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Cell-based therapies offer an alternative to corneal transplantation for the
management of corneal diseases. However, these approaches require a
deeper understanding of the principles of cell therapy, and the ability to
predict and diagnose outcomes pre- and post-operatively is highly desirable.
Recently, the development of innovative techniques that leverage predefined
data from multiple cohorts with corneal diseases has received considerable
attention. Approaches using artificial intelligence (Al) can address major concerns
in corneal cell therapy, including the identification of novel biomarkers,
improvements in cell delivery processes, and the acceleration of personalized
treatments. This review summarizes real-world examples of Al applications from
preclinical through clinical studies, with a focus on corneal cell-based therapies.

KEYWORDS
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1 Introduction

The cornea is a transparent tissue with a protective responsibility for the eye
(1, 2). Composed of the epithelium, stroma, and endothelium, it plays a critical
role in light refraction and vision (3). According to the World Health Organization
(WHO), corneal blindness is the fourth leading cause of blindness globally (4). Corneal
transplantation represents a potential therapeutic intervention to manage corneal diseases
and restore vision. However, this approach faces significant challenges, including
donor shortage and the risk of graft rejection (5, 6). As an alternative, cell-based
therapies have emerged as promising strategies for treating these conditions. Stem cells,
characterized by their undifferentiated state and capacity for both self-renewal and
differentiation, are central to this approach. Consequently, regenerative medicine has
garnered significant attention as a potential therapeutic avenue for corneal regeneration
(7, 8). This field is advancing rapidly within healthcare, offering promising solutions
for repairing and restoring specific tissues, particularly in cases where the body’s innate
regenerative capacity is insufficient to facilitate complete healing. Cell-based therapy
was developed for various corneal layers like endothelium, stroma, and epithelium
in pre-clinical and clinical studies (9-13). However, conventional cell therapies face
limitations such as difficulties in scaling up, high costs, and batch-to-batch variability.
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They are often time-intensive and may lead to unwanted outcomes
due to human error. Additional challenges include appropriate case
selection, accurate cell dosing and characterization, determination
of the target site, management of potential complications such as
allograft rejection, edema, in situ infection, and neovascularization,
as well as the prediction of post-operative recovery time. Therefore,
it is necessary to consider effective strategies to overcome these
limitations and advance corneal cell therapy.

Artificial intelligence (AI), a burgeoning discipline within
the realms of computer science and engineering, has exhibited
promising applications for various medical domains. During a
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symposium held at Dartmouth College in 1956, John McCarthy,
a computer scientist, provided a formal definition for the concept
of “Artificial Intelligence” (AI) (14). AI possesses the capacity
to extract comprehensive and detailed information from diverse
sources, including genomics, transcriptomics, proteomics, digital
pathological images, and other datasets (15). This ability empowers
clinicians to acquire a holistic and integrated comprehension of
the subject under investigation. Additionally, AT has the potential
to identify unknown biomarkers through data analysis, thereby
facilitating the screening, detection, diagnosis, treatment, and
prognosis prediction of various diseases. This potential allows for
the provision of personalized treatment to individual patients,
ultimately leading to improved clinical outcomes. Predictions in
clinical trials can benefit from additional impartial assessments
using cutting-edge computational tools, such as machine learning-
based patient classification. Researchers constantly test hypotheses
about how Al and other cutting-edge technologies can influence the
future of corneal regenerative medicine (16, 17).

AT has the potential to significantly improve global healthcare
in areas like assessing stem cell viability, biosafety, and selecting
suitable patients (18, 19). Although ATDs full capability has
not yet been realized, the field of ophthalmology is already
making significant strides in using the technology to improve
therapeutic outcomes.

AT approaches to optimize corneal cell therapies and improve
corneal regeneration would be highly beneficial. AI tools are
also suggested for use in pre-clinical studies, including media
component selection, cell characterization, and detection of cellular
infections. Notably, Al approaches for corneal cell therapy in
clinical studies include patient selection, determination of cell
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dosage and target site, as well as the anticipation of post-operative
recovery time. In this paper, we explore the transformative potential
of Al in advancing corneal cell therapy and address key challenges
such as selecting the appropriate cell source, optimizing cell dose,
improving case selection, and managing intraoperative and post-
operative complications. Given ATls capacity to predict surgical
outcomes, our aim is to bridge the gap between AI research and
clinical practice by emphasizing applications across both preclinical
and clinical stages of corneal cell therapy. We also highlight the
role of AI in predicting and diagnosing outcomes using real-
world examples. Ultimately, we seek to inform strategies for
managing corneal diseases. Through this comprehensive review,
we underscore the importance of integrating Al technologies into
corneal cell-based treatments and outline future research and
implementation pathways (Figure 1).

2 Al applications for detection and
prognosis of corneal diseases

The cornea and lens are considered to be the primary refractive
components of the ocular system. Potential consequences of
structural damage include the possibility of vision problems and
blindness (20). The high incidence of myopia in East and Southeast
Asian countries is attributed to extensive educational practices
and widespread digital learning platforms (21). Al facilitates the
acquisition of knowledge, logical thinking, and goal attainment
by computer systems and minimizes the reliance on human
intervention (22, 23). The purpose of AI in ophthalmology
is to improve the fields understanding and investigation. This
development is supported by the widespread adoption of machine
learning and deep learning (22, 24, 25). Al for ocular applications
like detection of keratoconus (26-31), microbial keratitis (32-34),
dry eye disease (35), pterygium (36-38), keratoconus management
(39), and refractive error prediction (40) has been employed. Other
applications of Al approaches include the prediction of keratoplasty
outcomes (41, 42), the determination of fungal and bacterial
keratitis (43), corneal neovascularization detection (44), and
assessment of Fuchs endothelial corneal dystrophy (FECD) (45).

The process of diagnosing and planning treatment in the
field of ophthalmology relies significantly on clinical examination
and advanced imaging techniques. Slit-lamp photography, optical
coherence tomography (OCT), tomography, and in vivo confocal
microscopy (IVCM) are all commonly used to diagnose and
monitor anterior segment diseases. However, it is important to
understand that these procedures can be time-intensive and may
also be susceptible to potential human errors (46). The current
machine learning approach successfully categorized corneal data
captured with a Pentacam to identify keratoconus (47). Patients
undergoing refractive surgery can be reliably classified into
stable cases and clinical ectasia using a random forest (RF)
model trained on Pentacam measurement data (48). A previous
study forecasted the occurrence of various ocular disorders for
training and validating Al-based machine learning methodologies
(49). Various images depicting eye diseases such as diabetic
macular edema (DME) and choroidal neovascularization (CNV),
glaucoma, normal conditions, and cataracts have been employed.
The study employed various deep transfer learning approaches,
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including basic convolutional neural networks (CNN), deep CNN,
AlexNet 2, Xception, Inception V3, ResNet 50, and DenseNet121.
The obtained simulation results confirmed that the ResNet50
model achieved a validation accuracy of 98.9%, surpassing the
performance of all alternative methodologies. Furthermore, the
Xception model exhibited commendable performance, attaining an
accurate rate of 98.4%. Despite the implementation of standardized
pre-operative screening, the identification of eyes at risk of
developing procedure-induced ectasia remains a considerable
challenge. Furthermore, there is a development of AI platforms
to screen individuals with a heightened risk of post-LASIK ectasia
and vision impairment. Yoo et al. developed a machine learning
platform to aid the clinical decision-making for refractive surgery
(50). Another investigation was conducted to develop deep learning
models to predict the post-operative outcomes of SMILE surgery,
such as visual acuity and intraoperative complications, based on
surgical videos or images (51). In a recent review, the integration of
deep learning with advanced imaging and liquid biopsy biomarkers
is highlighted as a transformative approach for understanding
ocular aging and its implications for systemic health (52).

3 Al Applications for pre-clinical
corneal cell therapy

Mathematical modeling can facilitate the identification of
cellular characteristics and their microenvironments by examining
the cell morphology and healthy cells (53, 54). AI-driven models
and constructive algorithms offer robust solutions for gaining
a more profound comprehension of these mechanisms. These
models can also automate the development of regenerative
medicines, thereby reducing the occurrence of human errors (19)
(Table 1).

3.1 Al for determination of suitable cell
source and tissue

Various cells, as well as synthetic or natural tissues, are
used in corneal tissue engineering (55-57). Accuracy in selecting
suitable cell sources is vital to achieving desirable outcomes in
cell therapy studies. Automated cell culture platforms enhance
technical accuracy, replicability, and efficiency. These platforms
also integrate modern imaging techniques and analysis tools for
pre-clinical applications (58). Furthermore, Al approaches can be
employed to identify and predict the process of generating induced
pluripotent stem cells (iPSCs) through cellular reprogramming.
This enables the precise forecasting of iPSC generation and
subsequent differentiation (59). For instance, CNNs can play a
significant role in image identification and use deep learning
to correct data attributes. By analyzing cellular changes in
morphology and texture, it can reliably identify individual cells.
Thus, CNNs have the potential to pave the way for a new field
of deep learning tasks geared toward addressing diverse issues in
stem cell research (60). CNNs may be applicable for the selection
of an appropriate cell source for corneal cellular studies. For
example, choosing a suitable source of stem cells based on their
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FIGURE 1

Applications of artificial intelligence for predicting and diagnosing eye diseases and for improving cell therapy in preclinical and clinical settings.

TABLE 1 Some of the Al responsibilities in pre-clinical studies.

Al task Al model References
Cell source selection Convolutional neural (60)
networks (CNNs)
Optimization of media Response surface (68)
component methodology (RSM), genetic
algorithm (GA), and radial
basis function (RBF)
Number of live cells Phase imaging with (71)
computational specificity
(PICS)
Cell morphology Convolutional neural (73)
networks and transformers
Cell confluency and Convolutional neural (73)
contamination networks and transformers

ability to differentiate into corneal cells will be an excellent AI
application. Therefore, ensuring the selection of stem cells under
in vitro conditions can be very effective in future investigations.
Moreover, Al algorithms for determining specific features like
cellular morphology, molecular ligands, and membrane receptors
of corneal cells for both in vitro and clinical applications would be
beneficial. In addition, the detection of key differentiation pathways
in stem cells toward specific corneal cells in a short timeframe by AI
approaches will be beneficial for corneal regeneration.

Preparing suitable donor tissue is another requirement for
successful keratoplasty. An Al-based program, P06-A143, was
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developed to assist in diagnosing cornea guttata in donor corneas
at the eye bank (61). This tool may help reduce keratoplasty
complications related to donor tissue selection.

3.2 Al for determination of cell culture
media components

Until now, many studies for culturing corneal cells under
a pre-defined condition have been conducted. However, the
accurate determination of the media components is important
(62-67). Nikkhah et al. reported a reduced-serum culture
media formulation, including insulin-like growth factor I (IGF-
I), Fibroblast growth factor (FGF), transforming growth factor
(TGF), platelet-derived growth factor (PDGF), selenium, ascorbic
acid, and serum as independent variables for cultivated meat
using response surface methodology (RSM) (68). The culture
medium formulation was optimized using a genetic algorithm
(GA), and radial basis function (RBF) neural networks were used
for the prediction of dependent variables. Finally, a multi-objective
optimization algorithm was utilized to calculate the ideal quantities
of the independent variables with the three RBF neural network
prediction models serving as inputs. This study’s proposed RSM+
RBF + GA framework could be used to sustainably improve the
production of serum-free media by determining the mix of media
elements. It aims to strike a balance between yield, environmental
impact, and cost, particularly for different cultured meat cell lines.
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(I) The PICS method enables label-free measurement of cellular dry mass in specific compartments. (I) PICS allows monitoring of variations in the
dry mass of cellular compartments. This figure is modified and reprinted from reference (71).

Machine learning can optimize culture media formulations and
proliferation protocols by analyzing historical data from successful
batches. This approach is feasible through a focus on modeling (69).
Al-based robotics can ensure stable conditions for cell growth (such
as temperature, pH, and nutrient supply) and reduce variability in
the production of corneal cells (including limbal epithelial cells and
corneal endothelial cells) (70).

Therefore, cell-based investigations aim to determine and
predict culture media components to save time and cost, while
attaining desired outcomes. In addition to the importance of
media components for culturing cells, determining the media
ingredients for stem cell differentiation into specific cells would
be very effective, and AI algorithms can be used to optimize
these conditions.

3.3 Al for determination of live cell numbers

As mentioned earlier, it is important to take the phenotypic
properties and an adequate quantity of in vitro cultured cells by
considering their functions. Fluorescence microscopy has emerged
as an indispensable imaging technique in the field of cell biology,
owing to its remarkable specificity. Nevertheless, fluorescence
microscopy is still constrained by factors such as photobleaching,
phototoxicity, and associated artifacts. In a prior study, the ability
of AI to convert one type of contrast into a different form is
shown (Figure 2) (71). The authors introduced a novel technique
called phase imaging with computational specificity (PICS), which
integrates quantitative phase imaging and Al to offer precise details
regarding unlabeled viable cells. This imaging system facilitates
automated training, with the inference process integrated into the
acquisition software and operating in real time. The fluorescence
maps were subsequently utilized to analyze the quantitative phase
imaging (QPI) data. In this study, the PICS implementation
provided a flexible quantitative method for the continuous and
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simultaneous monitoring of specific cellular components that
require prolonged label-free imaging. This Al-based approach
would be applicable for counting live corneal cells in an adhesive
culture plate or substrate.

3.4 Al for determination of infected cells

For clinical studies, considering the safety characteristics of
grown cells and the other requirements for the cell culture due
to the corneal-privileged system is important. The Al algorithms
for prescreening and pre-classifying image data are considered
to increase productivity and precise diagnosis. Expert clinical
microbiologists provide crucial training in image-based infectious
disease diagnoses through human interpretation. Despite the
extensive time and effort required for training, validation, and
implementation, Al-based diagnosis is practically cost-effective,
and the majority of microbiology laboratories already have the
hardware necessary to perform image analysis (72).

Al-based imaging can analyze cell morphology, confluence, and
contamination in real time, ensuring that only high-quality cells
proceed to treatment. This approach can be implemented using
concepts such as machine vision (73).

4 Role of Al in clinical corneal cell
therapy

Understanding early complications and outcomes within the
first few days after corneal surgery is crucial for physicians. Al
algorithms have the potential to help healthcare staff at different
levels of this process (Table 2).
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TABLE 2 Al-based approaches in clinical studies.

Al task Al-based model References
Subject selection Support vector machines (50)
(SVMs), Random forests (RF),
Artificial neural networks
(ANNs), AdaBoost, LASSO
Predict the AdaBoost (82)
nomograms for
SMILE
Cell properties In-vivo confocal microscopy (83)
identification (IVCM)
Graft detachment Deep neural network (VGG19) (42)
Infections Deep learning models (ResNet50, (32)
ResNeXt50, DenseNet121,
SE-ResNet50, EfficientNets B0,
B1, B2, and B3)
Corneal edema Deep learning-assisted Second (87)
Harmonic Generation
Microscopy (SHG) imaging
Neovascularization Optical coherence microscopy (89)
(OCT)-based machine learning
Detection of Morphogo system (92)
changed cell
morphology
Biomarkers Machine learning algorithms (117)
detection
Detection of cell Hidden Markov Model and
distance Neural Networks
Corneal curvature Al-based approaches (104, 105)

4.1 Al to select suitable subjects

Machine learning handles large amounts of data and accurately
identifies cases (74). Recently, screening candidates for corneal
refractive surgery has become increasingly crucial to prevent
unwanted outcomes and improve decision-making. It seems that
a definitive screening approach to address the likelihood of a
misdiagnosis has not yet been developed. According to a study by
Yoo et al, it is increasingly crucial to examine candidates with
corneal refractive surgery to avoid problems (50). Five diverse
methods were utilized to forecast potential candidates for surgery.
Enhanced performance was achieved with an ensemble classifier.
The model successfully reclassified a patient with post-operative
ectasia as belonging to the ectasia-risk category. Refractive surgery
can be performed with a secure and dependable clinical choice
using automated machine learning analysis (Figure 3) (50).

4.2 Al for determination of correct effective
drugs

The eye’s complex physiological structures, diverse disease
targets, limited drug delivery space, distinctive barriers, and
intricate biomechanical processes pose significant challenges for
treatment. Traditional screening approaches for formulation and
manufacturing processes are inefficient for developing ocular

Frontiersin Medicine

10.3389/fmed.2025.1563891

formulations (75). Automated workflows and databases, alongside
ANN implementation, have great potential to enhance treatment
outcomes. These technologies enable rapid analysis of vast
quantities of data, aiding in the development of innovative
hypotheses and treatment strategies. Additionally, ANNs facilitate
the forecasting of disease progression and pharmacological profiles.
By leveraging these tools, significant advancements in treatments
with better achievements are expected (76). The success of
therapeutic interventions highly depends on subject selection,
appropriate cell doses or medications (before and after surgery),
and the number of administrations. Clinical pharmacology has a
unique opportunity, regarding the availability of multidimensional
data and the advancement of current methodologies for data
analysis. Precision dosing with reinforcement learning is currently
used for individualizing dosing regimens in patients with life-
threatening diseases and in data science. It is referred to special
issue as cutting-edge approaches to the collection, aggregation, and
analysis of data, which can significantly contribute to characterizing
drug-response variability at the individual level (77).

4.3 Al for detecting the correct area in
patients undergoing corneal surgery

In previous studies, patients with advanced keratoconus have
received cells for corneal stroma regeneration by creating a
pocket in the corneal stromal tissue (57, 78). For this operation,
determining an accurate target site with the correct diameter is
very important to reduce possible complications. However, Al
technology enhances surgical precision, decreases the need for
human intervention, facilitates intraoperative decision-making,
and boosts surgical safety. Nevertheless, there are still many
obstacles to overcome before AI can be widely used in operating
rooms (79).

AT can process OCT or confocal microscopy images to map
corneal irregularities, such as stromal scars and limbal defects,
and to identify optimal injection sites (80). Intraoperative live
OCT combined with YOLO-based algorithms can track injected
cell clusters to ensure correct placement and detect, for example,
mesenchymal stem cells that have been misdirected during
treatment (81).

Ophthalmologists make a nomogram diagnosis by applying
their specialized training and knowledge to pre-operative refractive
data. For example, machine learning algorithms such as AdaBoost
with the highest accuracy to predict sphere, cylinder, and
astigmatism axis nomograms for accuracy in SMILE refractive
surgery have been employed (Figure 4) (82). Notably, AT algorithms
to pinpoint the location of damage and target sites accurately would
be beneficial for clinical applications.

4.4 Al for determination of cell properties

The number of living cells after an injection or graft

implantation is significant for predicting post-operative
improvements in vision. As in an impressive study by Levine

et al., an algorithm was developed to quantify activated dendritic
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FIGURE 3

(1) To predict potential candidates for corneal refractive surgery, the heatmaps show the predictive performance (AUC) of feature selection and
machine learning approaches. In this figure, the results of 10 fold cross-validation are indicated. a: Support vector machine. b: Artificial neural
networks. c: Random forest. d: Least absolute shrinkage and selection operator (LASSO). AdaBoost. (Il) Machine learning techniques are assessed for
identifying ectasia-risk categories, including post-LASIK ectasia, keratoconus, and forme fruste keratoconus patients. a: Each group at risk of ectasia
in an accuracy rate. b: ROC curves to classify the normal control (N = 9,556) and total ectasia-risk group (N

= 153) (50).

cells (aDCs) using IVCM images (83). This study incorporated a
total of 173 distinct images, each representing a unique individual.
The estimation of the number of aDCs in the central cornea
can be effectively determined through the algorithm based on
automated machine learning. Forecasting cell counts could
lead to greater advancements in corneal cell-based therapy.
Finite element analysis combined with machine learning
predicts the distribution of injected cells based on corneal
stiffness and wound geometry (84). Huang et al. compared the
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application of five different machine learning algorithms, such
as linear regression, support vector regression, decision tree
regressor, RF regression, and extra tree regression (85). The RF
regressor algorithm indicated the highest accuracy, at 80%, in
predicting the presence or absence of cells within single droplets.
Meanwhile, the extra tree regressor indicated the lowest mean
error, of 12%, in anticipating the number of printed cells within
multiple droplets. A combination of these models in a droplet
monitoring system can be useful to determine the printed cell
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FIGURE 4

Root-mean-square errors (RMSEs) and accuracy results for multiple linear regression,
(MLP) with hidden layers [Reprinted from reference (82)].

decision tree, AdaBoost, XGBoost, and multi-layer perceptron

number under a live assessment throughout an inkjet-based
bioprinting process.

Also, AI algorithms can process data from OCT, confocal
microscopy, or slit-lamp imaging to track the integration of corneal
cells following transplantation (84).

4.5 Al for detection of graft detachment

Diagnosing graft detachment to reduce complications after the
surgery can be highly effective. According to a previous study,
the efficacy of deep learning in the prediction of rebubbling
after Descemet’s membrane endothelial keratoplasty (DMEK) was
evaluated (42). This investigation analyzed an equal number of
eyes in both the rebubbling (RB) group and the non-RB group
after DMEK. To categorize the RB group, a set of images was
chosen randomly from the anterior segment OCT on day 5 after
the operation. Training on a selection of nine deep neural network
architectures, namely VGG16, VGG19, ResNet50, InceptionV3,
InceptionResNetV2, Xception, DenseNet121, DenseNetl169, and
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DenseNet201, was conducted. The VGG19 model demonstrated
the highest area under the receiver operating characteristic curve
among all the models.

Remarkably, these Al algorithms may have the potential for the
detection of early graft detachment post-surgery.

4.6 Al for detection of infection
Effective treatment for the detection of infections and
neovascularization in operated eyes is essential. Kuo et al.
determined various deep learning algorithms that could detect
bacterial keratitis from eye photographs (32). Five referral facilities
were consecutively sampled to provide external eye pictures
of suspected patients with infectious keratitis. The candidate
deep learning frameworks—ResNet50, ResNeXt50, DenseNet121,
SE-ResNet50, EfficientNets B0, B1, B2, and B3—were utilized
to identify bacterial keratitis based on the receiver operating
characteristic (ROC) curve. These models exhibited considerable
potential as diagnostic tools for detecting bacterial keratitis.
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4.7 Al for detection of edema and
neovascularization

According to a prior investigation, AI algorithms have
garnered significant attention in the field of macular disorders,
specifically diabetic macular edema (DME) (86). In this study, the
identification and quantification of different main OCT biomarkers
in DME eyes in comparison to an algorithm to human expert
manual analyses were considered. This may enable clinicians to
consistently identify and measure OCT biomarkers related to DME,
providing an objective approach to diagnosing and monitoring eyes
affected by DME.

The application of three deep learning models, namely
InceptionV3, ResNet50, and FLIMBA—for the automatic detection
of corneal edema in second harmonic generation (SHG) images
of the porcine cornea was assessed (87). SHG is a beneficial non-
linear optical imaging tool to non-invasive identify, characterize,
and monitor changes in the collagen structure of tissues under
a contrast mechanism. Nevertheless, the analysis of SHG data is
challenging, even for experienced histopathologists. This obstacle
hinders the implementation of SHG-based diagnostic frameworks
in clinical environments. The findings of this study were aimed
at automating the determination of corneal hydration levels or
corneal edema.

AT and learning techniques adjust the needle depth and angle
in real time to prevent Descemet membrane rupture during the
injection of corneal endothelial cells (CECs). This method may
reduce the potential complications of cell injection, including
edema (88).

Patients with corneal epithelial abnormalities benefit greatly
from the detection of neovascularization and the expectation
of reduced symptoms. In a previous study, OCT photographs
were obtained at the beginning of the neovascular age-related
macular degeneration process, and anti-VEGF injection doses
were recorded following pro re nata (PRN) treatment (89). Data
from the HARBOR research tracked patients who received PRN
ranibizumab following three initial monthly injections for 2 years.
The macular microstructure was described using quantitative
spatiotemporal features obtained from automated segmentation
of retinal layers and fluid-filled areas. Treatment categories
were predicted and evaluated using RF classification and cross-
validation, respectively. Anti-VEGF therapy requirements were
suggested and evaluated with an OCT-based machine learning
methodology. The results of this pilot study were a significant step
toward the development of image-guided prediction of treatment
intervals for the management of neovascular age-related macular
degeneration. It is expected that this AT algorithm may be effective
for the prediction of corneal neovascularization.

4.8 Al for the detection of changed stem
cell morphology into target cell

In general, stem cells can differentiate into specific cells
under physicochemical conditions. During differentiation, some
phenotypic features of stem cells changed toward those of
mature cells. These morphological changes can be recorded by
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microscopic observations. Moreover, observing functional markers
of differentiated cells can be obtained using real-time PCR
and immunobiological assay (90, 91). Meanwhile, detecting cells
in the target site based on morphology features is valuable,
especially for clinical studies. A novel AI system was developed to
autonomously classify bone marrow cells and assess the potential
clinical applications (92). Initially, a computerized analysis system
known as Morphogo was employed to conduct comprehensive
imaging of bone marrow smears. The findings of this preliminary
investigation provided the Morphogo system as an automated
tool for analyzing bone marrow cell differential counts. It appears
that this AI algorithm might have the potential to identify and
analyze cellular morphologies that hold potential advantages for
corneal applications.

4.9 Al for detection of biomarker levels in
subjects

One of the most important findings for the classification of
diseases is the specific biomarker prediction. Recent technological
advancements, particularly in the generation of extensive biological
multi-omics datasets, have significantly broadened the scope of
biomarker detection.

In a study by Chang et al. multiple machine learning
algorithms were used to analyze transcripts from keratoconus
patients, identifying characteristic gene combinations and their
functional associations to enhance understanding of keratoconus
pathogenesis (93). Machine learning models, including XGBoost,
random forest, logistic regression, and SVM, identified a set of
key genes associated with corneal ectasia. Notably, 15 genes—
such as ILIR1, JUN, CYBB, CXCR4, KRT13, KRT14, S100A8,
S100A9, and others—appeared across multiple models. Genes
downregulated in keratoconus compared to the control group
were involved in epidermal mechanical resistance (KRT14, KRT15)
and inflammatory pathways (SI00A8/A9, IL1R1, CYBB, JUN,
and CXCR4). This study employed multiple machine learning
algorithms to analyze transcripts from keratoconus patients,
identifying characteristic gene combinations and their functional
associations with the aim of enhancing the understanding of
keratoconus pathogenesis. Machine learning models, including
XGBoost, random forest, logistic regression, and SVM, identified
a set of key genes related to corneal ectasia, with 15 notable
genes consistently appearing in multiple models, such as IL1R1,
JUN, CYBB, CXCR4, KRT13, KRT14, SI00A8, and S100A9, among
others. Genes downregulated in keratoconus compared to the
control group played roles in epidermal mechanical resistance
(KRT14, KRT15) and inflammatory pathways (S100A8/A9, IL1R1,
CYBB, JUN, and CXCRA4).

During the physical differentiation process, specific proteins
are released from ADSCs when they are differentiated into various
cell types, including corneal keratocytes (90). Prediction of the
expression of many of them may be very significant for finding
the vision recovery level in patients with keratoconus. It seems Al
approaches may be effective to detect specific expressed markers
in the specific tissues and cells. In a review article, evidence from
the scientific literature regarding ocular imaging biomarkers is
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summarized, with a particular emphasis on the predominant role
of biomarkers derived from OCT (94). The authors also note recent
advancements in optical coherence tomography angiography
(OCT-A) and experimental polarization-sensitive OCT (PS-OCT),
which have revealed potentially informative novel biomarkers.

4.10 Al for detection of corneal cell
junction

Tight junctions are crucial in the establishment of corneal
homeostasis via epithelial and endothelial functions. Tight
junctions are observed within the corneal epithelium, where a
continuous pattern of zonula occludens (ZO)-1 can be identified
at the apical cell borders (95, 96). Previous studies have shown
that an increase in reactive oxygen species (ROS) levels leads
to a decrease in tight junction proteins and compromises the
epithelial barrier integrity (97-99). In freeze-fracture replica
electron microscopy, the observed structures manifest as a cohesive
network of fibrils, commonly referred to as tight junction strands.
Tight junction strands serve as molecular zippers, effectively
establishing a physical barrier to impede the paracellular diffusion
of molecules. The morphology of the tight junction strand network
exhibits significant variation across different tissues (100). To
confirm newly discovered molecules and localize them to the tight
junction, experiments like immunofluorescence investigations can
be performed. Understanding tight junction signals between
healthy or diseased corneal cells would help to determine the
success rate of the treatment.

4.11 Al for detection of corneal curvature

Intra-corneal ring implantation has recently emerged as a viable
alternative to corneal transplantation for keratoconus treatment
(101-103). Predicting outcomes after this procedure is important
for clinicians to select the most appropriate pre-operative variables.
A novel machine learning-based approach can be employed to
forecast the visual improvement of patients with keratoconus after
ring implantation. The measurement of corneal curvature and
astigmatism can be used to determine the vision gain (104). In
another study, a developed AI model used multiple tomographic
parameters to evaluate local against global keratoconus progression
(105). Collectively, the AI models recognized the eyes with changes
in parameters like an increase in maximum anterior curvature
(Kmax) and others related to disease progress. These models can
be optimized to predict the outcome of cell therapy and tissue
engineering processes. Machine learning models can detect subtle
signs of immune rejection or cell death prior to the onset of
clinical symptoms, enabling early diagnosis of transplant rejection
in keratoconus (106).

5 Forecasting recovery time based on
satisfied signs using Al

The capacity to predict the duration required in a surgical
procedure for both patients and medical practitioners is desirable.
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Reliable clinical judgment can be obtained through automated
machine learning applied to pre-operative data. This cutting-
edge technology for lowering the risk of problems in patients is
significant (107). For example, AI techniques such as machine
learning and deep learning have found a suitable application
in anesthesiology. This is due to the substantial volume of
data produced during perioperative surgery and anesthesia
management (108). AI platforms may be useful for predicting
patient repair with epithelial abnormalities, keratoconus, edema,
or even blindness. For example, Al can be used to predict
ocular hypertension following Descemet membrane endothelial
keratoplasty (DMEK) (109).

6 Conclusion and future perspectives

Cell therapy is an emerging medical field that utilizes living
cells to address a range of diseases and problems. AI has
the potential to speed up the development of cell therapy
by supplying insights, forecasts, and optimizations at various
stages. For example, Al can help identify new targets for cell
treatment by examining extensive genomic, transcriptomic, and
proteomic data, and patient-specific details. Using biological
and clinical factors, Al can assist in determining the most
relevant and achievable targets. Computer algorithms can assist
in optimizing the design of cell therapy payloads, including
genetic modifications, receptors, and signaling pathways that
ensure a cell’s functionality and selectivity. Al-based approaches
can explore and utilize the extensive design possibilities offered by
these modalities, saving time and reducing experimentation costs.
Despite ongoing challenges—such as limited and variable data
quality, model interpretability and validation hurdles, and ethical
considerations—effective use of Al for cell therapy requires robust
cross-disciplinary and cross-sector collaboration and dialogue (18,
110, 111). One of the most significant challenges in applying Al is
algorithmic bias. Intrinsic biases can emerge during development
and clinical deployment, leading to inaccuracies and variability
in model outputs. Pinpointing the sources of bias—whether
from data sampling, labeling, feature selection, model design, or
deployment context—is difficult. If unaddressed, biased AI can
drive non-standard clinical decisions and exacerbate healthcare
disparities (112, 113). Moreover, the absence of comprehensive
and sufficient regulations for overseeing Al development and
usage, along with concerns about data safety and transparency,
are significant challenges that require special attention (114, 115).
Optimized treatment scenarios using Al may be more realistic
by encompassing a single treatment option or determining the
most effective combination of treatments. For instance, it would
be attractive for treatments to be accompanied by an accurately
prescribed dosage, which plays a crucial role in evaluating
individual therapeutic methods. Employing AI algorithms for
personalized corneal cell-based therapies can effectively aid in
administering sufficient cell numbers to patients. The exact cell
injection location in keratoconic corneas may be detected by Al
algorithms. Therefore, these patients might receive sufficient cells
at optimized location for improving vision.

Moreover, it should be noted that AI might be reliable in
the healthcare field for cell therapies using supportive data. Al is
needed to combine with clinical and laboratory data for managing
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some corneal diseases, such as keratoconus. Detection errors
would be minimized by connecting AI with current techniques,
such as clinical images obtained from OCT and molecular
evaluations. Insufficient investigation regarding the real-world
performance, generalizability, and interpretability of AI systems
needs more attention in future studies (116). Resolving issues by
data sharing, data annotation, and other interconnected challenges
will effectively expedite the advancement of more resilient Al
products. Ultimately, one of the important priorities that can foster
special attention to the role of AI in ophthalmology research
and eye cell therapy is multi-center validation of this emerging
technology. When integrated with clinical workflows, it ensures
that this innovative medical approach is reliable and effective.

An Al language model was utilized to enhance the clarity and
grammar of this manuscript.
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