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Background: Spinal diseases related pain represents a critical clinical issue 
that demands urgent resolution. Current treatment and assessment strategies 
predominantly focus on peripheral mechanisms. The application of functional 
magnetic resonance imaging (fMRI) offers a promising approach to identifying 
potential central targets for intervention.
Methods: We retrospectively included 31 patients with spinal diseases related 
pain and 32 controls with non-spinal, orthopedic complaints (no chronic 
neurological or psychiatric disorders). All participants underwent resting-state 
brain fMRI (eyes closed, awake). We  quantified amplitude of low-frequency 
fluctuations (ALFF) with mean normalization (mALFF) and z-transformation 
(zALFF), regional homogeneity (ReHo; 27-voxel neighborhood), seed-based 
functional connectivity (FC; pre/postcentral seeds), and degree centrality (DC; 
binary and weighted). Between group tests used voxel-wise two-sample t_tests 
with Gaussian random field (GRF) correction.
Results: Patient group was associated with increased m/zALFF in right 
cerebellar lobule IX and right Superior Frontal Gyrus, medial part, and lower 
activity in bilateral postcentral gyri and the cuneus, decreased m/zALFF in 
bilateral postcentral gyri. ReHo analysis confirmed reduced local synchrony 
in postcentral regions, spatially overlapping with ALFF findings. FC analyses 
revealed enhanced cerebellar-thalamic connectivity (Crus1/2, thalamus) but 
reduced connectivity in sensorimotor and higher-order cortical networks. 
DC showed hyperconnectivity in left cerebellar Crus I with reduced Superior 
Frontal Orbital (Frontal_Sup_Orb). All findings survived GRF correction at the 
pre_specified thresholds.
Conclusion: Resting-state brain fMRI indicates a cerebello-thalamo-cortical 
alteration pattern in spinal diseases related pain featuring cerebellar involvement, 
prefrontal subspecialization, and multilevel sensorimotor disruption. These 
cross-sectional associations may inform hypothesis-generation for future 
neuromodulation studies and provide candidate biomarkers for monitoring, 
pending prospective validation.
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1 Introduction

Spinal diseases related pain is a leading cause of disability and 
health-care expenditure worldwide (1, 2). Importantly, the term 
“spinal diseases” refers to clinically defined conditions (e.g., disc 
degeneration, spinal stenosis, spondylosis), whereas commonly 
cited lifetime prevalence figures (e.g., for non-specific low back 
pain) describe a symptom rather than a diagnosis (3, 4). To avoid 
conflation, here we  focus on patients with symtoms of spinal 
diseases related pain.

Spinal diseases related pain is traditionally managed through 
peripheral interventions such as pharmacotherapy (5, 6), physical 
therapy (7), or surgery (8, 9), etc. However, these approaches often fail 
to address central nervous system alterations increasingly recognized 
in chronic pain states (10–12). Resting-state fMRI has emerged as a 
valuable tool to identify central biomarkers, including ALFF (13–17), 
ReHo (15, 17, 18), and functional connectivity (10, 11, 19, 20). Recent 
studies have reported brain network changes (21–26), particularly in 
sensorimotor, limbic, and thalamo-cortical circuits, highlighting the 
need for a shift toward centrally focused models of spinal 
pain pathophysiology.

This study used fMRI to investigate the brain remodeling 
mechanisms of spinal diseases related pain and to identify the specific 
brain mapping patterns involved in pain processing pathways. The 
primary objective was to establish a comprehensive evaluation 
framework for assessing responsible brain region and connection 
alterations in patients with spinal diseases related pain. By 
implementing a central-peripheral integrated assessment system, this 
research aims to provide a robust scientific foundation for enhancing 
diagnostic accuracy, optimizing therapeutic interventions, and 
improving prognostic evaluation in the management of spinal diseases 
related pain (5–9, 27, 28).

2 Methods

2.1 Study design and participants

This retrospective study enrolled participants who underwent 
functional magnetic resonance imaging (fMRI) examinations at 
the Department of Orthopedics, Ruijin Hospital, Shanghai Jiao 
Tong University School of Medicine, between October 2023 and 
October 2024. The study protocol was approved by the Institutional 
Review Board of Ruijin Hospital (Ethical Approval Number: 
20240902113233506). This retrospective study included two 
groups: (i) patients with symptoms of spinal diseases related pain 
due to clinically diagnosed spinal pathology (e.g., disc 
degeneration, osteoporotic fracture, stenosis), and (ii) controls 
who presented with non-spinal orthopedic complaints and no 
history of chronic neurological or psychiatric disorders. All 
participants were right-handed and underwent brain fMRI on the 
same 3.0-T scanner within the same institutional protocol. Major 

exclusion criteria for both groups were prior spinal surgery, major 
neurological disease (e.g., stroke, traumatic brain injury, 
neurodegeneration), major psychiatric illness, claustrophobia, 
unstable systemic disease, or incomplete records. Pain intensity 
(VAS) was extracted from clinical records closest to the scan date.

2.2 fMRI acquisition

All data were acquired on a GE 3.0-T system. Participants lay 
supine, eyes closed, relaxed but awake. Resting-state functional images 
used gradient-echo EPI with the following parameters: TR/
TE = 2000/30 ms, flip angle = 90°, 43 axial slices, interleaved order, 
slice thickness = 3.2 mm (voxel 3.4 × 3.4 × 3.2 mm3), matrix 64 × 64, 
FOV 220 × 220 mm2, 240 volumes, parallel acceleration = 2. 
Anatomical T1-weighted images used a 3D SPGR sequence: TR/
TE = 8100/3.1 ms, flip angle = 8°, 176 sagittal slices, isotropic 1 mm3 
voxels, FOV 256 × 256 mm2. The first 10 rs-fMRI volumes were 
discarded to allow signal stabilization.

2.3 Preprocessing and first-level metrics

Preprocessing was performed in RESTplus (29)(SPM12-based) 
on MATLAB R2013b. Steps included slice-timing correction; rigid-
body realignment (subjects with >3 mm translation or >3° rotation 
were excluded); normalization to MNI152 template; and nuisance 
regression (24-parameter motion, white matter, CSF). Data were 
band-pass filtered at 0.01–0.08 Hz. ALFF was computed and 
expressed as mean-normalized (mALFF) and z-standardized 
(zALFF) maps within a gray matter mask (30). ReHo (31) was 
computed using Kendall’s coefficient over a 27-voxel (3 × 3 × 3) 
neighborhood and then spatially smoothed with a 6 mm FWHM 
Gaussian kernel.

T1-weighted structural MRI provided the anatomical reference 
for EPI-anatomical registration, MNI normalization, tissue 
segmentation (GM/WM/CSF) for nuisance modeling, and ROI/
surface definitions.

2.4 Functional connectivity and degree 
centrality

Seed-based functional connectivity (FC) analyses used bilateral 
precentral and postcentral gyri as a priori regions of interest due to 
their established roles in pain-related sensorimotor processing and 
representations of nociceptive input. Seed time series were correlated 
with whole-brain voxels and Fisher-z transformed. Degree centrality 
(DC) was computed in both binary and weighted forms using 
RESTplus defaults (voxelwise correlation matrix thresholding), 
providing complementary indices of network hubness. Exact 
parameter settings are reported to facilitate replication.
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2.5 Group-level statistics

Between group comparisons employed voxel-wise two-sample 
t_tests in SPM 12(32, 33)with age and sex as covariates. Multiple 
comparisons were controlled with Gaussian Random Field (GRF) 
correction at the pre-specified thresholds (ALFF/ReHo/FC: voxel 
p < 0.01, cluster p < 0.01; DC: voxel p < 0.05, cluster p < 0.05, matching 
the original analysis). Clinical variables were summarized as 
mean ± SD and compared with t-tests or χ2 tests as appropriate 
(two-tailed p < 0.05) by SPSS (version 26.0; IBM, Armonk, NY, 
United States) statistical software.

3 Results

3.1 Participant characteristics

Thirty-one spinal diseases related pain patients (15 males/16 
females; 64.52 ± 16.40 years) and 32 controls (9 males/23 females; 
47.69 ± 13.45 years) were included after quality control. Groups did 
not differ in sex distribution (p > 0.05); VAS pain scores were higher 
in patient group (p < 0.001). Age was included as a covariate in 
imaging analyses. The demographic and clinical characteristics of 
patients are shown in Table 1.

3.2 The regional brain change in patient 
group

Regional spontaneous activity (mALFF / zALFF) (Tables 2, 3; 
Figures 1, 2): Relative to controls, patients showed higher mALFF 
in the right cerebellar lobule IX (MNI − 6, −39, −57; cluster = 276; 
t = 4.8383) and right medial superior frontal gyrus (MNI − 21, 12, 
33; cluster = 465; t = 4.2789). Lower mALFF emerged in the 
bilateral postcentral gyrus [left: MNI − 57, −12, 30; cluster = 501; 
t = −5.3963; right: MNI 48, −21, 36; cluster = 695; t = −4.957], 
right cuneus (MNI 0, −84, 27; cluster = 443; t = −4.5173), and 
right middle temporal gyrus (MNI 57, −57, 6; cluster = 77; 
t = −3.8437). The zALFF map reproduced this pattern: increased 
activity in right cerebellar lobule IX (MNI − 6, −39, −57; 
cluster = 310; t = 4.8195) and right medial superior frontal gyrus 
(MNI − 6, 39, 54; cluster = 405; t = 4.1027), and decreased activity 
in the bilateral postcentral gyrus [left: MNI − 57, −12, 30; 
cluster = 534; t = −5.6379; right: MNI 42, −18, 54; cluster = 730; 
t = −5.1794] and right cuneus (MNI 0, −84, 27; cluster = 443; 
t = −4.7479).

Regional homogeneity (ReHo) (Table  4; Figure  3): Using the 
SMKCC method, ReHo decreased in the left postcentral gyrus 
(MNI − 57, −12, 27; cluster = 641; t = −5.2072) and right postcentral 
gyrus (MNI 27, −21, 75; cluster = 680; t = −5.5139).

TABLE 1  Participant characteristics.

Variables Patients (n = 31) Controls (n = 33) p value

Age(y) 64.52 ± 16.40 47.69 ± 13.45 <0.001

Men (n, %) 15(48.4) 9 (27.3) 0.081

VAS score 5.26 ± 1.90 1.06 ± 2.58 <0.001

TABLE 2  mALFF differences.

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebellum_9 R 276 -6 −39 −57 4.8383

Cuneus R 443 0 −84 27 −4.5173

Temporal_Mid R 77 57 −57 6 −3.8437

Postcentral L 501 −57 −12 30 −5.3963

Postcentral R 695 48 −21 36 −4.957

Frontal_Sup_Medial R 465 −21 12 33 4.2789

TABLE 3  zALFF differences.

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebellum_9 R 310 −6 −39 −57 4.8195

Cuneus R 443 0 −84 27 −4.7479

Postcentral L 534 −57 −12 30 −5.6379

Postcentral R 730 42 −18 54 −5.1794

Frontal_Sup_Medial R 405 −6 39 54 4.1027
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FIGURE 1

mALFF analysis. Two-sample t-test results are presented. Areas in red indicate significantly increased mALFF value. Areas in blue indicate significantly 
decreased mALFF value. In the comparison of mALFF value between patient group compared to control group showed significantly increased mALFF 
in Cerebellum_9_R and right Frontal_Sup_Medial_R.

3.3 The whole brain changes in patient 
group

Seed-based functional connectivity (FC) (Tables 5–8; 
Figures 4–7):

Postcentral gyrus seeds: Left postcentral seed: showed stronger 
FC with left cerebellar Crus I (MNI − 42, −63, −36; cluster = 131; 
t = 4.4727) and left thalamus (MNI − 18, −21, 12; cluster = 67; 
t = 4.1848); showed weaker FC with right precentral gyrus (MNI 39, 
−15, 51; cluster = 104; t = −4.1961), left postcentral gyrus 
(MNI − 27, −33, 66; cluster = 113; t = −4.1962), and right 
paracentral lobule (MNI 9, −21, 69; cluster = 160; t = −4.3763). 
Right postcentral seed: showed stronger FC with left cerebellar Crus 
II (MNI − 30, −57, −45; cluster = 129; t = 4.4861) and right 
cerebellar Crus I  (MNI 15, −51, −45; cluster = 127; t = 4.6384); 
showed weaker FC with left superior temporal gyrus (MNI − 54, 
−12, 27; cluster = 197; t = −5.1077), right calcarine cortex (MNI 12, 
−51, 0; cluster = 76; t = −3.9785), right precentral gyrus (MNI 39, 

−15, 54; cluster = 316; t = −5.2055), and left postcentral gyrus 
(MNI − 45, −15, 54; cluster = 137; t = −4.4583).

Precentral gyrus seeds: Left precentral seed: showed stronger FC 
with left cerebellar Crus II (MNI − 42, 60, −39; cluster = 198; 
t = 4.495) and with the thalamus bilaterally [right thalamus (MNI 15, 
−15, 12; cluster = 58; t = 4.5659) and left thalamus (MNI − 15, −21, 
12; cluster = 55; t = 4.9435)]; showed weaker FC with left superior 
temporal gyrus (MNI − 45, 18, 12; cluster = 115; t = −4.5627), left 
cuneus (MNI − 9, −84, 24; cluster = 63; t = −4.0804), left postcentral 
gyrus (MNI − 39, −27, 57; cluster = 321; t = −4.7458), right 
postcentral gyrus (MNI 36, −36, 60; cluster = 143; t = −4.6398), and 
right superior frontal gyrus (MNI 27, −24, 75; cluster = 108; 
t = −4.233). Right precentral seed: showed stronger FC with right 
cerebellar Crus I (MNI 30, −75, −36; cluster = 235; t = 5.0247) and left 
cerebellar Crus II (MNI − 3, −69, −30; cluster = 214; t = 4.685); 
showed weaker FC with right superior temporal gyrus (MNI − 45, 
−18, 12; cluster = 200; t = −5.1304), left postcentral gyrus (MNI − 42, 
−18, 51; cluster = 186; t = −4.0706), right postcentral gyrus (MNI 42, 
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−18, 54; cluster = 450; t = −5.0403), and right precuneus (MNI − 3, 
−45, 57; cluster = 110; t = −4.5909).

Degree centrality (DC) (Tables 9–12; Figures 8–11): Across DC 
variants, cerebellar Crus I/II showed increased degree centrality, 
whereas motor and orbitofrontal hubs showed decreased 
degree centrality.

Binary-SmDegreeCentrality: left Crus I  (MNI 30, −75, −21; 
cluster = 1,724; t = 3.9172) showed increased degree centrality; right 
superior orbital frontal gyrus (MNI 21, 21, −27; cluster = 599; 

t = −3.7685) and left precentral gyrus (MNI 15, −9, 69; cluster = 1,064; 
t = −4.7716) showed decreased degree centrality.

Binary-SzDegreeCentrality: left Crus I  (MNI 30, −75, −24; 
cluster = 1,171; t = 4.2187) and right Angular gyrus (MNI 42, −54, 54; 
cluster = 781; t = 3.6977) showed increased degree centrality; right 
Putamen (MNI 21, 21, −27; cluster = 1,021; t = −3.9621), left inferior 
orbital frontal gyrus (MNI − 21, 18, −24; cluster = 594; t = −3.8329) 
and left precentral gyrus (MNI 15, −9, 69; cluster = 1,277; t = −4.8323) 
showed decreased degree centrality.

FIGURE 2

zALFF analysis. Two-sample t-test results are presented. Areas in red indicate significantly increased zALFF value. Areas in blue indicate significantly 
decreased zALFF value. In the comparison of zALFF value between patient group compared to control group showed significantly increased zALFF in 
Cerebellum_9_R and right Frontal_Sup_Medial_R.

TABLE 4  ReHo differences (SMKCC method).

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Postcentral L 641 −57 −12 27 −5.2072

Postcentral R 680 27 −21 75 −5.5139
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Weighted-SmDegreeCentrality: left Crus I (MNI 30, −75, −24; 
cluster = 1,250; t = 3.8040) showed increased degree centrality; right 
superior orbital frontal gyrus (MNI 21, 21, −27; cluster = 690; 
t = −3.8201) and left precentral gyrus (MNI 18, −9, 69; cluster = 1,037; 
t = −4.6758) showed decreased degree centrality.

WeightedSzDegreeCentrality: left Crus I (MNI − 6, −81, −18; 
cluster = 1,947; t = 4.1556) showed increased degree centrality; right 
superior orbital frontal gyrus (MNI 21, 21, −27; cluster = 732; 
t = −3.7573) and left precentral gyrus (MNI 18, −9, 69; cluster = 1,633; 
t = −4.7346) showed decreased degree centrality.

FIGURE 3

SMKCCREHO analysis. Two-sample t-test results are presented. Areas in blue indicate significantly decreased SMKCCREHO value. In the comparison of 
SMKCCREHO value between patient group compared to control group showed significantly decreased SMKCCREHO in right and left Postcentral gyus.

TABLE 5  Functional connection with the left postcentral gyrus as the seed point for patient group compared to subjects with control group.

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebelum_Crus1 L 131 −42 −63 −36 4.4727

Thalamus L 67 −18 −21 12 4.1848

Precentral R 104 39 −15 51 −4.1961

Postcentral L 113 −27 −33 66 −4.1962

Paracentral_Lobule R 160 9 −21 69 −4.3763

TABLE 6  Functional connection with the right Postcentral gyrus as the seed point for patient group compared to subjects with control group.

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebelum_Crus2 L 129 −30 −57 −45 4.4861

Cerebelum_Crus1 R 127 15 −51 −45 4.6384

Temporal_Sup L 197 −54 −12 27 −5.1077

Calcarine R 76 12 −51 0 −3.9785

Precentral R 316 39 −15 54 −5.2055

Postcentral L 137 −45 −15 54 −4.4583
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TABLE 7  Functional connection with the left precentral gyrus as the seed point for patient group compared to control group.

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebelum_Crus2 L 198 −42 −60 −39 4.495

Temporal_Sup L 115 −45 −18 12 −4.5627

Thalamus R 58 15 −15 12 4.5659

Cuneus L 63 −9 −84 24 −4.0804

Thalamus L 55 −15 −21 12 4.9435

Postcentral L 321 −39 −27 57 −4.7458

Postcentral R 143 36 −36 60 −4.6398

Frontal_Sup R 108 27 −24 75 −4.233

TABLE 8  Functional connection with the right precentral gyrus as the seed point for patient group compared to control group.

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebelum_Crus1 R 235 30 −75 −36 5.0247

Cerebelum_Crus2 L 214 −3 −69 −30 4.685

Temporal_Sup R 200 −45 −18 12 −5.1304

Postcentral L 186 −42 −18 51 −4.0706

Postcentral R 450 42 −18 54 −5.0403

Precuneus R 110 −3 −45 57 −4.5909

FIGURE 4

Functional connection with the left Postcentral gyrus as the seed point for patient group compared to control group. The deep blue spheres represent 
regions of interest, the light blue spheres represent brain regions with decreased functional connectivity to the regions of interest, and the orange 
spheres represent brain regions with increased functional connectivity to the regions of interest.
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FIGURE 5

Functional connection with the right Postcentral gyrus as the seed point for patient group compared to control group. The deep blue spheres 
represent regions of interest, the light blue spheres represent brain regions with decreased functional connectivity to the regions of interest, and the 
orange spheres represent brain regions with increased functional connectivity to the regions of interest.

FIGURE 6

Functional connection with the left Precentral gyrus as the seed point for patient group compared to control group. The deep blue spheres represent 
regions of interest, the light blue spheres represent brain regions with decreased functional connectivity to the regions of interest, and the orange 
spheres represent brain regions.
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4 Discussion

Across complementary resting-state metrics—regional activity 
(mALFF/zALFF), local synchrony (ReHo), pairwise coupling 
(seed-based FC), and graph metrics (degree centrality, 

DC)—patients with spinal diseases–related pain exhibit a coherent 
reorganization of the sensorimotor–thalamo–cerebellar system. 
Convergent evidence indicates (i) down-regulation within S1/M1, 
reflected by lower ALFF/zALFF, reduced ReHo, diminished DC, 
and weaker intra-sensorimotor FC; and (ii) up-weighting of 

FIGURE 7

Functional connection with the right Precentral gyrus as the seed point for patient group compared to control group. The deep blue spheres represent 
regions of interest, the light blue spheres represent brain regions with decreased functional connectivity to the regions of interest, and the orange 
spheres represent brain regions with increased functional connectivity to the regions of interest.

TABLE 9  DegreeCentrality (Bi-SmDegreeCentrality).

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebelum_Crus1 L 1724 30 −75 −21 3.9172

Frontal_Sup_Orb R 599 21 21 −27 −3.7685

Precentral L 1,064 15 −9 69 −4.7716

TABLE 10  DegreeCentrality (Bi-SzDegreeCentrality).

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebelum_Crus1 L 1,171 30 −75 −24 4.2187

Putamen R 1,021 21 21 −27 −3.9621

Frontal_Inf_Orb L 594 −21 18 −24 −3.8329

Angular R 781 42 −54 54 3.6977

Precentral L 1,277 15 −9 69 −4.8323
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TABLE 12  DegreeCentrality (weighted-SzDegreeCentrality).

Brain regions Hemisphere Cluster size Cluster centroid MNI Coordinates t-value

X Y Z

Cerebelum_Crus1 L 1947 −6 −81 −18 4.1556

Frontal_Sup_Orb R 732 21 21 −27 −3.7573

Precentral L 1,633 18 −9 69 −4.7346

FIGURE 8

DegreeCentrality(Bi-SmDegreeCentrality). Areas in blue indicate significantly decreased value,areas in red indicate significantly increased value.

TABLE 11  DegreeCentrality (weighted-SmDegreeCentrality).

Brain regions Hemisphere Cluster size Cluster centroid MNI coordinates t-value

X Y Z

Cerebelum_Crus1 L 1,250 30 −75 −24 3.804

Frontal_Sup_Orb R 690 21 21 −27 −3.8201

Precentral L 1,037 18 −9 69 −4.6758
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cerebellar nodes, including increased ALFF/zALFF in Cerebellum 
lobule IX and consistently elevated DC in Crus I/II across binary 
and weighted thresholds. Beyond the primary motor system, 
reduced coupling with superior temporal gyrus, calcarine/cuneus, 
and precuneus/DMN suggests broader consequences for auditory–
temporal integration, early visual processing, and default-mode 
subsystems. Laterality was modest overall in the network-level 
synthesis, though the voxelwise analyses highlight pronounced 
right lobule IX hyperactivity (ALFF t = 4.84) and left Crus 
I hyperconnectivity (DC peak t = 4.22), nominating postcentral 
and cerebellar clusters as hubs in a shift from cortical sensorimotor 
dominance toward cerebellar–subcortical coordination.

The combined pattern is compatible with sensorimotor 
dysrhythmia and compensatory gating models in chronic pain. 
The dual-mode cerebellar signature suggests subregional 
dissociation: lobule IX may contribute to more direct nociceptive 
integration (34), whereas Crus I  appears to participate in 
compensatory network reorganization via enhanced thalamo-
cortical coupling (35). These observations align with literature on 

cerebellar involvement in pain anticipation (36) and descending 
modulatory control (37). The prefrontal findings indicate 
functional segregation within medial PFC, with anterior (t = 4.28) 
versus posterior (t = 4.10) subregions showing differential 
activation that plausibly map onto the affective (38) and cognitive-
evaluative (39) dimensions of pain, respectively, and thus motivate 
subregion-specific modulation strategies. Meanwhile, the 
preserved thalamic coupling (e.g., left thalamus t = 4.94) in the 
context of cortical hypoactivity is consistent with roles proposed 
for central sensitization (40) and enhanced nociceptive relay (41). 
Notably, age effects were negligible in these data, in keeping with 
reports of minimal association between age and clinical pain 
perception in similar cohorts (42, 43), suggesting the observed 
signatures are primarily symptom-related rather than age-driven.

Together, these results nominate cerebellar Crus I/II and 
sensorimotor–thalamic loops as testable targets for 
neuromodulation or rehabilitation. In particular, Crus I/II DC 
and cerebello–S1/M1 FC emerge as plausible network-level 
readouts for patient stratification and treatment monitoring. The 

FIGURE 9

DegreeCentrality(Bi-SzDegreeCentrality). Areas in blue indicate significantly decreased value,areas in red indicate significantly increased value.
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observed prefrontal subspecialization further implies subregion-
specific stimulation or neurofeedback protocols tailored to 
affective versus cognitive pain components.

Limitations: This work is retrospective with a modest sample 
size, limiting causal inference and external generalizability. 
Clinical heterogeneity (spinal pathology, medication, pain 
duration/treatment history) may introduce variance beyond 
modeled covariates. Results are group-level and not individually 
predictive. Graph metrics such as DC can be  sensitive to 
thresholding and pipeline parameters; although convergence 
across binary and weighted thresholds increases confidence, 
absolute DC values warrant cautious interpretation. Despite 
stringent motion controls, residual micromovements and state 
factors (attention, medication) cannot be fully excluded. Finally, 
the absence of behavioral correlations (sensorimotor performance, 
detailed pain phenotyping) constrains mechanistic claims.

Future directions: Prospective, phenotype-stratified and 
longitudinal cohorts with harmonized acquisition and open, 
standardized pipelines should test the stability, specificity, and 
prognostic value of these signatures. Interventional designs 

(neuromodulation, neurofeedback, targeted rehabilitation) can 
probe causality by tracking Crus I/II DC and cerebello–
sensorimotor FC as mechanistic endpoints alongside clinical 
outcomes. Multimodal integration (structural, diffusion, and task 
paradigms) and behavioral anchoring will be essential to refine 
theranostic utility.

5 Conclusion

Patients with spinal diseases–related pain show a reproducible, 
multimodal reconfiguration of resting-state networks: down-
regulation of primary sensorimotor cortices and up-weighting of 
cerebellar nodes (lobule IX, Crus I/II), with strengthened 
cerebello–sensorimotor and thalamo-cortical coupling and 
reduced interactions with temporal, occipital, and precuneus/
DMN regions. Prefrontal subspecialization further suggests 
altered evaluative–affective control. While associative, this 
coherent signature refines the central phenotype as a shift of 
network load toward cerebellar–subcortical loops and nominates 

FIGURE 10

DegreeCentrality(weighted-SmDegreeCentrality). Areas in blue indicate significantly decreased value,areas in red indicate significantly increased value.
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cerebellar (Crus I/II, lobule IX), thalamic, and S1/M1 circuits as 
testable targets. Network-level readouts—particularly Crus I/II 
degree centrality and cerebello–S1/M1 connectivity—warrant 
prospective evaluation as biomarkers for stratification and 
treatment monitoring.
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