reliability increasing with volume, peaking at 1.0 near 1000 cm3. The right graph, “Target Volume vs Path Count (95.0% Reliability),” features a red line depicting volume changes against the number of training paths, fluctuating between 700 and 900 cm3 across 50 paths.]
FIGURE 9
 Reliability Volume (RV) results for student 3 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: Left chart displays “Reliability vs Volume” with reliability increasing stepwise as volume rises from 0 to 900 cubic centimeters. Right chart shows “Target Volume vs Path Count (95.0% Reliability)” with volume peaking at around 20 paths before declining steadily from 750 to 850 cubic centimeters over 50 paths.]
FIGURE 10
 Reliability Volume (RV) results for student 4 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: Two line graphs are side by side. The left graph, labeled “Reliability vs Volume,” shows a blue step-line increasing from lower left to upper right, indicating reliability increasing with volume from 0 to 500 cubic centimeters. The right graph, labeled “Target Volume vs Path Count (95.0% Reliability),” shows a red line with fluctuations, generally increasing, as the number of training paths increases from 0 to 50, with the target volume at 95% reliability mostly above 350 cubic centimeters.]
FIGURE 11
 Reliability Volume (RV) results for surgical resident 1 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: Two line graphs are shown. The first graph, titled “Reliability vs Volume,” uses a blue stepped line to depict the increase in reliability from 0 to 1 as the volume in cubic centimeters ranges from 0 to 450. The second graph, titled “Target Volume vs Path Count (95.0% Reliability),” uses a red line to illustrate the target volume decreasing and stabilizing at 400 as the number of training paths increases from 0 to 50.]
FIGURE 12
 Reliability Volume (RV) results for surgical resident 2 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: Two graphs depict reliability analysis. The left graph shows reliability versus volume, with a blue stepwise line indicating increasing reliability with volume in cubic centimeters. The right graph displays target volume versus path count at ninety-five percent reliability, using a red zigzag line to represent varying volume levels with different numbers of training paths.]
FIGURE 13
 Reliability Volume (RV) results for surgical resident 3 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: Two graphs are displayed. The first graph, labeled “Reliability vs Volume,” features a blue step-like curve, showing reliability increasing with volume, ranging from zero to two hundred fifty centimeters cubed. The second graph, titled “Target Volume vs Path Count (95.0% Reliability),” presents a red, fluctuating line indicating the target volume at ninety-five percent reliability against the number of training paths, extending from zero to fifty.]
FIGURE 14
 Reliability Volume (RV) results for attending surgeon 1 (female). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.



[image: Two graphs are displayed. The left graph shows “Reliability vs Volume” with a blue stepped line, indicating reliability increases with volume. The right graph displays “Target Volume vs Path Count (95.0% Reliability)” with a red line, showing variability in target volume as the number of training paths increases, peaking around the middle before stabilizing.]
FIGURE 15
 Reliability Volume (RV) results for attending surgeon 2 (male). (Left) R vs. V; (Right) V vs. repetitions at R = 0.95.


In the first panels, students generally operate at smaller working-space volumes V (i.e., higher spatial precision relative to the standard path) but exhibit broader transitions in reliability from R ≈ 0 to R ≈ 1, indicating greater performance variability compared with experienced participants. This observation is consistent with previous reports that experienced operators tend to emphasize stability, whereas novices often trade stability for precision (11, 12).

In the second panels, RV reveals training dynamics that are often obscured by traditional single-metric summaries. When fixing R = 0.95, a favorable trend is a reduction in V with increasing repetitions, reflecting improved precision at a constant success probability. For example, student2, student4, and resident 2 show extended intervals of negative correlation between repetition count and V, suggesting more effective practice results.

By contrast, some participants demonstrate positive correlations or non-monotonic patterns. For instance, RV snapshots for student1 at the 10th, 25th, and 50th repetitions (Table 2) reveal that reliability at a fixed volume (e.g., 427.84 cm3) can fluctuate (0.90 → 0.96 → 0.90). Similarly, for student2, RV snapshots at the same repetitions (Table 3) demonstrate variability at a constant volume (e.g., 613.33 cm3), with reliability shifting from 0.90 → 0.84 → 0.88.

TABLE 2  Reliability Volume (RV) calculations for student 1 at different repetitions.


	10 repetitions
	25 repetitions
	50 repetitions



	Reliability
	Volume (cm3)
	Reliability
	Volume (cm3)
	Reliability
	Volume (cm3)





	0.90
	427.84
	0.96
	427.84
	0.90
	427.84



	0.90
	427.26
	0.96
	427.26
	0.90
	427.26



	0.80
	427.18
	0.92
	427.18
	0.88
	427.18



	0.80
	427.12
	0.92
	427.12
	0.88
	427.12






TABLE 3  Reliability Volume (RV) calculations for student 2 at different repetitions.


	10 repetitions
	25 repetitions
	50 repetitions



	Reliability
	Volume (cm3)
	Reliability
	Volume (cm3)
	Reliability
	Volume (cm3)





	0.90
	613.33
	0.84
	613.33
	0.88
	613.33



	0.90
	613.17
	0.84
	613.17
	0.88
	613.17



	0.80
	613.07
	0.80
	613.07
	0.86
	613.07



	0.80
	613.02
	0.80
	613.02
	0.86
	613.02






Clearly, this indicates that a one-size-fits-all imitation training approach may not be suitable for all trainees. While some individuals can achieve improved precision at a high success probability after completing 50 repetitive training sessions, others may not demonstrate such progress.



3.5 Fatigue and dynamic feedback

In terms of fatigue, the ability to complete a specified surgical task under defined conditions is closely linked to fatigue accumulation with increasing repetitions. RV offers a practical means to capture such effects: fluctuations in R at a fixed V across repetitions are consistent with transient fatigue or distraction.

For training management, we propose a simple stopping rule compatible with closed-loop feedback: define a reliability change threshold (e.g., |ΔR| ≥ 0.05) at a fixed volume. When within-session reliability changes by at least this amount, the session should be paused and skill evaluated using the last stable RV point (the measurement immediately preceding the change). For example, at a working-space volume of 427.84 cm3, student1 should stop imitation training at the 10th repetition, as reliability declined from 0.96 to 0.90. At 613.07 cm3, student2 should stop at the 25th repetition, as reliability shifted from 0.80 to 0.86. Notably, this stopping rule should account for gradual changes, and this will be explored in future research.

Thus, RV is not only an integrated metric for quantifying task success probability under specified conditions, but also a dynamic measure that reflects fluctuations caused by fatigue or distraction.




4 Discussion


4.1 Practicality of RV for capturing skill development

As with conventional working volume (11), RV reflects the expected gradient of spatial economy with increasing experience. In our data, the maximum of working-space volume (at R = 1) decreased consistently across groups: students ( ≈ 853.57 cm3), surgical residents (≈465.62 cm3), and attending surgeons (≈270.33 cm3). Similarly, the average working volume was 164.50 cm3 for students, 66.52 cm3 for residents, and 18.30 cm3 for attending surgeons.

Figure 16 and Table 4 highlight why RV-derived volumes may diverge from conventional working volume. The RV tube radius is defined by the worst-case deviation from the standard path (maximal dmn), whereas the conventional working volume relies on the average distance from a hand-centered point. When fatigue or other uncertainties cause occasional large deviations, the RV maximum volume remains anchored to its tolerance definition and is comparatively stable. By contrast, the average-based working volume is more sensitive to fluctuations.


[image: Two line graphs display data on volume versus training paths. Left graph shows max volume in green, increasing sharply at around 20 paths and stabilizing near 950 cubic centimeters. Right graph shows average working volume in purple, gradually increasing and stabilizing above 190 cubic centimeters, with a reference line at 74.31 cubic centimeters. Both graphs have the x-axis labeled as the number of training paths.]
FIGURE 16
 Comparison of Reliability Volume (RV) and conventional working volumes for student 2.


TABLE 4  Comparison of RV and conventional working volumes for student 2.


	Number of training paths
	Max RV volume (cm3)
	Working volume (cm3)





	10
	738.23
	196.13



	20
	930.56
	216.59



	30
	930.56
	195.13



	40
	930.56
	204.63



	50
	930.56
	190.08






Thus, although both RV and conventional working volume can stratify experience, RV provides greater practical utility by integrating all repetitions within a closed-loop framework (Figure 3). Compared with established metrics such as path length, smoothness, and working volume, RV emphasizes consistency across repetitions rather than single-session snapshots, thereby offering complementary information for comprehensive skill assessment.



4.2 Perceived value and implications

Currently, Reliability Volume (RV) primarily focuses on spatial consistency; however, incorporating task duration represents a critical future extension, as prolonged execution may also serve as an indicator of skill variability. While this study demonstrates the feasibility and practicality of the RV metric, the potential impacts of fatigue and other confounding factors require further investigation. Notably, moderating variables such as gender and prior health status were not included in the current analysis. Future research should therefore enroll larger and more diverse cohorts, integrate direct fatigue assessments, and evaluate additional clinical tasks. Furthermore, given that the number of repetitions was used as a proxy for actual training time in this study, integrating RV into automated real-time feedback systems could enhance training efficiency and skill retention by delivering immediate, actionable guidance (16, 17).




5 Conclusion

We propose Reliability Volume (RV), an integrated metric that combines trajectory similarity with an empirical reliability-based framework to assess surgical skill in repetitive, realistic training settings. RV quantifies both spatial precision and the probability of consistent task execution, addressing limitations of single-session metrics that overlook fatigue and performance drift. Evidence from knot-tying tasks demonstrates that RV effectively captures consistency over repetitions and reveals trade-offs between precision and reliability. Future work will broaden participant diversity, evaluate additional training scenarios, and investigate the integration of RV into automated real-time feedback systems.



Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Ethics statement

Ethical approval was not required for the study involving humans in accordance with the local legislation and institutional requirements. Written informed consent to participate in this study was not required from the participants or the participants' legal guardians/next of kin in accordance with the national legislation and the institutional requirements.



Author contributions

ZY: Writing – original draft. QL: Software, Investigation, Writing – review & editing. JZ: Data curation, Investigation, Resources, Writing – review & editing.



Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by Yan'an University's Doctoral Startup Project (Grant No.: YDBK2020-14).



Acknowledgments

The authors thank Professor Jin Zhang for invaluable guidance and the reviewers for constructive feedback that improved this manuscript.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Generative AI statement

The author(s) declare that Gen AI was used in the creation of this manuscript. To assist in language refinement and grammatical corrections.



Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



References

 1. Sargeant J, Armson H, Chesluk B, Dornan T, Eva K, Holmboe E, et al. The processes and dimensions of informed self-assessment: a conceptual model. Acad Med. (2010) 85:1212–20. doi: 10.1097/ACM.0b013e3181d85a4e

 2. van der Vleuten CP, Schuwirth LW. Assessing professional competence: from methods to programmes. Med Educ. (2005) 39:309–17. doi: 10.1111/j.1365-2929.2005.02094.x

 3. Zia A, Essa I. Automated surgical skill assessment in RMIS training. Int J Comput Assist Radiol Surg. (2018) 13731–739. doi: 10.1007/s11548-018-1735-5

 4. D'Angelo AL, Rutherford DN, Ray RD, Laufer S, Kwan C, Cohen ER, et al. Idle time: an underdeveloped performance metric for assessing surgical skill. Am J Surg. (2015) 209:645–51. doi: 10.1016/j.amjsurg.2014.12.013

 5. Ahmidi N, Ishii M, Fichtinger G, Gallia GL, Hager G. An objective and automated method for assessing surgical skill in endoscopic sinus surgery using eye-tracking and tool-motion data. Int Forum Allergy Rhinol. (2012) 29:507–15. doi: 10.1002/alr.21053

 6. Yamauchi Y, Yamashita J, Morikawa O, Hashimoto R, Mochimaru M, Fukui Y, et al. Surgical skill evaluation by force data for endoscopic sinus surgery training system. In: Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002. Berlin; Heidelberg: Springer (2002). p. 44–51. doi: 10.1007/3-540-45786-0_6

 7. Franklin GF. Feedback Control of Dynamic Systems. Menlo Park, CA: Addison-Wesley Longman Publishing Co, Inc. (1993).

 8. Hamza H, Shabir D, Aboumarzouk O, Al-Ansari A, Shaban K, Navkar NV. Automated skills assessment in open surgery: a scoping review. Eng Appl Artif Intell. (2025) 153:110893. doi: 10.1016/j.engappai.2025.110893

 9. Laufer S, D'Angelo AD, Kwan C, Ray RD, Yudkowsky R, Boulet JR, et al. Rescuing the clinical breast examination: advances in classifying technique and assessing physician competency. Ann Surg. (2017) 266:1069–74. doi: 10.1097/SLA.0000000000002024

 10. Boyajian GP, Zulbaran-Rojas A, Najafi B, Atique MMU, Loor G, Gilani R, et al. Development of a sensor technology to objectively measure dexterity for cardiac surgical proficiency. Ann Thorac Surg. (2024) 117:635–43. doi: 10.1016/j.athoracsur.2023.07.013

 11. D'Angelo AL, Rutherford DN, Ray RD, Laufer S, Mason A, Pugh CM. Working volume: validity evidence for a motion-based metric of surgical efficiency. Am J Surg. (2016) 211:445–50. doi: 10.1016/j.amjsurg.2015.10.005

 12. Azari DP, Miller BL, Le BV, Greenberg CC, Radwin RG. Quantifying surgeon maneuevers across experience levels through marker-less hand motion kinematics of simulated surgical tasks. Appl Ergon. (2020) 87:103:136. doi: 10.1016/j.apergo.2020.103136

 13. Keogh EJ, Palpanas T, Zordan VB, Gunopulos D, Cardle M. Indexing Large Human-Motion Databases. In: Very Large Data Bases Conference. Berlin, Heidelberg: Springer.

 14. Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, et al. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng. (2017) 64:2025–41. doi: 10.1109/TBME.2016.2647680

 15. Lam K, Chen J, Wang Z, Iqbal FM, Darzi A, Lo B, et al. Machine learning for technical skill assessment in surgery: a systematic review. npj Digit Med. (2022) 5:24. doi: 10.1038/s41746-022-00566-0

 16. Boal MWE, Anastasiou D, Tesfai F, Ghamrawi W, Mazomenos E, Curtis N, et al. Evaluation of objective tools and artificial intelligence in robotic surgery technical skills assessment: a systematic review. Br J Surg. (2024) 111:znad331. doi: 10.1093/bjs/znad331

 17. Rahimi AM, Uluç E, Hardon SF, Bonjer HJ, van der Peet DL, Daams F. Training in robotic-assisted surgery: a systematic review of training modalities and objective and subjective assessment methods. Surg Endosc. (2024) 38:3547–55. doi: 10.1007/s00464-024-10915-7

 18. Kahol K, Leyba MJ, Deka M, Deka V, Mayes S, Smith M, et al. Effect of fatigue on psychomotor and cognitive skills. Am J Surg. (2008) 195:195–204. doi: 10.1016/j.amjsurg.2007.10.004

 19. Reijmerink IM, van der Laan MJ, Wietasch JKG, Hooft L, Cnossen F. Impact of fatigue in surgeons on performance and patient outcome: systematic review. Br J Surg. (2023) 111:znad397. doi: 10.1093/bjs/znad397

 20. Kolb D. Experiential Learning: Experience As the Source of Learning and Development, Vol 1 of Journal of Business Ethics. Englewood Cliffs, NJ: Prentice Hall. (1984).

 21. Hatano G, Inagaki K. Child Development and Education in Japan Child Development and Education in Japan. New York, NY, US: W H Freeman Times Books Henry Holt & Co. (1986).

 22. Kluger A, DeNisi A. The effects of feedback interventions on performance: a historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychol Bull. (1996) 119:254–84. doi: 10.1037/0033-2909.119.2.254

 23. Schön DA. The Reflective Practitioner: How Professionals Think in Action. New York, NY: Routledge (1992).

 24. Wei P, Lu Z, Yuan X. Monte Carlo simulation for moment-independent sensitivity analysis. Reliab Eng Syst Safety. (2013) 110:60–7. doi: 10.1016/j.ress.2012.09.005

 25. Zhang H, Dai H, Beer M, Wang W. Structural reliability analysis on the basis of small samples: an interval quasi-Monte Carlo method. Mech Syst Signal Process. (2013) 37:137–51. doi: 10.1016/j.ymssp.2012.03.001

Copyright
 © 2025 Yu, Liu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.



OPS/images/fmed-12-1591043-g013.gif





OPS/xhtml/Nav.xhtml




Contents





		Cover



		Reliability Volume: a novel metric for surgical skill evaluation



		1 Introduction



		2 Reliability volume and its calculation



		3 Experiment: knot-tying with assistive devices



		3.1 Path data collection



		3.2 Participants



		3.3 Standard path



		3.4 Reliability Volume (RV) results



		3.5 Fatigue and dynamic feedback







		4 Discussion



		4.1 Practicality of RV for capturing skill development



		4.2 Perceived value and implications







		5 Conclusion



		Data availability statement



		Ethics statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Generative AI statement



		Publisher's note



		References

















OPS/images/fmed-12-1591043-g012.gif





OPS/images/fmed-12-1591043-g015.gif





OPS/images/fmed-12-1591043-g014.gif





OPS/images/fmed-12-1591043-g011.gif





OPS/images/fmed-12-1591043-g010.gif
81

!

4

r,,. .
i i
o
‘,,,,_ .












OPS/images/crossmark.jpg
©

|






OPS/images/logo.jpg
& frontiers | Frontiers in Medicine







OPS/images/fmed-12-1591043-g005.gif





OPS/images/fmed-12-1591043-g006.gif





OPS/images/fmed-12-1591043-g003.gif





OPS/images/fmed-12-1591043-g004.gif





OPS/images/fmed-12-1591043-g009.gif





OPS/images/fmed-12-1591043-g007.gif





OPS/images/fmed-12-1591043-g008.gif





OPS/images/cover.jpg
@ frontiers | Frontiers in Medicine

Reliability Volume: a novel metric
for surgical skill evaluation





OPS/images/fmed-12-1591043-g001.gif
S Gasedlocp)






OPS/images/fmed-12-1591043-g002.gif
Stept: Data ollcton
(Standard Path and Training aths)

Step2: Simlrity Colcuation
(Eveidean dstance between Paths)

Step3: Sor Distances.
(From fargest tosmalest)

Stepé: Calculte working-space voume
(Cyinder volume st esch istance)

Steps: Caculte Relbilty with Monte Carlo
method
(_dentiy vl pths at each distance)

Stept: Caculate the different RVs under the
diferentdistances






OPS/images/fmed-12-1591043-g016.gif





