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Construction and validation of a
perioperative blood transfusion
model for patients undergoing
total hip arthroplasty with
osteonecrosis of the femoral
head based on machine learning

Zhen-Dong Sun', Yu-Ming Fang', Yan-Ling Lin, Meng-Qin Pei,
Chu-Yun Liu and He-fan He*

Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou,
Fujian, China

Background: This study aimed to construct a predictive model utilizing multiple
machine learning (ML) models to estimate the likelihood of perioperative blood
transfusion in patients with osteonecrosis of the femoral head (ONFH) who
underwent total hip arthroplasty (THA).

Methods: Patients diagnosed with ONFH who underwent THA at our institution
between October 2018 and October 2023 were included in the study. Feature
selection was conducted using Lasso regression and correlation analysis. An
unbiased evaluation framework incorporating nested resampling was established
to assess four ML models. A nomogram was subsequently developed based on
the selected features.

Results: Seven features were identified, namely blood loss, hemoglobin (HGB)
levels, weight, body temperature, systolic pressure, and direct bilirubin. Four ML
models were constructed based on these features. The area under the curve
(AUC) values for Random Forest, Extreme Gradient Boosting, Light Gradient
Boosting Machine, and Logistic Regression (LR) were 1.00, 1.00, 1.00, and 0.93
in the internal validation set, and 0.89, 0.90, 0.88, and 0.91 in the external test
set, respectively. Furthermore, a nomogram model based on LR was developed
using the aforementioned seven features, yielding AUC values of 0.95 and 0.90
for the training and test sets, respectively, thereby surpassing the AUC values of
preoperative HGB levels (0.80 and 0.76).

Conclusion: Both the ML models and the nomogram exhibit significant potential
for forecasting the likelihood of perioperative blood transfusion in patients with
ONFH undergoing THA, which may aid clinicians in improving the accuracy of
blood transfusion predictions.
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Introduction

Osteonecrosis of the femoral head (ONFH) is characterized by
the necrosis of osteocytes resulting from ischemia of the femoral
head (1). The global incidence is anticipated to reach 20 million
within a decade (2), with an estimated 15,000-20,000 annual
cases occurring in the United States (3). Currently, a definitive
prevention method for the prevention for ONFH remains elusive,
as non-surgical interventions apart from total hip arthroplasty
(THA), are typically ineffective (4). However, THA has the potential
to result in substantial blood loss, necessitating perioperative
red blood cells (RBC) transfusions in up to 20% of patients
(5, 6). Furthermore, allogeneic blood transfusions can lead to
various adverse effects, including increased risks of surgical site
infections, deep vein thrombosis, and mortality (7-9). Although
some strategies can reduce the need for blood transfusions (10),
these approaches may not be suitable for all patients due to
associated risks (11).

Consequently, identifying patients who require perioperative
blood transfusions is essential for adequate preparation and
While typically
hemoglobin (HGB) levels to inform transfusion decisions, it

preventive measures. physicians rely on
is crucial to also consider various perioperative factors such as age
(12), sex (13), and laboratory values like alanine aminotransferase.
Therefore, screening the variables that significantly influence blood
transfusion and integrating them into a cohesive predictive model
may enhance accuracy.

Machine learning (ML), a subset of artificial intelligence,
employs computational modeling to extract insights from data.
It improves the accuracy of predictions and classifications by
utilizing large datasets for model training and continuously
optimizing performance (14-16). ML has shown promise in
clinical predictions across various medical specialties, including
perioperative blood transfusion predictions (17, 18). However,
there is limited scholarly research on the use of ML to predict
perioperative transfusion requirements in patients with ONFH.

Thus, the objective of this research was to develop a predictive
model to more accurately predict the likelihood of perioperative
blood transfusion in patients with ONFH undergoing THA.

Materials and methods

Ethics statement and patient selection

This study adhered to the principles outlined in the Declaration
of Helsinki and its amendments and received approval from the
Ethics Committee at our hospital. The requirement for written
informed consent was waived, and personal identifiers were
anonymized prior to data analysis.

A retrospective analysis was conducted on a cohort of 503
patients with ONFH who underwent THA at our hospital between
October 2018 and October 2023. The administration of packed
RBC during hospital stays, referred to as perioperative blood
transfusion, was determined through consultation between the
anesthesiologist and the surgeon. Typically, a HGB concentration
below 70 g/L indicates the necessity for a blood transfusion.
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Potential risk factors

We collected and evaluated the following features of the
participants. General information: gender, age, the weight, height,
and body mass index at the time of admission. Characteristics
of surgery: operative site, surgery routes (anterior, posterior,
and lateral approach), incisional length, intraoperative blood loss
volume. Laboratory test results originated from the first post-
admission blood draw: alanine aminotransferase [ALT], aspartate
aminotransferase [AST], albumin [ALB], direct bilirubin, indirect
bilirubin, international normalized ratio [NIR], prothrombin time
[PT], activated partial thromboplastin time, fibrinogen, HGB levels,
and platelet count. Others: vital signs at admission, intraoperative
hemostatic drugs utility.

Statistical analysis

Initially, we included 28 variables and had a sample size of
503, yielding a 15 EPV (Events per Predictor Variable), which
surpasses the commonly recommended benchmark of 10 EPV (19,
20). Then, we standardized the continuous variables. The feature
selection process utilized Lasso regression analysis with 10-fold
cross-validation across the complete dataset. Features exhibiting
pairwise correlation coefficients >0.6 (Pearson) were subsequently
excluded through collinearity screening.

Following this, we extensively resampled non-blood
transfusion samples to achieve a 1:1 ratio with blood transfusion
samples. We then subjected four ML models—Random Forest
(RF), Extreme Gradient Boosting (XGB), Light Gradient
Boosting Machine (LGBM), and Logistic Regression (LR)—to
hyperparameter tuning and performance evaluation via a nested
sampling approach. In the inner loop, all parameter combinations
were explored to identify optimal hyperparameters using random
search, followed by model training. A four-fold cross-validation
was employed for hyperparameter tuning, while a five-fold cross-
validation was applied in the outer loop for model evaluation,
ensuring the reliability and robustness of performance metrics.
Consequently, the entire dataset was divided into training, internal
validation, and external test sets in each fold. The evaluation of
each ML model’s performance was based on the average level of
nested sampling. Subsequently, the performance of each model
was assessed using receiver operating characteristic (ROC) curves,
with a specific focus on the area under the curve (AUC) values. The
DeLong test was utilized to verify statistical differences in AUC
values among four ML models. Additionally, we employed various
model performance evaluation metrics, including sensitivity,
specificity, Brier scores, F-beta coeflicient, positive predictive value
(PPV), negative predictive value (NPV), Log Loss, and Matthews’s
correlation coefficient (MCC) to comprehensively assess model
performance on both the internal validation set and the external
test set.

Furthermore, bootstrap resampling was performed to partition
the entire dataset into training and validation sets at a ratio
of 503:186. Subsequently, a LR-based nomogram model was
developed to predict the probability of perioperative blood
transfusion based on the selected features. Model performance was
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rigorously evaluated using calibration curves, ROC curves, and
decision curve analysis (DCA) in both the training and external
validation sets. Statistical analyses were conducted using R software
(version 4.4.1), with two-tailed tests applied throughout. Statistical
significance was defined as P < 0.05.

Results

Clinical characteristics

In the entire dataset, notable differences in gender, weight,
systolic pressure, diastolic pressure, operative site, blood loss, ALT,
AST, ALB, indirect bilirubin, NIR, PT, and HGB levels were
observed between patients in the transfusion and non-transfusion
groups, with P below 0.05 as reported in Table 1. The remaining
aggregate data did not exhibit statistically significant variances (P
> 0.05).

Feature selection

To mitigate overfitting, a two-step feature selection process
was implemented. Initially, Lasso Regression with 10-fold cross-
validation was employed to identify eight features exhibiting
stable associations (Figures 1A, B), namely blood loss, HGB levels,
weight, body temperature, systolic pressure, diastolic pressure,
and direct bilirubin. Subsequently, redundancy was minimized
by calculating pairwise Spearman’s correlations among these
features and removing one variable from any pair with » > 0.6,
specifically excluding systolic blood pressure (Figure 1C). This
strategy integrated regularized regression and correlation-based
simplification to emphasize generalizable, non-redundant features.
Binary classifications were constructed from original variables
using clinically informed thresholds. Ultimately, seven variables—
blood loss volume, HGB levels, weight, body temperature,
systolic pressure, and direct bilirubin—were incorporated into the
ML models.

Development and validation of ML models

Using the seven selected features, four ML models were
developed within a nested resampling framework to reduce the risk
of overfitting. Results from systematic hyperparameter tuning for
each model are summarized in Supplementary Table S1. The ROC
curves for the RE, XGB, LGBM, and LR models in the external test
set are illustrated in Figure 2, while those for the internal validation
set are depicted in Supplementary Figure S1. AUC values for these
models were 1.00, 1.00, 1.00, and 0.93 in the internal validation
set (Supplementary Figure S1) and 0.89, 0.90, 0.88, and 0.91 in the
external test set (Figure 2), respectively.

Furthermore, Tables2, 3 present several key performance
indicators for the models, including sensitivity, specificity, Brier
score, F-beta coefficient, PPV, NPV, Log Loss, and MCC, indicating
that most models demonstrated strong performance. The tree-
based ensemble models (RF, XGB, and LGBM) achieved perfect
training metrics; however, they exhibited significant declines in
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validation sensitivity and PPV, dropping to 0.59-0.62. LR achieved
the highest external test AUC (0.91) with minimal sensitivity
loss (0.80 compared to 0.81 in the external test set). Prediction
uncertainty increased across all models during validation, with RF
demonstrating the least reduction in performance.

Additionally, box plots provide an intuitive visualization
of AUG, ACC, (CE) in
relation to classification performance evaluation (Figure 3;

recall, and  Cross-Entropy
Supplementary Figure S2). The confusion matrix for the four ML
models is presented in Supplementary Figure S3, along with the
DCA curves in Supplementary Figure S4. To investigate statistically
significant differences in AUC values among the four ML models,
we conducted the DeLong test (Supplementary Figure S5), which
revealed no significant difference in AUC values between LR and
the other ML models in external test set. Interpretation of the LR
model was performed to reduce ML model complexity (Figure 4).

Nomogram model construction and
validation

Moreover, to provide clinicians with a more effective visual
assessment tool, a nomogram model incorporating the seven
features was developed based on LR (Figure 5). Baseline data for
the features are detailed in Supplementary Table S2. Calibration
plots indicated strong alignment between expected and actual
outcomes in both the training and validation sets, as evidenced
by low Brier scores (0.056 for the training set and 0.087 for the
validation set) (Figures 6B, E). To assess the clinical efficacy of the
nomogram model, we conducted a direct comparison to evaluate its
predictive capacity against the preoperative HGB levels of patients.
The AUC values for the nomogram model were found to exceed
those of the preoperative HGB levels in the training set (0.95,
95% CI = 0.93-0.97) and in the validation set (0.90, 95% CI =
0.84-0.95), compared to training set values of 0.80 (95% CI =
0.74-0.86) and 0.76 (95% CI = 0.66-0.85) in the validation set
(Figures 6A, D). This demonstrates the superior discriminative
capacity of the nomogram model. DCA curves further confirmed
that the nomogram model offers greater net benefits in both cohorts
(Figures 6C, F). Importantly, the nomogram model exhibited
enhanced diagnostic performance compared to HGB levels, as
indicated by the results of AUC and DCA analyses.

Discussion

A prevalent complication associated with THA is considerable
blood loss, frequently necessitating allogeneic blood transfusions.
Such transfusions have been correlated with adverse outcomes
and heightened healthcare costs (21), prompting clinicians to
adopt strategies aimed at minimizing their necessity (22, 23).
Predicting the need for perioperative blood transfusions can assist
in identifying high-risk patients, improving patient care, and
yielding better outcomes, lower morbidity rates, and cost savings.
Consequently, anticipating transfusion needs and implementing
appropriate preoperative interventions is essential.

Traditionally, physicians have relied on HGB levels to
guide blood transfusion decisions (24, 25), however, significant

frontiersin.org


https://doi.org/10.3389/fmed.2025.1471746
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Sun et al.

TABLE 1 Baseline characteristics of patients in the study.

Characteristic

Overall, N = 503

No transfusion, N = 418

10.3389/fmed.2025.1471746

Transfusion, N = 85

p-value

Gender, n (%) 0.003
Male 276 (55) 242 (58) 34 (40)

Female 227 (45) 176 (42) 51 (60)

Age, Mean (SD) 56.58 (13.34) 56.63 (12.86) 56.33 (15.60) 0.81
Weight, Mean (SD) 63.03 (11.25) 63.57 (10.78) 60.36 (13.06) 0.006
Height, Mean (SD) 1.60 (0.12) 1.60 (0.12) 1.59 (0.12) 0.49
BMI, Mean (SD) 25.09 (5.73) 25.30 (5.83) 24.06 (5.13) 0.11
Hypertension, n (%) 0.38
No 384 (76) 316 (76) 68 (80)

Yes 119 (24) 102 (24) 17 (20)

Diabetes, n (%) 0.79
No 465 (92) 387 (93) 78 (92)

Yes 38(7.6) 31(7.4) 7(8.2)

Body temperature, Mean (SD) 36.47 (0.19) 36.47 (0.19) 36.50 (0.20) 0.14
Respiratory rate, Mean (SD) 19.67 (1.12) 19.66 (1.03) 19.74 (1.51) 0.80
Pulse, Mean (SD) 81.18 (10.47) 81.32(10.46) 80.48 (10.56) 0.60
Systolic pressure, Mean (SD) 131.10 (18.65) 132.03 (18.45) 126.56 (19.06) 0.020
Diastolic pressure, Mean (SD) 82.63 (10.91) 83.28 (10.91) 79.40 (10.40) 0.005
Operative site, n (%) <0.001
Left 242 (48) 211 (50) 31(36)

Right 244 (49) 199 (48) 45 (53)

Both 17 (3.4) 8 (1.9) 9(11)

Surgery routes, n (%) 0.60
Anterior 31(6.2) 27 (6.5) 4(4.7)

Posterior 304 (60) 255 (61) 49 (58)

External 168 (33) 136 (33) 32 (38)

Incisional length, n (%) 0.060
<12 236 (47) 204 (49) 32(38)

>12 267 (53) 214 (51) 53 (62)

Blood loss, Mean (SD) 324.65 (292.19) 257.89 (132.38) 652.94 (540.36) <0.001
Hemostatic drugs, n (%) 0.28
None 68 (14) 54 (13) 14 (16)

Tranexamic acid 294 (58) 240 (57) 54 (64)

Aminocaproic acid 134 (27) 118 (28) 16 (19)

Aminomethylbenzoic acid 7(1.4) 6(1.4) 1(1.2)

ALT, Mean (SD) 21.94 (19.93) 22.20 (15.78) 20.64 (33.71) <0.001
AST, Mean (SD) 22.95 (23.46) 23.21 (24.38) 21.70 (18.31) 0.007
Albumin, Mean (SD) 42.90 (4.85) 43.23 (4.77) 41.29 (4.90) <0.001
Direct bilirubin, Mean (SD) 4.69 (10.38) 4.28 (1.93) 6.70 (24.90) 0.47
Indirect bilirubin, Mean (SD) 5.93 (3.04) 6.08 (3.07) 5.18 (2.73) 0.007
NIR, Mean (SD) 0.95 (0.07) 0.95 (0.07) 0.98 (0.09) 0.002

(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2025.1471746

Characteristic Overall, N = 503 No transfusion, N =418 Transfusion, N = 85 p-value
PT, Mean (SD) 11.83 (1.18) 11.77 (1.16) 12.17 (1.27) 0.008
APTT, Mean (SD) 28.41 (3.52) 28.35 (3.28) 28.70 (4.53) 0.19
FIB, Mean (SD) 3.64 (1.34) 3.62 (1.34) 3.74 (1.36) 0.58
HGB, Mean (SD) 133.87 (19.69) 137.26 (17.87) 117.19 (19.84) <0.001
PLT, Mean (SD) 262.79 (78.09) 259.46 (71.72) 279.15 (102.88) 0.087

ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; NIR, International Normalized Ratio; PT, Prothrombin Time; APTT, Activated Partial Thromboplastin Time; FIB,

Fibrinogen; HGB, Hemoglobin; PLT, Platelet Count.
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Lasso regression and Spearman’s correlation analyses. (A) Distribution map illustrating the Lasso coefficients for all variables. (B) Identification of
variables through Lasso regression analysis. (C) Correlation analysis conducted among the variables selected by Lasso regression.
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discrepancies in the transfusion thresholds have been noted (26,
27). In this study, we identified seven key features—blood loss
volume, HGB levels, body weight, body temperature, systolic
pressure, and direct bilirubin—as predictive factors for the
necessity of blood transfusions during the perioperative period.

The associations between the characteristic variables examined
in this study and perioperative transfusions have been documented
extensively in the literature. Previous studies have demonstrated
a positive correlation between blood loss and the likelihood of
requiring a blood transfusion (28, 29). Our findings align with
these observations. Intraoperative blood loss may elevate the
demand for blood transfusions, potentially due to a complex
physiological cascade that includes reductions in blood volume,
oxygenation, coagulation function, metabolic acidosis, impaired
immune response, and other contributing factors.

HGB levels play a critical role in determining the necessity
of perioperative blood transfusions (30, 31). One study revealed a
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five-fold increase in the likelihood of requiring a blood transfusion
when preoperative HGB levels fall below 120 g/L (32), and another
study arrived at a similar conclusion (33). This phenomenon
can be attributed to the diminished ability of patients with
lower preoperative HGB levels to effectively compensate for
intraoperative blood loss (34).

Our results indicate that individuals with lower body weight
are more likely to require a blood transfusion than those with
higher body weight. Several studies have corroborated these
findings (35, 36). Patients with lower body weight possess a
reduced RBC volume (37, 38), which may hinder their ability to
compensate for blood loss. Consequently, lighter individuals may
find it more challenging to recover from significant blood loss
compared to those with higher body weight (37). Additionally,
studies have indicated that factors such as age, systolic pressure,
and direct bilirubin significantly influence perioperative blood
transfusions (9). Maintaining normal body temperature is crucial,
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TABLE 2 Performance evaluation of machine learning models within the internal validation set.

Learner AUC Sensitivity  Specificity Brier F-beta PPV NPV Log loss MCC
RF 1.00 1.00 0.99 0.05 0.98 0.97 1.00 0.14 0.98
Xgb 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.01 1.00
Lgb 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00
LR 0.93 0.81 0.85 023 0.64 0.53 0.96 0.38 0.56

as hypothermia can exacerbate blood loss and increase the need
for transfusions. Research on THA demonstrates that stable body
temperatures can mitigate blood loss and reduce transfusion
rates (39).

ML has capabilities for effectively managing non-linear and
complex data structures and addressing issues associated with high-
dimensional data and missing values. Concurrently, it exhibits a
robust capacity for pattern recognition and utilization. Various
studies have confirmed the utility of ML in clinical diagnosis and
prognosis (40, 41). Recently, there has been growing interest in
applying ML to the field of blood transfusion (42, 43). Currently,
no models exist to predict the likelihood of perioperative blood
transfusions in patients with ONFH undergoing THA. While
some predictive models perform well, they face clinical application
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challenges due to suboptimal performance (44). Moreover, there
is a notable gap in evaluating predictive performance specific to
ONFH cases.

In this study, we developed four ML models through
hyperparameter tuning for perioperative blood transfusions in
patients with ONFH undergoing THA. RF mitigates the risk of
overfitting by integrating multiple decision trees and demonstrates
exceptional robustness in the presence of high-dimensional data
and noise (45). Furthermore, it facilitates the assessment of feature
importance (46). XGB employs second-order Taylor expansion
and incorporates regularization terms, resulting in enhanced
prediction accuracy and robust generalization (47). The LGBM
utilizes histogram algorithms and prioritizes the growth of leaf
nodes, achieving remarkably fast training speeds and low memory
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TABLE 3 Performance evaluation of machine learning models within the external test set.

Learner AUC Sensitivity ~ Specificity Brier F-beta PPV NPV Log loss MCC
RF 0.89 0.61 0.92 0.19 0.61 0.62 0.92 0.33 0.54
Xgb 0.90 0.60 0.92 0.21 0.59 0.59 0.92 0.39 0.51
Lgb 0.88 0.60 0.92 0.24 0.59 0.59 0.92 0.68 0.51
LR 0.91 0.80 0.85 0.25 0.64 0.53 0.95 0.40 0.56
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FIGURE 3
Box plot comparing four machine learning models on the external test set. (A) AUC values, (B) ACC values, (C) Recall values, and (D) CE values.

consumption, which renders it suitable for ultra-large-scale datasets
(47). LR offers strong interpretability of probability outputs, allows
for the adjustment of decision thresholds, and is characterized by its
simplicity, computational efficiency, and speed, making it suitable
for large-scale structured data (48). LR was deemed the most
clinically suitable due to its balanced performance across various
metrics. The RE XGB, and LGBM models exhibited excellent
results but had low Brier scores and Log Loss, indicating overfitting
to the internal validation set. Their performance significantly
declined on the external test set, particularly regarding sensitivity
and PPV, highlighting their limited generalizability. Additionally,
the AUC values of the four models did not display any statistical
differences in DeLong test conducted on the external test set.
LR demonstrated clinical validity through four primary features
in our study: first, it possessed higher validation sensitivity,
ensuring better identification of true transfusion candidates, which
is critical in surgical settings. Second, it balanced specificity and
NPV, maintaining strong negative classification without missing
positive cases. Third, it exhibited stable performance from internal

Frontiersin Medicine

validation to external test, showing the smallest AUC decrease,
indicating reliable generalization. Finally, the DCA illustrated
that the LR model yields a significant net benefit and maintains
consistency between the internal validation and external test sets.
Ensemble methods displayed slightly better calibration and Log
Loss; however, their reduced sensitivity renders them clinically less
viable. The higher MCC of LR indicates its superior classification
accuracy in clinical settings.

The SHapley Additive exPlanations (SHAP) is a method
for interpreting ML models that is grounded in the Shapley
value from game theory (49). By quantifying the marginal
contribution of each feature to the model’s predictions,
SHAP offers both global and local interpretability (50). The
SHAP analysis identified critical features: HGB levels (positive
correlation), body weight (negative correlation), and age (strong
global influence) (9). High HGB levels suggest compensatory
hemoconcentration during blood loss, while greater body weight
indicates a better physiological reserve (37). Advanced age is
strongly correlated with risk due to diminished hemodynamic
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FIGURE 4

Statistical visualizations of the SHAP analysis. (A) An ordered plot illustrating the importance of variables in the SHAP analysis; (B) SHAP value

contribution graph for a single sample’s indicators.
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adaptability. Blood loss and hypothermia exhibited synergistic
effects, correlating with clinical observations of worsened
coagulopathy HGB (29). These patterns confirm the model’s
alignment with established pathophysiology, underscoring its
clinical relevance.
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We also constructed a nomogram based on LR to predict
The
discriminatory ability, with consistent AUC values in both

transfusion  risk. nomogram  demonstrated robust
training and validation sets. Direct comparisons revealed that

the predictive performance of this nomogram significantly
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FIGURE 6
The receiver-operating characteristic curves, calibration plots, and decision curve analysis for the nomogram model in the training and validation
sets are represented by (A—F), respectively.

outperformed HGB levels. Furthermore, the DeLong test
indicated a statistically significant difference in AUC values
between the nomogram and both LR and HGB levels. This
finding demonstrates that the predictive capabilities of LR
and the nomogram exceed those of HGB levels. Moreover,
the DCA curves indicate that the nomogram model provides
a substantially higher net benefit compared to HGB levels.
This visual tool supports clinicians in risk assessment, allowing
for improved perioperative blood management and surgical
planning. By identifying high-risk patients, it may help reduce
transfusion-related complications through targeted interventions.
The nomogram’s combination of clarity and accuracy makes
it an invaluable tool for enhancing perioperative care in
neurovascular surgeries.

This model aids in identifying patients requiring perioperative
blood transfusions and optimizing blood management strategies,
such as autologous blood dilution, intraoperative hypotension
management, and postoperative successful
integration into clinical practice, it is vital to clearly define
the model’s objectives, emphasizing the enhancement of predictive

recovery. For

accuracy to prevent unnecessary transfusions. The clinical
implementation plan consists of four key components: (1)
Electronic Medical Record (EMR) integration via HL7 interfaces
to automatically extract data from laboratories and operative
notes; (2) Real-time prediction modules capable of issuing
prioritized alerts during surgical scheduling based on risk; (3)
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Multidisciplinary protocols to monitor transfusion deviations and
response times at three pilot sites; and (4) Oversight by a blood
management committee that recalibrates models biannually using
federated learning across institutions. This framework ensures
clinical utility, regulatory compliance, and auditability through
performance dashboards.

This study has certain limitations, including single-center data
sourcing and the potential for selection bias. The retrospective
single-center design inherently restricts the external validation
of these findings. Moreover, retrospective studies inevitably
involve missing data. Although rigorous internal controls were
employed, the absence of multi-institutional data may limit the
generalizability of results to broader populations. Furthermore, the
retrospective nature of this study necessitates careful consideration
of potential confounding factors. But factors such as prior surgical
interventions, comorbidities beyond hypertension and diabetes,
and smoking were not considered in the present study. We
plan to incorporate these variables into our model in future
research. Additionally, the retrospective design prevents precise
estimations of clinical decision thresholds; as such analyses require
outcome data from actual implementation scenarios. Future work
will encompass cost-benefit analysis with stakeholder engagement
to operationalize these thresholds. Research directions include
multicenter validation, prospective studies, exploration of new data
sources and features, and continuous iteration and optimization
of the model to enhance its generalizability, accuracy, and clinical
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applicability. Furthermore, our models have only undergone
internal validation and require external validation to confirm
their effectiveness.

In conclusion, this study developed four ML models and a
nomogram model to effectively predict the likelihood of blood
transfusion in patients with ONFH undergoing THA. The model’s
capability to identify patients with a low probability of requiring
a transfusion could diminish unnecessary repeat testing, such as
complete blood counts and additional preoperative laboratory tests.
Additionally, it can assist clinicians in implementing strategies
to reduce bleeding and prepare for transfusions in high-risk
patients. Consequently, this model could serve as a valuable tool for
clinicians in preoperative preparation and in reducing unnecessary
medical procedures.
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