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Construction and validation of a 
perioperative blood transfusion 
model for patients undergoing 
total hip arthroplasty with 
osteonecrosis of the femoral 
head based on machine learning 

Zhen-Dong Sun† , Yu-Ming Fang† , Yan-Ling Lin, Meng-Qin Pei, 
Chu-Yun Liu and He-fan He* 

Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 
Fujian, China 

Background: This study aimed to construct a predictive model utilizing multiple 
machine learning (ML) models to estimate the likelihood of perioperative blood 
transfusion in patients with osteonecrosis of the femoral head (ONFH) who 
underwent total hip arthroplasty (THA). 
Methods: Patients diagnosed with ONFH who underwent THA at our institution 
between October 2018 and October 2023 were included in the study. Feature 
selection was conducted using Lasso regression and correlation analysis. An 
unbiased evaluation framework incorporating nested resampling was established 
to assess four ML models. A nomogram was subsequently developed based on 
the selected features. 
Results: Seven features were identified, namely blood loss, hemoglobin (HGB) 
levels, weight, body temperature, systolic pressure, and direct bilirubin. Four ML 
models were constructed based on these features. The area under the curve 
(AUC) values for Random Forest, Extreme Gradient Boosting, Light Gradient 
Boosting Machine, and Logistic Regression (LR) were 1.00, 1.00, 1.00, and 0.93 
in the internal validation set, and 0.89, 0.90, 0.88, and 0.91 in the external test 
set, respectively. Furthermore, a nomogram model based on LR was developed 
using the aforementioned seven features, yielding AUC values of 0.95 and 0.90 
for the training and test sets, respectively, thereby surpassing the AUC values of 
preoperative HGB levels (0.80 and 0.76). 
Conclusion: Both the ML models and the nomogram exhibit significant potential 
for forecasting the likelihood of perioperative blood transfusion in patients with 
ONFH undergoing THA, which may aid clinicians in improving the accuracy of 
blood transfusion predictions. 
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Introduction 

Osteonecrosis of the femoral head (ONFH) is characterized by 
the necrosis of osteocytes resulting from ischemia of the femoral 
head (1). The global incidence is anticipated to reach 20 million 
within a decade (2), with an estimated 15,000–20,000 annual 
cases occurring in the United States (3). Currently, a definitive 
prevention method for the prevention for ONFH remains elusive, 
as non-surgical interventions apart from total hip arthroplasty 
(THA), are typically ineffective (4). However, THA has the potential 
to result in substantial blood loss, necessitating perioperative 
red blood cells (RBC) transfusions in up to 20% of patients 
(5, 6). Furthermore, allogeneic blood transfusions can lead to 
various adverse effects, including increased risks of surgical site 
infections, deep vein thrombosis, and mortality (7–9). Although 
some strategies can reduce the need for blood transfusions (10), 
these approaches may not be suitable for all patients due to 
associated risks (11). 

Consequently, identifying patients who require perioperative 
blood transfusions is essential for adequate preparation and 
preventive measures. While physicians typically rely on 
hemoglobin (HGB) levels to inform transfusion decisions, it 
is crucial to also consider various perioperative factors such as age 
(12), sex (13), and laboratory values like alanine aminotransferase. 
Therefore, screening the variables that significantly influence blood 
transfusion and integrating them into a cohesive predictive model 
may enhance accuracy. 

Machine learning (ML), a subset of artificial intelligence, 
employs computational modeling to extract insights from data. 
It improves the accuracy of predictions and classifications by 
utilizing large datasets for model training and continuously 
optimizing performance (14–16). ML has shown promise in 
clinical predictions across various medical specialties, including 
perioperative blood transfusion predictions (17, 18). However, 
there is limited scholarly research on the use of ML to predict 
perioperative transfusion requirements in patients with ONFH. 

Thus, the objective of this research was to develop a predictive 
model to more accurately predict the likelihood of perioperative 
blood transfusion in patients with ONFH undergoing THA. 

Materials and methods 

Ethics statement and patient selection 

This study adhered to the principles outlined in the Declaration 
of Helsinki and its amendments and received approval from the 
Ethics Committee at our hospital. The requirement for written 
informed consent was waived, and personal identifiers were 
anonymized prior to data analysis. 

A retrospective analysis was conducted on a cohort of 503 
patients with ONFH who underwent THA at our hospital between 
October 2018 and October 2023. The administration of packed 
RBC during hospital stays, referred to as perioperative blood 
transfusion, was determined through consultation between the 
anesthesiologist and the surgeon. Typically, a HGB concentration 
below 70 g/L indicates the necessity for a blood transfusion. 

Potential risk factors 

We collected and evaluated the following features of the 
participants. General information: gender, age, the weight, height, 
and body mass index at the time of admission. Characteristics 
of surgery: operative site, surgery routes (anterior, posterior, 
and lateral approach), incisional length, intraoperative blood loss 
volume. Laboratory test results originated from the first post-
admission blood draw: alanine aminotransferase [ALT], aspartate 
aminotransferase [AST], albumin [ALB], direct bilirubin, indirect 
bilirubin, international normalized ratio [NIR], prothrombin time 
[PT], activated partial thromboplastin time, fibrinogen, HGB levels, 
and platelet count. Others: vital signs at admission, intraoperative 
hemostatic drugs utility. 

Statistical analysis 

Initially, we included 28 variables and had a sample size of 
503, yielding a 15 EPV (Events per Predictor Variable), which 
surpasses the commonly recommended benchmark of 10 EPV (19, 
20). Then, we standardized the continuous variables. The feature 
selection process utilized Lasso regression analysis with 10-fold 
cross-validation across the complete dataset. Features exhibiting 
pairwise correlation coefficients ≥0.6 (Pearson) were subsequently 
excluded through collinearity screening. 

Following this, we extensively resampled non-blood 
transfusion samples to achieve a 1:1 ratio with blood transfusion 
samples. We then subjected four ML models—Random Forest 
(RF), Extreme Gradient Boosting (XGB), Light Gradient 
Boosting Machine (LGBM), and Logistic Regression (LR)—to 
hyperparameter tuning and performance evaluation via a nested 
sampling approach. In the inner loop, all parameter combinations 
were explored to identify optimal hyperparameters using random 
search, followed by model training. A four-fold cross-validation 
was employed for hyperparameter tuning, while a five-fold cross-
validation was applied in the outer loop for model evaluation, 
ensuring the reliability and robustness of performance metrics. 
Consequently, the entire dataset was divided into training, internal 
validation, and external test sets in each fold. The evaluation of 
each ML model’s performance was based on the average level of 
nested sampling. Subsequently, the performance of each model 
was assessed using receiver operating characteristic (ROC) curves, 
with a specific focus on the area under the curve (AUC) values. The 
DeLong test was utilized to verify statistical differences in AUC 
values among four ML models. Additionally, we employed various 
model performance evaluation metrics, including sensitivity, 
specificity, Brier scores, F-beta coefficient, positive predictive value 
(PPV), negative predictive value (NPV), Log Loss, and Matthews’s 
correlation coefficient (MCC) to comprehensively assess model 
performance on both the internal validation set and the external 
test set. 

Furthermore, bootstrap resampling was performed to partition 
the entire dataset into training and validation sets at a ratio 
of 503:186. Subsequently, a LR-based nomogram model was 
developed to predict the probability of perioperative blood 
transfusion based on the selected features. Model performance was 
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rigorously evaluated using calibration curves, ROC curves, and 
decision curve analysis (DCA) in both the training and external 
validation sets. Statistical analyses were conducted using R software 
(version 4.4.1), with two-tailed tests applied throughout. Statistical 
significance was defined as P < 0.05. 

Results 

Clinical characteristics 

In the entire dataset, notable differences in gender, weight, 
systolic pressure, diastolic pressure, operative site, blood loss, ALT, 
AST, ALB, indirect bilirubin, NIR, PT, and HGB levels were 
observed between patients in the transfusion and non-transfusion 
groups, with P below 0.05 as reported in Table 1. The remaining 
aggregate data did not exhibit statistically significant variances (P 
> 0.05). 

Feature selection 

To mitigate overfitting, a two-step feature selection process 
was implemented. Initially, Lasso Regression with 10-fold cross-
validation was employed to identify eight features exhibiting 
stable associations (Figures 1A, B), namely blood loss, HGB levels, 
weight, body temperature, systolic pressure, diastolic pressure, 
and direct bilirubin. Subsequently, redundancy was minimized 
by calculating pairwise Spearman’s correlations among these 
features and removing one variable from any pair with r ≥ 0.6, 
specifically excluding systolic blood pressure (Figure 1C). This 
strategy integrated regularized regression and correlation-based 
simplification to emphasize generalizable, non-redundant features. 
Binary classifications were constructed from original variables 
using clinically informed thresholds. Ultimately, seven variables— 
blood loss volume, HGB levels, weight, body temperature, 
systolic pressure, and direct bilirubin—were incorporated into the 
ML models. 

Development and validation of ML models 

Using the seven selected features, four ML models were 
developed within a nested resampling framework to reduce the risk 
of overfitting. Results from systematic hyperparameter tuning for 
each model are summarized in Supplementary Table S1. The ROC 
curves for the RF, XGB, LGBM, and LR models in the external test 
set are illustrated in Figure 2, while those for the internal validation 
set are depicted in Supplementary Figure S1. AUC values for these 
models were 1.00, 1.00, 1.00, and 0.93 in the internal validation 
set (Supplementary Figure S1) and 0.89, 0.90, 0.88, and 0.91 in the 
external test set (Figure 2), respectively. 

Furthermore, Tables 2, 3 present several key performance 
indicators for the models, including sensitivity, specificity, Brier 
score, F-beta coefficient, PPV, NPV, Log Loss, and MCC, indicating 
that most models demonstrated strong performance. The tree-
based ensemble models (RF, XGB, and LGBM) achieved perfect 
training metrics; however, they exhibited significant declines in 

validation sensitivity and PPV, dropping to 0.59–0.62. LR achieved 
the highest external test AUC (0.91) with minimal sensitivity 
loss (0.80 compared to 0.81 in the external test set). Prediction 
uncertainty increased across all models during validation, with RF 
demonstrating the least reduction in performance. 

Additionally, box plots provide an intuitive visualization 
of AUC, recall, ACC, and Cross-Entropy (CE) in 
relation to classification performance evaluation (Figure 3; 
Supplementary Figure S2). The confusion matrix for the four ML 
models is presented in Supplementary Figure S3, along with the 
DCA curves in Supplementary Figure S4. To investigate statistically 
significant differences in AUC values among the four ML models, 
we conducted the DeLong test (Supplementary Figure S5), which 
revealed no significant difference in AUC values between LR and 
the other ML models in external test set. Interpretation of the LR 
model was performed to reduce ML model complexity (Figure 4). 

Nomogram model construction and 
validation 

Moreover, to provide clinicians with a more effective visual 
assessment tool, a nomogram model incorporating the seven 
features was developed based on LR (Figure 5). Baseline data for 
the features are detailed in Supplementary Table S2. Calibration 
plots indicated strong alignment between expected and actual 
outcomes in both the training and validation sets, as evidenced 
by low Brier scores (0.056 for the training set and 0.087 for the 
validation set) (Figures 6B, E). To assess the clinical efficacy of the 
nomogram model, we conducted a direct comparison to evaluate its 
predictive capacity against the preoperative HGB levels of patients. 
The AUC values for the nomogram model were found to exceed 
those of the preoperative HGB levels in the training set (0.95, 
95% CI = 0.93–0.97) and in the validation set (0.90, 95% CI = 
0.84–0.95), compared to training set values of 0.80 (95% CI = 
0.74–0.86) and 0.76 (95% CI = 0.66–0.85) in the validation set 
(Figures 6A, D). This demonstrates the superior discriminative 
capacity of the nomogram model. DCA curves further confirmed 
that the nomogram model offers greater net benefits in both cohorts 
(Figures 6C, F). Importantly, the nomogram model exhibited 
enhanced diagnostic performance compared to HGB levels, as 
indicated by the results of AUC and DCA analyses. 

Discussion 

A prevalent complication associated with THA is considerable 
blood loss, frequently necessitating allogeneic blood transfusions. 
Such transfusions have been correlated with adverse outcomes 
and heightened healthcare costs (21), prompting clinicians to 
adopt strategies aimed at minimizing their necessity (22, 23). 
Predicting the need for perioperative blood transfusions can assist 
in identifying high-risk patients, improving patient care, and 
yielding better outcomes, lower morbidity rates, and cost savings. 
Consequently, anticipating transfusion needs and implementing 
appropriate preoperative interventions is essential. 

Traditionally, physicians have relied on HGB levels to 
guide blood transfusion decisions (24, 25), however, significant 
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TABLE 1 Baseline characteristics of patients in the study. 

Characteristic Overall, N = 503 No transfusion, N = 418 Transfusion, N = 85 p-value 

Gender, n (%) 0.003 

Male 276 (55) 242 (58) 34 (40) 

Female 227 (45) 176 (42) 51 (60) 

Age, Mean (SD) 56.58 (13.34) 56.63 (12.86) 56.33 (15.60) 0.81 

Weight, Mean (SD) 63.03 (11.25) 63.57 (10.78) 60.36 (13.06) 0.006 

Height, Mean (SD) 1.60 (0.12) 1.60 (0.12) 1.59 (0.12) 0.49 

BMI, Mean (SD) 25.09 (5.73) 25.30 (5.83) 24.06 (5.13) 0.11 

Hypertension, n (%) 0.38 

No 384 (76) 316 (76) 68 (80) 

Yes 119 (24) 102 (24) 17 (20) 

Diabetes, n (%) 0.79 

No 465 (92) 387 (93) 78 (92) 

Yes 38 (7.6) 31 (7.4) 7 (8.2) 

Body temperature, Mean (SD) 36.47 (0.19) 36.47 (0.19) 36.50 (0.20) 0.14 

Respiratory rate, Mean (SD) 19.67 (1.12) 19.66 (1.03) 19.74 (1.51) 0.80 

Pulse, Mean (SD) 81.18 (10.47) 81.32 (10.46) 80.48 (10.56) 0.60 

Systolic pressure, Mean (SD) 131.10 (18.65) 132.03 (18.45) 126.56 (19.06) 0.020 

Diastolic pressure, Mean (SD) 82.63 (10.91) 83.28 (10.91) 79.40 (10.40) 0.005 

Operative site, n (%) <0.001 

Left 242 (48) 211 (50) 31 (36) 

Right 244 (49) 199 (48) 45 (53) 

Both 17 (3.4) 8 (1.9) 9 (11) 

Surgery routes, n (%) 0.60 

Anterior 31 (6.2) 27 (6.5) 4 (4.7) 

Posterior 304 (60) 255 (61) 49 (58) 

External 168 (33) 136 (33) 32 (38) 

Incisional length, n (%) 0.060 

<12 236 (47) 204 (49) 32 (38) 

≥12 267 (53) 214 (51) 53 (62) 

Blood loss, Mean (SD) 324.65 (292.19) 257.89 (132.38) 652.94 (540.36) <0.001 

Hemostatic drugs, n (%) 0.28 

None 68 (14) 54 (13) 14 (16) 

Tranexamic acid 294 (58) 240 (57) 54 (64) 

Aminocaproic acid 134 (27) 118 (28) 16 (19) 

Aminomethylbenzoic acid 7 (1.4) 6 (1.4) 1 (1.2) 

ALT, Mean (SD) 21.94 (19.93) 22.20 (15.78) 20.64 (33.71) <0.001 

AST, Mean (SD) 22.95 (23.46) 23.21 (24.38) 21.70 (18.31) 0.007 

Albumin, Mean (SD) 42.90 (4.85) 43.23 (4.77) 41.29 (4.90) <0.001 

Direct bilirubin, Mean (SD) 4.69 (10.38) 4.28 (1.93) 6.70 (24.90) 0.47 

Indirect bilirubin, Mean (SD) 5.93 (3.04) 6.08 (3.07) 5.18 (2.73) 0.007 

NIR, Mean (SD) 0.95 (0.07) 0.95 (0.07) 0.98 (0.09) 0.002 

(Continued) 

Frontiers in Medicine 04 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1471746
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sun et al. 10.3389/fmed.2025.1471746 

TABLE 1 (Continued) 

Characteristic Overall, N = 503 No transfusion, N = 418 Transfusion, N = 85 p-value 

PT, Mean (SD) 11.83 (1.18) 11.77 (1.16) 12.17 (1.27) 0.008 

APTT, Mean (SD) 28.41 (3.52) 28.35 (3.28) 28.70 (4.53) 0.19 

FIB, Mean (SD) 3.64 (1.34) 3.62 (1.34) 3.74 (1.36) 0.58 

HGB, Mean (SD) 133.87 (19.69) 137.26 (17.87) 117.19 (19.84) <0.001 

PLT, Mean (SD) 262.79 (78.09) 259.46 (71.72) 279.15 (102.88) 0.087 

ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; NIR, International Normalized Ratio; PT, Prothrombin Time; APTT, Activated Partial Thromboplastin Time; FIB, 
Fibrinogen; HGB, Hemoglobin; PLT, Platelet Count. 

FIGURE 1 

Lasso regression and Spearman’s correlation analyses. (A) Distribution map illustrating the Lasso coefficients for all variables. (B) Identification of 
variables through Lasso regression analysis. (C) Correlation analysis conducted among the variables selected by Lasso regression. 

discrepancies in the transfusion thresholds have been noted (26, 
27). In this study, we identified seven key features—blood loss 
volume, HGB levels, body weight, body temperature, systolic 
pressure, and direct bilirubin—as predictive factors for the 
necessity of blood transfusions during the perioperative period. 

The associations between the characteristic variables examined 
in this study and perioperative transfusions have been documented 
extensively in the literature. Previous studies have demonstrated 
a positive correlation between blood loss and the likelihood of 
requiring a blood transfusion (28, 29). Our findings align with 
these observations. Intraoperative blood loss may elevate the 
demand for blood transfusions, potentially due to a complex 
physiological cascade that includes reductions in blood volume, 
oxygenation, coagulation function, metabolic acidosis, impaired 
immune response, and other contributing factors. 

HGB levels play a critical role in determining the necessity 
of perioperative blood transfusions (30, 31). One study revealed a 

five-fold increase in the likelihood of requiring a blood transfusion 
when preoperative HGB levels fall below 120 g/L (32), and another 
study arrived at a similar conclusion (33). This phenomenon 
can be attributed to the diminished ability of patients with 
lower preoperative HGB levels to effectively compensate for 
intraoperative blood loss (34). 

Our results indicate that individuals with lower body weight 
are more likely to require a blood transfusion than those with 
higher body weight. Several studies have corroborated these 
findings (35, 36). Patients with lower body weight possess a 
reduced RBC volume (37, 38), which may hinder their ability to 
compensate for blood loss. Consequently, lighter individuals may 
find it more challenging to recover from significant blood loss 
compared to those with higher body weight (37). Additionally, 
studies have indicated that factors such as age, systolic pressure, 
and direct bilirubin significantly influence perioperative blood 
transfusions (9). Maintaining normal body temperature is crucial, 
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FIGURE 2 

ROC curves for four machine learning models evaluated on the internal validation set. (A) The ROC curve for the Random Forest model. (B) The ROC 
curve for the Extreme Gradient Boosting model. (C) The ROC curve for the Light Gradient Boosting Machine model. (D) The ROC  curve for  the  
Logistic Regression model. 

TABLE 2 Performance evaluation of machine learning models within the internal validation set. 

Learner AUC Sensitivity Specificity Brier F-beta PPV NPV Log loss MCC 

RF 1.00 1.00 0.99 0.05 0.98 0.97 1.00 0.14 0.98 

Xgb 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.01 1.00 

Lgb 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 

LR 0.93 0.81 0.85 0.23 0.64 0.53 0.96 0.38 0.56 

as hypothermia can exacerbate blood loss and increase the need 
for transfusions. Research on THA demonstrates that stable body 
temperatures can mitigate blood loss and reduce transfusion 
rates (39). 

ML has capabilities for effectively managing non-linear and 
complex data structures and addressing issues associated with high-
dimensional data and missing values. Concurrently, it exhibits a 
robust capacity for pattern recognition and utilization. Various 
studies have confirmed the utility of ML in clinical diagnosis and 
prognosis (40, 41). Recently, there has been growing interest in 
applying ML to the field of blood transfusion (42, 43). Currently, 
no models exist to predict the likelihood of perioperative blood 
transfusions in patients with ONFH undergoing THA. While 
some predictive models perform well, they face clinical application 

challenges due to suboptimal performance (44). Moreover, there 
is a notable gap in evaluating predictive performance specific to 
ONFH cases. 

In this study, we developed four ML models through 
hyperparameter tuning for perioperative blood transfusions in 
patients with ONFH undergoing THA. RF mitigates the risk of 
overfitting by integrating multiple decision trees and demonstrates 
exceptional robustness in the presence of high-dimensional data 
and noise (45). Furthermore, it facilitates the assessment of feature 
importance (46). XGB employs second-order Taylor expansion 
and incorporates regularization terms, resulting in enhanced 
prediction accuracy and robust generalization (47). The LGBM 
utilizes histogram algorithms and prioritizes the growth of leaf 
nodes, achieving remarkably fast training speeds and low memory 
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TABLE 3 Performance evaluation of machine learning models within the external test set. 

Learner AUC Sensitivity Specificity Brier F-beta PPV NPV Log loss MCC 

RF 0.89 0.61 0.92 0.19 0.61 0.62 0.92 0.33 0.54 

Xgb 0.90 0.60 0.92 0.21 0.59 0.59 0.92 0.39 0.51 

Lgb 0.88 0.60 0.92 0.24 0.59 0.59 0.92 0.68 0.51 

LR 0.91 0.80 0.85 0.25 0.64 0.53 0.95 0.40 0.56 

FIGURE 3 

Box plot comparing four machine learning models on the external test set. (A) AUC values, (B) ACC values, (C) Recall values, and (D) CE values. 

consumption, which renders it suitable for ultra-large-scale datasets 
(47). LR offers strong interpretability of probability outputs, allows 
for the adjustment of decision thresholds, and is characterized by its 
simplicity, computational efficiency, and speed, making it suitable 
for large-scale structured data (48). LR was deemed the most 
clinically suitable due to its balanced performance across various 
metrics. The RF, XGB, and LGBM models exhibited excellent 
results but had low Brier scores and Log Loss, indicating overfitting 
to the internal validation set. Their performance significantly 
declined on the external test set, particularly regarding sensitivity 
and PPV, highlighting their limited generalizability. Additionally, 
the AUC values of the four models did not display any statistical 
differences in DeLong test conducted on the external test set. 
LR demonstrated clinical validity through four primary features 
in our study: first, it possessed higher validation sensitivity, 
ensuring better identification of true transfusion candidates, which 
is critical in surgical settings. Second, it balanced specificity and 
NPV, maintaining strong negative classification without missing 
positive cases. Third, it exhibited stable performance from internal 

validation to external test, showing the smallest AUC decrease, 
indicating reliable generalization. Finally, the DCA illustrated 
that the LR model yields a significant net benefit and maintains 
consistency between the internal validation and external test sets. 
Ensemble methods displayed slightly better calibration and Log 
Loss; however, their reduced sensitivity renders them clinically less 
viable. The higher MCC of LR indicates its superior classification 
accuracy in clinical settings. 

The SHapley Additive exPlanations (SHAP) is a method 
for interpreting ML models that is grounded in the Shapley 
value from game theory (49). By quantifying the marginal 
contribution of each feature to the model’s predictions, 
SHAP offers both global and local interpretability (50). The 
SHAP analysis identified critical features: HGB levels (positive 
correlation), body weight (negative correlation), and age (strong 
global influence) (9). High HGB levels suggest compensatory 
hemoconcentration during blood loss, while greater body weight 
indicates a better physiological reserve (37). Advanced age is 
strongly correlated with risk due to diminished hemodynamic 

Frontiers in Medicine 07 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1471746
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sun et al. 10.3389/fmed.2025.1471746 

FIGURE 4 

Statistical visualizations of the SHAP analysis. (A) An ordered plot illustrating the importance of variables in the SHAP analysis; (B) SHAP value 
contribution graph for a single sample’s indicators. 

FIGURE 5 

Nomogram model construction based seven features. *Denotes the magnitude of the P-value. 

adaptability. Blood loss and hypothermia exhibited synergistic 
effects, correlating with clinical observations of worsened 
coagulopathy HGB (29). These patterns confirm the model’s 
alignment with established pathophysiology, underscoring its 
clinical relevance. 

We also constructed a nomogram based on LR to predict 
transfusion risk. The nomogram demonstrated robust 
discriminatory ability, with consistent AUC values in both 
training and validation sets. Direct comparisons revealed that 
the predictive performance of this nomogram significantly 
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FIGURE 6 

The receiver-operating characteristic curves, calibration plots, and decision curve analysis for the nomogram model in the training and validation 
sets are represented by (A–F), respectively. 

outperformed HGB levels. Furthermore, the DeLong test 
indicated a statistically significant difference in AUC values 
between the nomogram and both LR and HGB levels. This 
finding demonstrates that the predictive capabilities of LR 
and the nomogram exceed those of HGB levels. Moreover, 
the DCA curves indicate that the nomogram model provides 
a substantially higher net benefit compared to HGB levels. 
This visual tool supports clinicians in risk assessment, allowing 
for improved perioperative blood management and surgical 
planning. By identifying high-risk patients, it may help reduce 
transfusion-related complications through targeted interventions. 
The nomogram’s combination of clarity and accuracy makes 
it an invaluable tool for enhancing perioperative care in 
neurovascular surgeries. 

This model aids in identifying patients requiring perioperative 
blood transfusions and optimizing blood management strategies, 
such as autologous blood dilution, intraoperative hypotension 
management, and postoperative recovery. For successful 
integration into clinical practice, it is vital to clearly define 
the model’s objectives, emphasizing the enhancement of predictive 
accuracy to prevent unnecessary transfusions. The clinical 
implementation plan consists of four key components: (1) 
Electronic Medical Record (EMR) integration via HL7 interfaces 
to automatically extract data from laboratories and operative 
notes; (2) Real-time prediction modules capable of issuing 
prioritized alerts during surgical scheduling based on risk; (3) 

Multidisciplinary protocols to monitor transfusion deviations and 
response times at three pilot sites; and (4) Oversight by a blood 
management committee that recalibrates models biannually using 
federated learning across institutions. This framework ensures 
clinical utility, regulatory compliance, and auditability through 
performance dashboards. 

This study has certain limitations, including single-center data 
sourcing and the potential for selection bias. The retrospective 
single-center design inherently restricts the external validation 
of these findings. Moreover, retrospective studies inevitably 
involve missing data. Although rigorous internal controls were 
employed, the absence of multi-institutional data may limit the 
generalizability of results to broader populations. Furthermore, the 
retrospective nature of this study necessitates careful consideration 
of potential confounding factors. But factors such as prior surgical 
interventions, comorbidities beyond hypertension and diabetes, 
and smoking were not considered in the present study. We 
plan to incorporate these variables into our model in future 
research. Additionally, the retrospective design prevents precise 
estimations of clinical decision thresholds; as such analyses require 
outcome data from actual implementation scenarios. Future work 
will encompass cost-benefit analysis with stakeholder engagement 
to operationalize these thresholds. Research directions include 
multicenter validation, prospective studies, exploration of new data 
sources and features, and continuous iteration and optimization 
of the model to enhance its generalizability, accuracy, and clinical 
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applicability. Furthermore, our models have only undergone 
internal validation and require external validation to confirm 
their effectiveness. 

In conclusion, this study developed four ML models and a 
nomogram model to effectively predict the likelihood of blood 
transfusion in patients with ONFH undergoing THA. The model’s 
capability to identify patients with a low probability of requiring 
a transfusion could diminish unnecessary repeat testing, such as 
complete blood counts and additional preoperative laboratory tests. 
Additionally, it can assist clinicians in implementing strategies 
to reduce bleeding and prepare for transfusions in high-risk 
patients. Consequently, this model could serve as a valuable tool for 
clinicians in preoperative preparation and in reducing unnecessary 
medical procedures. 
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