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Background: Common variable immune deficiency disorder (CVID) and X-linked 
agammaglobulinemia (XLA) are the most prevalent predominantly antibody 
deficiencies (PADs). Analysis of the TACI/TNFRSF13B gene in CVID and BTK genes 
in XLA patients using Sanger sequencing can help make specific diagnoses of 
these cases. The study aimed to find the TACI and BTK gene mutations and their 
allelic variations associated with CVID and XLA patients.
Methods: This cross-sectional study was conducted on clinically suspected 
PAD patients who attended the Department of Pediatrics, Bangabandhu Sheikh 
Mujib Medical University (BSMMU), Bangladesh, from September 2022 to August 
2023. Serum immunoglobulin levels, immunophenotyping by flow cytometry, 
and PCR were conducted in the Department of Microbiology and Immunology 
at BSMMU. Genetic analysis of the TACI and BTK genes was conducted 
using Sanger sequencing at DNA Solutions Limited, Dhaka, Bangladesh. The 
sequencing results were validated using the NCBI GenBank.
Results: Of 35 clinically suspected PAD patients, 15 (42.86%) were diagnosed 
as PAD patients. Within this group, seven (46.67%) were diagnosed with CVID, 
seven (46.67%) with XLA, and one (6.66%) with agammaglobulinemia other than 
XLA. The analysis of the TACI gene revealed no pathogenic variants in the CVID 
patients. Upon analyzing exons 2 to 19 of the BTK gene, seven pathogenic/likely 
pathogenic mutations were detected, consisting of four nonsense and three 
missense mutations. Among these, three were found to be  novel mutations, 
including two missense and one nonsense mutation.
Conclusion: The genetic analysis of the TACI gene in CVID patients revealed 
no pathogenic variants. The BTK gene displayed heterogeneous mutations, 
with nonsense mutations being the most prevalent. In this cohort, XLA patients 
presented three de novo point mutations.
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Introduction

Primary immune deficiency disorders (PIDDs) are a diverse set 
of hereditary diseases that impair various aspects of the innate and 
adaptive immune systems. Around the world, primary 
immunodeficiencies, also known as inborn errors of immunity (IEI), 
are estimated to affect approximately 6 million people, with 70 to 90% 
remaining undiagnosed and untreated (1, 2). The International Union 
of Immunological Societies (IUIS) is an international group of experts 
that evaluates these diseases every 2 years based on their clinical and 
immunologic phenotypes. The 2022 IUIS classification revealed 485 
illnesses, including 55 novel monogenic defects and one autoimmune 
phenocopy. In the 2024 update, this number increased to 559 inborn 
errors of immunity (IEI), including 67 novel monogenic defects and 
two phenocopies (3, 4). According to the most fundamental categories 
for immunologic illnesses, the most prevalent PIDDs are 
predominantly antibody deficiencies (PAD), which has multiple 
etiologies (5).

There is relatively little information available on PIDDs in 
Bangladesh. In 2016, the results of a study conducted at a tertiary 
care hospital in Bangladesh showed that the majority (60%) of 
patients had PADs, followed by combined immune deficiencies 
(30%) and phagocytic disorders (10%). Among the most prevalent 
PADs, transient hypogammaglobulinemia of infancy accounted 
for 33.33%, followed by 16.66% each for common variable 
immune deficiency disorder (CVID), agammaglobulinemia, 
selective IgM deficiency (SIgMD), and selective IgA deficiency 
(SIgAD) (6). Another study (7) also showed that the majority 
(64.28%) of PIDD cases were PAD patients, with CVID and 
agammaglobulinemia being the most common antibody 
deficiency disorders (21.43%).

The etiology of the vast majority of CVID cases is unknown. Since 
2003, mutations in four genes—ICOS, CD19, BAFF-R, and 
TNFRSF13B (encoding TACI, the transmembrane activator, calcium 
modulator, and cyclophilin ligand interactor)—have been identified 
as being responsible for 10–15% of CVID cases (8–14). With one or 
two mutant alleles, TACI deficiency has been identified in up to 10% 
of CVID patients (10, 11). For the specific diagnosis of CVID, 
mutations in TACI/TNFRSF13B can be  detected by nucleotide 
sequencing (15).

In cases of X-linked agammaglobulinemia (XLA), is prevalent 
immunodeficiency disorder in Bangladesh, patients have between 0.01 
and 0.5% CD19+ B lymphocytes in their blood. These cells show high 
levels of surface IgM expression (16). The absence or reduction of 
intracellular BTK protein detection by flow cytometry can aid in 
diagnosing XLA (17). Approximately 95% of XLA patients have 
markedly reduced or absent BTK protein expression, but 5% may have 
normal protein expression with abnormal function (18). These 5% of 
patients can also be diagnosed through mutation analysis of the BTK 
gene. Therefore, BTK gene mutation analysis using nucleotide 
sequencing can be used for the specific diagnosis of this disorder (19).

Autosomal recessive agammaglobulinemia is an extremely rare 
condition, accounting for only 10 to 15% of agammaglobulinemia 
patients. It is a genetically diverse illness characterized by a significant 

decrease in all antibody classes and an absence of peripheral B cells, 
with no BTK mutations (20, 21).

The 2024 update of the IUIS guides the creation of panels used 
for targeted gene sequencing to aid in the clinical genetic diagnosis 
of IEI and is meant to serve as a follow-up resource for researchers 
and clinicians (22). Different countries are using nucleotide 
sequencing for the diagnosis of PIDDs worldwide, as genetic 
testing has assumed increasing importance in the diagnosis and 
management of PIDDs (23). To date, nucleotide sequencing has 
not been used for the diagnosis of PIDDs in Bangladesh. The aim 
of this study was to assess variants in the TACI/TNFRSF13B and 
BTK genes using Sanger sequencing to enable the specific 
diagnosis of CVID and XLA cases among PAD patients 
in Bangladesh.

Materials and methods

Among 35 clinically suspected PAD patients, 15 were diagnosed 
as PAD patients and enrolled in this cross-sectional study conducted 
from September 2022 to August 2023. Among them, nine clinically 
diagnosed PAD patients were selected from the registry of the 
Pediatrics Department at Bangabandhu Sheikh Mujib Medical 
University (BSMMU). A total of six were diagnosed as PAD patients 
among 26 newly suspected PIDD patients who attended the 
Department of Pediatrics at Ad-din Hospital, Dhaka. Patients were 
enrolled in this study based on the standard criteria of the Jeffrey 
Modell Foundation (24), along with the complete blood count, serum 
immunoglobulin (IgM, IgG, IgA, IgE) levels, and flow cytometric 
analysis of peripheral blood for T-B-NK cell surface markers. The age 
group of the patient was defined as between 0 and 18 years old, 
according to the United Nations Convention on the Rights of the 
Child. Informed written consent was obtained from the parents, and 
prior approval was obtained from the Institutional Review Board of 
BSMMU, Dhaka, Bangladesh. (Ref. no. BSMMU/2022/12963; Date: 
31.12.2022) was obtained before enrollment in this study.

Flow cytometry-based immunophenotyping was performed using 
a BECKMAN COULTER DxFLEX Flow Cytometer (Cat. No. 651155) 
with monoclonal antibodies (Abcam, UK; Beckman Coulter, USA; 
BioLegend, USA; and BD Biosciences, USA). The BD FACSuite™ 
software was used for data acquisition and analysis.

BTK protein expression was assessed in the monocytes of 
agammaglobulinemia patients who showed reduced levels (<2 SD) of 
serum immunoglobulin classes compared to the age-specific normal 
level (25), and B cells were absent or markedly reduced (<2% of 
circulating B cells). Age-specific reference values for the above-
mentioned proteins have not yet been established by the ESID 
guidelines (November, 2019). A healthy control of the same age group 
was included for each case to compare the mean fluorescence intensity 
(MFI) of BTK proteins of diagnosed XLA cases with those of healthy 
donors (18). Samples from both suspected PAD patients and healthy 
controls were analyzed simultaneously in two different test tubes for 
each protein, and the events were compared between the suspected 
case and the healthy donor using a histogram. The mean fluorescence 
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intensity (MFI) of the anti-BTK antibody was measured and compared 
with the MFI of the healthy control sample (Supplementary file 1).

Serum IgG, IgM, and IgA levels were determined using an 
automated nephelometry analyzer (SIEMENS Atellica NEPH 630; 
Cat. No. 191227), and IgE was assessed using a chemiluminescence 
auto-analyzer (SIEMENS Advia Centaur XPT; Cat. No. 1392409), as 
per the manufacturer’s instructions.

The TACI/TNFRSF13B and BTK genes were amplified using 
conventional PCR from a peripheral venous blood specimen. PCR 
assays were performed on a Proflex PCR system (Applied Biosystems, 
Thermo Fisher Scientific, USA) in the PCR laboratory of the 
Department of Microbiology and Immunology, BSMMU. Genomic 
DNA extraction from peripheral venous blood was performed 
according to the manufacturer’s instructions (TRUPCR® BLOOD DNA 
EXTRACTION KIT, Kilpest India Ltd., India). As the Department of 
Microbiology and Immunology at BSMMU lacks the setup for DNA 
sequencing, this procedure was carried out at DNA Solution Limited, 
Shyamoli, Dhaka. The nucleotide sequence was determined from the 
final PCR products using the Sanger dideoxy method with PCR primers 
on a 3,500 DX Genetic Analyzer (Thermo Fisher Scientific, USA).

The collected data were checked, edited, and analyzed using SPSS 
software package version 27 (Strata Corporation, College Station, Texas). 
All diagnosed cases were categorized into three groups: CVID, XLA, and 
agammaglobulinemia other than XLA, according to serological tests 
(IgG, IgM, IgA, and IgE), basic T-B-NK cell markers, CD27 and IgD 
markers, and BTK protein expression. After obtaining the results of 
Sanger sequencing, the obtained data were analyzed using various 
editing software tools. Sequence chromatograms from 14 patients were 
edited and converted to FASTA format in Chromas software. Reference 
sequences of the exons of the TACI and BTK genes were obtained from 
the NCBI GenBank. Mutation analysis was performed through multiple 
sequence alignment using MEGA11, applying the ClustalW Multiple 
Alignment algorithm. Nucleotide and amino acid positions were 
numbered according to the cDNA sequence (26). For the annotation of 
the mutation, the functional implication of the missense variants was 
assessed using the computational algorithm PolyPhen2.

Results

This cross-sectional study was conducted on 35 clinically 
suspected PAD patients; among them, 15 (42.86%) were diagnosed 
with PAD based on laboratory test results.

Of the 15 laboratory-confirmed PAD patients, seven (46.67%) 
were diagnosed with CVID and eight (53.33%) with 
agammaglobulinemia. Among the agammaglobulinemia patients, 
seven (46.67%) had XLA, while one (6.66%) was diagnosed as a case 
of agammaglobulinemia other than XLA (Figure 1).

Table 1 shows the important demographic, clinical, and laboratory 
findings of the diagnosed CVID patients. Switched memory B cells 
(CD19 + CD27 + IgD-) were decreased below the age-related 
reference value (27, 28). All patients had decreased serum IgG levels, 
along with reduced levels of either serum IgA or IgM, except for two 
patients (P4 and P5) who were receiving IVIG at the time of 
evaluation. In P3, the serum IgG level, along with switched memory 
B cells, was found to be decreased.

Table 2 shows some pivotal demographic, clinical, and laboratory 
findings of the diagnosed agammaglobulinemia patients. The CD19 + B 

cell count was decreased (<2SD) in all seven XLA patients. Serum IgG, 
IgA, and IgM levels were also decreased in all of these patients below the 
age-related reference value. BTK protein expression was markedly 
reduced after stimulation with an anti-BTK monoclonal antibody in all 
these patients. In P9 and P12, there was a positive family history of 
maternal male relatives who died in early childhood due to respiratory 
tract infections. The rest of the patients had no such history. As P14 had 
no maternal uncle, information regarding the death of maternal male 
relatives could not be obtained. On the other hand, one patient with 
agammaglobulinemia other than XLA showed decreased CD19 + B cells, 
serum IgA, and IgM levels, but BTK protein expression was very close to 
that of the healthy control after stimulation with an anti-BTK monoclonal 
antibody. Serum IgG was normal, as the patient was receiving IVIG at 
the time of evaluation. The comparison of intracellular BTK protein 
expression among the XLA patients and agammaglobulinemia patients 
with healthy donors is shown in Figures 2, 3.

Table 3 shows TACI/TNFRSF13B gene mutations in the diagnosed 
CVID patients. The analysis of exons 1 to 5 revealed no pathogenic 
variants in any of the patients. All seven patients expressed the same 
nucleotide substitution, resulting in benign variants in exons 2 and 5. In 
exon 2, there was a nucleotide substitution c.81G > A, which led to the 
benign variant p.Thr27=. The nucleotide substitution c.831 T > C in exon 
5 resulted in the benign variation p.Ser277=. In both cases, the molecular 
consequence was synonymous. In P1 and P3, another synonymous 
variant was found in the 3 prime un-translated region (UTR) of exon 5, 
which occurred due to the nucleotide substitution c.*173G > A. In P3, a 
nucleotide substitution, c.752C > T, was found in exon 5, leading to a 
missense mutation, p.pro251leu, which was also classified as benign.

Table 4 shows BTK gene mutations alongside flow cytometric 
findings in the diagnosed XLA patients. The analysis of exons 2 to 19 
revealed seven pathogenic/likely pathogenic mutations in seven 
patients, including four nonsense (c.763C > T, c.1899C > T, 
c.1573C > T, and c.829G > T) and three missense mutations 
(c.863G > C, c.862C > T, and c.110 T > C).

Discussion

In this study, genetic analysis of the TACI/TNFRSF13B gene was 
performed on seven patients diagnosed with CVID. The TACI/

FIGURE 1

Distribution of the types of PAD patients (n = 15).
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TNFRSF13B gene is located at 17p11.2 and has 5 exons. Exon 1 to 5 
analysis revealed no pathogenic variant in any CVID patients. In 
exon 2, the expressed benign variant p.Thr27 = has been previously 
described in several studies (10, 29, 30). There is no submitter for the 
synonymous variant p.Ser277 = in the NCBI GenBank, which was 
discovered in exon 5. Moreover, the synonymous variant, 
c.*173G > A, and the missense mutation, p.Pro251Leu, also have no 
submitter in the NCBI GenBank. The development and progression 
of CVID are believed to be influenced by environmental variables and 
epigenetic alterations, even in the absence of recognized pathogenic 
mutations. Patients with CVID might have a variety of clinical 
symptoms, even if they share comparable genetic origins. This 
suggests that other factors, including non-genetic ones, contribute to 

the disease’s heterogeneity, as 85–90% of cases of CVID have no 
underlying genetic cause. Therefore, the absence of a pathogenic 
mutation in CVID patients might seem to lessen the implications of 
the condition, but it does not diminish the significant clinical burden 
and the need for ongoing research into the disease’s complex etiology 
and pathogenesis (31). Moreover, only the TACI gene was analyzed 
in this study. Therefore, detection of other genes commonly 
associated with CVID (ICOS, CD19, BAFF-R) using genotypic and 
phenotypic methods could have increased the detection rate of CVID 
patients (8–14). Figure 4 shows the sequence chromatogram of BTK 
variants of P14 in exon 9, and Figure 5 shows multiple sequence 
analysis (MSA) of the FASTA sequence of exon 2 of seven XLA 
patients to detect mutation.

TABLE 1  Demographic, clinical, and laboratory findings of the diagnosed CVID patients.

Pt’s 
no.

Sex Age Age of 
onset

History of 
infection

CD19+ B 
cell (%)

CD19+ 
CD27+IgD− 

(%)

Serum 
IgM 

(gm/l)

Serum 
IgG 

(gm/l)

Serum 
IgA (gm/l)

P1 F 11y 1y Fever, RTI 20.0 (17–37.2) 2.0 (2.9–17.4) 2.50 (0.41–

2.55)

<1.34 (5.03–

17.19)

<0.26 (0.42–

2.95)

P2 F 7y 2y Fever, RTI 15.6 (17–37.2) 1.8 (2.9–17.4) 0.30 (0.38–

2.51)

1.38 (4.62–

16.82)

0.80 (0.34–

2.74)

P3 M 1y 3 m Pneumonia 58.0 (12.9–

29.2)

0.51 (0.6–3.7) 1.57 (0.40–

1.32)

<1.34 (1.64–

5.88)

0.36 (0.16–

0.50)

P4 M 6y 1y Fever, RTI 25.0 (17–37.2) 2.0 (2.9–17.4) 0.32 (0.37–

2.24)

10.5 (3.86–

14.70)

1.06 (0.29–

2.56)

P5 M 12y 1y Fever, pneumonia 4.0 (17–37.2) 2.7 (2.9–17.4) 0.38 (0.41–

2.55)

14.0 (5.03–

17.19)

0.26 (0.42–

2.95)

P6 M 1y 7 m Fever, RTI 4.7 (12.9–

29.2)

0.56 (0.6–3.7) 1.02 (0.40–

1.43)

2.00 (2.46–

9.04)

0.26 (0.27–

0.66)

P7 M 13y 6y Fever, RTI 16.7 (11.9–21) 0.64 (2.9–17.4) 0.22 (0.41–

2.55)

1.62 (5.03–

17.19)

0.26 (0.42–

2.95)

y: year; m: month; F: female; M: male. The bold values indicate significant results.

TABLE 2  Demographic, clinical, and laboratory findings of the diagnosed agammaglobulinemia patients.

Pt’s 
no.

Sex Age Age of 
onset

History of 
infection

BTK protein 
expression

CD19 + B 
cell (%)

Serum 
IgM 

(gm/l)

Serum 
IgG 

(gm/l)

Serum 
IgA 

(gm/l)

Family 
history

P8 M 14y 1 m Fever, RTI 390.0 0.02 (11.9–21.0) <0.169 

(0.45–2.44)

3.45 (5.09–

15.80)

<0.256 

(0.52–3.19)

−

P9 M 3y 7 m Fever, RTI, 

Diarrhea

561.0 0.1 (12.9–29.2) <0.169 

(0.37–1.84)

1.34 (2.95–

11.56)

<0.256 

(0.27–2.46)

+

P10 M 6y 3y Fever, RTI 424.0 0.1 (17–37.2) <0.169 

(0.37–2.24)

2.41 (3.86–

14.70)

<0.256 

(0.29–2.56)

−

P11 M 14y 5y Fever, RTI, 

Diarrhea,

394.0 0.5 (11.9–21.0) <0.169 

(0.45–2.44)

3.23 (5.09–

15.80)

<0.256 

(0.52–3.19)

−

P12 M 8y 5y Fever, RTI 435.00 <0.02 (17–37.2) <0.169 

(0.38–2.51)

1.88 (4.62–

16.82)

<0.256 

(0.34–2.74)

+

P13 M 18y 5y Fever, RTI 593.00 0.1 (11.9–21.0) <0.169 

(0.49–2.01)

1.34 (4.87–

13.27)

<0.256 

(0.60–3.37)

−

P14 M 8y 6 m Fever, RTI 492.0 0.1 (17–37.2) <0.169 

(0.38–2.51)

3.48 (4.62–

16.82)

<0.256 

(0.34–2.74)

−

P15 F 4y 6 m RTI, Diarrhea 1203.0 0.1 (12.9–29.2) <0.169 

(0.37–1.84)

7.19 (2.95–

11.56)

<0.256 

(0.27–2.46)

+: history of maternal male family members who died due to infections in early childhood; y: year; m: month; F: female; M: male. The bold values indicate significant results.
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The BTK gene is located at Xq21.3-Xq22 and spans 37.5 kb, 
comprising 19 exons. This gene has a non-coding region as its first 
exon, while the next 18 exons encode the BTK protein (32). The 
Human Gene Mutation Database recorded 1,059 BTK gene 
mutations connected to XLA (33). Missense mutations are the 
most prevalent, alongside nonsense mutations, splice site 
mutations, insertions, and deletions. This study found seven 
pathogenic/likely pathogenic mutations and three benign variants 
in seven XLA patients. The pathogenic mutations included four 
nonsense (42.86%) and three missense mutations (57.14%). The 
results of the current study are in line with those of a previous 
study (34), which reported 58% recurrent mutations in a group of 
30 patients.

The genetic profiles of seven XLA patients in this study also 
showed that the identified mutations spanned all domains of BTK, 
except for the TH domain. The PH, SH3, and SH2 domains each 
accounted for two mutations (28.57%) of all mutations, and one 
mutation (14.29%) was found in the SH1 domain. Missense mutations 
were found in the PH and SH2 domains, with a propensity for the SH2 
domains. Nonsense mutations were found in the PH, SH3, and SH1 
domains, with a propensity for SH3 domain. Therefore, it is 
noteworthy to mention that BTK mutations can occur sporadically 
(35–40).

A total of three-point mutations (c.863G > C, c.110 T > C, and 
c.829G > T) were found to be de novo in our patient. No submitter was 
found in the NCBI GenBank for this mutation. In the case of P8, a 

FIGURE 2

Distribution of intracellular BTK protein expression among the XLA patients. The mean fluorescence intensity (MFI) of BTK protein expression in the 
healthy controls (n = 7) was 1198.29 and in XLA patients (n = 7) was 469.86, which was markedly reduced compared to that of the healthy control after 
stimulation with an anti-BTK monoclonal antibody. *AG: agammaglobulinemia other than XLA.

FIGURE 3

Distribution of intracellular BTK protein expression in agammaglobulinemia patient, other than the XLA patient. The MFI of BTK protein expression in 
the healthy control (n = 1) was 1,225 and in the agammaglobulinemia other than XLA patient (n = 1) was 1,203, which was very close to that of the 
healthy control after stimulation with an anti-BTK monoclonal antibody. *AG: agammaglobulinemia other than XLA.

https://doi.org/10.3389/fmed.2025.1569810
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chakrobortty et al.� 10.3389/fmed.2025.1569810

Frontiers in Medicine 06 frontiersin.org

TABLE 4  BTK gene mutations in the diagnosed XLA patients.

Pt’s 
no.

Exon Domain Nucleotide 
substitutions

Amino 
acid 

change

Type of 
mutation

Classification Geographic 
distribution

Accession 
no.

P8

10 SH2 c.863G > C p.Arg288Pro Missense N Pathogenic No submitter was found PP107932

18 SH1 c.1899C > T p.Cys633= Synonymous Benign Vietnam, USA, Austria, UK PP547986

19 SH1 c.*192G > A 3 prime UTR Benign No publications were found

P9

8 SH3 c.763C > T p.Arg255Ter Nonsense Pathogenic USA, China, Japan, PP555599

19 SH1 c.*116A > C 3 prime UTR Benign No publications were found

P10

2 PH c.37C > T p.Arg13Ter Nonsense Pathogenic

China, Spain, USA, Brazil, 

Japan, Greece

PP565372

18 SH1 c.1899C > T p.Cys633= Synonymous Benign Vietnam, USA, Austria, UK PP547987

19 SH1 c.*192G > A 3 prime UTR Benign No publications were found

P11

16 SH1 c.1573C > T p.Arg525Ter Nonsense Likely pathogenic Sweden PP601381

19 SH1 c.*116A > C 3 prime UTR Benign No publications were found

P12

10 SH2 c.862C > T p.Arg288Trp Missense

Pathogenic/ Likely 

pathogenic

Mexico, USA, Australia, 

Italy, Taiwan

PP565373

19 SH1 c.*116A > C 3 prime UTR Benign No publications were found

P13

2 PH c.110 T > C p.Leu37Pro Missense N Pathogenic No submitter was found PP107933

19 SH1 c.*192G > A 3 prime UTR Benign No publications were found

P14

9 SH3 c. 829G > T p.Glu277Ter Nonsense N Pathogenic No submitter was found PP601380

18 SH1 c.1899C > T p.Cys633= Synonymous Benign Vietnam, USA, Austria, UK PP547988

N: Novel mutation; PH: Pleckstrin homology; SH3: Src homology 3 domain; SH2: Src homology 2 domain; SH1: kinase domain.

novel missense mutation, c.863G > C, was found, where a G-to-C 
transition at nucleotide position 863  in the BTK gene results in 
p.Arg288Pro (arginine is replaced with tryptophan). Arg288 is located 

within the BTK protein’s SH2-like domain. This mutation disrupts the 
interaction of the BTK protein with phosphotyrosine, leading to 
impaired B-cell function.

TABLE 3  TACI/TNFRSF13B gene variants in the diagnosed CVID patients.

Patient’s no. Exon Nucleotide 
substitutions

Amino acid 
change

Type of 
mutation

Classification Geographic 
distribution

P1

2 c.81G > A p.Thr27= Synonymous Benign Germany, USA,

5

c.831 T > C p.Ser277= Synonymous Benign No publications were found

c.*173G > A 3 prime UTR Benign No publications were found

P2

2 c.81G > A p.Thr27= Synonymous Benign Germany, USA

5 c.831 T > C p.Ser277= Synonymous Benign No publications were found

P3

2 c.81G > A p.Thr27= Synonymous Benign Germany, USA

5

c.831 T > C p.Ser277= Synonymous Benign No publications were found

c.752C > T p.pro251leu Missense Benign No publications were found

c.*173G > A 3 prime UTR Benign No publications were found

P4

2 c.81G > A p.Thr27= Synonymous Benign Germany, USA

5 c.831 T > C p.Ser277= Synonymous Benign No publications were found

P5

2 c.81G > A p.Thr27= Synonymous Benign Germany, USA

5 c.831 T > C p.Ser277= Synonymous Benign No publications were found

P6

2 c.81G > A p.Thr27= Synonymous Benign Germany, USA

5 c.831 T > C p.Ser277= Synonymous Benign No publications were found

P7

2 c.81G > A p.Thr27= Synonymous Benign Germany, USA

5 c.831 T > C p.Ser277= Synonymous Benign No publications were found
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P13 showed a novel missense mutation, c.110 T > C, where a 
T-to-C transition at nucleotide position 110 in the BTK gene occurs 
in the PH domain of the BTK protein. The PH domain is known to 
be involved in protein–protein interactions and signaling pathways 
that are crucial for its overall structure and function. It results in the 
p.Leu37Pro mutation, where leucine is replaced with proline, leading 
to a block in B cell development.

In the case of P14, another novel nonsense mutation, c.829G > T, 
was detected, where a G-to-T transition occurs at nucleotide position 
829 in the BTK gene. Here, p.Glu277Ter indicates that glutamic acid 
is replaced by a stop codon. Glu277 (glutamic acid at position 277) in 

the BTK gene is located within the SH3 domain, a region involved in 
protein–protein interactions. As nonsense mutation results in chain 
termination, producing truncated BTK proteins, and the clinical and 
laboratory findings align with XLA, this novel mutation can 
be considered pathogenic.

In the cases of P9, P10, P11, and P12, the identified point 
mutations were c.763C > T, c.1899C > T, c.1573C > T, and c.862C > T, 
respectively [accession no. CM940188, CM940182, CM950171, and 
CM940189 (41)]. c.763C > T, which is located in the SH3 domain, has 
been previously described as pathogenic in several studies (36, 37, 
42–47). c.1899C > T, located in the PH domain, has also been 

FIGURE 4

Sequence chromatogram of BTK variants in patient P14 in exon 9. A single-nucleotide substitution from G to T, c.829G > T, in exon 9 of the BTK gene 
was identified in the patient, resulting in a nonsense mutation. The codon GAA, encoding glutamate, was changed to the stop codon TAA.

FIGURE 5

Multiple sequence analysis (MSA) of the FASTA sequence of exon 2 from seven XLA patients to detect mutations. Nucleotide substitutions are indicated 
by the blue arrows.
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mentioned previously (43, 48–54). VoRechovsky et al. (55) also found 
this c.1573C > T mutation among Swedish people, which was found 
in our P11. Another mutation, c.862C > T, found in P12 and located 
in the SH2 domain of the BTK protein, has previously been described 
in several studies (36, 42, 43, 56–61). All this information was 
collected from the NCBI GenBank (62–65).

In patients P8, P10, and P14, a synonymous variant, Cys633=, was 
found in the SH1 domain of the BTK protein. This variant has been 
previously described in several studies (42, 43, 56, 66, 67) cited in the 
NCBI GenBank (68). However, there is no functional evidence in 
ClinVar for this variation; therefore, it was considered benign.

In P8, P10, and P13, a benign variant, c.*192G > A, was found in 
the 3 prime UTR of the SH1 domain. Another benign variant, 
c.*116A > C, was also found in P9, P11, and P12, which lies in the 3 
prime UTR of the SH1 domain. These variants were observed during 
a predisposition screen in an apparently healthy population. There are 
no published data in ClinVar for this variation. Allele frequency data 
from public databases do not support these variants as disease-
causing. Therefore, these variants were classified as benign.

These findings suggest that genetic analysis of the BTK gene and 
evaluation of the immune function of suspected patients can increase 
the diagnosis rate. The results of this genetic analysis will help 
clinicians perform IVIG replacement therapy in a timely manner, 
potentially significantly reducing the incidence of complications and 
mortality rates. Genetic analysis of the BTK gene also has the potential 
to identify other patients and carriers within the patient’s family, 
thereby contributing to broader health outcomes and the practice of 
genetic counseling.

Conclusion

This study identified CVID and XLA as the most prevalent 
predominantly antibody deficiencies. The TACI/TNFRSF13B gene 
analysis in CVID patients did not reveal any pathogenic variants. In the 
XLA patients, the mutations in the BTK gene were found to be diverse, 
with nonsense mutations being the most prevalent and showing a 
propensity for the SH3 domain. A total of three de novo point mutations 
(c.863G > C, c.110 T > C, and c.829G > T) were found in our patient. 
We identified that, in the majority of the cases, the mutation profile of 
our country is similar to that of the rest of the world. This diversity in 
mutations underscores the complexity of XLA in Bangladesh and the 
importance of mutation analysis in characterizing the BTK gene in 
XLA patients and of subsequent genetic counseling.

Limitations

The limitations of the study are outlined as follows:

	•	 Population-based studies involving a large number of samples in 
peripheral settings could not be performed due to limitations in 
time, budget, and resources.

	•	 Additional flow cytometric markers, such as CXCR5, CD21, and 
CD38, which can increase the diagnostic rate of CVID, could not 
be included in this study due to budget constraints.

	•	 Analysis of other genes in the signal transduction pathway of B 
cell development, such as μ heavy chain, Igα (CD79A), Igβ 

(CD79B), λ5 (IGGL1), and B-cell linker protein (BLNK), could 
not be  performed due to limitations in time, budget, 
and resources.
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